EP2906889B1 - Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air - Google Patents
Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air Download PDFInfo
- Publication number
- EP2906889B1 EP2906889B1 EP13755972.0A EP13755972A EP2906889B1 EP 2906889 B1 EP2906889 B1 EP 2906889B1 EP 13755972 A EP13755972 A EP 13755972A EP 2906889 B1 EP2906889 B1 EP 2906889B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- pressure
- air
- low
- separation column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/52—Oxygen production with multiple purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
- F25J3/04466—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
Definitions
- the invention relates to a method for generating liquid and gaseous oxygen products by the low-temperature decomposition of air using a mixing column and a corresponding air separation plant.
- oxygen products The production of oxygen or oxygen-rich mixtures, hereinafter referred to as oxygen products, is usually carried out by the low-temperature decomposition of air in air separation plants with known distillation column systems. These can be designed as two-pillar systems, in particular as classic double-pillar systems, but also as three-pillar or multi-pillar systems. Furthermore, devices for obtaining further air components, in particular the noble gases krypton, xenon and / or argon, can be provided.
- air separation systems with so-called mixing columns can be used for this purpose, as shown in EP 0 531 182 A1 , EP 0 697 576 A1 , EP 0 698 772 A1 , EP 1 139 046 A1 , DE 101 39 727 A1 , DE 102 28 111 A1 , DE 199 51 521 A1 as U.S. 5,490,391 A are shown.
- a liquid, oxygen-rich stream is fed into a mixing column at the upper end and a gaseous air stream at the lower end and sent towards each other. Through intensive contact, a certain proportion of the more volatile nitrogen is transferred from the air flow to the oxygen-rich flow.
- the oxygen-rich stream is vaporized in the mixing column and at its upper end as gaseous, "impure” oxygen deducted.
- the impure oxygen can be taken from the air separation plant as a gaseous oxygen product.
- the air flow in turn is liquefied, enriched to a certain extent with oxygen, and drawn off at the lower end of the mixing column.
- the liquefied air stream can then be fed into the distillation column system used at a point suitable for energy and / or separation technology.
- a method according to the invention is used to generate a liquid oxygen product and a gaseous oxygen product by the low-temperature decomposition of air.
- a distillation column system of an air separation plant is used for this.
- a liquid fraction with a first, higher oxygen content is made from the Removed the low pressure separation column of the distillation column system and led out of the air separation plant in liquid form.
- a liquid fraction with a second, lower oxygen content is taken from the same low-pressure separation column of the distillation column system and evaporated in a mixing column at a mixing column pressure against mixing column air, as explained above.
- the gaseous oxygen product is also led out of the air separation plant, but in the gaseous state.
- the liquid oxygen product is also referred to below as “pure” and the gaseous oxygen product is also referred to as “impure” oxygen, the possible contents of oxygen being given below.
- the purity of the “pure” oxygen product depends on the type of air separation plant used and the requirements of the respective consumer. As explained, the production of “impure” gaseous oxygen products can be carried out in an energetically favorable manner with mixing columns.
- the terms “higher” and “lower” oxygen content relate to one another.
- product also includes a quantity.
- a "product” corresponds to at least 1%, in particular at least 2%, for example at least 5% or at least 10% of the amount of air used in a corresponding system. Smaller amounts of liquid fractions also conventionally occurring in specific gas systems and possibly removable from such a system do not constitute "products" in the sense of this application this Liquid products could be partially recovered. However, such a withdrawal only takes effect from a certain withdrawal quantity, that is, only when a "product” in the sense of the definition given above is actually withdrawn.
- cryogenic liquids obtained as intermediate products can be evaporated in gas systems and used to cool the air used in particular. If, however, liquid products, for example liquid oxygen and / or nitrogen, are to be removed from an air separation plant, this amount of cold is thereby withdrawn from the system. The "missing" cold in liquid systems must therefore also be generated, ultimately in the form of compressor power.
- the invention develops its particular advantages in plants which are used to produce a gaseous oxygen product with, for example, less than 98 mol% (mol%) purity and, at the same time, larger amounts of a "pure" liquid oxygen product in the sense used here.
- the process proves to be highly efficient and allows 1% to 5% or 1% to 10% of the total air supplied to the air separation plant in compressed form (referred to in this application as "total air") in the form of liquid products.
- total air total air
- the method presented here can, for example, be based on an air separation plant with a double column system.
- double column systems comprise a high pressure separation column and a low pressure separation column for separating oxygen and nitrogen.
- the high-pressure separation column operates at an operating pressure of, for example, 5 to 7.5 bar, in particular 5.5 to 6 bar
- the low-pressure separation column operates at an operating pressure of, for example, 1.3 to 1.8 bar, in particular 1.3 to 1.6 bar.
- the pressures specified below are absolute pressures.
- the high-pressure separation column and the low-pressure separation column can also be at least partially structurally separated from one another. In this case, the two-pillar systems mentioned at the beginning are involved.
- the invention can also be implemented with three or multiple column systems for separating oxygen and nitrogen and / or with distillation column systems which are set up to obtain further components.
- the separation column with the highest operating pressure is referred to as the "high-pressure separation column”.
- the separation column, from which oxygen, for example an oxygen-rich stream with more than 99 mol%, is withdrawn, is then referred to in the parlance of this application as the "low-pressure separation column”.
- the mixing column can also be operated under a higher pressure than the high-pressure separation column.
- the liquid fraction with the first oxygen content is removed from the bottom of the low-pressure separation column and the liquid fraction with the second oxygen content is removed from the low-pressure separation column at a different level.
- the liquid fraction with the first oxygen content is withdrawn from the bottom of the low-pressure separation column and the liquid fraction with the second oxygen content is withdrawn from the side of the low-pressure separation column at a height corresponding to the second oxygen content.
- the extraction height from the low-pressure separation column correlates directly with the oxygen content under the particular operating conditions used, so that a person skilled in the art can easily establish a corresponding relationship.
- the removal from the side of the low-pressure separation column proves to be particularly favorable in terms of energy.
- the liquid oxygen-rich stream that is fed into the mixing column i.e. that oxygen-rich stream which corresponds to the liquid fraction with the second, lower oxygen content withdrawn according to the invention, advantageously has an oxygen content of 70 to 99 mol%, in particular 90 to 98 mol%, on.
- the first oxygen content found in the liquid oxygen product advantageously corresponds to at least 99 mol%, in particular at least 99.5 mol%.
- the first is advantageously always above the second oxygen content.
- the liquid fraction with the first oxygen content is advantageously supercooled in a heat exchanger after it has been removed from the separation column of the distillation column system. This enables the liquid fraction to then be safely transferred to a tank without the inevitable heat losses that would lead to excessive evaporation.
- the liquid fraction with the second oxygen content is in turn heated in a heat exchanger after being removed from the separation column of the distillation column system and / or after evaporation in the mixing column.
- a heat exchanger can be used that also serves to subcool the liquid fraction with the first oxygen content after removal from the distillation column system.
- the liquid fraction with the second oxygen content can also be passed through a main heat exchanger of the air separation plant and heated there further.
- the liquid fraction with the second oxygen content is advantageously fed into the mixing column at the top by means of at least one pump and at least one expansion valve after it has been removed from the separation column of the distillation column system.
- the pressure is increased to the mixing column pressure, which is above the pressure of the low-pressure separation column from which the liquid fraction with the second oxygen content is advantageously withdrawn.
- the method explained is advantageously implemented as a so-called HAP method (High Air Pressure).
- the total air supplied to the air separation plant is advantageously compressed in a main compressor to a feed pressure of 6 to 30 bar, in particular 7 to 20 bar, for example 10 to 14 bar.
- the main compressor is preferably the only machine driven by external energy for compressing air.
- a "single machine” is understood here, for example, as a single-stage or multi-stage compressor, the stages of which are all connected to the same drive, all stages in the same housing housed or connected to the same transmission.
- the total air is preferably compressed to a pressure which, for example, is significantly higher than the operating pressure of the column with the highest pressure level.
- partial flows for example in boosters that are coupled to expansion turbines, can also be "re-compressed", but for which no external energy is supplied.
- the feed pressure can alternatively or additionally also be specified in relation to the operating pressure of the high-pressure separation column.
- the pressure difference between the feed pressure and the operating pressure of the high-pressure separation column not only corresponds to the natural pressure drop through lines, heat exchangers and other apparatus, but is at least 1 bar, in particular at least 3 bar, preferably at least 5 bar.
- the pressure difference between the feed pressure and the operating pressure of the high-pressure separation column is, for example, 5 to 25 bar, in particular 7 to 15 bar.
- a first partial flow of the total air is expanded in a first expansion machine to the operating pressure of the high-pressure separation column and fed into the high-pressure separation column. This allows additional cold to be gained.
- the first partial flow can be compressed in a booster coupled to the first expansion machine and / or cooled before and / or after the expansion in the first expansion machine.
- the resulting heat of compression can be dissipated by cooling after compression, e.g. by water cooling and / or by cooling to an intermediate temperature in a main heat exchanger. If, after the expansion, the then cold gas is passed through the cold end of the main heat exchanger, further cooling can be effected.
- a second partial flow of the total air is used as the mixing column air, which is expanded to the mixing column pressure in a second expansion machine and is fed into the mixing column in a lower region.
- This also helps to cover the cooling requirements of the system.
- the two expansion machines have different inlet temperatures, that is to say the inlet temperature of the second expansion machine is in particular at least 5 K higher or lower than that of the first expansion machine.
- the first and / or the second partial flow can be cooled in different ways, so that the method can be optimized, for example, with regard to smaller volumes for the main heat exchanger on the one hand or with regard to maximum energy savings.
- the second partial flow can also be cooled before and / or after the expansion in the second expansion machine, so that the temperatures desired in each case can be achieved.
- one of the two relaxation machines is coupled to a booster.
- the expansion work can be put to good use.
- precisely the amount of air that is introduced into the expansion machine coupled to the booster is previously passed through the booster, which is advantageously designed as a hot compressor.
- the other of the two expansion machines is mechanically coupled to a generator and / or an oil brake in which the expansion work that is released can be implemented accordingly.
- a pressure of 2 to 6 bar is advantageously used as the mixing column pressure.
- the mixing column pressure depends, for example, on the externally required supply pressure for the gaseous oxygen product or can likewise be optimized in accordance with energetic considerations. In the latter case, a pressure of or close to 2 bar is advantageous.
- An air separation plant is set up to carry out a method according to one of the preceding claims. It has means which are set up for extracting a liquid fraction with a first, higher oxygen content from a separation column of a distillation column system of the air separation plant, and means which are set up for the same separation column of the distillation column system, a liquid fraction with a second, to remove lower oxygen content and to evaporate in a mixing column at a mixing column pressure against mixing column air.
- FIG. 1 an air separation plant according to an embodiment of the invention is shown schematically.
- the air separation plant has, inter alia, a main heat exchanger E1, a distillation column system S with a High-pressure separation column S1 and a low-pressure separation column S2, a mixing column S3, a subcooler E3 and two expansion machines X1 and X2 designed as expansion turbines.
- the operating parameters specified below, such as the respective operating pressures, are examples of the ranges mentioned above.
- Pre-cleaned air AIR compressed to a pressure of, for example, 10 to 14 bar can be fed into the system via a line a.
- a main compressor, not shown, is used to compress the air AIR; the total air fed in is referred to as "total air”.
- Part of the total air from line a can be fed to a booster C1 via a line b.
- the booster C1 can be coupled to a first expansion turbine X1.
- the air further compressed in the booster C1 can then be cooled in an aftercooler E2 and fed to the main heat exchanger E1 at its warm end.
- This first partial flow can be taken from the main heat exchanger E1 at an intermediate temperature via a line c, expanded in the first expansion turbine X1 to produce cold and work, and then passed through the main heat exchanger E1 again at the cold end.
- Further air from line a can be fed to the main heat exchanger E1 at its warm end via a line d. A part of this can, if necessary, only if necessary, be depressurized via an expansion valve V1. A second part of the air from line d, and thus part of the total air, referred to in this application as the “second partial flow”, can be taken from the main heat exchanger E1 at an intermediate temperature via a line s.
- the air in line s is, as explained below, fed into the mixing column S3.
- the amount of air fed into the mixing column S3 can also be adjusted via the expansion valve V1.
- the first partial flow of air from line a and possibly the air expanded via the expansion valve V1 are each at a temperature close to the condensation temperature of the air at its cold end.
- a corresponding air flow can over a line e can be fed into the high-pressure separation column S1.
- the operating pressure of the high-pressure separation column S1, and thus the pressure in line e, is at the values explained.
- the expansion turbine X1 and the valve V1 are set accordingly.
- the air is pre-separated in the high-pressure separation column S1.
- An oxygen-enriched liquid bottom fraction can be removed from the high-pressure separation column S1 in a lower area or from the sump via a line f, cooled in a subcooler E3 and, after expansion to the operating pressure of the low-pressure separation column S2, fed into the low-pressure separation column S2 via an expansion valve V2 via a line g become.
- a gaseous, nitrogen-rich top fraction can be removed from the top of the high-pressure separation column S1. At least a partial stream of this can be condensed via a line h in a condenser E4 which, during operation, is covered by an oxygen-rich bottom fraction of the low-pressure separation column S2. At least part of the condensate can be fed in as liquid reflux via a line i at the top of the high-pressure separation column S1. Another part of the condensate can be fed to the subcooler E3 via a line k (not shown) and fed into a tank, for example, as a liquid nitrogen product LIN, via a line m.
- a further substream of the gaseous, nitrogen-rich top fraction removed at the top of the high-pressure separation column S1 can be fed via a line 1 to the main heat exchanger E1, heated in this and depressurized via an expansion valve V3.
- a correspondingly obtained nitrogen-rich gaseous fraction can be used, for example, as a sealing gas in the compressors used.
- a nitrogen-enriched fraction can be removed from the high-pressure separation column S1 at a defined height via a line n, cooled in the subcooler E3, and after expansion via an expansion valve V4 via a line o as a liquid nitrogen-rich stream at the top of the low-pressure separation column S2.
- At least part of the oxygen-rich bottom fraction can be removed from the bottom of the low-pressure separation column S2 via a line p and fed to the subcooler E3 via a connection p '.
- This liquid fraction has a high oxygen content, which in the context of this application is referred to as the "first" oxygen content.
- this fraction can be given off an oxygen-rich liquid fraction as a liquid oxygen product LOX via a line q and a valve V5, i.e. it can be discharged from the air separation plant in liquid form.
- a gaseous top fraction can be withdrawn via a line r, heated in the main heat exchanger E1 and discharged via a valve V6.
- This fraction can, for example, be used to regenerate adsorption devices to purify the air to be fed in (AIR).
- the air separation system is designed as a mixing column system.
- at least part of the air from line d (the "second partial flow") can be taken from the main heat exchanger E1 at an intermediate temperature and fed to a second expansion turbine X2 via line s.
- the air can be expanded to a pressure of, for example, 2 to 4 bar, in particular 3 bar.
- the air is then fed in gaseous form into the lower part of a mixing column S3, which is operated at a corresponding pressure.
- an oxygen-enriched fraction is fed into this via a line t, which is withdrawn at a defined height from the low-pressure separation column S2 via a line u in liquid form and with the oxygen content referred to in this application as the "second oxygen content".
- the fraction removed via line u is pumped to a pressure above the pressure of the mixing column S3 via a pump P1, warmed to an intermediate temperature via lines v and w in the subcooler E3 and then in the main heat exchanger E1, and via a valve V7 and the line t is fed into the mixing column S3.
- the gaseous air fed into the lower part of the mixing column S3 is liquefied.
- the liquefied air can be drawn off in a lower area of the mixing column S3 via a line x, cooled to an intermediate temperature in the subcooler E3, and fed ("blown") into the low-pressure separation column S2 via a line y and an expansion valve V8.
- a gaseous oxygen-rich fraction can be taken from the top of the mixing column S3 via a line z, warmed in the main heat exchanger E1 and released as a gaseous oxygen product via a valve V9.
- FIG 2 an air separation plant according to a further embodiment of the invention is shown schematically. This has the essential components of the previously in relation to Figure 1 explained air separation plant and is operated accordingly. A repeated explanation is dispensed with.
- the second partial flow of the air is passed through the cold end of the main heat exchanger E1 after the expansion in the expansion turbine X2, whereas the first partial flow is not.
- Alternative arrangements can, however, also provide corresponding cooling of both partial flows in the main heat exchanger E1.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Claims (10)
- Procédé de production d'un produit d'oxygène liquide (LOX) et d'un produit d'oxygène gazeux (GOX) par fractionnement cryogénique de l'air (AIR) dans un système de colonnes de distillation (S) d'une installation de fractionnement de l'air, qui présente une colonne de séparation haute pression (S1) et une colonne de séparation basse pression (S2), dans lequel pour l'obtention du produit d'oxygène liquide (LOX), une fraction liquide présentant une première teneur en oxygène, plus élevée, est prélevée depuis la colonne de séparation basse pression (S2) du système de colonnes de distillation (S) et est sortie liquide de l'installation de fractionnement de l'air et dans lequel pour l'obtention du produit d'oxygène gazeux (GOX), une fraction liquide avec une deuxième teneur en oxygène, plus basse, est prélevée de la même colonne de séparation basse pression (S2) du système de colonnes de distillation (S), est vaporisée dans une colonne de mélange (S3) contre de l'air de colonne de mélange, est chauffée dans un échangeur de chaleur principal (E1) contre de l'air de charge à refroidir et est ensuite sortie gazeuse de l'installation de fractionnement de l'air, où- la colonne de séparation basse pression (S2) présente un condenseur (E4) unique pour la production de gaz ascendants dans la colonne de séparation basse pression (S2),- un premier flux partiel de l'air total est détendu dans une première machine de détente (X1) avec production de travail à la pression de fonctionnement de la colonne de séparation haute pression (S1) et est introduit dans la colonne de séparation haute pression (S1),- un deuxième flux partiel de l'air total est utilisé comme air de colonne de mélange, en ce que- le deuxième flux partiel de l'air total est détendu dans une deuxième machine de détente (X2) avec production de travail à la pression de la colonne de mélange puis est injecté dans une zone inférieure dans la colonne de mélange (S3),- les deux machines de détente présentent des températures d'entrée différentes- une (X1 ; X2) des deux machines de détente est accouplée à un booster (C1), dans lequel le flux d'air, qui est ensuite introduit dans la machine de détente accouplée au booster, est comprimé au préalable,- l'autre (X2 ; X1) des deux machines de détente est accouplée mécaniquement à un générateur et/ou un frein hydraulique (G),- soit le premier flux partiel soit l'air de colonne de mélange est refroidi en aval de la détente (X1 ; X2) avec production de travail dans l'échangeur de chaleur principal (E1) dans un échange de chaleur indirect avec une fraction riche en azote (r) sortant de la colonne de séparation basse pression (S2),- le fond de la colonne de séparation basse pression (S2) et la tête de la colonne de séparation haute pression (S1) sont accouplés thermiquement l'un à l'autre par le biais du condenseur (E4),- les colonnes de séparation basse pression et haute pression ne présentent que ce condenseur (E4) unique et- la fraction liquide présentant la première teneur en oxygène est prélevée du fond de la colonne de séparation basse pression et la fraction liquide présentant la deuxième teneur en oxygène est prélevée à une hauteur différente de la colonne de séparation basse pression (2).
- Procédé selon la revendication 1, dans lequel, en tant que première teneur en oxygène, une teneur en oxygène d'au moins 99 % en mole, en particulier d'au moins 99,5 % en mole est utilisée et en tant que deuxième teneur en oxygène, une teneur en oxygène de 70 à 99 % en mole, en particulier de 90 à 98 % en mole, est utilisée.
- Procédé selon l'une quelconque des revendications 1 à 2, dans lequel un air total acheminé vers l'installation de fractionnement d'air au total est comprimé dans un compresseur principal à une pression d'injection de 6 à 30 bars, en particulier de 7 à 20 bars, par exemple de 10 à 14 bars.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier flux partiel est refroidi en amont de la détente dans la première machine de détente (X1) et/ou le deuxième flux partiel est refroidi en amont de la détente dans la deuxième machine de détente (X2).
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la fraction liquide présentant la deuxième teneur en oxygène, après le prélèvement de la colonne de séparation (S2) du système de colonnes de distillation (S), est injecté au moyen d'au moins une pompe (P1) et d'au moins une soupape de détente (V7) côté tête dans la colonne de mélange (S3).
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la colonne de mélange est exploitée à une pression de colonne de mélange d'une pression de 2 à 6 bars.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la première machine de détente (X1), dans laquelle le premier flux partiel est détendu avec production de travail, est accouplée au booster (C1) et la deuxième machine de détente (X2), dans laquelle le premier flux partiel est détendu avec production de travail, est accouplée à un générateur et/ou un frein hydraulique (G).
- Procédé selon la revendication 7, dans lequel l'air de colonne de mélange est refroidi en aval de la détente (X2) avec production de travail dans l'échangeur de chaleur principal (E1) dans un échange de chaleur indirect avec une fraction riche en azote (r) sortant de la colonne de séparation basse pression (S2).
- Procédé selon la revendication 8, dans lequel le flux partiel, qui est refroidi en aval de la détente (X1 ; X2) avec production de travail dans l'échangeur de chaleur principal (E1) dans un échange de chaleur indirect avec une fraction riche en azote (r) sortant de la colonne de séparation basse pression (S2), est introduit à une première température intermédiaire dans l'échangeur de chaleur principal (E1) et la fraction (z) vaporisée dans la colonne de mélange (S3) est introduite à une deuxième température intermédiaire dans l'échangeur de chaleur principal (E1), de nouveau prélevée au niveau de l'extrémité chaude de l'échangeur de chaleur principal (E1) et ensuite sortie gazeuse de l'installation de fractionnement d'air, la deuxième température intermédiaire étant supérieure ou égale à la première température intermédiaire.
- Installation de fractionnement d'air, qui est conçue pour la réalisation d'un procédé selon l'une quelconque des revendications précédentes, comprenant un système de colonnes de distillation (S), qui présente une colonne de séparation haute pression (S1), une colonne de séparation basse pression (S2) et une colonne de mélange (S3), comprenant des moyens, qui sont conçus, pour l'obtention d'un premier produit d'oxygène liquide (LOX), pour prélever une fraction liquide présentant une première teneur en oxygène, plus élevée, de la colonne de séparation basse pression (S2) du système de colonnes de distillation (S) de l'installation de fractionnement d'air et des moyens, qui sont conçus, pour prélever une fraction liquide présentant une deuxième teneur en oxygène, plus basse, de la même colonne de séparation basse pression (S2) du système de colonnes de distillation (S) et l'évaporer dans la colonne de mélange (S3) à une pression de colonne de mélange contre de l'air de colonne de mélange, comprenant un échangeur de chaleur principal (E1) pour le chauffage de la fraction (z) vaporisée dans la colonne de mélange contre l'air de charge à refroidir et comprenant- une première machine de détente (X1) pour la détente avec production de travail d'un premier flux partiel de l'air total à la pression de fonctionnement de la colonne de séparation haute pression (S1)- des moyens pour l'introduction du flux partiel détendu avec production de travail dans la colonne de séparation haute pression (S1),- une deuxième machine de détente (X2) pour la détente avec production de travail d'un deuxième flux partiel de l'air total à la pression de colonne de mélange,- des moyens pour l'introduction du flux partiel détendu avec production de travail dans une zone inférieure dans la colonne de mélange (S3) et- des moyens de fourniture des deux flux partiels pour les deux machines de détente à des températures d'entrée différentes,
où- la colonne de séparation basse pression (S2) présente un condenseur (E4) unique pour la production de gaz ascendants dans la colonne de séparation basse pression (S2),- l'une (X1 ; X2) des deux machines de détente est accouplée à un booster (C1) pour comprimer le flux d'air en amont d'une (X1 ; X2) des machines de détente accouplées au booster et- l'autre (X2 ; X1) des deux machines de détente est accouplée mécaniquement à un générateur et/ou un frein hydraulique (G),
et comprenant- des moyens pour refroidir soit le premier flux partiel soit le deuxième flux partiel en aval de la détente (X1 ; X2) avec production de travail dans l'échangeur de chaleur principal (E1) dans un échange de chaleur indirect avec une fraction riche en azote (r) sortant de la colonne de séparation basse pression (S2), où, en outre,- le fond de la colonne de séparation basse pression (S2) et la tête de la colonne de séparation haute pression (S1) sont accouplés thermiquement l'un à l'autre par le biais du condenseur (E4),- les colonnes de séparation basse pression et haute pression ne présentent que ce condenseur (E4) unique et- des moyens pour prélever la fraction liquide présentant la première teneur en oxygène du fond de la colonne de séparation basse pression et des moyens pour prélever la fraction liquide présentant la deuxième teneur en oxygène sont disposés à une hauteur différente de la colonne de séparation basse pression (2).
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13755972.0A EP2906889B1 (fr) | 2012-09-04 | 2013-08-29 | Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air |
| PL13755972T PL2906889T3 (pl) | 2012-09-04 | 2013-08-29 | Sposób i urządzenie do wytwarzania ciekłych i gazowych produktów tlenowych poprzez kriogeniczne rozdzielanie powietrza |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102012017484.5A DE102012017484A1 (de) | 2012-09-04 | 2012-09-04 | Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft |
| EP12007213.7A EP2703757A1 (fr) | 2012-09-04 | 2012-10-18 | Procédé et installation destinés à générer des produits à base d'oxygène liquides et gazeux par décomposition à basse température de l'air |
| PCT/EP2013/002604 WO2014037091A2 (fr) | 2012-09-04 | 2013-08-29 | Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air |
| EP13755972.0A EP2906889B1 (fr) | 2012-09-04 | 2013-08-29 | Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2906889A2 EP2906889A2 (fr) | 2015-08-19 |
| EP2906889B1 true EP2906889B1 (fr) | 2021-08-11 |
Family
ID=47142876
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12007213.7A Withdrawn EP2703757A1 (fr) | 2012-09-04 | 2012-10-18 | Procédé et installation destinés à générer des produits à base d'oxygène liquides et gazeux par décomposition à basse température de l'air |
| EP13755972.0A Active EP2906889B1 (fr) | 2012-09-04 | 2013-08-29 | Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12007213.7A Withdrawn EP2703757A1 (fr) | 2012-09-04 | 2012-10-18 | Procédé et installation destinés à générer des produits à base d'oxygène liquides et gazeux par décomposition à basse température de l'air |
Country Status (8)
| Country | Link |
|---|---|
| EP (2) | EP2703757A1 (fr) |
| BR (1) | BR112015004726B1 (fr) |
| CL (1) | CL2015000527A1 (fr) |
| DE (1) | DE102012017484A1 (fr) |
| PL (1) | PL2906889T3 (fr) |
| RU (1) | RU2647297C2 (fr) |
| WO (1) | WO2014037091A2 (fr) |
| ZA (1) | ZA201501162B (fr) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3179186A1 (fr) | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Procede de production d'un produit comprime riche en oxygene, gazeux et liquide dans une installation de decomposition de l'air et installation de decomposition de l'air |
| US20230043513A1 (en) * | 2019-12-23 | 2023-02-09 | Linde Gmbh | Process and plant for provision of oxygen product |
| JP2024013252A (ja) * | 2022-07-20 | 2024-02-01 | 大陽日酸株式会社 | 熱交換器 |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2680114B1 (fr) | 1991-08-07 | 1994-08-05 | Lair Liquide | Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie. |
| US5454227A (en) | 1994-08-17 | 1995-10-03 | The Boc Group, Inc. | Air separation method and apparatus |
| US5490391A (en) | 1994-08-25 | 1996-02-13 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
| US5551258A (en) * | 1994-12-15 | 1996-09-03 | The Boc Group Plc | Air separation |
| US5966967A (en) * | 1998-01-22 | 1999-10-19 | Air Products And Chemicals, Inc. | Efficient process to produce oxygen |
| DE19951521A1 (de) | 1999-10-26 | 2001-05-03 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
| DE10015602A1 (de) | 2000-03-29 | 2001-10-04 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
| DE10139727A1 (de) | 2001-08-13 | 2003-02-27 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
| DE10209421A1 (de) * | 2002-03-05 | 2003-04-03 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
| DE10228111A1 (de) | 2002-06-24 | 2004-01-15 | Linde Ag | Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung |
| FR2865024B3 (fr) * | 2004-01-12 | 2006-05-05 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
| EP1666824A1 (fr) * | 2004-12-03 | 2006-06-07 | Linde Aktiengesellschaft | Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air |
| FR2895068B1 (fr) * | 2005-12-15 | 2014-01-31 | Air Liquide | Procede de separation d'air par distillation cryogenique |
| US7533540B2 (en) * | 2006-03-10 | 2009-05-19 | Praxair Technology, Inc. | Cryogenic air separation system for enhanced liquid production |
-
2012
- 2012-09-04 DE DE102012017484.5A patent/DE102012017484A1/de not_active Withdrawn
- 2012-10-18 EP EP12007213.7A patent/EP2703757A1/fr not_active Withdrawn
-
2013
- 2013-08-29 BR BR112015004726-2A patent/BR112015004726B1/pt active IP Right Grant
- 2013-08-29 WO PCT/EP2013/002604 patent/WO2014037091A2/fr not_active Ceased
- 2013-08-29 EP EP13755972.0A patent/EP2906889B1/fr active Active
- 2013-08-29 RU RU2015112309A patent/RU2647297C2/ru active
- 2013-08-29 PL PL13755972T patent/PL2906889T3/pl unknown
-
2015
- 2015-02-19 ZA ZA2015/01162A patent/ZA201501162B/en unknown
- 2015-03-04 CL CL2015000527A patent/CL2015000527A1/es unknown
Non-Patent Citations (1)
| Title |
|---|
| None * |
Also Published As
| Publication number | Publication date |
|---|---|
| CL2015000527A1 (es) | 2015-06-19 |
| EP2703757A1 (fr) | 2014-03-05 |
| RU2647297C2 (ru) | 2018-03-15 |
| EP2906889A2 (fr) | 2015-08-19 |
| DE102012017484A1 (de) | 2014-03-06 |
| PL2906889T3 (pl) | 2021-12-27 |
| BR112015004726A2 (pt) | 2017-07-04 |
| RU2015112309A (ru) | 2016-10-27 |
| WO2014037091A3 (fr) | 2014-12-18 |
| WO2014037091A2 (fr) | 2014-03-13 |
| BR112015004726B1 (pt) | 2021-07-06 |
| ZA201501162B (en) | 2016-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3164654B1 (fr) | Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable | |
| EP3175192B1 (fr) | Procédé de séparation cryogénique de l'air et installation de séparation d'air | |
| EP3179187B1 (fr) | Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air | |
| EP3870915B1 (fr) | Procédé et installation de séparation d'air à basse température | |
| DE102010052545A1 (de) | Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft | |
| EP1074805B1 (fr) | Procédé et dispositif pour la production d'oxygène sous pression | |
| EP2963370B1 (fr) | Procede et dispositif cryogeniques de separation d'air | |
| EP2520886A1 (fr) | Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air | |
| EP2053331A1 (fr) | Procédé et dispositif de séparation de l'air à basse température | |
| EP2963369B1 (fr) | Procede et dispositif cryogeniques de separation d'air | |
| EP3207320B1 (fr) | Procédé et dispositif destinés à l'obtention variable d'argon par la décomposition à basse température de l'air | |
| EP2906889B1 (fr) | Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air | |
| EP2979051B1 (fr) | Procédé et dispositif permettant de produire avec une consommation d'énergie variable de l'oxygène sous pression sous forme gazeuse | |
| EP2938952A2 (fr) | Procédé et dispositif de séparation de l'air à basse température | |
| EP2551619A1 (fr) | Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air | |
| EP2914913B1 (fr) | Procédé de séparation d'air à basse température dans une installation de séparation d'air et installation de séparation d'air | |
| DE102013002094A1 (de) | Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage | |
| EP4065910A1 (fr) | Procédé et installation pour fractionnement à basse température de l'air | |
| DE102017010001A1 (de) | Verfahren und Anlage zur Tieftemperaturzerlegung von Luft | |
| EP2369281A1 (fr) | Procédé et dispositif destinés à la décomposition à basse température d'air | |
| DE10045128A1 (de) | Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung | |
| EP3870917B1 (fr) | Procédé et installation de séparation cryogénique d'air | |
| EP4127583B1 (fr) | Procédé et installation de séparation d'air à basse température | |
| EP3620739A1 (fr) | Procédé de décomposition à basse température de l'air et installation de décomposition de l'air | |
| DE10339230A1 (de) | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20150210 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20200330 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE GMBH |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20201130 |
|
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTC | Intention to grant announced (deleted) | ||
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| INTG | Intention to grant announced |
Effective date: 20210310 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTC | Intention to grant announced (deleted) | ||
| INTG | Intention to grant announced |
Effective date: 20210415 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013015877 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: AT Ref legal event code: REF Ref document number: 1419789 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
| REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211213 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211112 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013015877 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210829 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20220512 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211111 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210829 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211011 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211111 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130829 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240820 Year of fee payment: 12 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250819 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20250821 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20250819 Year of fee payment: 13 |