JP2024013252A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP2024013252A
JP2024013252A JP2022115186A JP2022115186A JP2024013252A JP 2024013252 A JP2024013252 A JP 2024013252A JP 2022115186 A JP2022115186 A JP 2022115186A JP 2022115186 A JP2022115186 A JP 2022115186A JP 2024013252 A JP2024013252 A JP 2024013252A
Authority
JP
Japan
Prior art keywords
cold
liquid
gas
hot
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022115186A
Other languages
English (en)
Inventor
信明 江越
Nobuaki Ekoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2022115186A priority Critical patent/JP2024013252A/ja
Priority to PCT/JP2023/018452 priority patent/WO2024018739A1/ja
Publication of JP2024013252A publication Critical patent/JP2024013252A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】低圧塔と高圧塔及び混合塔を有する空気分離装置において用いられ、設備コスト増大を抑制できる熱交換器を提供する。【解決手段】本発明に係る熱交換器110は、低圧塔600、高圧塔500及び混合塔400を有する空気分離装置1100において用いられるものであって、プレートとフィンから構成され、少なくとも一部の原料空気である温流ガス(W1,W2,W3の少なくとも一つ)と混合塔400から取り出される少なくとも1つの温流液(W4,W5の少なくとも一つ)を、低圧塔600から取り出される少なくとも1つの冷流ガス(C2,C3の少なくとも一つ)と混合塔400から取り出される冷流ガス(C1)とにより冷却するとともに、低圧塔600から昇圧ポンプ800を介して取り出されて混合塔400に供給される冷流液(C6)を加熱することを特徴とする。【選択図】 図1

Description

本発明は、低圧塔と高圧塔及び混合塔を有する空気分離装置において用いられ、原料空気を冷却するとともに、低圧塔から混合塔に供給する液体を加熱するための熱交換器に関するものである。
空気分離装置には、低圧塔と高圧塔に加えて混合塔が用いられるものがあり、一般的に混合塔が用いられるものにおいては、酸素濃度約97%以下の低純度の酸素が製品酸素ガスとして製造される。混合塔では塔頂からの液体酸素と塔底からのガス空気との直接接触により液体酸素を低純度の酸素ガスとし、この低純度の酸素ガスが塔頂から製品酸素ガスとして取り出される。
塔頂に供給される液体酸素は低圧塔塔底の液体酸素をポンプで昇圧したものであり、その温度は昇圧圧力での沸点よりも低い。そのため、この状態で低圧塔に供給すると、混合塔塔頂からの製品酸素ガスの流量を低下させるとともに、塔底からの液体空気流量を増加させ、空気分離装置の酸素収率を低下させる要因となる。
そこで、ポンプで昇圧された液体酸素を加熱するための加熱器において、混合塔から排出されるサイドカット液体及び缶出液と熱交換させ、さらに補助熱交換器において、ガス空気と熱交換させることで加熱し、飽和温度に近づけて混合塔に供給するプロセスが開示されている(例えば、特許文献1参照)。
特開2004-28572号公報
しかしながら、ポンプで昇圧された液体酸素の加熱には加熱器や補助熱交換器の設置、またこれらの機器への配管の取り回しが必要となる。さらに、これらの機器や配管を格納するためにコールドボックスが大きくなるため、設備コストが増大することが問題となっていた。
本発明はかかる課題を解決するためになされたものであり、低圧塔と高圧塔及び混合塔を有する空気分離装置において用いられ、設備コスト増大を抑制できる熱交換器を提供することを目的としている。
(1)本発明に係る熱交換器は、低圧塔、高圧塔及び混合塔を有する空気分離装置において用いられるものであって、
プレートとフィンから構成され、少なくとも一部の原料空気である温流ガスと前記混合塔から取り出される少なくとも1つの温流液を、前記低圧塔から取り出される少なくとも1つの冷流ガスと前記混合塔から取り出される冷流ガスとにより冷却するとともに、前記低圧塔から昇圧ポンプを介して取り出されて前記混合塔に供給される冷流液を加熱することを特徴とするものである。
(2)また、上記(1)に記載のものにおいて、前記高圧塔から取り出される少なくとも1つの温流液を冷却することを特徴するものである。
(3)また、上記(1)又は(2)に記載のものにおいて、前記冷流液が流れる冷流液通路と、前記冷流ガスが流れる冷流ガス通路と、前記温流液が流れる温流液通路と、温流ガスが流れる温流ガス通路を備え、前記温流ガス通路は前記温流ガスが前記冷流液と前記冷流ガスに対して向流で流れるように配されており、前記温流液通路は前記温流液が前記冷流液と前記冷流ガスに対して十字流で流れるように配されていることを特徴とするものである。
本発明によれば、機器数を減らすとともにコールドボックスをコンパクトにすることができ、これによって設備コストを削減することができる。
実施の形態1に係る熱交換器を備えた空気分離装置の説明図である。 実施の形態1に係る熱交換器の内部構造の説明図である。 実施の形態2に係る熱交換器を備えた空気分離装置の説明図である。
[実施の形態1]
図1は、本実施の形態に係る熱交換器を用いた空気分離装置の一例を示したものである。
本実施の形態に係る熱交換器110は、図1に示すように、低圧塔600、高圧塔500及び混合塔400を有する空気分離装置1100において用いられるものであって、プレートとフィンから構成され、少なくとも一部の原料空気である温流ガス(W1,W2,W3の少なくとも一つ)と混合塔400から取り出される少なくとも1つの温流液(W4,W5の少なくとも一つ)を、低圧塔600から取り出される少なくとも1つの冷流ガス(C2,C3の少なくとも一つ)と混合塔400から取り出される冷流ガス(C1)とにより冷却するとともに、低圧塔600から昇圧ポンプ800を介して取り出されて混合塔400に供給される冷流液(C6)を加熱することを特徴とするものである。
まず、図1に基づいて熱交換器を含む空気分離装置の全体構成を説明し、その後、熱交換器の内部構造について説明する。
なお、本明細書において、流体を示す記号として「C」(coldの頭文字)を付したものは当該流体が冷流体であることを示し、「W」(warmの頭文字)を付したものは当該流体が温流体であることを示している。
<空気分離装置の構成の説明>
空気分離装置1100は、高圧塔500、低圧塔600、混合塔400と過冷器190および熱交換器110を備えている。
圧縮機90で圧縮され、精製器91で精製された原料空気(W1,W2,W3)は、その一部(W2)が管路21により熱交換器110に供給され、混合塔400の塔頂から管路1で供給される製品酸素ガス(C1)と低圧塔600の塔頂から過冷却190を経て管路2で供給される窒素ガス(C2)、高圧塔500塔頂から管路3で供給される中圧窒素ガス(C3)及び低圧塔600塔底から昇圧ポンプ800で昇圧された液体酸素(C6)との熱交換により冷却され、管路22により高圧塔500の底部に供給される。
また、原料空気の一部(W1)は、再圧縮機92で昇圧された後、管路11により熱交換器110に供給され、冷流体である製品酸素ガス(C1)、窒素ガス(C2)、中圧窒素ガス(C3)及び液体酸素(C6)との熱交換により冷却された後、管路13により混合塔400の塔底に供給される。
さらに、原料空気の一部(W3)は、再圧縮機93で昇圧された後、管路31により熱交換器110に供給されて冷流体である製品酸素ガス(C1)、窒素ガス(C2)及び中圧窒素ガス(C3)との熱交換により冷却され、さらに膨張タービン94によって膨張した後、管路32により低圧塔600に供給される。
高圧塔500の塔底に管路22で供給された空気は、塔内を流下する還流液との気液接触により、上昇しながら低沸点成分である窒素が濃縮し、塔頂にて窒素ガスが生成する。
また、高圧塔500の塔底には高沸点成分である酸素が富化した酸素富化液体空気が生成し、管路53によって引抜かれる。
高圧塔で生成した窒素ガスは、主凝縮器300にて液化され、その一部は、管路51により過冷器190に供給されて冷却され、管路52を経て減圧された後に還流液として低圧塔600の塔頂に供給される。
また、高圧塔500の塔底から管路53で引抜かれた液体空気は、混合塔400から管路41、熱交換器110を経て、管路42で取り出された液体空気とともに管路43により過冷器190に供給され、冷却され、管路44を経て減圧された後に、低圧塔600に供給される。
なお、過冷器190におけるこれら液体の冷却源は、低圧塔600の塔頂から管路60を経て供給される窒素ガスである。
低圧塔600に供給された還流液は、塔内の上昇ガスとの気液接触により流下しながら高沸点成分である酸素が濃縮し、塔底にて液体酸素が生成する。また、上昇ガスは上昇しながら低沸点成分である窒素が濃縮し、塔頂にて窒素ガスが生成する。
低圧塔600の塔底に生成した液体酸素(C6)は、管路61により取り出され、昇圧ポンプ800で昇圧された後、管路62で熱交換器110に導かれ、混合塔400から管路45でサイドカットされた液体(以下、「サイドカット液」という)(W5)及び管路41の缶出液(W4)と原料空気の一部(W1、W2)と熱交換し、加熱された後、管路64で取り出され、混合塔400の塔頂に供給される。
混合塔400では供給された液体酸素と管路13で導入されたガス空気が直接接触し、塔頂から管路1で低純度の製品酸素ガス(C1)が製造される。
<熱交換器の説明>
熱交換器110には、プレートとフィンからなる各層が積層されたプレートフィン型熱交換器が適用され、図2は、熱交換器110の各層を流路毎に分離して示したものである。
熱交換器110は、図2に示すように、3つの温流体通路A1~A3と3つの冷流体通路B1~B3を有している。
そして、温流体通路A1は、温端側と冷端側との間で、温流ガスW1が流れる温流ガス通路a1を有する。
また、温流体通路A2は、温端側と冷端側との間で2つの流域に区画されており、温端側の区画には温流ガスW2が流れる温流ガス通路a2を有し、冷端側の区画には温流液W4が流れる温流液通路a4を有する。
また、温流体通路A3は、温端側と冷端側との間で2つの流域に区画されており、温端側の区画には温流ガスW3が流れる温流ガス通路a3を有し、冷端側の区画には温流液W5が流れる温流液通路a5を有する。
また、冷流体通路B1は、温端側と冷端側との間で2つの流域に区画されており、温端側の区画には冷流ガスC1が流れる冷流ガス通路b1を有し、冷端側の区画には冷流液C6が流れる冷流液通路b6を有する。
また、冷流体通路B2は、温端側と冷端側との間で、冷流ガスC2が流れる冷流ガス通路b2を有する。
また、冷流体通路B3は、温端側と冷端側との間で、冷流ガスC3が流れる冷流ガス通路b3を有する。
そして、温流ガスである原料空気(W1、W2、W3)が流れる温流ガス通路a1、a2、a3(図2(a)(b)(c)参照)は、冷流ガスである製品酸素ガス(C1)、窒素ガス(C2)、中圧窒素ガス(C3)が流れる冷流ガス通路b1、b2、b3(図2(d)(e)(f)参照)及び冷流液である液体酸素(C6)が流れる冷流液通路b6通路(図2(d)参照)に対して向流で流れるように配置されている。
また、混合塔400から管路41、45により引抜かれた温流液である缶出液(W4)及びサイドカット液(W5)が流れる温流液通路a4、a5(図2(b)(c)参照)は、冷流ガスである窒素ガス(C2)、中圧窒素ガス(C3)の流れる冷流ガス通路b2、b3(図2(e)(f)参照)及び冷流液である液体酸素(C6)が流れる冷流液通路b6(図2(d)参照)に対して十字流で流れるように配置されている。
缶出液(W4)の通路(図2(b)参照)は5つのパス、サイドカット液(W5)の通路(図2(c)参照)は7つのパスから構成されている。
管路41により抜き出された混合塔400の缶出液(W4)は、図2(b)に示すように、通路の導入口(in)に流入し、窒素ガス(C2)、中圧窒素ガス(C3)及び液体酸素(C6)に対して十字方向に流れ、つづく冷端側に配したパスを逆向きに流れ、計5つのパスを経て導出口(out)から排出される。
管路45により抜き出された混合塔400のサイドカット液(W5)は、図2(c)に示すように、導入口(in)から流入し、窒素ガス(C2)、中圧窒素ガス(C3)及び液体酸素(C6)に対して十字方向に流れ、つづく冷端側に配したパスを逆向きに流れ、計7つのパスを経て導出口(out)から排出される。これら缶出液(W4)及びサイドカット液(W5)の導入口(in)は、それぞれの導出口(out)に対して温端側に設けられており、管路41、45により混合塔400と接続されている。
なお、本実施形態では、図2(b)(c)に示すように、缶出液(W4)及びサイドカット液(W5)の通路は、それぞれ原料空気(W2、W3)の通路の下方に仕切られて配されているが、原料空気(W1)、製品酸素ガス(C1)の通路の下方に配してもよい。
また、混合塔400の塔頂に接続される液体酸素(C6)の導出口(out)、混合塔400のサイドカットに接続されるサイドカット液(W5)の導入口(in)は、原料空気(W1、W2)の導出口(out)の温端側に設けられている。これは、流体それぞれの温度を考慮して、熱交換の効率が高くなるように配置されたものである。このような配置は、一体化された熱交換器110であるが故に可能となるものであり、この意味で、熱交換器110は、従来例において別途設けられていた加熱器、補助熱交換器を主熱交換器に単純に並べて結合したものでない。もっとも、混合塔400の圧力に応じて、冷端側に配してもよい。
以上のように、熱交換器110が上記の機能を有することにより、従来例において別途設けられていた加熱器、補助熱交換器を設置しなくてもよく、さらには、これら機器を格納するためのコールドボックス空間を削減でき設備コストが低減できる。
[実施の形態2]
図3は、実施の形態2に係る熱交換器120を用いた空気分離装置1200を示したものであり、空気分離装置1200は、高圧塔500、低圧塔600、混合塔400および熱交換器120を備えている。なお、図3において、図1と同一部分には同一の符号を付してある。
熱交換器120は、図1、図2に示した熱交換器110に対して、管路43で導入される高圧塔500の塔底からの酸素富化液体空気を含む液体(以下、単に「酸素富化液体空気」)を冷却するための通路、また管路51で導入される主凝縮器300からの液体窒素(W7)を冷却するための通路が加えられたものである。
これら酸素富化液体空気(W6)及び液体窒素(W7)の冷却源は、低圧塔600の塔頂から管路60を経て熱交換器12に導入される窒素ガス(C2)と、高圧塔500の塔頂から管路3を経て熱交換器120に導入される中圧窒素ガス(C3)である。
熱交換器120で冷却された酸素富化液体空気(W6)及び液体窒素(W7)は、それぞれ管路44、52で取り出され、減圧された後に低圧塔600に供給される。
このように熱交換器120により、従来の加熱器、補助熱交換器および実施の形態1において設置していた過冷器190を設置しなくてもよく、さらには、これら機器を格納するためのコールドボックス空間を削減でき設備コストが低減できる。
1100、1200 空気分離装置
800 昇圧ポンプ
500 高圧塔
600 低圧塔
400 混合塔
300 主凝縮器
190 過冷器
110、120 熱交換器
90 圧縮機
91 精製器
92、93 再圧縮機
94 膨張タービン
1、2、3、11、13、21、22、31、32、41、42、43、44、45、51、52、53、60、61、62、64、管路
A1~A3 温流体通路
B1~B3 冷流体通路
a1、a2、a3 温流ガス通路
a4、a5 温流液通路
b1~b3 冷流ガス通路
b6 冷流液通路
C1 製品酸素ガス
C2 窒素ガス
C3 中圧窒素ガス
C6 液体酸素
W1、W2、W3 原料空気
W4 缶出液
W5 サイドカット液
W6 酸素富化液体空気
W7 液体窒素

Claims (3)

  1. 低圧塔、高圧塔及び混合塔を有する空気分離装置において用いられる熱交換器であって、
    プレートとフィンから構成され、少なくとも一部の原料空気である温流ガスと前記混合塔から取り出される少なくとも1つの温流液を、前記低圧塔から取り出される少なくとも1つの冷流ガスと前記混合塔から取り出される冷流ガスとにより冷却するとともに、前記低圧塔から昇圧ポンプを介して取り出されて前記混合塔に供給される冷流液を加熱することを特徴とする熱交換器。
  2. 前記高圧塔から取り出される少なくとも1つの温流液を冷却することを特徴する請求項1記載の熱交換器。
  3. 前記冷流液が流れる冷流液通路と、前記冷流ガスが流れる冷流ガス通路と、前記温流液が流れる温流液通路と、温流ガスが流れる温流ガス通路を備え、前記温流ガス通路は前記温流ガスが前記冷流液と前記冷流ガスに対して向流で流れるように配されており、前記温流液通路は前記温流液が前記冷流液と前記冷流ガスに対して十字流で流れるように配されていることを特徴とする請求項1又は2に記載の熱交換器。
JP2022115186A 2022-07-20 2022-07-20 熱交換器 Pending JP2024013252A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022115186A JP2024013252A (ja) 2022-07-20 2022-07-20 熱交換器
PCT/JP2023/018452 WO2024018739A1 (ja) 2022-07-20 2023-05-17 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022115186A JP2024013252A (ja) 2022-07-20 2022-07-20 熱交換器

Publications (1)

Publication Number Publication Date
JP2024013252A true JP2024013252A (ja) 2024-02-01

Family

ID=89617350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022115186A Pending JP2024013252A (ja) 2022-07-20 2022-07-20 熱交換器

Country Status (2)

Country Link
JP (1) JP2024013252A (ja)
WO (1) WO2024018739A1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017484A1 (de) * 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft
EP3179186A1 (de) * 2015-12-07 2017-06-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage
EP3557166A1 (de) * 2018-04-19 2019-10-23 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage

Also Published As

Publication number Publication date
WO2024018739A1 (ja) 2024-01-25

Similar Documents

Publication Publication Date Title
JP3182326B2 (ja) 低純度酸素生成のための側コラム付き極低温精留システム
CN100519406C (zh) 从合成气中除去氮、甲烷和氩用低△p净化器
US6044902A (en) Heat exchange unit for a cryogenic air separation system
KR100192874B1 (ko) 공기 분리
CN106949708B (zh) 一种对原有低温空分装置进行改装用以提高低压纯氮气产量的方法
JPS62162876A (ja) 気−液接触法および装置
US11578916B2 (en) Method and device for producing air product based on cryogenic rectification
US9976803B2 (en) Process and apparatus for producing gaseous oxygen by cryogenic distillation of air
US20120213676A1 (en) Process for the Production of Ammonia Synthesis Gas With Improved Cryogenic Purification
CN102230716A (zh) 空气增压返流膨胀内压缩空气分离的方法及其装置
JP2021515873A (ja) 二酸化炭素作動流体を用いた電力生成のためのシステムおよび方法
KR20000011251A (ko) 산소를제조하기위해공급공기의극저온정류를수행하는방법및장치
EP2176610B1 (en) Process for the separation of air by cryogenic distillation
CN107606875A (zh) 通过低温分离空气产生压缩氮和液氮的方法和设备
JP2009516149A (ja) 深冷蒸留によって空気を分離する方法および装置
JP7389818B2 (ja) 側部取出し熱ポンプ還流システムおよび方法を用いた単一塔窒素排除ユニット
US20210404738A1 (en) Liquefaction System
WO2024018739A1 (ja) 熱交換器
CN103003652A (zh) 氧气汽化方法和系统
KR100420754B1 (ko) 고비율 터보팽창을 사용하는 극저온 공기 분리 시스템
KR20010049320A (ko) 적정 순도의 산소 및 적정 순도의 질소를 생성하기 위한극저온 공기 분리 시스템
CN104603564B (zh) 用于冷凝富含二氧化碳的气体流的方法和设备
CN113003553A (zh) 从液态氧中回收氪和氙
CN108474616B (zh) 用于向空气分离设备提供辅助制冷的方法和系统
CN110044133A (zh) 分离提纯一氧化碳的设备与方法