DE102018000842A1 - Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
DE102018000842A1
DE102018000842A1 DE102018000842.9A DE102018000842A DE102018000842A1 DE 102018000842 A1 DE102018000842 A1 DE 102018000842A1 DE 102018000842 A DE102018000842 A DE 102018000842A DE 102018000842 A1 DE102018000842 A1 DE 102018000842A1
Authority
DE
Germany
Prior art keywords
pressure column
low
stream
gaseous
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102018000842.9A
Other languages
English (en)
Inventor
Dimitri Golubev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE102018000842.9A priority Critical patent/DE102018000842A1/de
Priority to EP19020030.3A priority patent/EP3521739A1/de
Priority to MX2019001250A priority patent/MX2019001250A/es
Priority to US16/265,120 priority patent/US20190242646A1/en
Priority to CN201910102589.9A priority patent/CN110131963A/zh
Publication of DE102018000842A1 publication Critical patent/DE102018000842A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04442Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with a high pressure pre-rectifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/52Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Power Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System. Das Destillationssäulen-System weist eine Hochdrucksäule (4), eine Niederdrucksäule (6) sowie einen Hauptkondensator (5) und einen Niederdrucksäulen-Kopfkondensator (7) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind. Verdichtete und gereinigte Einsatzluft (1) wird in einem Hauptwärmetauscher (2) abgekühlt und zum mindestens größten Teil gasförmig in die Hochdrucksäule (4) eingeleitet (3). Ein sauerstoffangereicherter Flüssigstrom (11, 13) wird aus der Hochdrucksäule (4) entnommen und in die Niederdrucksäule eingeleitet. Ein gasförmiger Stickstoffstrom (17, 26A, 26B, 27) wird aus der Hochdrucksäule (4) entnommen, im Hauptwärmetauscher (2) angewärmt und als gasförmiges Druckstickstoffprodukt (28, 31) abgezogen. Der Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) ist als Forced-Flow-Verdampfer ausgebildet. Die Hochdrucksäule (4) weist einen Sperrbodenabschnitt (8) auf, der unmittelbar oberhalb der Stelle angeordnet ist, an der die Einsatzluft (3) eingeleitet wird, und ein bis fünf theoretische beziehungsweise praktische Böden aufweist. Der sauerstoffangereicherte Flüssigstrom (11), der in die Niederdrucksäule (6) eingeleitet wird, wird oberhalb des Sperrbodenabschnitts (8) aus der Hochdrucksäule (4) entnommen. Unterhalb der Sperrbodenabschnitts (8) wird ein Spülstrom (9A) entnommen und aus dem Destillationssäulen-System entfernt (9B). Der gasförmige Stickstoffstrom (26A, 26B) wird vor seiner Anwärmung im Hauptwärmetauscher (2) in einem Unterkühlungs-Gegenströmer (12) in indirektem Wärmeaustausch mit dem sauerstoffangereicherten Flüssigstrom (11) aus der Hochdrucksäule (4) angewärmt.

