EP4127583B1 - Procédé et installation de séparation d'air à basse température - Google Patents

Procédé et installation de séparation d'air à basse température Download PDF

Info

Publication number
EP4127583B1
EP4127583B1 EP21712713.3A EP21712713A EP4127583B1 EP 4127583 B1 EP4127583 B1 EP 4127583B1 EP 21712713 A EP21712713 A EP 21712713A EP 4127583 B1 EP4127583 B1 EP 4127583B1
Authority
EP
European Patent Office
Prior art keywords
rectification column
liquid
supplied
column
formed therefrom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21712713.3A
Other languages
German (de)
English (en)
Other versions
EP4127583A1 (fr
Inventor
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP4127583A1 publication Critical patent/EP4127583A1/fr
Application granted granted Critical
Publication of EP4127583B1 publication Critical patent/EP4127583B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Definitions

  • the invention relates to a method and a plant for the low-temperature separation of air according to the respective preambles of the independent patent claims.
  • Air separation plants have rectification column systems that can be designed as two-column systems, in particular as double-column systems, but also as three- or multi-column systems.
  • rectification columns for obtaining nitrogen and/or oxygen in liquid and/or gaseous state i.e. rectification columns for nitrogen-oxygen separation
  • rectification columns can be provided for obtaining other air components, in particular the noble gases krypton, xenon and/or argon.
  • the rectification columns of the rectification column systems mentioned are operated at different pressure levels.
  • Known double column systems have a so-called high-pressure column (also referred to as a pressure column, medium-pressure column or lower column) and a so-called low-pressure column (upper column).
  • the high-pressure column is typically operated at a pressure level of 4 to 7 bar, in particular approx. 5.3 bar.
  • the low-pressure column is typically operated at a pressure level of 1 to 2 bar, in particular approx. 1.4 bar. In certain cases, higher pressure levels can also be used in both rectification columns.
  • the pressures specified here and below are absolute pressures at the top of the columns specified in each case.
  • air separation plants or corresponding processes are required which, in addition to relatively large quantities of nitrogen with a comparatively high purity (approx. 80 ppb oxygen content and less), also deliver certain quantities of an impure oxygen product.
  • nitrogen may be required, for example, in semiconductor or display production, whereas impure oxygen is required on site for glass production for corresponding displays.
  • impure oxygen is required on site for glass production for corresponding displays.
  • the provision of impure oxygen as an additional product cannot always be achieved with the desired efficiency using the air separation plants and processes known to date.
  • a "condenser-evaporator” is a heat exchanger in which a first, condensing fluid stream enters into indirect heat exchange with a second, evaporating fluid stream.
  • Each condenser-evaporator has a condensation space and an evaporation space.
  • the condensation and evaporation spaces have condensation and evaporation passages, respectively.
  • the condensation (liquefaction) of the first fluid stream is carried out in the condensation space, and the evaporation of the second fluid stream is carried out in the evaporation space.
  • the evaporation and condensation spaces are formed by groups of passages that are in a heat exchange relationship with one another.
  • the so-called main condenser which connects a high-pressure column and a low-pressure column of an air separation plant in a heat-exchanging manner, is designed as a condenser-evaporator.
  • the main condenser can in particular be designed as a single- or multi-storey bath evaporator, in particular as a cascade evaporator (as for example in the EP 1 287 302 B1 described), or it can be designed as a falling film evaporator.
  • the main condenser can be formed by a single heat exchanger block or by several heat exchanger blocks arranged in a common pressure vessel.
  • a liquid flow is forced through the evaporation chamber by means of its own pressure and partially evaporated there.
  • This pressure is generated, for example, by a liquid column in the supply line to the evaporation chamber.
  • the height of this liquid column corresponds to the pressure loss in the evaporation chamber.
  • the gas or gas-liquid mixture emerging from the evaporation chamber can be passed on directly to the next process step or to a downstream device in a "once through" condenser evaporator of this type and is in particular not introduced into a liquid bath of the condenser evaporator, from which the remaining liquid portion would be sucked in again.
  • expansion turbine or “expansion machine” which can be coupled to other expansion turbines or energy converters such as oil brakes, generators or compressors via a common shaft, is designed to expand a gaseous or at least partially liquid stream.
  • expansion turbines for use in the present invention can be designed as turbo expanders. If a compressor is driven by one or more expansion turbines, but without externally supplied energy, for example by means of an electric motor, the term “turbine-driven” compressor or alternatively “booster” is used. Arrangements of turbine-driven compressors and expansion turbines are also referred to as "booster turbines".
  • turbo compressors In air separation plants, multi-stage turbo compressors are used to compress the feed air to be separated, which are referred to here as "main air compressors".
  • the mechanical structure of turbo compressors is generally known to those skilled in the art.
  • the medium to be compressed is compressed by means of turbine blades that are arranged on a turbine wheel or impeller or directly on a shaft.
  • a turbo compressor forms a structural unit, which can, however, have several compressor stages in the case of a multi-stage turbo compressor.
  • a compressor stage usually comprises a corresponding arrangement of turbine blades. All of these compressor stages can be driven by a common shaft. However, it can also be provided to drive the compressor stages in groups with different shafts, whereby the shafts can also be connected to one another via gears.
  • the main air compressor is also characterized by the fact that it compresses the entire amount of air fed into the rectification column system and used to produce air products, i.e. the entire feed air. Accordingly, a "post-compressor" can also be provided, in which only a part of the air volume compressed in the main air compressor is brought to an even higher pressure.
  • This can also be designed as a turbo compressor.
  • the use of a common compressor or compressor stages of such a compressor as the main air compressor and post-compressor can also be provided.
  • additional turbo compressors in the form of the boosters mentioned are typically provided in air separation plants, which are usually in the However, compared to the main air compressor or the secondary compressor, only a relatively small amount of compression can be achieved.
  • liquids and gases may be rich or poor in one or more components, where “rich” may mean a content of at least 50%, 75%, 90%, 95%, 99%, 99.5%, 99.9% or 99.99% and “poor” may mean a content of at most 50%, 25%, 10%, 5%, 1%, 0.1% or 0.01% on a mole, weight or volume basis.
  • “predominantly” may correspond to the definition of "rich”.
  • Liquids and gases may also be enriched or depleted in one or more components, where these terms refer to a content in a starting liquid or gas from which the liquid or gas was derived.
  • the liquid or gas is "enriched” if it contains at least 1.1 times, 1.5 times, 2 times, 5 times, 10 times, 100 times or 1,000 times the content of a corresponding component, and “depleted” if it contains at most 0.9 times, 0.5 times, 0.1 times, 0.01 times or 0.001 times the content of the original liquid or gas. If, for example, “oxygen” or “nitrogen” is mentioned here, this also includes a liquid or gas that is rich in oxygen or nitrogen, but does not necessarily have to consist exclusively of these.
  • pressure level and "temperature level” to characterize pressures and temperatures, which is intended to express that corresponding pressures and temperatures in a corresponding system do not have to be used in the form of exact pressure or temperature values in order to implement the inventive concept.
  • pressures and temperatures typically move in certain ranges, which are, for example, ⁇ 1%, 5% or 10% around an average value.
  • Corresponding pressure levels and temperature levels can lie in disjoint ranges or in ranges that overlap one another.
  • pressure levels for example, include unavoidable or expected pressure losses. The same applies to temperature levels.
  • Pressure levels specified here in bar are absolute pressures.
  • the EP 3 521 739 A1 A process for the production of nitrogen is known in which the low-pressure column of the double column system used has a top condenser (also known as "Double Column, Double Condenser” or DCDC process). This process involves the use of forced flow condenser evaporators and a residual gas turbine to generate the process cooling capacity.
  • a top condenser also known as "Double Column, Double Condenser” or DCDC process.
  • the EP 3 521 739 A1 The known process is very well suited to pure gas production with nitrogen product pressures of approx. 8 to 8.5 bar (or also for significantly higher pressures if product recompression is considered). For somewhat higher product pressures (e.g. 11 bar), this process has so far only remained very efficient if, in addition to gaseous nitrogen as the main product, a relatively large amount of liquid (e.g. liquid nitrogen, LIN) is also produced. This is because the cooling capacity in this process is set/varied by the pressure in the evaporation space of the condenser of the low-pressure column. If the necessary cooling capacity in the process is low (e.g.
  • the pressure in the evaporation space or the pressure gradient at the residual gas turbine is also low.
  • the low evaporation pressure also results in low operating pressures in both rectification columns and a relatively low (approx. 8 to 8.5 bar) nitrogen product pressure.
  • the cooling capacity required in the process is high (e.g. in liquid production)
  • the pressure in the evaporation chamber or the pressure drop at the residual gas turbine is also high. The high evaporation pressure then leads to high operating pressures in both rectification columns and to a high nitrogen product pressure.
  • the present invention is based fundamentally on the finding that a process of the type just described can be extended with an additional column, whereby the problems mentioned can be overcome.
  • Such processes are also fundamentally known from the publication EP 3 290 843 A1 and in the interim publication WO2020/187449 A1 Processes are known in which an additional column equipped with a bottom condenser evaporator is used to provide an oxygen product, the double column system being operated under increased pressure.
  • a higher pressure can be used in the evaporation space of the top condenser of the low-pressure column, so that a corresponding increase in the nitrogen product pressure (e.g. up to the desired 11 bar) is possible, but without having to increase the liquid output of the plant.
  • the present invention proposes a method for the low-temperature separation of air, in which an air separation plant with a first rectification column and a second rectification column is used, the first rectification column being operated at a pressure level of 9 to 13.5 bar, in particular approximately 11.3 bar, and the second rectification column being operated at a pressure level of 5.5 to 8.5 bar, in particular approximately 7.3 bar.
  • the values mentioned are in particular pressure values at the top of the respective rectification columns.
  • the first rectification column and the second rectification column can in particular be combined in the manner of a known double column.
  • the first rectification column is fed with cooled compressed air and the second rectification column is fed with liquid from the first rectification column or liquid formed therefrom. This does not, of course, exclude the possibility of further feed streams being fed into the first and second rectification columns and represents only a minimum requirement for the implementation of the present invention.
  • liquid from a rectification column or "liquid formed therefrom” is used in a certain way, the "liquid formed therefrom” is to be understood in particular as liquid for the formation of which the liquid used directly from the corresponding rectification column is used and that its composition is changed without complete evaporation, but possibly by evaporation of some of its components. Cooling, heating, pressurization and expansion can also be provided.
  • top gas from the first rectification column is condensed by means of a first condenser-evaporator, which in particular represents the main condenser connecting the first and second rectification columns in a heat-exchanging manner and can be designed as a forced-flow condenser-evaporator, and liquid from the second rectification column or liquid formed therefrom (see above) is evaporated to obtain a gas phase, which is referred to here as the first evaporation product only for later reference.
  • the latter liquid is in particular bottom liquid from the second rectification column or liquid formed from corresponding bottom liquid.
  • a second condenser-evaporator which can also be designed as a forced-flow condenser-evaporator
  • overhead gas from the second rectification column is condensed and further liquid from the second rectification column or liquid formed therefrom is evaporated to obtain a second evaporation product.
  • This further liquid can also be bottoms liquid from the second rectification column or liquid formed from such bottoms liquid.
  • a first portion of the second evaporation product is expanded, heated and removed from the process by means of an expansion machine.
  • This first portion so-called impure nitrogen, can, for example, be released directly into the atmosphere or, if necessary, used beforehand to regenerate adsorber units for air purification. How As mentioned, this proportion - and thus the cooling capacity achieved - is lower than in conventional processes.
  • top gas from the first rectification column is discharged from the process as pure nitrogen product.
  • this pure nitrogen product can be made available to a consumer at a corresponding pressure level.
  • a third rectification column is used in the context of the present invention. This is operated at a pressure level of 1.1 to 2.5 bar, in particular about 1.4 bar, in particular at the top of the third rectification column.
  • a rectification is driven in the third rectification column using further residual gas.
  • This is achieved by means of a third condenser-evaporator in which a second portion of the second evaporation product is condensed and bottom liquid of the third rectification column or liquid formed therefrom is evaporated to obtain a third evaporation product.
  • the second portion of the second evaporation product condensed by means of the third condenser-evaporator is then at least partially fed into the third rectification column.
  • the third rectification column is fed with unevaporated further liquid from the second rectification column or liquid formed therefrom and further bottom liquid of the third rectification column or liquid formed therefrom is internally compressed and discharged from the process as the aforementioned impure oxygen product.
  • the further bottom liquid of the third rectification column, and thus the impure oxygen product is formed in particular with an oxygen content of 85 to 99.8%, for example from 90 to 99.8%, for example with an oxygen content of 96.8%. It is therefore not necessarily a product usually referred to as impure oxygen with up to 98% oxygen.
  • the pure nitrogen product can in particular be formed with a residual content of 10 ppm oxygen or less, in particular 5 ppm oxygen or less, are provided.
  • the production quantity (ie the quantity of product exported in each case) for the impure oxygen product can be, for example, 5 to 10%, in particular about 8.7%, based on the pure nitrogen product. In an embodiment explained below, this quantity can also be up to 25%.
  • Liquid nitrogen can also be removed, but a liquid nitrogen product quantity is typically less than 1%, in particular less than 0.5%, for example about 0.1%, of the quantity of the pure nitrogen product.
  • Other air products are typically not formed or are not formed in greater quantities than the air products mentioned.
  • the second condenser evaporator is operated at an evaporation pressure level of 2 to 5 bar, in particular approximately 3.6 bar.
  • this evaporation pressure level is coupled to a certain extent with the rectification pressure levels in the first and second rectification columns.
  • the first portion of the second evaporation product which is expanded by means of an expansion machine, heated and removed from the process, is fed to the expansion machine in the context of the present invention, in particular at the evaporation pressure level.
  • the bottoms liquid from the second rectification column can be partially evaporated by means of the first condenser evaporator to obtain the first evaporation product and an unevaporated residue.
  • a first part of the unevaporated residue can be evaporated by means of the second condenser evaporator to obtain the second evaporation product.
  • a change in the composition can take place by achieving a depletion of low boilers in the first condenser evaporator (or enrichment of high boilers). If, as in the second condenser evaporator, complete evaporation takes place, however, there is no change in the composition, since a corresponding depletion or enrichment effect does not occur.
  • a second part of the unevaporated residue can be fed into the third rectification column. In any case, the unevaporated further liquid from the second rectification column or the liquid formed therefrom, with which the third
  • rectification column and the second portion of the second evaporation product condensed by means of the third condenser evaporator, or its portion which is fed into the third rectification column, are both fed into the third rectification column in a head region, wherein a "head region” is understood to mean a region above which there are no further separation devices.
  • liquid that is withdrawn from the second rectification column via a side draw and thus has a lower oxygen content than the bottom liquid can be used as the unevaporated further liquid from the second rectification column or the liquid formed therefrom with which the third rectification column is fed.
  • the third rectification column can in particular have a first separation section and a second separation section arranged above the first separation section, wherein the unevaporated further liquid from the second rectification column or the liquid formed therefrom with which the third rectification column is fed is fed to the third rectification column above the second separation section, and wherein the second portion of the second evaporation product condensed by means of the third condenser evaporator or its portion that is fed into the third rectification column is fed to the third rectification column between the first separation section and the second separation section.
  • the cooled compressed air with which the first rectification column is fed can be exclusively gaseous, cooled or partially pre-liquefied compressed air which has been compressed to a pressure level no longer at which the first rectification column is operated.
  • the cooled compressed air with which the first rectification column is fed comprises gaseous, cooled compressed air which has been compressed to a pressure level which is no longer the pressure level at which the first rectification column is operated, and also liquefied air which has been compressed to a pressure level which is above the pressure level at which the first rectification column is operated, and which is subsequently liquefied and expanded into the first rectification column.
  • the aforementioned product quantities of Impure oxygen of up to 25%, for example approx. 20%, of the product quantities of pure nitrogen can be produced.
  • a separate air compressor can be used to further compress the air to be liquefied.
  • the third rectification column can have 15 to 25, in particular 20, theoretical plates.
  • the first rectification column can have 50 to 70, in particular 60, and the second rectification column can have 40 to 60, in particular 50, theoretical plates.
  • Figures 1 to 5 show an air separation plant according to embodiments of the invention in a simplified, schematic representation.
  • FIG. 1 an air separation plant according to an embodiment of the invention is illustrated in the form of a schematic process flow diagram and designated overall by 100.
  • feed or process air P is sucked in via a filter 1 by means of a main air compressor 2.
  • a main air compressor 2 After pre-cooling in heat exchangers (not specifically designated) and a direct contact cooler operated with water W, the correspondingly compressed air is fed to an adsorber station 3, where it is freed from undesirable components such as water and carbon dioxide.
  • the air is then fed in the form of a feed air stream a to a main heat exchanger 4 of the air separation plant 100 and removed from it at the cold end.
  • the feed air stream is fed into a first rectification column (high-pressure column) 11 of a distillation column system 10, which, in addition to the first rectification column 11, also has a second rectification column (low-pressure column) 12 designed as a double column with the first rectification column 11, and a third rectification column 13.
  • first rectification column 11 a top gas and a bottom liquid are formed, the bottom liquid from the first rectification column 11 being passed here completely in the form of a material stream b through a countercurrent subcooler 5 and fed into the second rectification column 12.
  • second rectification column 12 a top gas and a bottom liquid are formed.
  • a portion of the top gas of the first rectification column 11 is condensed by means of a first condenser evaporator 111 (main condenser), which is designed here as a forced-flow condenser evaporator.
  • a further portion of the top gas is withdrawn in the form of a material stream c, passed through the subcooling countercurrent device 5 and the main heat exchanger 4 and discharged as pure nitrogen product C.
  • the condensed portion of the top gas of the first rectification column 11 is returned to the first rectification column 11 in the form of a material stream d.
  • a portion of the bottom liquid of the second rectification column 12 is also evaporated by means of the first condenser evaporator 111.
  • the evaporated portion rises in the second rectification column 12.
  • top gas of the second rectification column 11 is condensed and fed to the second condenser evaporator 121 in the form of a material stream e.
  • the condensed top gas is partly returned to the second rectification column 12 and partly provided as liquid nitrogen product E.
  • Further top gas of the second rectification column 12 can be removed therefrom in the form of a material stream f, passed through the subcooling countercurrent device 5 and the main heat exchanger 4 and provided as further pressurized nitrogen product F.
  • Liquid collected in a liquid retention device at the top of the second rectification column 12 can be returned by means of a pump 6 in the form of a material stream g through the countercurrent supercooling device 5 and to the first rectification column 11 ("back pumping"). At this point, a partial stream of the material stream used to form the liquid nitrogen product E can also be fed in, which is expanded to supercool the liquid nitrogen product E.
  • a first portion of the further bottom liquid from the second rectification column 12 evaporated by means of the second condenser evaporator 121 is expanded in the form of a material flow i and is heated before and after the expansion in the subcooling countercurrent device 5 and in the main heat exchanger 4 and removed from the process, i.e. released into the atmosphere A and used as regeneration gas in the adsorber station 3 if required.
  • a third condenser evaporator 131 which is designed as a bottom evaporator of the third rectification column 13
  • a second portion of the product obtained by means of the second Further bottoms liquid from the second rectification column 12 evaporated in the condenser evaporator 121 is condensed in the form of a material stream k.
  • Bottoms liquid from the third rectification column 13 is also evaporated in the third condenser evaporator 131.
  • the second portion of the further liquid from the second rectification column 12 condensed by means of the second condenser evaporator 121 is fed at least in part into the third rectification column 13.
  • the third rectification column 13 is also fed with unevaporated further liquid from the second rectification column 12 in the form of a material stream I.
  • Bottom liquid from the third rectification column 13 is internally compressed in the form of a material stream m by means of a pump 8 and discharged from the process as internally compressed oxygen product M.
  • the third rectification column 13 has a first separation section 13a and a second separation section 13b arranged above the first separation section 13a, wherein the unevaporated further Liquid from the second rectification column 12, with which the third rectification column 13 is fed, ie the material stream n, is fed to the third rectification column 13 above the second separation section 13b, and wherein the second portion of the further liquid from the second rectification column 12 condensed by means of the third condenser evaporator 131 or its portion which is fed into the third rectification column 13, ie the material stream k, is fed to the third rectification column 13 between the first separation section 13a and the second separation section 13b.
  • the cooled compressed air with which the first rectification column 11 is fed is exclusively gaseous, cooled or pre-liquefied compressed air which has been compressed in the main air compressor 2 to a pressure level no longer at which the first rectification column 11 is operated.
  • the cooled compressed air with which the first rectification column 11 is fed here comprises the gaseous, cooled compressed air of the material stream a, which was compressed to a pressure level no longer at which the first rectification column 11 is operated, but additionally also liquefied air of a material stream o, which was compressed by means of a secondary compressor 9 to a pressure level which is above the pressure level at which the first rectification column 11 is operated, and which is then liquefied in the main heat exchanger 4 and expanded into the first rectification column 11.
  • the material stream c is heated here without first being passed through the subcooling countercurrent device 5.
  • the subcooling countercurrent device 5 therefore typically does not have a corresponding passage.
  • the passage for the liquid collected in a liquid retention device at the top of the second rectification column 12 according to the previously illustrated systems, which is returned to the first rectification column 11, is also typically omitted, even if both passages in Figure 4 are still rudimentarily illustrated.

Claims (14)

  1. Procédé de séparation cryogénique de l'air, dans lequel une installation de séparation de l'air (100-400) comportant une première colonne de rectification (11) et une deuxième colonne de rectification (12) est utilisée,
    - la première colonne de rectification (11) fonctionnant à un premier niveau de pression de 9 à 13,5 bars et la deuxième colonne de rectification (12) fonctionnant à un deuxième niveau de pression de 5,5 à 8,5 bars,
    - la première colonne de rectification (11) étant alimentée en air comprimé refroidi et la deuxième colonne de rectification (12) étant alimentée en liquide en provenance de la première colonne de rectification (11) ou en liquide formé à partir de celui-ci,
    - à l'aide d'un premier condenseur-évaporateur (111), du gaz de tête de la première colonne de rectification (11) étant condensé et un liquide en provenance de la deuxième colonne de rectification (12) ou un liquide formé à partir de celui-ci étant évaporé avec obtention d'un premier produit d'évaporation,
    - à l'aide d'un deuxième condenseur-évaporateur (121), du gaz de tête de la deuxième colonne de rectification (12) étant condensé et un autre liquide en provenance de la deuxième colonne de rectification (12) ou un liquide formé à partir de celui-ci étant évaporé avec obtention d'un deuxième produit d'évaporation,
    - à l'aide d'une machine de détente (7), une première portion du deuxième produit d'évaporation étant détendue, réchauffée et évacuée du procédé, et
    - du gaz de tête de la première colonne de rectification (11) étant évacué du procédé en tant que produit d'azote pur,
    - une troisième colonne de rectification (13) étant utilisée,
    - à l'aide d'un troisième condenseur-évaporateur (131), un liquide de cuve de la troisième colonne de rectification (13) ou un liquide formé à partir de celui-ci étant évaporé avec obtention d'un troisième produit d'évaporation, et
    - la troisième colonne de rectification (13) étant alimentée en un autre liquide non évaporé en provenance de la deuxième colonne de rectification (12) ou en un liquide formé à partir de celui-ci, caractérisé en ce que
    - la troisième colonne de rectification (13) fonctionne à un niveau de pression de 1,1 à 2,5 bars,
    - une deuxième portion du deuxième produit d'évaporation est condensée à l'aide du troisième condenseur-évaporateur et est introduite au moins en partie dans la troisième colonne de rectification, et en ce que
    - un autre liquide de cuve de la troisième colonne de rectification (13) ou un liquide formé à partir de celui-ci est comprimé de manière interne et évacué du procédé en tant que produit d'oxygène impur.
  2. Procédé selon la revendication 1, dans lequel l'autre liquide de cuve de la troisième colonne de rectification est formé avec une teneur en oxygène de 85 à 99,8 %.
  3. Procédé selon la revendication 1 ou 2, dans lequel au moins le deuxième condenseur-évaporateur (121) est un condenseur-évaporateur à circulation forcée.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le deuxième condenseur-évaporateur (121) fonctionne à un niveau de pression d'évaporation de 2 à 5 bars.
  5. Procédé selon la revendication 4, dans lequel la première portion du deuxième produit d'évaporation, qui est détendue, réchauffée et évacuée du procédé à l'aide d'une machine de détente (7), est acheminée à la machine de détente (7) au niveau de pression d'évaporation.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel, à l'aide du premier condenseur-évaporateur (111), le liquide de cuve en provenance de la deuxième colonne de rectification (12) est partiellement évaporé avec obtention du premier produit d'évaporation et d'un résidu non évaporé, et dans lequel une première partie du résidu non évaporé est évaporée à l'aide du deuxième condenseur-évaporateur (121) avec obtention du deuxième produit d'évaporation.
  7. Procédé selon la revendication 6, dans lequel une deuxième partie du résidu non évaporé est introduite dans la troisième colonne de rectification (13).
  8. Procédé selon la revendication 7, dans lequel l'autre liquide non évaporé en provenance de la deuxième colonne de rectification (12) ou le liquide formé à partir de celui-ci, en lequel la troisième colonne de rectification (13) est alimentée, et la deuxième portion, condensée à l'aide du troisième condenseur-évaporateur (131), du deuxième produit d'évaporation ou la portion de celui-ci qui est introduite dans la troisième colonne de rectification (13) est introduite dans une zone de tête dans la troisième colonne de rectification (13).
  9. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel on utilise, comme autre liquide non évaporé en provenance de la deuxième colonne de rectification (12) ou liquide formé à partir de celui-ci, en lequel la troisième colonne de rectification (13) est alimentée, le liquide qui a été retiré de la deuxième colonne de rectification (12) par l'intermédiaire d'une évacuation latérale.
  10. Procédé selon la revendication 9, dans lequel la troisième colonne de rectification (13) présente une première section de séparation (13a) et une deuxième section de séparation (13b) disposée au-dessus de la première section de séparation (13a), l'autre liquide non évaporé en provenance de la deuxième colonne de rectification (12) ou le liquide formé à partir de celui-ci, en lequel la troisième colonne de rectification (13) est alimentée, étant fourni à la troisième colonne de rectification (13) au-dessus de la deuxième section de séparation (13b), et dans lequel la deuxième portion, condensée à l'aide du troisième condenseur-évaporateur (131), du deuxième produit d'évaporation ou la portion de celui-ci qui est introduite dans la troisième colonne de rectification (13) est fournie à la troisième colonne de rectification (13) entre la première section de séparation (13a) et la deuxième section de séparation (13b).
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'air comprimé refroidi, en lequel la première colonne de rectification (11) est alimentée, est de l'air comprimé exclusivement gazeux, refroidi ou partiellement pré-liquéfié qui a été comprimé à un niveau de pression qui n'est plus le niveau de pression auquel la première colonne de rectification (11) fonctionne.
  12. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'air comprimé refroidi, en lequel la première colonne de rectification (11) est alimentée, comprend de l'air comprimé gazeux refroidi qui a été comprimé à un niveau de pression qui n'est plus le niveau de pression auquel la première colonne de rectification (11) fonctionne, et dans lequel l'air comprimé refroidi, en lequel la première colonne de rectification (11) est alimentée, comprend en outre de l'air liquéfié qui a été comprimé à un niveau de pression qui se situe au-dessus du niveau de pression auquel la première colonne de rectification (11) fonctionne, et qui est ensuite liquéfié et détendu dans la première colonne de rectification (11).
  13. Procédé selon l'une des revendications précédentes, dans lequel la troisième colonne de rectification (13) présente 10 à 45 plateaux de séparation théoriques.
  14. Installation de séparation de l'air (100-400), qui présente une première colonne de rectification (11) et une deuxième colonne de rectification (12) et est conçue
    - pour faire fonctionner la première colonne de rectification (11) à un niveau de pression de 9 à 13,5 bars et la deuxième colonne de rectification (12) à un niveau de pression de 5,5 à 8,5 bars,
    - pour alimenter la première colonne de rectification (11) en air comprimé refroidi et pour alimenter la deuxième colonne de rectification (12) en liquide en provenance de la première colonne de rectification (11) ou en liquide formé à partir de celui-ci,
    - à l'aide d'un premier condenseur-évaporateur (111), du gaz de tête de la première colonne de rectification (11) étant condensé et un liquide en provenance de la deuxième colonne de rectification (12) ou un liquide formé à partir de celui-ci étant évaporé avec obtention d'un premier produit d'évaporation,
    - pour condenser, à l'aide d'un deuxième condenseur-évaporateur (121), du gaz de tête de la deuxième colonne de rectification (11) et un autre liquide en provenance de la deuxième colonne de rectification (12) ou un liquide formé à partir de celui-ci avec obtention d'un deuxième produit d'évaporation,
    - pour détendre, pour réchauffer et pour évacuer de l'installation de séparation de l'air une première portion du deuxième produit d'évaporation à l'aide d'une machine de détente (7), et
    - pour évacuer de l'installation de séparation de l'air du gaz de tête de la première colonne de rectification (11) en tant que produit d'azote pur,
    - une troisième colonne de rectification (13) est fournie,
    - un troisième condenseur-évaporateur (131) est fourni, lequel est conçu pour évaporer un liquide en provenance de la troisième colonne de rectification (13) ou un liquide formé à partir de celui-ci avec obtention d'un troisième produit d'évaporation,
    et
    - des moyens sont fournis, lesquels sont conçus pour alimenter la troisième colonne de rectification (13) en un autre liquide non évaporé en provenance de la deuxième colonne de rectification (12) ou en un liquide formé à partir de celui-ci, caractérisée en ce que
    - la troisième colonne de rectification (13) est conçue pour un fonctionnement à un niveau de pression de 1,1 à 2,5 bars,
    - le troisième condenseur-évaporateur (131) est conçu pour condenser une deuxième portion du deuxième produit d'évaporation et des moyens sont fournis, lesquels sont conçus pour introduire en partie dans la troisième colonne de rectification (13) la deuxième portion, condensée à l'aide du troisième condenseur-évaporateur (131), du deuxième produit d'évaporation, et en ce que
    - des moyens sont fournis, lesquels sont conçus pour comprimer de manière interne un autre liquide de cuve de la troisième colonne de rectification (13) ou un liquide formé à partir de celui-ci et pour l'évacuer de l'installation de séparation de l'air en tant que produit d'oxygène impur.
EP21712713.3A 2020-03-23 2021-03-05 Procédé et installation de séparation d'air à basse température Active EP4127583B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20020131 2020-03-23
PCT/EP2021/025093 WO2021190784A1 (fr) 2020-03-23 2021-03-05 Procédé et installation de séparation d'air à basse température

Publications (2)

Publication Number Publication Date
EP4127583A1 EP4127583A1 (fr) 2023-02-08
EP4127583B1 true EP4127583B1 (fr) 2024-05-01

Family

ID=69960189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21712713.3A Active EP4127583B1 (fr) 2020-03-23 2021-03-05 Procédé et installation de séparation d'air à basse température

Country Status (5)

Country Link
US (1) US20230038170A1 (fr)
EP (1) EP4127583B1 (fr)
KR (1) KR20220156848A (fr)
CN (1) CN115151771A (fr)
WO (1) WO2021190784A1 (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715873A (en) * 1986-04-24 1987-12-29 Air Products And Chemicals, Inc. Liquefied gases using an air recycle liquefier
DE10027139A1 (de) 2000-05-31 2001-12-06 Linde Ag Mehrstöckiger Badkondensator
DE10153919A1 (de) * 2001-11-02 2002-05-08 Linde Ag Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
DE102009023900A1 (de) * 2009-06-04 2010-12-09 Linde Aktiengesellschaft Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP2789958A1 (fr) 2013-04-10 2014-10-15 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
EP3290843A3 (fr) * 2016-07-12 2018-06-13 Linde Aktiengesellschaft Procédé et dispositif destiné à fabriquer de l'azote pressurisé et liquide par décomposition à basse température de l'air
DE102018000842A1 (de) 2018-02-02 2019-08-08 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
EP3557166A1 (fr) 2018-04-19 2019-10-23 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
WO2020187449A1 (fr) * 2019-03-15 2020-09-24 Linde Gmbh Procédé et installation de décomposition d'air à basse température

Also Published As

Publication number Publication date
KR20220156848A (ko) 2022-11-28
US20230038170A1 (en) 2023-02-09
WO2021190784A1 (fr) 2021-09-30
CN115151771A (zh) 2022-10-04
EP4127583A1 (fr) 2023-02-08

Similar Documents

Publication Publication Date Title
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP1134525B1 (fr) Procédé de production d'azote liquide et gazeux avec une quantité variable de liquide
DE10113791A1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
EP1074805B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression
EP3410050B1 (fr) Procédé de production d'un ou de plusieurs produits pneumatiques et installation de séparation d'air
WO2020169257A1 (fr) Procédé et installation de décomposition d'air à basse température
EP3290843A2 (fr) Procédé et dispositif destiné à fabriquer de l'azote pressurisé et liquide par décomposition à basse température de l'air
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102007051184A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
WO2021104668A1 (fr) Procédé et installation pour fractionnement à basse température de l'air
WO2020244801A1 (fr) Procédé et installation de décomposition d'air à basse température
EP3557166A1 (fr) Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP4127583B1 (fr) Procédé et installation de séparation d'air à basse température
EP4133227A2 (fr) Procédé de séparation d'air à basse température, installation de séparation d'air et ensemble composé d'au moins deux installations de séparation d'air
EP1189001B1 (fr) Procédé et dispositif de production d'azote de haute pureté par la séparation cryogénique d'air
EP3027988A2 (fr) Procédé et dispositif de production d'azote comprimé
DE102017010001A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
EP1199532A1 (fr) Système de séparation d'air cryogénique à trois colonnes
EP3870917B1 (fr) Procédé et installation de séparation cryogénique d'air
WO2020187449A1 (fr) Procédé et installation de décomposition d'air à basse température
DE202018006161U1 (de) Anlage zur Tieftemperaturzerlegung von Luft
WO2021204418A1 (fr) Procédé de production d'un produit d'azote gazeux et liquide au moyen d'une séparation à basse température de l'air, et système de séparation d'air
WO2022179748A1 (fr) Procédé et installation pour fournir de l'azote comprimé

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH