CN113003553A - 从液态氧中回收氪和氙 - Google Patents

从液态氧中回收氪和氙 Download PDF

Info

Publication number
CN113003553A
CN113003553A CN202011508858.0A CN202011508858A CN113003553A CN 113003553 A CN113003553 A CN 113003553A CN 202011508858 A CN202011508858 A CN 202011508858A CN 113003553 A CN113003553 A CN 113003553A
Authority
CN
China
Prior art keywords
liquid
xenon
liquid oxygen
krypton
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011508858.0A
Other languages
English (en)
Other versions
CN113003553B (zh
Inventor
罗序昆
A·D·伯格
D·M·赫伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN113003553A publication Critical patent/CN113003553A/zh
Application granted granted Critical
Publication of CN113003553B publication Critical patent/CN113003553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/008Liquid distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4216Head stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0006Coils or serpentines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • B01D5/0063Reflux condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04066Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/52Separating high boiling, i.e. less volatile components from oxygen, e.g. Kr, Xe, Hydrocarbons, Nitrous oxides, O3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/46Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

在一种方法中,氙和/或氪从包含氧和氙和/或氪的液态氧流中分离,该方法包括:将至少一部分液态氧流作为回流液体提供给在5至25巴之间的压力下操作的稀有气体回收塔的顶部;在稀有气体回收塔的底部的再沸区中蒸发再沸器液体,以产生上升的蒸气和富含氙和/或氪的液体流的混合物;以及在塔的至少一个蒸馏区中使上升的蒸汽与回流液体接触,以实现将氙和/或氪从上升的蒸汽汽提至回流液体。该方法提供了大于90%的氙回收率和15%至90%的氪回收率。

Description

从液态氧中回收氪和氙
技术领域
本发明总体上涉及空气分离领域,并且特别涉及从液态氧中粗回收至少一种选自由氪和氙组成的群组的稀有气体。
背景技术
从液态氧流中回收氪和氙的常规方法和设备是公知的。这些常规方法和设备存在问题,例如:氙和/或氪回收率低、功率高、操作压力有限或受限,以及难以将回收工艺集成到主空气分离设施中。需要一种改进的方法和设备。
氪和氙在空气中的浓度非常低,通常分别约为百万分之1.14(“ppm”)和约为百万分之0.087。它们都是有价值的气体,因此,在空气分离工艺中最大限度地回收它们是一种经济激励。此外,氙的价值比氪高得多,因此可以采用氙回收率高但氪回收率可调的工艺。
在用于氧气回收的典型低温空气蒸馏工艺中,氪和氙浓缩在从低压(“LP”)蒸馏塔的底部取出的液态氧(“LOX”)产品中,因为它们的挥发性远低于氧气。因此,LOX流量越小,这一产品中浓缩的氪和氙的越多。
在低温空气蒸馏工艺中,大部分氧气产品以气相形式从LP塔中去除,通过去除LP塔的底部上方的气态氧气(“GOX”)一级或几级蒸馏,可以确保在GOX中损失极少的氪和氙。这些底部保护级主要用于防止挥发性大大高于氙的氪的过度损失。当以蒸汽形式从LP塔中提取产品氧时,几乎所有进入空气分离设施的氪和氙都可以在LOX产品中回收,这是总氧流量的很小一部分。然后,可以对这一LOX产品进行加工,以产生纯化的稀有气体产品。如果需要的主要是氙产品,则可以省去大部分或全部底部保护级,并且仍然可以回收进入设施的、在LOX产品中的少量氪和几乎所有的氙。
当今,大多数用于氧气回收的低温空气蒸馏工艺不再以蒸汽形式提取初级氧气产品。相反,所有回收的氧气作为LOX从LP塔的底部提取,泵送到所需的压力,并且在主热交换器中蒸发。在这种情况下,所有的氪和氙都损失了。即使LOX产品在LP塔的底部以上的几个级提取,并且从底部提取少量含有氪和氙的液体吹扫物,回收也受到严重限制。泵送LOX工艺概述见《AOAC国际杂志(Journal of AOAC International)》78:1010-1018.空气液化:蒸馏(AIR LIQUEFACTION:DISTILLATION).R.Agrawal和D.M.Herron
有限的回收可以解释如下。基本上所有进入空气分离设施的氪和氙都以液体形式沿LP塔流向底部。从底部以上的位置提取的任何液体都将含有氪和氙,与作为LOX产品提取的总液体成比例。这通常会导致这些有价值的产品损失大约30%。
因此,希望增加从空气分离设施中氪和氙的回收率,其中,至少部分氧气产品作为LOX从塔中提取。
当现有设施,例如泵送LOX循环设施以液体形式提取主要氧气产品时,通常不存在含有浓缩稀有气体成分的小的流。因此,因为氪和氙的价值如此之高,所以希望能够改进现有设施的稀有气体回收系统。
此外,希望提供一种氙和/或氪回收设施,其可以处理来自外部源的富含稀有气体的进料流,例如来自储罐的液态氧。
美国专利第3,779,028号公开了一种从空气分离塔中回收氪和氙的方法。
欧洲专利0218740-B1公开了一种从空气分离设施中回收三种产品流的方法。GOX和LOX产品贫含稀有气体,并且第三种产品是富含氪和氙的稀有气体浓缩液体,通过从LP塔贮槽或储存处对LOX进行处理制成。
美国专利第6,301,929号公开了一种空气分离方法,其中,形成贫稀有气体的LOX流和富稀有气体的LOX流。
德国专利A-19855485公开了一种空气分离方法,其中,在LP塔中形成贫稀有气体的LOX和富稀有气体的LOX。
美国专利第6,694,775号公开了从加压LOX中回收含有稀有气体的液体流,方法是至少部分蒸发至少一部分加压LOX,并将所得蒸汽送入稀有气体回收系统。
提供一种处理氧气并产生相对浓缩的氙和氪流的分离方法和设备仍然是一个必要的目标。氙的回收率高、氪的回收率可调节的方法和设备具有高热力学效率和独立于其它工艺约束的操作压力。本发明的另一目的是提供一种分离方法和设备,该设备容易集成到主空气分离设施中,或者可以作为独立的或改进的选择来应用。如下文更详细阐述的,发明人已经发现所公开和要求保护的工艺能够实现这些目标中的每一个。
发明内容
在一个实施例中,提供了一种从包含氧和氙和/或氪的液态氧流中回收氙和/或氪的方法,所述方法包括:
提供稀有气体回收系统,该系统包括具有顶部、底部、至少一个蒸馏区和包括再沸器的再沸区的稀有气体回收塔;
提供至少一种包含氧和氙和/或氪的液态氧进料;
将至少一部分所述液态氧进料提供给稀有气体回收塔的所述顶部以形成回流液体;
在所述再沸区蒸发再沸器液体,以产生上升的蒸汽和富含氙和/或氪的液体流的混合物;
在所述至少一个蒸馏区中使所述上升的蒸汽与所述回流液体接触,以实现将氙和/或氪从所述上升的蒸汽汽提至所述回流液体,从而产生所述再沸器液体;
从所述稀有气体回收塔的所述顶部去除所述上升的蒸汽,形成贫氙和/或贫氪的气态氧流;
从所述稀有气体回收塔的所述底部去除富含氙和/或氪的液体流;
使贫氙和/或贫氪气态氧流通过冷压缩机,形成冷压缩氧流;
使所述冷压缩氧流通过所述再沸器,通过与所述再沸区中的所述再沸器液体的间接热交换产生冷凝的液态氧;以及
从所述稀有气体回收系统中去除所述冷凝的液态氧作为贫氙和/或贫氪液态氧。
发明人已经认识到,在没有显著的功率负担的情况下,可以从液态氧进料中实现高氙回收率和可变氪回收率。氙的高回收率定义为大于90%,优选大于95%。可变氪回收率定义为15%至90%,可根据工艺操作的条件进行调整。
发明人还认识到,不是在LP塔压力或氧气产品压力下操作,而是可以调节稀有气体塔的操作压力以满足特定的性能目标,并且仍然是经济和节能的。
本发明提供了这样的氙和/或氪回收方法。从本文提供的对本发明的描述中,本发明的这些和其它优点将变得明显。
附图说明
图1是本发明方法的一个方面的示意图。
图2是本发明另一方面的示意图,其中,液态氧进料的源来自低压液态氧源。
图3是本发明另一方面的示意图,其中,液态氧进料的源来自高压液态氧源。将參考附图详细描述本发明的方法。
具体实施方式
参考图1,提供了稀有气体回收系统100,並且液态氧进料作为流115提供。流115可以是过冷或饱和液体,其压力大于稀有气体回收塔127的压力。流115可以分成第一部分118和第二部分130。至少第一部分118通过控制阀121,并作为回流液体124引入塔127的顶部191。任选地,第二部分130通过控制阀133,并且作为第二进料以进料流136引入塔127。进料流136可以在塔顶191与塔底附近的再沸区193之间的任何位置引入塔127,但优选在塔底附近。
在稀有气体回收塔127中,液体通过蒸馏区192下降进入再沸区193。再沸区193含有再沸器148,该再沸器为间接热交换器,将进入再沸区193的液体转化为上升的蒸汽和富含氙和/或氪的液体流151。进入再沸区193的液体基本上蒸发了,从而浓缩挥发性较低的组分,如氪和氙。通常,蒸发至少99%的液体。上升的蒸汽流入蒸馏区192。
在蒸馏区192内,上升的蒸汽接触下降的液体。上升的蒸汽中含有的氪和/或氙基本上由下降的液体捕获。然后,上升的蒸汽作为流139通过顶部离开塔127。
蒸汽流139通常占流向塔的流量的99%以上,被吸入冷压缩机142,并且以较高的压力作为流145排出。流145被吸入再沸器148,在再沸器中冷凝形成冷凝的液态氧154。需要冷压缩机142的压力升高来提高冷压缩氧气145的冷凝温度。需要更高的冷凝温度,以使热量从冷凝侧传递到沸腾侧成为可能。冷凝去除的热量通过再沸器148向再沸区193提供热量输入。
所需压力升高的幅度决定了操作冷压缩机142的功率。因此,为了高效运行,将压力升高降至最低是至关重要的。因为沸腾流体和冷凝流体实际上是相同的整体成分,所以理论上,如果再沸器温差接近于零并且进出冷压缩机142的管道中的压降最小,则消耗的功可能非常小。另一方面,如果循环流量高,并且管道压降大,则运行这种工艺的功率可能非常大。
因此,冷压缩机的结合是该工艺操作的关键特征。在常规的低温工艺中,冷压缩被认为是不理想的,因为压缩热必须被冷排出,这给工艺带来了制冷负担并降低了功率效率。然而,令人惊讶的是,相对于热压缩,在这一工艺中使用冷压缩提高了功率效率。这是通过消除寄生压降功率损失来实现的,该寄生压降功率损失与以下相关联:1)在热交换器和相关联的管道中将流体从冷操作加热到环境温度,2)冷却压缩气体以去除热交换器和相关联的管道中的压缩热量,以及3)在热交换器和相关联的管道中将流体从环境温度冷却到冷操作。
原则上,稀有气体回收塔的操作压力几乎没有限制。唯一的例外是塔压低于氧气的临界压力(~50巴)。
希望在高压下操作,至少有三个原因:1)压降较低,因为气体密度高,2)压降本身的重要性降低,因为压力高,并且因此相对压降低,以及3)痕量组分的固体溶解度增加,因此富含氙和/或氪的液体流151(也称为吹扫液体)的流量可以减少,从而增加所需氪和氙的浓度。前两个优点降低了功率,第三个优点降低了吹扫液体的下游净化成本。
另一方面,希望在较低压力下操作,至少有两个原因:1)由于更有效的分离,最小化了离开塔127的蒸气(流139)中氪和氙的损失,和2)由于较低的设计压力,可以降低设备成本。
通过相对于液体进料流136(较低的液体进料)的流量增加回流液体124的流量,可以在任何塔压下减少氪和氙回收的损失。增加回流液体124的流量的一个潜在缺点是,阻碍了轻质烃(如甲烷)被排入流139中,并且因此将在富含氙和/或氪的液体流151中积累到更高的浓度。因为吹扫液体流通常受限于碳氢化合物浓度,缺点是吹扫液体流的增加导致工艺成本增加。
发明人已经发现,优选的塔操作压力范围为5至25巴,更优选10至20巴。回流液体124的相对流量可以在进入的液态氧进料115的10%与50%之间,并且优选在进入的液态氧进料115的10%与30%之间。
图2示出了液态氧进料来源于低压源的工艺。低压液氧源作为流200提供。流200可以是过冷或饱和液体,其压力大于大气压,但低于稀有气体回收塔127的压力。泵203中的流200的压力被压缩至大于塔127的压力,以形成压缩的液态氧流209。流209在去过冷却器212中被加热以产生液态氧进料115。如图1所描述的那样对流115进行处理,以产生富含氙和/或氪的液体流151和冷凝的液态氧154。流154在去过冷却器212中被冷却,以形成过冷的贫氙和/或贫氪的液态氧257。流257可任选地通过阀260减压以形成流263,该流被引入相分离器266。阀260上的压力降低可以导致形成一些闪蒸蒸汽,其作为流269从分离器266中去除。闪蒸后剩余的液体作为低压返回液体272从分离器中去除。流272的压力通常(尽管不是必须的)位于低压液态氧源的压力与稀有气体回收塔的压力之间。任选地,闪蒸蒸汽269可以被引导至任何合适的源或目的地以回收氧分子。
低压液态氧源的示例可以包括低温双塔空气分离单元的低压塔的贮槽、从低压塔到液态氧储罐的下降管线,或液态氧储罐。
如图3所示,液态氧进料的源也可以来源于高压源。高压液态氧源作为流300提供。流300可以是压力大于稀有气体回收塔127的压力的过冷液体。流300通过阀303减压至标称大于塔127的压力,以形成流209。流209在去过冷却器212中被加热以产生液态氧进料115。如图1所述的那样对流115进行处理,以产生富含氙和/或氪的液体流151和冷凝的液态氧154。流154在去过冷却器212中被冷却,以形成流257。流257可以任选地通过阀260减压以形成流263,该流被引入相分离器266。阀260上的压力降低可以导致形成一些闪蒸蒸汽,其作为流269从分离器266中去除。闪蒸后剩余的液体作为低压返回液体272从分离器中去除。流272的压力通常(尽管不是必须的)在1.0巴与3.0巴之间。通过泵375增加流272的压力,以产生高压返回液体378。任选地,闪蒸蒸汽269可以被引导至任何合适的源以回收氧分子。
高压液态氧源的一个示例是众所周知的泵送LOX循环的泵排放。通常,该源的压力大于30巴,并且通常超过60巴。在接近30巴的压力下,含有氧的流体的蒸馏是困难的,在大于氧的临界压力(~50巴)的任何压力下,蒸馏都是不可能的。当使用高压源时,高压返回液体的压力通常将对应于源压力。
示例
作为本发明的一个示例,已经对图1所示的工艺进行了模拟。模拟结果如表1所示。
表1:15巴塔压和30%回流的物料平衡
Figure BDA0002845733070000061