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.
  • Das Verfahren bezieht sich insbesondere auf Systeme mit Entnahme von Stickstoffprodukt aus der Hochdrucksäule. Das Stickstoffprodukt kann aus beiden Säulen stammen, zum Beispiel durch Herausführen von gasförmigem Stickstoff (GAN) sowohl unmittelbar aus der Niederdrucksäule als auch aus der Hochdrucksäule. Alternativ kann mindestens ein Teil des Niederdrucksäulenstickstoffs flüssig entnommen, in die Hochdrucksäule eingespeist und von dort als GAN-Produkt abgezogen werden. Derartige Verfahren mit „Zurückpumpen“ von Niederdrucksäulen-LIN in die Hochdrucksäule sind bekannt aus US 2004244417 A1 , 2, DE 19933557 oder EP 1022530 bekannt. Bei solchen Prozessen werden in der Regel Hauptkondensatoren und Niederdrucksäulen-Kopfkondensatoren eingesetzt, die auf ihrer Verdampfungsseite als Badverdampfer ausgebildet sind. Dies stellt die bewährteste Verdampferform dar, bei der insbesondere keine betriebstechnischen Schwierigkeiten aufgrund schwerer als Sauerstoff flüchtiger Komponenten wie zum Beispiel Propan zu erwarten sind. Energetisch sind Badkondensatoren allerdings nicht optimal, weil die hydrostatische Höhe im Flüssigkeitsbad zu einer erhöhten Verdampfungstemperatur führt.
  • Der Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren und eine entsprechende Vorrichtung hinsichtlich des Energieverbrauchs zu verbessern und gleichzeitig den sicheren Betrieb des Systems zu erlauben.
  • Diese Aufgabe wird durch die Gesamtheit der Merkmale des Patentanspruchs 1 gelöst.
  • Die Verwendung eines Forced-Flow-Verdampfers als Niederdrucksäulen-Kopfkondensator als erlaubt eine besonders niedrigere Druckdifferenz zwischen verdampfendem und kondensierendem Strom bei der gleichen mittleren Temperaturdifferenz wie bei einem Badverdampfer. Dies verringert spürbar den Energieverbrauch der Anlage, beispielsweise um 3,2 % bei einem Produktabgabedruck im Stickstoff von 10 bar, der dem Hochdrucksäulendruck entspricht; rechnet man eine Weiterverdichtung von 10 auf 60 bar mit ein, so liegt die Energieersparnis bei 2,2 % des Gesamtenergieverbrauchs.
  • Allerdings verschwindet mit dem Flüssigkeitsbad über der Niederdrucksäule auch die Möglichkeit, einen Spülstrom zu entnehmen und Schwersiedende, insbesondere Propan, auszuschleusen. Dies wird bei der Erfindung dadurch kompensiert, dass ein Spülstrom vom Sumpf der Hochdrucksäule abgezogen wird. Oberhalb dieser Entnahme (und der Zuspeisung der Einsatzluft) ist ein Sperrbodenabschnitt vorgesehen, der die Schwersiedenden, insbesondere Propan, im Sumpf der Hochdrucksäule zurückhält. Der sauerstoffangereicherte Flüssigstrom für die Niederdrucksäule wird oberhalb des Sperrbodenabschnitts entnommen und enthält weniger Schwersiedende und insbesondere praktisch kein Propan mehr. Schon mit zwei theoretischen Böden in dem Sperrbodenabschnitt werden bei einem Propangehalt von 0,0075 ppm in der Luft stromabwärts der Luftreinigung (mit einer beispielhaften Annahme für Propanrückhaltung im Molekularsieb der Luftreinigung von ca. 85%) 99,8 % des Propans mit dem Spülstrom entfernt. Auch N2O wird dabei zu 84 % abgeschieden (relativ zu der N2O-Menge, welche die Luftreinigung passiert). Die Abscheidungsgrade anderer Komponenten liegen bei 69 % bei C2H6, 15 % bei C2H4 und etwa 2,5 % bei Methan, das weniger kritisch ist. Unter „Schwersiedenden“ werden hier Stoffe verstanden, die eine höhere Verdampfungstemperatur als Sauerstoff aufweisen.
  • Grundsätzlich kann mit den genannten Maßnahmen ein sicherer Betrieb der Anlage gewährleistet werden. Diese Maßnahmen sind für sich bekannt aus WO 2016131545 A1 , werden dort aber bei relativ hohem Verfahrensdruck angewendet, der dazu führt, dass es keine Vorverflüssigung gibt, also keine Verflüssigung der Einsatzluft stromaufwärts der Destillation, sondern die gesamte Luft gasförmig in die Hochdrucksäule eingeleitet wird.
  • Insgesamt gibt es folgende Unterschiede zwischen dem eingangs genannten gemäß US 2004244417 A1 , 2 und demjenigen von WO 2016131545 A1 :
    US 2004244417 A1 WO 2016131545 A1
    Hoher Luftdruck, deutlich über Hochdrucksäulendruck. Gesamtluft wird lediglich auf Hochdrucksäulendruck verdichtet.
    10 % Flüssigkeitsproduktion Gasförmiger Hochdruck-Stickstoff als Hauptprodukt
    Großer Drosselstrom (Gesamtluft ohne Turbinenluft) über 232 Kein Drosselstrom
    Badverdampfer Forced-Flow-Verdampfer
    Restgasturbine macht nur Kälte (treibt keinen Kaltverdichter an) Restgasturbine mach nur Druck (treibt Kaltverdichter an)
  • Die beiden Verfahren haben einen derart unterschiedlichen Charakter, dass eine Kombination für den unvoreingenommenen Fachmann in keinem Fall in Frage käme.
  • Die Einsatzluft enthält bei US 2004244417 A1 wegen des relativ geringen Drucks im Prozess (beziehungsweise relativ geringer Druckdifferenz zu den aus dem Rektifikationssystem austretenden Strömen) auch einen geringfügigen Flüssiganteil bei der Einspeisung in die Hochdrucksäule - dies gälte selbst bei sehr geringer Flüssigproduktgewinnung oder reinem Gasbetrieb. Deshalb würde relativ viel Flüssigkeit im Sumpf der Hochdrucksäule landen, wenn man die oben genannten Maßnahmen (siehe auch WO 2016131545 A1 ) auf eines dieser Verfahren anwendete. Diese Menge würde insgesamt mit dem Spülstrom abgezogen und die Produktausbeute spürbar verringern beziehungsweise den Energieverbrauch der Anlage negativ beeinflussen.
  • Aus diesem Grunde enthält Patentanspruch 1 noch ein weiteres Merkmal, gemäß dem der gasförmige Stickstoffstrom aus der Hochdrucksäule vor seiner Anwärmung im Hauptwärmetauscher in einem Unterkühlungs-Gegenströmer in indirektem Wärmeaustausch mit dem sauerstoffangereicherter Flüssigstrom aus der Hochdrucksäule angewärmt wird. Es erscheint auf den ersten Blick unklar, was diese Maßnahme mit der Ausschleusung der Schwersiedenden zu tun haben soll. Sie führt jedenfalls zu einer Erhöhung der Enthalpie des gasförmigen Stickstoffstroms beim Eintritt in den Hauptwärmetauscher. Da die Enthalpiedifferenz eines Bilanzkreises um das Destillationssäulen-System herum (bei unveränderten Produktmengen und konstantem Wärmeeinfall aus der Umgebung) unverändert bleibt, bewirkt dies eine Temperaturerhöhung am kalten Ende des Hauptwärmetauschers. Dies spürt der sich abkühlende Einsatzluftstrom; er weist daher ebenfalls eine höhere Enthalpie und eine höhere Temperatur als ohne Anwärmung des Stickstoffs im Unterkühlungs-Gegenströmer auf. Diese Enthalpieerhöhung verhindert oder vermindert eine Vorverflüssigung der Luft und führt in vielen Fällen sogar dazu, dass der Luftstrom am Eintritt in die Hochdrucksäule leicht überhitzt ist, seine Temperatur also etwas über der Taupunktstemperatur liegt; die Temperaturdifferenz zum Taupunkt beträgt im Fall der Überhitzung beispielsweise 1,4 K (beim Verfahren mit „Zurückpumpen“ von Niederdrucksäulen-LIN in die Hochdrucksäule und Entnahme des Stickstoffproduktes hauptsächlich aus der Hochdrucksäule) . Damit enthält die Einsatzluft beim Eintritt in die Hochdrucksäule keine Flüssigkeit mehr und der Spülstrom besteht nur noch aus der Rücklaufflüssigkeit, die unten aus dem Sperrbodenabschnitt austritt.
  • Bezogen auf eine Einsatzluftmenge von 100.000 Nm3/h ist diese durch die Anwärmung des Druckstickstoffs im Unterkühlungs-Gegenströmer erzeugte Überhitzung der Einsatzluft wesentlich und entspricht einer Flüssigproduktion von ca. 1.000 Nm3/h Flüssigstickstoff. Es kann also beispielsweise etwa 1 % der Luftmenge als Flüssigprodukt gewonnen, ohne dass Vorverflüssigung entsteht; vielmehr kann die gesamte Luftmenge gasförmig in die Hochdrucksäule eingeleitet werden. Aber auch bei höheren Mengen an Flüssigstickstoffproduktion (bis etwa 2 % der Luftmenge) bleibt eine gewisse Überhitzung im Luftstrom bestehen, da mit steigender Flüssigproduktion der Einsatzluftdruck angehoben wird.
  • In einem konkreten Zahlenbeispiel für eine für die Anlage mit 100.000 Nm3/h Einsatzluft und einer Flüssigproduktion von weniger als 0,1 % der Einsatzluftmenge wird im Folgenden die Erfindung mit einer Betriebsweise ohne Leitung des Druckstickstoffs durch den Unterkühlungs-Gegenströmer verglichen. Verzichtet man auf diese Maßnahmen, strömen 96.600 Nm3/h Luft mit 8,50 bar und einem Dampfanteil von 0,9966864 in die Hochdrucksäule ein, das heißt 320 Nm3/h Luft gehen flüssig in die Hochdrucksäule (Vorverflüssigung). Betreibt man das Verfahren demgegenüber erfindungsgemäß, werden 96.105 Nm3/h unter 8.55 bar mit einer Überhitzung von 1,405 K (mit ähnlicher Größe des Hauptwärmetauschers bzw. mit gleicher mittleren Temperatur im Hauptwärmetauscher im Vergleich zum Fall mit Anwärmung des Druckstickstoffs im Unterkühlungs-Gegenströmer) in die Hochdrucksäule eingespeist. Obwohl diese Temperaturdifferenz zum Taupunkt auf den ersten Blick gering wirkt, hat sie einen sehr großen Effekt auf den Prozess, weil sie ja die gesamte in die Hochdrucksäule einströmende Luftmenge betrifft.
  • Mit Hilfe der erfindungsgemäßen Anwärmung des Druckstickstoffs im Unterkühlungs-Gegenströmer wird also der Anteil der Luft, die flüssig in die Hochdrucksäule geleitet wird, bei einem Verfahren reduziert, bei dem ansonsten mehr Vorverflüssigung auftreten würde. Diese „Reduktion“ kann bis Null gehen oder auch darüber hinaus zu einer Überhitzung der in die Hochdrucksäule eingespeisten Luft führen, also zu einer Erwärmung über den Taupunkt hinaus. Die Erfindung bezieht sich nicht auf Verfahren, bei denen bereits ohne Einleitung des Druckstickstoffs in den Unterkühlungs-Gegenströmer keine Vorverflüssigung auftritt.
  • Die beschriebene Maßnahme ist apparativ relativ einfach, aber sehr wirksam. Sie nutzt eine ohnehin benötigte Apparatur, den Unterkühlungs-Gegenströmer, und erlaubt eine stabile Einstellung der Spülstrommenge, die aus dem Hochdrucksäulensumpf entnommen wird, bei guter Produktausbeute und relativ geringem Energieverbrauch. Insgesamt ergibt sich ein besonders effizientes Verfahren zur Gewinnung von Druckstickstoff.
  • Die Betriebsdrücke bei dem erfindungsgemäßen Verfahren betragen: Niederdrucksäule (am Kopf):
    • beispielsweise 4,0 bis 7,0 bar, vorzugsweise 4,5 bis 6,5 bar Hochdrucksäule (am Kopf):
    • beispielsweise 7 bis 12 bar, vorzugsweise 8 bis 11 bar Niederdrucksäulen-Kopfkondensator auf der Verdampfungsseite:
    • beispielsweise 1,5 bis 3,5 bar, vorzugsweise 1,9 bis 3,2 bar
  • Mit Hilfe der Erfindung kann die Vorverflüssigung reduziert werden. In einzelnen Fällen wird noch eine verminderte Vorverflüssigung auftreten. Vorzugsweise wird die Vorverflüssigung durch die Erfindung jedoch vollständig beseitigt, das heißt, die Einsatzluft strömt komplett gasförmig unter Tautemperatur oder mit leichter Überhitzung in die Hochdrucksäule eingeleitet. Unter „leichter Überhitzung“ wird hier eine Temperaturdifferenz von mindestens 0,1 K, beispielsweise (je nach Flüssigproduktion) 0,1 K bis 2,0 K, vorzugsweise 0,2 K bis 1,8 K verstanden.
  • Vorzugsweise wird der als Forced-Flow-Verdampfer betriebene Verdampfungsraum mit einer sauerstoffreichen Flüssigkeit aus der Niederdrucksäule betrieben; diese kann insbesondere aus dem Sumpf der Niederdrucksäule stammen. Das im Verdampfungsraum des Niederdrucksäulen-Kopfkondensators erzeugte Gas wird vorzugsweise als Restgas in dem Hauptwärmetauscher auf eine Zwischentemperatur angewärmt und anschließend in einer Restgasturbine arbeitsleistend entspannt, danach wieder in den Hauptwärmetauscher eingeführt und auf etwa Umgebungstemperatur angewärmt. Hierdurch kann auf wirtschaftliche Weise Kälte für das Verfahren gewonnen werden.
  • Die Restgasturbine kann von einem elektrischen Generator oder von einem Verdichter gebremst werden. Letzterer kann zum Beispiel das angewärmte entspannte Restgas oder einen Teil davon verdichten.
  • Weiter erhöht werden kann die Effizienz des Verfahrens, wenn auch der Verdampfungsraum des Hauptkondensators als Forced-Flow-Verdampfer ausgebildet ist.
  • Die Erfindung betrifft außerdem eine Vorrichtung gemäß Patentanspruch 10. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen einzelner, mehrerer oder aller abhängigen Verfahrensansprüche entsprechen.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
    • 1a ein erstes Ausführungsbeispiel der Erfindung mit Generatorturbine,
    • 1b eine Variante von 1a mit Gewinnung eines Flüssigstickstoffprodukts,
    • 2 ein zweites Ausführungsbeispiel der Erfindung mit Booster-Turbine,
    • 3 eine Variante von 2 und
    • 4 ein drittes Ausführungsbeispiel der Erfindung mit Entnahme von GAN-Produkt aus beiden Säulen.
  • Über Leitung 1 strömt in 1a verdichtete und gereinigte Einsatzluft heran. Die anfänglichen Stufen eines Luftverdichters, einer Vorkühlung und einer Luftreinigung sind hier nicht dargestellt und werden bei den Ausführungsbeispielen in bekannter Weise ausgeführt. Die Luft 1 wird in dem Hauptwärmetauscher 2 auf fast ihren Taupunkt abgekühlt und strömt mit gewisser Überhitzung über Leitung 3 in den Sumpf der Hochdrucksäule 4 des Destillationssäulen-Systems. Das Destillationssäulen-System weist außerdem einen Hauptkondensator 5, eine Niederdrucksäule 6 und einen Niederdrucksäulen-Kopfkondensator 7 auf. Die beiden Kondensatoren sind als Kondensator-Verdampfer ausgebildet; ihre Verdampfungsräume werden jeweils als Forced-Flow-Verdampfer betrieben.
  • Erfindungsgemäß weist die Hochdrucksäule 4 einen Sperrbodenabschnitt 8 auf, der unmittelbar oberhalb der Stelle angeordnet ist, an der die Einsatzluft 3 eingeleitet wird. Er besteht beispielsweise aus ein bis fünf, vorzugsweise aus zwei bis drei klassischen Rektifizierböden. Alternativ kann auch ein Abschnitt geordneter Packung von beispielsweise ein bis fünf, vorzugsweise zwei bis drei theoretischen Böden eingesetzt werden. Dieser Abschnitt hält schwersiedende Bestandteile der Luft, insbesondere Propan zurück, die mit einem Spülstrom 9A (Purge) aus dem Sumpf der Hochdrucksäule 4 entnommen und mit diesem aus dem Destillationssäulen-System entfernt werden. Der Spülstrom 9B kann dazu, wie dargestellt, in einem warmen Abfallstrom 10 eingeführt werden.
  • Oberhalb des Sperrbodenabschnitts 8 wird ein sauerstoffangereicherter Flüssigstrom 11 aus der Hochdrucksäule 4 entnommen, in einem Unterkühlungs-Gegenströmer 12 abgekühlt und über Leitung 13 der Niederdrucksäule 6 an einer Zwischenstelle zugeführt. Dieser Strom ist praktisch frei von Propan und anderen schwersiedenden Komponenten. Dies gilt dann auch für alle anderen sauerstoffreichen Fraktionen in der Niederdrucksäule, insbesondere für die Sumpfflüssigkeit, die sowohl im Hauptkondensator 5 (über Leitung 14) als auch im Niederdrucksäulen-Kopfkondensator 7 (über die Leitungen 15 und 16) gefahrlos verdampft werden kann. Im Niederdrucksäulen-Kopfkondensator 7 kann problemlos eine vollständige Verdampfung durchgeführt werden. Mit zwei theoretischen Böden in dem Sperrbodenabschnitt werden bei einem Propangehalt von 0,0075 ppm in der Luft stromabwärts der Luftreinigung (mit einer beispielhaften Annahme für Propanrückhaltung im Molekularsieb der Luftreinigung von ca. 85%) 99,8 % des Propans mit dem Spülstrom entfernt. Auch N2O wird dabei zu 84 % abgeschieden (relativ zu der N2O-Menge, welche die Luftreinigung passiert). Die Abscheidungsgrade anderer Komponenten liegen bei 69 % bei C2H6, 15 % bei C2H4 und etwa 2,5 % bei Methan, das weniger kritisch ist.
  • Im Hauptkondensator 5 wird ein Teil 18 des Stickstoff-Kopfgases 17 der Hochdrucksäule 4 kondensiert. Der dabei gewonnene flüssige Stickstoff 19 wird als Rücklauf in die Hochdrucksäule 4 zurückgeleitet. Der Niederdrucksäulen-Kopfkondensator verflüssigt Kopfgas 20 der Niederdrucksäule 6. Dabei erzeugter flüssiger Stickstoff 21 wird in die Niederdrucksäule 6 zurückgeleitet. Ein Teil davon wird gleich wieder als Flüssigstickstoffstrom 22 aus der Niederdrucksäule 6 abgezogen. (Alternativ könnte dieser Strom auch direkt vom Verflüssigungsraum des Niederdrucksäulen-Kopfkondensators 7 abgenommen werden.) Eine Pumpe 23 bringt den Flüssigstickstoffstrom 22 auf etwa Hochdrucksäulendruck. Die Druckflüssigkeit 24 wird über den Unterkühlungs-Gegenströmer 12 und Leitung 25A/25B auf den Kopf der Hochdrucksäule 4 aufgegeben.
  • Ein gasförmiger Stickstoffstrom vom Kopf der Hochdrucksäule 4 wird über Leitung 17/26A/26B entnommen und zunächst erfindungsgemäß im Unterkühlungs-Gegenströmer 12 angewärmt. Anschließend wird der Stickstoff 27 im Hauptwärmetauscher auf etwas Umgebungstemperatur angewärmt und kann bei 28 als gasförmiges Druckstickstoffprodukt unter Hochdrucksäulendruck abgezogen werden. In diesem Beispiel wird er allerdings noch weiter verdichtet durch einen oder z. B. zwei Stickstoffverdichter 29, 30 jeweils mit Zwischen- beziehungsweise Nachkühlung, sodass das endgültige Druckstickstoffprodukt 31 (PGAN) hier einen Druck von beispielsweise 120 oder 150 bar aufweist.
  • Durch die Verdampfung der Niederdrucksäulen-Sumpfflüssigkeit 16 in dem Niederdrucksäulen-Kopfkondensator 7 wird ein Restgas 32 erzeugt, das zunächst im Unterkühlungs-Gegenströmer 12 angewärmt wird. Anschließend strömt es über Leitung 33 zum Hauptwärmetauscher 2, in dem es auf eine Zwischentemperatur angewärmt wird. Anschließend wird es in einer Restgasturbine 35 mit Bypass 37 arbeitsleistend entspannt. Das entspannte Restgas wird in zwei Teilen wieder in den Hauptwärmetauscher eingeführt und auf etwa Umgebungstemperatur angewärmt. Ein erster Teil 38 wird über Leitung 39 als Regeneriergas der Luftreinigung zugeführt. Der Rest 40 wird über Leitung 10 in die Atmosphäre (ATM) abgegeben.
  • Ein Teil 41 des Kopfgases der Niederdrucksäule 6 wird über die Leitungen 42 und 43 und durch den Unterkühlungs-Gegenströmer 12 und den Hauptwärmetauscher 2 als Dichtgas (Seal) abgegeben.
  • Die Linie 44 zeigt den Bilanzkreis um das Destillationssäulen-System. Sie schneidet die Spülgasleitung 9A, die Restgasleitung 33 und die Dichtgasleitung 41 und vor Allem die Einsatzluftleitung 3 und die Druckstickstoffleitung 27 (hier fett dargestellt). H Luft bedeutet die Enthalpie des Luftstroms, H_Prod die Enthalpie der Produktströme, WPump die durch die Pumpe 23 eingebrachte Wärme.
  • 1b unterscheidet sich nur dadurch von 1a, dass die ein Teil 125C des im Unterkühlungs-Gegenströmer 12 angewärmten Flüssigstickstoffs 22 als Flüssigprodukt LIN abgezogen wird. Alternativ kann der gesamte Strom 25A über Leitung 125C geführt werden; das gesamte gasförmige Stickstoffprodukt, das aus der Niederdrucksäule 6 stammt, wird dann über Leitung 41 aus der Niederdrucksäule 6 abgezogen.
  • 2 unterscheidet sich nur dadurch von 1a, dass die die Turbine 35 von einem Verdichter 236 gebremst wird. Dieser bringt den Teil 39 des angewärmten entspannten Restgases auf den Druck, der benötigt wird, um es als Regeneriergas in der Luftreinigung einzusetzen. Dadurch kann der Druck im Destillationssäulen-System und am Austritt des (nicht dargestellten) Luftverdichters reduziert und die Energie direkt am Luftverdichter gespart werden. Beispielsweise wird dabei der Druck am MAC um ca. 500 mbar oder sogar mehr abgesenkt.
  • In 3 wird abweichend von 2 das gesamte entspannte und angewärmte Restgas 339 im turbinengetriebenen Verdichter 236 verdichtet. Ein erster Teil 340 des verdichteten Restgases wird wie in 2 als Regeneriergas eingesetzt; der Rest 341 wird in einem Drosselventil entspannt und in die Atmosphäre (Atm) abgelassen.
  • Bei dem Verfahren von 4 wird im Unterschied zu den vorangegangenen Ausführungsbeispielen kein flüssiger Stickstoff aus der Niederdrucksäule 6 in die Hochdrucksäule gepumpt. Vielmehr wird das gesamte Stickstoffprodukt der Niederdrucksäule 6 über Leitung 41/42 direkt gasförmig entnommen und im Warmen in einem weiteren Stickstoffverdichter 129 auf Hochdrucksäulendruck gebracht. Es kann dann dem Produkt aus der Hochdrucksäule 28 zugemischt oder separat über Leitung 43 abgezogen werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2004244417 A1 [0002, 0008, 0010]
    • DE 19933557 [0002]
    • EP 1022530 [0002]
    • WO 2016131545 A1 [0007, 0008, 0010]

Claims (10)

  1. Verfahren zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das eine Hochdrucksäule (4), eine Niederdrucksäule (6) sowie einen Hauptkondensator (5) und einen Niederdrucksäulen-Kopfkondensator (7) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind, wobei - verdichtete und gereinigte Einsatzluft (1) in einem Hauptwärmetauscher (2) abgekühlt und mindestens zum größten Teil gasförmig in die Hochdrucksäule (4) eingeleitet (3) wird, - ein sauerstoffangereicherter Flüssigstrom (11, 13) aus der Hochdrucksäule (4) entnommen und in die Niederdrucksäule eingeleitet wird und - ein gasförmiger Stickstoffstrom (17, 26A, 26B, 27) aus der Hochdrucksäule (4) entnommen, im Hauptwärmetauscher (2) angewärmt und als gasförmiges Druckstickstoffprodukt (28, 31) abgezogen wird, dadurch gekennzeichnet, dass - der Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) als Forced-Flow-Verdampfer ausgebildet ist, - die Hochdrucksäule (4) einen Sperrbodenabschnitt (8) aufweist, der unmittelbar oberhalb der Stelle angeordnet ist, an der die Einsatzluft (3) eingeleitet wird, und ein bis fünf theoretische beziehungsweise praktische Böden aufweist, - der sauerstoffangereicherte Flüssigstrom (11), der in die Niederdrucksäule (6) eingeleitet wird, oberhalb des Sperrbodenabschnitts (8) aus der Hochdrucksäule (4) entnommen wird, - unterhalb der Sperrbodenabschnitts (8) ein Spülstrom (9A) entnommen und aus dem Destillationssäulen-System entfernt (9B) wird und - der gasförmige Stickstoffstrom (26A, 26B) vor seiner Anwärmung im Hauptwärmetauscher (2) in einem Unterkühlungs-Gegenströmer (12) in indirektem Wärmeaustausch mit dem sauerstoffangereicherten Flüssigstrom (11) aus der Hochdrucksäule (4) angewärmt und damit der Anteil der Luft, die flüssig in die Hochdrucksäule geleitet wird, reduziert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die verdichtete, gereinigte und abgekühlte Einsatzluft (1) vollständig gasförmig in die Hochdrucksäule (4) eingeleitet (3) wird und insbesondere um mindestens 0,1 K oder mindestens 0,2 K überhitzt ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass - der Niederdrucksäule (6) eine sauerstoffreiche Flüssigkeit (15, 16) entnommen und dem Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) zugeleitet wird, - das im Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) erzeugte Gas als Restgas (32, 33) in dem Hauptwärmetauscher (2) auf eine Zwischentemperatur angewärmt und anschließend (34) in einer Restgasturbine (35) arbeitsleistend entspannt wird und - das arbeitsleistend entspannte Restgas (38, 40) wieder in den Hauptwärmetauscher (2) eingeführt und auf etwa Umgebungstemperatur angewärmt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Restgasturbine (35) von einem Generator (36) gebremst wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Restgasturbine (35) von einem Verdichter (236) gebremst wird, der auf etwa Umgebungstemperatur angewärmtes entspanntes Restgas (39, 339) verdichtet, wobei der Verdichter insbesondere im Warmen betrieben wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass auch der Verdampfungsraum des Hauptkondensators (5) als Forced-Flow-Verdampfer ausgebildet ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Flüssigstickstoffstrom (22) aus der Niederdrucksäule (6) oder aus dem Verflüssigungsraum des Niederdrucksäulen-Kopfkondensators (7) abgezogen und mittels einer Pumpe (23) in die Hochdrucksäule (4) eingeführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein gasförmiger Stickstoffstrom (41) aus der Niederdrucksäule (6) abgezogen und als gasförmiges Druckstickstoffprodukt (PGAN, Seal) gewonnen wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein Flüssigstickstoffstrom (22) aus der Niederdrucksäule (6) entnommen, in dem Unterkühlungs-Gegenströmer (12) angewärmt und als Flüssigstickstoffprodukt (125C, LIN) abgezogen wird.
  10. Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft mit einem Destillationssäulen-System, das eine Hochdrucksäule (4), eine Niederdrucksäule (6) sowie einen Hauptkondensator (5) und einen Niederdrucksäulen-Kopfkondensator (7) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind, wobei - mit einem Hauptwärmetauscher (2) zum Abkühlen verdichteter und gereinigter Einsatzluft (1) und mit Mitteln (3) zum Einleiten im Hauptwärmetauscher (2) abgekühlter Einsatzluft in Gasform in die Hochdrucksäule (4), - mit Mitteln zum Entnehmen eines sauerstoffangereicherten Flüssigstroms (11, 13) aus der Hochdrucksäule (4) und zum Einleiten des sauerstoffangereicherten Flüssigstroms (11, 13) in die Niederdrucksäule und - mit einer Produktleitung zum Entnehmen eines gasförmigen Stickstoffstroms (17, 26A, 26B, 27) aus der Hochdrucksäule (4) zum Anwärmen des gasförmigen Stickstoffstroms (17, 26A, 26B, 27) im Hauptwärmetauscher (2) und zum Abziehen des angewärmten gasförmigen Stickstoffstroms (17, 26A, 26B, 27) als gasförmiges Druckstickstoffprodukt (28, 31), dadurch gekennzeichnet, dass - der Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) als Forced-Flow-Verdampfer ausgebildet ist, - die Hochdrucksäule (4) einen Sperrbodenabschnitt (8) aufweist, der unmittelbar oberhalb der Stelle angeordnet ist, an der die Einsatzluft (3) eingeleitet wird, und ein bis fünf theoretische beziehungsweise praktische Böden aufweist und - die Mittel zum Entnehmen eines sauerstoffangereicherten Flüssigstroms (11, 13) aus der Hochdrucksäule (4) oberhalb des Sperrbodenabschnitts (8) mit der Hochdrucksäule (4) verbunden sind, wobei die Vorrichtung ferner - eine Spülleitung zum Entnehmen eines Spülstrom (9A) aus der Hochdrucksäule (4) und zum Entfernen (9B) des Spülstroms aus dem Destillationssäulen-System, wobei die Spülleitung unterhalb des Sperrbodenabschnitts (8) mit der Hochdrucksäule (4) verbunden ist und - einen Unterkühlungs-Gegenströmer (12) zum Anwärmen des gasförmigen Stickstoffstroms (26A, 26B) vor seiner Anwärmung im Hauptwärmetauscher (2) in indirektem Wärmeaustausch mit dem sauerstoffangereicherten Flüssigstrom (11) aus der Hochdrucksäule (4) aufweist.
DE102018000842.9A 2018-02-02 2018-02-02 Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft Withdrawn DE102018000842A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102018000842.9A DE102018000842A1 (de) 2018-02-02 2018-02-02 Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
EP19020030.3A EP3521739A1 (de) 2018-02-02 2019-01-17 Verfahren und vorrichtung zur gewinnung von druckstickstoff durch tieftemperaturzerlegung von luft
MX2019001250A MX2019001250A (es) 2018-02-02 2019-01-29 Metodo y aparato para obtener nitrogeno presurizado por separacion criogenica de aire.
US16/265,120 US20190242646A1 (en) 2018-02-02 2019-02-01 Method and apparatus for obtaining pressurized nitrogen by cryogenic separation of air
CN201910102589.9A CN110131963A (zh) 2018-02-02 2019-02-01 一种通过低温分离空气获得加压氮气的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018000842.9A DE102018000842A1 (de) 2018-02-02 2018-02-02 Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft

Publications (1)

Publication Number Publication Date
DE102018000842A1 true DE102018000842A1 (de) 2019-08-08

Family

ID=65041546

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018000842.9A Withdrawn DE102018000842A1 (de) 2018-02-02 2018-02-02 Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft

Country Status (5)

Country Link
US (1) US20190242646A1 (de)
EP (1) EP3521739A1 (de)
CN (1) CN110131963A (de)
DE (1) DE102018000842A1 (de)
MX (1) MX2019001250A (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4127583B1 (de) 2020-03-23 2024-05-01 Linde GmbH Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2021242308A1 (en) * 2020-05-26 2021-12-02 Praxair Technology, Inc. Enhancements to a dual column nitrogen producing cryogenic air separation unit
DE102020006393A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
WO2022179748A1 (de) 2021-02-25 2022-09-01 Linde Gmbh Verfahren und anlage zur bereitstellung von druckstickstoff

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022530A1 (de) 1999-01-21 2000-07-26 Linde Technische Gase GmbH Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
DE19933557A1 (de) 1999-07-16 2000-09-28 Linde Tech Gase Gmbh Verfahren und Vorrichtung zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
US20040244417A1 (en) 2001-08-09 2004-12-09 Alamorian Robert Mathew Nitrogen generation
WO2016131545A1 (de) 2015-02-19 2016-08-25 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckstickstoffprodukts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4453957A (en) * 1982-12-02 1984-06-12 Union Carbide Corporation Double column multiple condenser-reboiler high pressure nitrogen process
JPH0240484A (ja) * 1988-07-29 1990-02-09 Hitachi Ltd 窒素発生装置
GB9724787D0 (en) * 1997-11-24 1998-01-21 Boc Group Plc Production of nitrogen
US20010029749A1 (en) * 2000-03-02 2001-10-18 Robert Anthony Mostello Method and apparatus for producing nitrogen from air by cryogenic distillation
DE10339224A1 (de) * 2003-08-26 2005-03-31 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3290843A3 (de) * 2016-07-12 2018-06-13 Linde Aktiengesellschaft Verfahren und vorrichtung zur erzeugung von druckstickstoff und flüssigstickstoff durch tieftemperaturzerlegung von luft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022530A1 (de) 1999-01-21 2000-07-26 Linde Technische Gase GmbH Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
DE19933557A1 (de) 1999-07-16 2000-09-28 Linde Tech Gase Gmbh Verfahren und Vorrichtung zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
US20040244417A1 (en) 2001-08-09 2004-12-09 Alamorian Robert Mathew Nitrogen generation
WO2016131545A1 (de) 2015-02-19 2016-08-25 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckstickstoffprodukts

Also Published As

Publication number Publication date
MX2019001250A (es) 2019-10-04
CN110131963A (zh) 2019-08-16
US20190242646A1 (en) 2019-08-08
EP3521739A1 (de) 2019-08-07

Similar Documents

Publication Publication Date Title
EP1134525B1 (de) Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3521739A1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff durch tieftemperaturzerlegung von luft
EP3179187B1 (de) Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage
EP1031804B1 (de) Tieftemperaturzerlegung von Luft mit Stickstoff Rückführung
EP2236964B1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
EP0955509A1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
EP1666824A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP1074805B1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
EP1995537A2 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
WO2016131545A1 (de) Verfahren und vorrichtung zur gewinnung eines druckstickstoffprodukts
EP3290843A2 (de) Verfahren und vorrichtung zur erzeugung von druckstickstoff und flüssigstickstoff durch tieftemperaturzerlegung von luft
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2014146779A2 (de) Verfahren und vorrichtung zur erzeugung von gasförmigem druckstickstoff
EP3193114B1 (de) Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP2322888A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Helium-Neon-Konzentrats aus Luft
EP2053331A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
EP3207320A1 (de) Verfahren und vorrichtung zur variablen gewinnung von argon durch tieftemperaturzerlegung
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE19720453A1 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung von Luft
DE102012021694A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft in einer Luftzerlegungsanlage und Luftzerlegungsanlage
DE19725821A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102011113671A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102008064117A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
R081 Change of applicant/patentee

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee