EP3207320B1 - Procédé et dispositif destinés à l'obtention variable d'argon par la décomposition à basse température de l'air - Google Patents

Procédé et dispositif destinés à l'obtention variable d'argon par la décomposition à basse température de l'air Download PDF

Info

Publication number
EP3207320B1
EP3207320B1 EP15771022.9A EP15771022A EP3207320B1 EP 3207320 B1 EP3207320 B1 EP 3207320B1 EP 15771022 A EP15771022 A EP 15771022A EP 3207320 B1 EP3207320 B1 EP 3207320B1
Authority
EP
European Patent Office
Prior art keywords
argon
column
gaseous
return flow
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15771022.9A
Other languages
German (de)
English (en)
Other versions
EP3207320A1 (fr
Inventor
Stefan Lochner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL15771022T priority Critical patent/PL3207320T3/pl
Publication of EP3207320A1 publication Critical patent/EP3207320A1/fr
Application granted granted Critical
Publication of EP3207320B1 publication Critical patent/EP3207320B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a device according to the preamble of claim 9.
  • a method and such a device are from the documents EP1482266 A1 , US2012 / 0125045 A1 and FR2943773 A1 known.
  • a known type of argon extraction is, for example, in EP 2600090 A1 described.
  • argon and oxygen are separated in a crude argon column (which is in two parts here) and, in a further step, the pure argon column, argon and nitrogen.
  • the raw argon from the raw argon column is fed into the pure argon column in gaseous form.
  • Argon-enriched is used here to denote a stream which has a higher argon concentration than air.
  • the raw argon column can be made in one or more parts. It has a top condenser which is cooled with a liquid from the air separation process in the narrower sense, in particular with bottom liquid from the high-pressure column.
  • the entire liquid pure argon product stream is withdrawn from the bottom of the pure argon column as the end product.
  • the end product is obtained, for example, directly as a liquid product and introduced into a liquid tank. Alternatively, it is taken in liquid form from the pure argon column or from the tank, pressurized in liquid form, heated in the main heat exchanger and fed directly to a consumer as a pressurized gas product.
  • argon is sold as a liquid product.
  • the invention is based on the object of increasing the efficiency of the oxygen production in a method mentioned at the beginning when the argon requirement fluctuates relative to the main product requirement.
  • Effective of the oxygen separation is understood here as meaning the oxygen yield, in particular the energy expenditure per Nm 3 of oxygen generated, with the purity of the oxygen product remaining the same.
  • the efficiency of the oxygen generation depends on the quality of the argon separation. Therefore, even if the argon product is not needed or is not needed in full, the invention tries to keep the argon yield as high as possible. If you - as in the prior art - reduce the conversion of the argon columns, you only gain the liquefaction capacity for the argon that is not required, but the oxygen separation loses its efficiency.
  • the gaseous argon return flow has an argon content which is at least twice as high as that of the argon-enriched flow from the low-pressure column (measured in molar amounts).
  • the cold contained in it is recovered in the main heat exchanger by heating the gaseous argon return flow without mixing with another flow in a separate passage of the main heat exchanger.
  • the crude argon column or a part of it can be driven or with a constant throughput with variable argon production the nominal or maximum throughput for which the process is designed.
  • the oxygen yield and the oxygen purity thus remain consistently high.
  • the entire amount of pure argon product is discharged as the end product.
  • the “second operating mode” can then be formed by any operating mode in which the end product quantity is smaller than in the first operating mode.
  • the excess part of the amount of pure argon product is then drawn off as a gaseous argon backflow before the pure argon column or from the pure argon column before it reaches the bottom of the pure argon column. In extreme cases, no argon end product is produced at all and the pure argon column only emits residual gas at the top.
  • the pure products of the low-pressure column are not contaminated and the argon product can be used to regenerate adsorbers or in an evaporative cooler.
  • the absolute total amount of argon that is taken from the crude argon column and the pure argon column is kept essentially constant.
  • Essentially constant is understood here to mean a deviation of less than 5 mol%, in particular of less than 2.5%.
  • this total amount of argon is made up of the amount of argon product and the amount of argon contained in the residual gas from the top of the pure argon column. If, for example, no argon product at all is obtained in the second operating mode, the argon contained in the argon return flow (s) and the amount of argon contained in the residual gas from the top of the pure argon column add to the total amount of argon.
  • Atmospheric air is sucked in through a filter 2 by an air compressor 3.
  • the compressed air 4 from the air compressor 3 is cooled in a pre-cooling device 5 and cleaned in a cleaning device 6.
  • the cleaned air 7 is fed to a main heat exchanger 8.
  • a first cold air stream 9 is introduced into the high-pressure column 10 in essentially gaseous form.
  • the high-pressure column 10 is part of a double column which also has a low-pressure column 11 and a main condenser 12. These apparatus are part of a distillation column system.
  • a portion 16 of this liquid is immediately withdrawn again, cooled in a subcooling countercurrent 17 and introduced into the low-pressure column 11 via line 18.
  • An oxygen-enriched fraction 19 from the bottom of the high pressure column 10 is cooled in the subcooling countercurrent 17.
  • the cooled, oxygen-enriched fraction 20 is passed to a first part 21 through the sump heater 91 of the pure argon column 83 and further into the evaporation chamber of the crude argon column top condenser 90.
  • a second part 22 flows directly into the evaporation chamber of the pure argon column top condenser 91.
  • the remaining liquid and the gaseous components from the top condensers are combined in pairs and fed into the low-pressure column 11 via lines 23 and 24. Alternatively, these streams can each be fed separately into the low-pressure column.
  • a part of the top nitrogen 25 of the high pressure column 10 is condensed in the main condenser 12 and a first part 26 is applied to the high pressure column.
  • a second part 27 of the liquid nitrogen flows through the subcooling countercurrent 17 and through line 28 to the top of the low pressure column.
  • gaseous oxygen from the bottom of the low-pressure column 11 can be fed into the residual gas line 33 via the line X.
  • An argon-enriched stream 80 from the low-pressure column 11 is introduced into a crude argon column, which in the example is designed as a split crude argon column with two sections 81, 82.
  • first operating mode the top steam 70 of the first section 81 is introduced completely into the second section 82 via line 70a.
  • Return liquid is generated in the top condenser 90.
  • the liquid 87 arriving in the sump of the second section 82 is applied to the top of the first section 81 by means of a pump 88 via line 89.
  • the liquid 84 that collects in the sump of the first section 81 is also pumped and returned to the low-pressure column 11 via line 6.
  • a gaseous crude argon fraction 71 is removed and fed in gaseous form into the pure argon column 83 in its entirety.
  • a liquid pure argon product stream 72 is withdrawn from the bottom of the pure argon column 83.
  • a residual gas stream 73 is drawn off from the top condenser 91 of the pure argon column and blown off into the atmosphere (ATM).
  • the gaseous argon return flow or part of it is formed by part of the overhead vapor 70 of the first section 81 of the crude argon column. It is passed through the separate passage 108 of the main heat exchanger with the aid of lines 101, 102a, 105, 106, 107. A portion 102b may be introduced into the impure nitrogen 32 downstream of the subcooling countercurrent 17; alternatively, the introduction can be carried out upstream of the subcooling countercurrent 17.
  • the gaseous argon return flow is formed by part of the crude argon fraction 71 or by the entire crude argon fraction 71 and passed through the lines 103, 104, 106 into the separate passage 108 of the main heat exchanger. A part of it can be introduced into the gaseous nitrogen product stream 30 downstream of the subcooling countercurrent 17 (lines 103, 104, 105); alternatively, the introduction can be carried out upstream of the subcooling countercurrent 17.
  • the argon return flow is passed through a separate passage 108 of the main heat exchanger 8.
  • Passage is understood here to mean a plurality of passages of the main heat exchanger 8 through which the same stream flows.
  • the various withdrawals 101, 103 of the argon return flow can each be combined with any type of routing through the main heat exchanger 8.
  • the line 101 is opened and 0 to 3.5% of the top vapor 70 or the rising vapor in the crude argon column 81, 82 is fed into the main heat exchanger 8.
  • the operator only needs 70% of the maximum possible amount of argon as a product.
  • the "second pure argon product quantity" is thus 70% of the maximum argon product.
  • the argon return flow 101 then comprises, for example, 1% of the overhead vapor 70.
  • the remainder of the overhead vapor 70 of FIG Crude argon column continues to be introduced into second section 82 of the crude argon column via line 70a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (9)

  1. Procédé destiné à l'obtention variable d'argon par fractionnement à basse température, dans lequel
    - de l'air de charge (1, 4, 7) est refroidi dans un échangeur de chaleur principal (8),
    - l'air de charge refroidi (9, 13) est introduit dans un système de colonnes de distillation, qui comporte une colonne haute pression (10) et une colonne basse pression (11),
    - un flux de produit enrichi en argon (80) provenant de la colonne basse pression (11) est introduit dans une colonne d'argon brut (81, 82),
    - une fraction d'argon brut (71) sous forme gazeuse est extraite de la tête de la colonne d'argon brut (81, 82) ou de son condenseur de tête (90),
    - la fraction d'argon brut (71) sous forme gazeuse est introduite dans une colonne d'argon pur (83),
    - depuis le bain de liquide de la colonne d'argon pur (3), un courant de produit d'argon pur fluide (72) est retiré et
    - dans un premier mode de fonctionnement, une première quantité de produit d'argon pur est évacuée sous la forme d'un produit final,
    caractérisé en ce que
    - dans un second mode de fonctionnement, une seconde quantité de produit d'argon pur est évacuée sous forme de quantité de produit final, qui est inférieure à la première quantité de produit d'argon pur et
    - dans le second mode de fonctionnement
    - un courant de retour d'argon gazeux (101, 103) est extrait au niveau d'un ou plusieurs des emplacements suivants :
    - la colonne d'argon brut (81, 82),
    - le condenseur de tête (90) de la colonne d'argon brut,
    - la colonne d'argon pur (83)
    - le condenseur de tête (91) de la colonne d'argon pur,
    - dans le premier mode de fonctionnement, aucun courant de retour d'argon gazeux ou une quantité inférieure de courant de retour d'argon est extrait(e) par rapport au second mode de fonctionnement,
    - la teneur en argon du courant de retour d'argon gazeux (101, 103) étant au moins deux fois plus élevée que celle du courant enrichi en argon (80) depuis la colonne basse pression,
    - le courant de retour d'argon gazeux (101, 103) est chauffé dans l'échangeur de chaleur principal (8) et
    - au moins une partie du courant de retour d'argon gazeux (101, 103) est chauffé sans mélange avec un autre courant dans un passage séparé (108) de l'échangeur de chaleur principal (8).
  2. Procédé selon la revendication 1, caractérisé en ce qu'une partie du courant de retour d'argon gazeux (101, 103) est introduit en amont de l'échangeur de chaleur principal (8) dans un courant de retour (30, 32) provenant de la colonne basse pression (11) et chauffé conjointement avec celui-ci dans l'échangeur de chaleur principal (8).
  3. Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que dans le second mode de fonctionnement, une partie du courant de retour d'argon gazeux (101, 103) est introduit (102, 105) dans au moins un des courants de retour suivants provenant de la colonne basse pression :
    - dans un courant de produit d'azote gazeux (30) provenant de la tête de la colonne basse pression (11)
    - dans un courant d'azote impur (32) provenant d'un emplacement intermédiaire de la colonne basse pression (11).
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que pendant la transition du premier au second mode de fonctionnement, la quantité d'argon totale absolue, qui est retirée de la colonne d'argon brut et de la colonne d'argon pur, est maintenue essentiellement constante.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le courant de retour d'argon gazeux (103) est formé par au moins une partie de la fraction d'argon brut (71).
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le courant de retour d'argon gazeux (101) comporte une teneur en oxygène supérieure à la fraction d'argon brut (71).
  7. Procédé selon la revendication 6, caractérisé en ce que
    - la colonne d'argon brut présente une première section (81) et une seconde section (82), qui comportent des récipients séparés,
    - le courant enrichi en argon (80) provenant de la colonne basse pression (11) est introduit dans la première section (81) et
    - le courant de retour d'argon gazeux (101) est extrait de la première section (81), en particulier de sa tête.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le courant de retour d'argon gazeux est retiré de la colonne d'argon pur (83) ou de son condenseur de tête (91).
  9. Dispositif destiné à l'obtention variable d'argon par fractionnement à basse température, comprenant
    - un système de colonnes de distillation, qui comporte une colonne haute pression (10) et une colonne basse pression (11),
    - une colonne d'argon brut (81, 82) et une colonne d'argon pur (83),
    - un échangeur de chaleur principal (8) pour le refroidissement d'air de charge (1, 4, 7),
    - des moyens d'introduction de l'air de charge refroidi (9, 13) dans le système de colonnes de distillation,
    - des moyens d'introduction d'un courant enrichi en argon (80) provenant de la colonne basse pression (11) dans la colonne d'argon brut (81, 82),
    - des moyens d'extraction sous forme gazeuse d'une fraction d'argon brut (71) depuis la tête de la colonne d'argon brut (81, 82) ou depuis son condenseur de tête (90),
    - des moyens d'introduction sous forme gazeuse de la fraction d'argon brut (71) dans la colonne d'argon pur (83),
    - des moyens de retrait d'un courant de produit d'argon pur fluide (72) depuis le bain de liquide de la colonne d'argon pur (3),
    - des moyens d'extraction d'un courant de retour d'argon gazeux (101, 103) au niveau de l'un ou de plusieurs des emplacements suivants :
    - la colonne d'argon brut (81, 82),
    - le condenseur de tête (90) de la colonne d'argon brut,
    - la colonne d'argon pur (83)
    - le condenseur de tête (91) de la colonne d'argon pur,
    caractérisé par
    - des moyens d'introduction du courant de retour d'argon gazeux (101, 103) sans mélange avec un autre courant dans un passage séparé (108) de l'échangeur de chaleur principal (8) et par
    - un dispositif de régulation pour commuter entre un premier et un second mode de fonctionnement, dans lequel
    - dans un premier mode de fonctionnement
    - une première quantité de produit d'argon pur est évacuée par le biais des moyens de retrait d'un courant de produit d'argon pur fluide (72) sous forme de produit final et
    - une première quantité de retour, qui peut également être nulle, est extraite par le biais des moyens d'extraction d'un courant de retour d'argon gazeux (101, 103),
    - dans un second mode de fonctionnement
    - une seconde quantité de produit d'argon pur est évacuée par le biais des moyens de retrait d'un courant de produit d'argon pur fluide (72) sous forme de quantité de produit final, qui est inférieure à la première quantité de produit d'argon pur et
    - une seconde quantité de retour est extraite par le biais des moyens d'extraction d'un courant de retour d'argon gazeux (101, 103), qui est supérieure à la première quantité de retour.
EP15771022.9A 2014-10-16 2015-09-23 Procédé et dispositif destinés à l'obtention variable d'argon par la décomposition à basse température de l'air Active EP3207320B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15771022T PL3207320T3 (pl) 2014-10-16 2015-09-23 Sposób i urządzenie do zmiennego pozyskiwania argonu przez rozkład niskotemperaturowy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14003544 2014-10-16
PCT/EP2015/001886 WO2016058666A1 (fr) 2014-10-16 2015-09-23 Procédé et dispositif de récupération variable d'argon par fractionnement à basse température

Publications (2)

Publication Number Publication Date
EP3207320A1 EP3207320A1 (fr) 2017-08-23
EP3207320B1 true EP3207320B1 (fr) 2021-06-30

Family

ID=51751883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15771022.9A Active EP3207320B1 (fr) 2014-10-16 2015-09-23 Procédé et dispositif destinés à l'obtention variable d'argon par la décomposition à basse température de l'air

Country Status (11)

Country Link
US (1) US10690408B2 (fr)
EP (1) EP3207320B1 (fr)
JP (1) JP2017536523A (fr)
KR (1) KR20170070172A (fr)
CN (1) CN107076512B (fr)
BR (1) BR112017006788A2 (fr)
CA (1) CA2963023A1 (fr)
CL (1) CL2017000874A1 (fr)
PL (1) PL3207320T3 (fr)
RU (1) RU2700970C2 (fr)
WO (1) WO2016058666A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731376A (zh) * 2018-04-18 2018-11-02 衢州杭氧气体有限公司 一种氩气生产工艺及其生产线
CN109764638B (zh) * 2018-12-13 2021-11-19 包头钢铁(集团)有限责任公司 一种大型制氧机组氩系统变负荷方法
WO2022174976A1 (fr) 2021-02-16 2022-08-25 Linde Gmbh Fourniture d'un produit d'azote
EP3992560A1 (fr) 2021-05-27 2022-05-04 Linde GmbH Procédé de conception d'une installation de fractionnement de l'air à basse température à production d'argon

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU658372A1 (ru) * 1976-12-20 1979-04-25 Научно-Исследовательский Институт Технологии Криогенного Машиностроения Установка разделени воздуха
JPS5449978A (en) * 1977-09-28 1979-04-19 Hitachi Ltd Air separation plant
US5133790A (en) * 1991-06-24 1992-07-28 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification method for producing refined argon
CA2142317A1 (fr) * 1994-02-24 1995-08-25 Anton Moll Methode et appareil pour la recuperation d'argon pur
JPH1082582A (ja) * 1996-09-06 1998-03-31 Nippon Sanso Kk 空気液化分離装置及びその起動方法
AU743283B2 (en) * 1998-04-21 2002-01-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and installation for air distillation with production of argon
DE10334560A1 (de) * 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
FR2943773B1 (fr) * 2009-03-27 2012-07-20 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US8899075B2 (en) * 2010-11-18 2014-12-02 Praxair Technology, Inc. Air separation method and apparatus

Also Published As

Publication number Publication date
WO2016058666A1 (fr) 2016-04-21
US20170299262A1 (en) 2017-10-19
JP2017536523A (ja) 2017-12-07
PL3207320T3 (pl) 2021-12-13
US10690408B2 (en) 2020-06-23
RU2017116601A3 (fr) 2019-03-28
CN107076512A (zh) 2017-08-18
KR20170070172A (ko) 2017-06-21
CA2963023A1 (fr) 2016-04-21
RU2700970C2 (ru) 2019-09-24
CL2017000874A1 (es) 2017-12-11
RU2017116601A (ru) 2018-11-19
BR112017006788A2 (pt) 2017-12-26
EP3207320A1 (fr) 2017-08-23
CN107076512B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
EP3179187B1 (fr) Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air
EP3207320B1 (fr) Procédé et dispositif destinés à l'obtention variable d'argon par la décomposition à basse température de l'air
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1666824A1 (fr) Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
DE10113791A1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
DE102010052544A1 (de) Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0669509A1 (fr) Procédé et appareil permettant d'obtenir d l'argon pur
EP2236964A1 (fr) Procédé et dispositif de séparation de l'air à basse température
DE10334560A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10213212A1 (de) Verfahren und Vorrichtung zur Erzeugung zweier Druckprodukte durch Tieftemperatur-Luftzerlegung
EP2989400B1 (fr) Procédé permettant d'obtenir un produit air dans une installation de séparation de l'air à stockage temporaire et installation de séparation de l'air
EP2322888B1 (fr) Procédé et dispositif d'obtention d'un concentré d'hélium-néon à partir d'air
DE102017010786A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Hochreinsauerstoffproduktstroms durch Tieftemperaturzerlegung von Luft
EP2053331A1 (fr) Procédé et dispositif de séparation de l'air à basse température
WO2016146246A1 (fr) Système permettant de produire de l'oxygène par fractionnement d'air à basse température
EP2979051A2 (fr) Procédé et dispositif permettant de produire avec une consommation d'énergie variable de l'oxygène sous pression sous forme gazeuse
EP0768503A2 (fr) Procédé de séparation d'air à triple colonne
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
WO2011110301A2 (fr) Procédé et dispositif de séparation de l'air à basse température
DE202009004099U1 (de) Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102004016931A1 (de) Verfahren und Vorrichtung zur variablen Erzeugung eines Druckproduktes durch Tieftemperaturzerlegung von Luft
EP2906889B1 (fr) Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air
DE20319823U1 (de) Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
EP3067648A1 (fr) Système de colonnes de distillation et procédé de production d'oxygène par séparation cryogénique de l'air
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1406711

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014884

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211001

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014884

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

26N No opposition filed

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210923

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210923

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1406711

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230914

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230921

Year of fee payment: 9

Ref country code: PL

Payment date: 20230911

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240924

Year of fee payment: 10