Figure BDA0002845733070000071
结果表明,实现了氙回收率大于97.0%,同时将吹扫液体流量减少至液态氧进料的0.3%。驱动冷压缩机的功率不大,只有161kW。这是因为压缩比低,大约为1.1。与再沸器148相关联的温差为1.0℃(这对于这一服务是合理的),并且通过计算进行了验证。
通常,并且基于现有技术的教导,本领域普通技术人员会认为优选在环境温度下压缩流139(来自稀有气体回收塔的蒸汽)。然而,发明人已经发现,这种方法对于该工艺来说效率相当低。在环境温度下压缩将需要以下步骤:1)在热交换器中将流139加热到环境温度,2)压缩加热的气体,3)在压缩机后冷却器中将压缩的热气体冷却到接近环境温度,以及4)将环境气体冷却到流145的温度。
如示例1中所公开的,塔中流139的压力为15巴;再沸器148入口处的压力为16.6巴。假设塔与压缩机之间没有管道压降,压缩机与再沸器148之间也没有管道压降,那么压缩比(CR)为1.107(16.6/15.0)。然而,对于商业规模的设施,从塔到冷压缩机吸入口以及从冷压缩机排放口到再沸器148的管道压降(dP)将各约为0.05巴。压缩机吸入口的吸入压力为14.95巴,并且压缩机排出口处的吸入压力将为16.65巴。最终压缩比(CR)为1.113(16.65/14.95)。考虑到在环境温度条件下进行压缩的工艺,压缩机上游的压降将为0.25巴(通过管道的压降0.1巴加上热交换器的压降0.15巴);压缩机下游的压降将为0.25巴(通过管道的压降0.1巴加上压缩机后冷却器的压降为0.1巴+热交换器压降0.15巴)。这台热压缩机的最终压缩比为1.142(16.85/14.75)。
压缩功率与F*T*ln(CR)成正比,其中,F为流量,T为压缩的平均绝对温度(K),并且CR为压缩比。表2中列出了以上描述的三种情况的比较。循环流量(F)在所有情况下都是相同的。
表2:冷压缩与热压缩的比较
Figure BDA0002845733070000081
术语“相对”是指术语的比率:T*ln(CR)
表2中的结果表明,比较情况2和情况3,压降的差异导致25%的功率差异。冷压缩与热压缩之间的较大差异是压缩的温度导致的。通常,冷压缩的明显好处因需要提供制冷来去除冷压缩的热量抵消了。相比之下,热压缩的热量被排到环境后冷器中。
冷压缩机的温度上升仅为4.6℃。因此,在大约-146℃的温度下,必须通过外部制冷提供4.6℃的气体冷却。相反,为了进行热压缩,必须使用预热/冷却热交换器将气体从-146℃加热到标称25℃,并且将气体从标称30℃冷却到更冷的温度,通过能量平衡,该温度将为-141℃。因此,为了使热交换器运行可行,将需要有5℃的温度差(这代表制冷损失),也在大约-146℃下。结果是,对于一阶近似,补偿冷压缩热所需的制冷需求等于可行地操作进行热压缩所需的热交换器所需的制冷需求。因此,消除对环境的再循环和压缩热,实现真正的、意想不到的66%的功率降低(如表1所示)。
本文引用的所有参考文献,包括出版物、专利申请和专利,通过引用并入本文,其结合程度如同每个参考文献被单独且具体地指出通过引用并入并在本文中完整阐述。
在描述本发明的上下文中(尤其是在以下权利要求的上下文中),术语“一”和“一个”和“所述”以及类似指代物的使用应被解释为涵盖单数和复数,除非本文中另有说明或与上下文明显矛盾。除非本文中另有说明,否则对本文中的值的范围的叙述仅旨在用作单独提及落入该范围内的每个单独的值的速记方法,并且每个单独值被并入说明书中,如同其在本文中被单独叙述一样。本文描述的所有方法可以以任何合适的顺序执行,除非本文另有说明或者上下文明显矛盾。本文提供的任何和所有示例或示例性语言(例如,“如”)的使用仅仅是为了更好地说明本发明,而不是对本发明的范围提出限制,除非另有申明。说明书中的任何语言都不应被解释为表示任何未申明的元素对于本发明的实践是必要的。
本文描述了本发明的优选实施例,包括发明人已知的用于实施本发明的最佳模式。应理解,本发明不限于上面參考优选实施例描述的细节,而是可以在不脱离由所附权利要求限定的本发明的精神和范围的情况下进行许多修改和变化。

Claims (13)

1.一种从包含氧和氙和/或氪的液态氧流中回收氙和/或氪的方法,所述方法包括:
提供稀有气体回收系统,所述系统包括具有顶部、底部、至少一个蒸馏区和包括再沸器的再沸区的稀有气体回收塔;
提供至少一种包含氧和氙和/或氪的液态氧进料;
将至少一部分所述液态氧进料提供给稀有气体回收塔的所述顶部以形成回流液体;
在所述再沸区蒸发再沸器液体,以产生上升的蒸汽和富含氙和/或氪的液体流的混合物;
在所述至少一个蒸馏区中使所述上升的蒸汽与所述回流液体接触,以实现将氙和/或氪从所述上升的蒸汽汽提至所述回流液体,从而产生所述再沸器液体;
从所述稀有气体回收塔的所述顶部去除所述上升的蒸汽,形成贫氙和/或贫氪的气态氧流;
从所述稀有气体回收塔的所述底部去除富含氙和/或氪的液体流;
使贫氙和/或贫氪气态氧流通过冷压缩机,形成冷压缩氧流;
使所述冷压缩氧流通过所述再沸器,通过与所述再沸区中的所述再沸器液体的间接热交换产生冷凝的液态氧;以及
从所述稀有气体回收系统中去除所述冷凝的液态氧作为贫氙和/或贫氪液态氧。
2.根据权利要求1所述的方法,进一步包括将所述液态氧进料分成第一部分和第二部分,并将所述液态氧进料的所述第二部分在所述至少一个蒸馏区与所述再沸区之间的位置提供给所述稀有气体回收塔。
3.根据权利要求1所述的方法,其中,所述稀有气体回收塔在5至25巴之间的操作压力下操作。
4.根据权利要求1所述的方法,其中,所述稀有气体回收塔在10与20巴之间的操作压力下操作。
5.根据权利要求3所述的方法,进一步包括提供低压液态氧流,在泵中将所述低压液态氧流压缩至压力大于所述稀有气体回收塔的所述操作压力,以形成压缩液态氧流,在去过冷却器中通过间接热交换加热所述压缩液态氧流以形成所述液态氧进料;以及
将所述冷凝的液态氧输送到所述去过冷却器,并通过与所述压缩的液态氧流间接热交换进行冷却,以产生过冷的贫氙和/或贫氪液态氧。
6.根据权利要求5所述的方法,进一步包括在阀中降低所述过冷贫氙和/或贫氪液态氧的压力,并且将所述过冷贫氙和/或贫氪液态氧输送到形成低压返回液体的相分离器。
7.根据权利要求3所述的方法,进一步包括提供高压液态氧流,将阀中的高压液态氧流的压力降低至大于所述稀有气体回收塔的所述操作压力的压力,以形成压缩液态氧流;在去过冷却器中通过间接热交换加热所述压缩液态氧流以形成所述液态氧进料;以及
将所述冷凝的液态氧输送到所述去过冷却器,并通过与所述压缩的液态氧流间接热交换进行冷却,以产生过冷的贫氙和/或贫氪液态氧。
8.根据权利要求7所述的方法,进一步包括在阀中降低所述过冷贫氙和/或贫氪液态氧的压力,并且将所述过冷贫氙和/或贫氪液态氧输送到相分离器,形成低压返回液体,以及
在泵中压缩所述低压返回液体以形成高压返回液体。
9.根据权利要求8所述的方法,其中,所述高压返回液体的压力大于或等于所述高压液态氧流的压力。
10.根据权利要求1所述的方法,其中,基于所述液态氧进料中氙的浓度,实现90%或更高的氙回收率。
11.根据权利要求1所述的方法,其中,基于所述液态氧进料中氙的浓度,实现95%或更高的氙回收率。
12.根据权利要求1所述的方法,其中,所述液态氧进料的所述第一部分为所述液态氧进料的10至50%。
13.根据权利要求1所述的方法,其中,基于所述液态氧进料中氪的浓度,实现15%至90%的氪回收率。
CN202011508858.0A 2019-12-18 2020-12-18 从液态氧中回收氪和氙 Active CN113003553B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/718,978 US11460246B2 (en) 2019-12-18 2019-12-18 Recovery of krypton and xenon from liquid oxygen
US16/718978 2019-12-18

Publications (2)

Publication Number Publication Date
CN113003553A true CN113003553A (zh) 2021-06-22
CN113003553B CN113003553B (zh) 2023-10-27

Family

ID=73854557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011508858.0A Active CN113003553B (zh) 2019-12-18 2020-12-18 从液态氧中回收氪和氙

Country Status (5)

Country Link
US (1) US11460246B2 (zh)
EP (1) EP3839394A1 (zh)
KR (1) KR102466598B1 (zh)
CN (1) CN113003553B (zh)
TW (1) TWI763175B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220357104A1 (en) * 2021-05-06 2022-11-10 Air Products And Chemicals, Inc. Fluid recovery process and apparatus for xenon and or krypton recovery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2057459A (en) * 1936-02-26 1936-10-13 Air Reduction Method for the separation and recovery of krypton and xenon from gaseous mixtures containing them
US3768270A (en) * 1970-11-27 1973-10-30 British Oxygen Co Ltd Air separation
US5122173A (en) * 1991-02-05 1992-06-16 Air Products And Chemicals, Inc. Cryogenic production of krypton and xenon from air
US6301929B1 (en) * 1998-12-01 2001-10-16 Linde Aktiengesellschaft Process and apparatus for producing pressurized oxygen and krypton/xenon by low-temperature fractionation of air
US6694775B1 (en) * 2002-12-12 2004-02-24 Air Products And Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
CN1502552A (zh) * 2002-11-25 2004-06-09 液体空气乔治洛德方法利用和研究的具 从空气生产氪/氙混合物的方法和装置
US20060000702A1 (en) * 2002-11-15 2006-01-05 Savinov Mikhail Y Method for separating a krypton-xenon concentrate and a device for carrying out said method
CN102767936A (zh) * 2012-07-18 2012-11-07 重庆耐德工业股份有限公司 含氮天然气中氮-甲烷分离生产气相天然气以及液相天然气的工艺
US20130152628A1 (en) * 2010-06-17 2013-06-20 Union Engineering A/S Method and plant for the purification of carbon dioxide using liquid carbon dioxide

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1371327A (en) 1970-10-12 1974-10-23 British Oxygen Co Ltd Air separation
US4357153A (en) * 1981-03-30 1982-11-02 Erickson Donald C Internally heat pumped single pressure distillative separations
US4574006A (en) * 1984-08-16 1986-03-04 Union Carbide Corporation Process to produce a krypton-xenon concentrate from a liquid feed
DE3573307D1 (en) 1985-10-14 1989-11-02 Union Carbide Corp Process to produce a krypton-xenon concentrate from a liquid feed
GB8610766D0 (en) 1986-05-02 1986-06-11 Colley C R Yield of krypton xenon in air separation
US5039500A (en) 1988-11-18 1991-08-13 Kyodo Oxygen Co., Ltd. Process for producing xenon
JP3294067B2 (ja) 1995-06-15 2002-06-17 エア・ウォーター株式会社 クリプトンの製造方法
US5913893A (en) 1996-12-24 1999-06-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the purification of a cryogenic fluid by filtration and/or adsorption
DE19855485A1 (de) 1998-12-01 1999-06-10 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines krypton- und/oder xenonangereicherten Gemischs durch Gegenstrom-Stoffaustausch
US6378333B1 (en) 2001-02-16 2002-04-30 Praxair Technology, Inc. Cryogenic system for producing xenon employing a xenon concentrator column
MXPA02011336A (es) 2001-11-19 2003-05-26 Air Prod & Chem Proceso y adsorbente para la recuperacion de cripton y xenon de una corriente liquida o de gas.
US6662593B1 (en) 2002-12-12 2003-12-16 Air Products And Chemicals, Inc. Process and apparatus for the cryogenic separation of air
FR2967244A3 (fr) 2010-11-04 2012-05-11 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US9797654B2 (en) * 2013-07-11 2017-10-24 Linde Aktiengesellschaft Method and device for oxygen production by low-temperature separation of air at variable energy consumption

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2057459A (en) * 1936-02-26 1936-10-13 Air Reduction Method for the separation and recovery of krypton and xenon from gaseous mixtures containing them
US3768270A (en) * 1970-11-27 1973-10-30 British Oxygen Co Ltd Air separation
US5122173A (en) * 1991-02-05 1992-06-16 Air Products And Chemicals, Inc. Cryogenic production of krypton and xenon from air
US6301929B1 (en) * 1998-12-01 2001-10-16 Linde Aktiengesellschaft Process and apparatus for producing pressurized oxygen and krypton/xenon by low-temperature fractionation of air
US20060000702A1 (en) * 2002-11-15 2006-01-05 Savinov Mikhail Y Method for separating a krypton-xenon concentrate and a device for carrying out said method
CN1502552A (zh) * 2002-11-25 2004-06-09 液体空气乔治洛德方法利用和研究的具 从空气生产氪/氙混合物的方法和装置
US6694775B1 (en) * 2002-12-12 2004-02-24 Air Products And Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
US20130152628A1 (en) * 2010-06-17 2013-06-20 Union Engineering A/S Method and plant for the purification of carbon dioxide using liquid carbon dioxide
CN102767936A (zh) * 2012-07-18 2012-11-07 重庆耐德工业股份有限公司 含氮天然气中氮-甲烷分离生产气相天然气以及液相天然气的工艺

Also Published As

Publication number Publication date
US20210190422A1 (en) 2021-06-24
US11460246B2 (en) 2022-10-04
TW202124264A (zh) 2021-07-01
KR102466598B1 (ko) 2022-11-11
TWI763175B (zh) 2022-05-01
CN113003553B (zh) 2023-10-27
KR20210078424A (ko) 2021-06-28
EP3839394A1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
US7124605B2 (en) Membrane/distillation method and system for extracting CO2 from hydrocarbon gas
CN103123203B (zh) 利用含氮废气进行再低温精馏制取纯氮的方法
US20050126221A1 (en) Process and apparatus for the separation of air by cryogenic distillation
KR100225681B1 (ko) 저순도 산소 제조용 저온 정류 시스템
RU2761562C2 (ru) Способ и устройство для разделения воздуха криогенной дистилляцией
US5170630A (en) Process and apparatus for producing nitrogen of ultra-high purity
JPH0820178B2 (ja) 一酸化炭素のない窒素を製造するための低温空気分離方法
CN1760612A (zh) 空气的低温蒸馏方法
US20170299261A1 (en) Liquid nitrogen production
MXPA02004856A (es) Metodo de rechazo del nitrogeno.
JP5417054B2 (ja) 空気分離方法及び装置
US6568207B1 (en) Integrated process and installation for the separation of air fed by compressed air from several compressors
KR950006408A (ko) 액체 산소 펌핑 방법 및 장치
CN101535755B (zh) 低温空气分离系统
JPH0914832A (ja) 超高純度酸素の製造方法および製造装置
CN113003553B (zh) 从液态氧中回收氪和氙
US20130086941A1 (en) Air separation method and apparatus
EP1384966A2 (en) Nitrogen rejection method and apparatus
JPH11325716A (ja) 空気の分離
US20210270524A1 (en) Systems and related methods for separating nitrogen from a natural gas stream containing less than 25% nitrogen
JP2009014314A (ja) 空気分離方法および装置
JP6431828B2 (ja) 空気液化分離方法及び装置
US20180017321A1 (en) Method for recovering gaseous nitrogen from the waste nitrogen stream of an air separation unit
RU2641766C2 (ru) Способ низкотемпературного разделения воздуха в установке для разделения воздуха и установка для разделения воздуха
JP2001099566A (ja) 精製流の回収方法及びエレクトロニクスグレード酸素の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant