WO2022016416A1 - Argon enhancing method and device - Google Patents

Argon enhancing method and device Download PDF

Info

Publication number
WO2022016416A1
WO2022016416A1 PCT/CN2020/103506 CN2020103506W WO2022016416A1 WO 2022016416 A1 WO2022016416 A1 WO 2022016416A1 CN 2020103506 W CN2020103506 W CN 2020103506W WO 2022016416 A1 WO2022016416 A1 WO 2022016416A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
low
nitrogen
pressure
mixing
Prior art date
Application number
PCT/CN2020/103506
Other languages
French (fr)
Inventor
Alain Briglia
Bowei ZHAO
Fengjie XUE
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to PCT/CN2020/103506 priority Critical patent/WO2022016416A1/en
Priority to CN202080102251.4A priority patent/CN115885146A/en
Priority to EP20945890.0A priority patent/EP4185824A4/en
Priority to US18/016,626 priority patent/US20230296314A1/en
Publication of WO2022016416A1 publication Critical patent/WO2022016416A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04933Partitioning walls or sheets
    • F25J3/04939Vertical, e.g. dividing wall columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

An air separation apparatus, comprising an air separation unit which comprises a low-pressure column (101), a mixing column (103) and a pure nitrogen column (102), wherein the low-pressure column (101) has a first nominal diameter (D1), the pure nitrogen column (102) has a second nominal diameter (D2) which is smaller than the first nominal diameter (D1), the mixing column (103) has an open cylindrical shape with an interior (129) having an inner diameter (D3) nominally greater than the second nominal diameter (D2), and the pure nitrogen column (102) is located within the interior (129). The mixing column (103) produces additional reflux at the top of the low-pressure column (101).

Description

ARGON ENHANCING METHOD AND DEVICE Technical Field
The present invention relates to cryogenic air separation process and apparatus, in particular such process and apparatus relating to argon production.
Background
As is well known, double column air distillation plants typically include a medium-pressure distillation column operating at about 6 bars, a low-pressure distillation column operating slightly above atmospheric pressure, and a condenser-vaporizer. After an initial purification, the inlet air is sent to the bottom of the medium-pressure column. A "rich liquid" (air enriched in oxygen) collected in the bottom of the medium-pressure column is sent to reflux at an intermediate point in the low-pressure column. At the same time, the "lean liquid" , consisting almost entirely of nitrogen, collected at the head of the medium-pressure column is sent in reflux at the head of the low-pressure column.
Below the inlet of the rich liquid, the low-pressure column often includes an "argon -tapping" location for the production of this gas. The low-pressure column is generally provided with gaseous oxygen and liquid oxygen withdrawal lines. And the medium-pressure column is generally provided at the head with gaseous nitrogen and liquid nitrogen withdrawal lines. The vapor at the top of the low-pressure column ( "impure nitrogen" ) consists of nitrogen containing a few percent oxygen and is generally released to the atmosphere.
In installations intended essentially to produce gaseous oxygen supplied directly to a user by pipeline, it sometimes happens that the oxygen production can temporarily become surplus. This is particularly the case during periods of shutdown of the end user's factories. In conventional distillation installations the gaseous oxygen is then simply vented into the atmosphere, and the energy expended for the separation of this oxygen is lost.
One solution to this is described in French patent 2550325, which is herein  incorporated by reference. The idea of the 2550325 patent is to take advantage of the temporary drop in oxygen demand to increase one or more of the other productions of the installation. Such other productions may be one or more of the productions of argon, liquid oxygen, liquid nitrogen or nitrogen gas.
To this end, the process described in the 2550325 patent utilizes the distillation of air by means of a double column comprising a first distillation column, called a medium-pressure column, operating under a relatively high pressure, and a second distillation column, said low-pressure column, operating under a relatively low-pressure. A liquid withdrawn from one of the two columns is sent to the top of an auxiliary column operating substantially at the pressure of the low-pressure column. A gas less rich in oxygen than this liquid and taken from the low-pressure column is sent to the base of this auxiliary column. The liquid collected at the base of the auxiliary column is sent under reflux into the low-pressure column, substantially at the level of the sampling of said gas. The term "auxiliary column" means a column having the structure of a distillation column, that is to say comprising a lining or a number of trays of the type used in distillation.
Maximum efficiency is obtained when the liquid supplying the auxiliary column is liquid oxygen collected in the bottom of the low-pressure column and said gas is the overhead vapor of this low-pressure column.
Summary
An air separation apparatus is provided, including an air separation unit including a low-pressure column, a mixing column, and a pure nitrogen column, wherein the low-pressure column has a first nominal diameter, the pure nitrogen column has a second nominal diameter which is smaller than the first nominal diameter, wherein the mixing column has an open cylindrical shape, with the inner diameter nominally greater than the second nominal diameter, with the pure nitrogen column located within the mixing column interior.
Brief Description of the Figures
Figure 1 is a schematic representation of one embodiment of the present  invention.
Figure 2 is a schematic representation of the upper portion of the distillation column, showing details of the pure nitrogen column and the mixing column, in accordance with one embodiment of the present invention.
Figure 3 is a schematic representation of showing details of the pure nitrogen column and the mixing column, in accordance with one embodiment of the present invention.
Figure 4 is a schematic representation indicating an associated argon column, in accordance with one embodiment of the present invention.
Element Numbers
100 = Process scheme with crude argon column with mixing column concentric to the pure nitrogen column
101 = Low-pressure column
102 = Pure nitrogen column
103 = Mixing column
104 = Sub-cooler
105 = Liquid oxygen pump
106 = Liquid oxygen from LP column
107 = Sub-cooled liquid oxygen
108 = Lean liquid
109 = Sub-cooled lean liquid
110 = Liquid nitrogen
111 = Sub-cooled Liquid nitrogen reflux
112 = Waste nitrogen from low-pressure column
113 = Waste nitrogen to mixing column
114 = Rich oxygen waste from mixing column
115 = Pure nitrogen from pure nitrogen column
116 = Liquid oxygen to storage
117 = Liquid oxygen reflux to mixing column
118 = Rich nitrogen liquid from mixing column
119 = Rich nitrogen liquid from pure nitrogen column
120 = Waste nitrogen to pure nitrogen column
121 = Liquid oxygen reflux valve to mixing column
122 = Lean liquid reflux valve to top of low-pressure column
123 = Waste nitrogen balancing valve
124 = Liquid nitrogen reflux valve to top of pure nitrogen column
125 = Medium-pressure column
127 = Condenser /vaporizer
128 = Feed air inlet
129 = Mixing column interior
130 = distil end of low-pressure column
131 = Combined rich oxygen waste stream from mixing column and waste nitrogen from low-pressure column, before entering sub-cooler.
132 = Combined rich oxygen waste stream from mixing column and waste nitrogen from low-pressure column, after passing through sub-cooler.
133 = Argon column
Description of Embodiments
Illustrative embodiments of the invention are described below. While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer’s specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present idea resides in adding a column on the waste nitrogen which will operate in parallel with the pure nitrogen column. This additional column will act as a mixing column which will, with the help of the liquid oxygen reflux sent to the top of this column, produce additional reflux at the top of the low-pressure  column.
Turning to Figures 1 through 4, a process scheme with crude argon column with mixing column concentric to the pure nitrogen column 100 is provided. This includes a medium-pressure column 125, a low-pressure column 101, and a condenser-vaporizer 127. Low-pressure column 101 has a first nominal diameter (D1) and a distil end 130. The air to be distilled 128, after being suitably purified (not shown) , is injected into low-pressure column 101 thereby producing a rich liquid consisting almost entirely of oxygen and to an overhead vapor 110 consisting almost entirely of nitrogen.
At least a portion of this overhead vapor is condensed in condenser 127 and collected in column 125. A portion of this lean liquid 108, is subcooled in sub-cooler 104, and then subcooled lean liquid 109 is expanded in lean liquid reflux valve 122 into a pressure slightly above atmospheric pressure. This expanded, sub-cooled liquid is injected substantially at the top of low-pressure column 101 as reflux.
Liquid oxygen 106 is removed from the low-pressure column and is increased in pressure by pump 105, and the pressurized liquid oxygen stream is subcooled in sub-cooler 104. Thus producing sub-cooled liquid oxygen stream 107.
It may happen that, for a limited period of time, the gaseous oxygen becomes surplus, for example due to the temporary shutdown or turndown of a user. In such an instance, sub-cooled liquid oxygen stream 107 may be split into liquid oxygen stream to storage 116, and liquid oxygen reflux stream 117. Pump 105 is adjusted to produce a flow of oxygen in line 117 equal to the excess oxygen.
It has to be noted that the liquid oxygen reflux 117 might also not be sub-cooled in the sub-cooler 104 and then be sent directly to the mixing column 103 from the stream 110.
At the distil end 130 of the low-pressure column is pure nitrogen column 102 and mixing column 103. As indicated in Figure 2, in at least one embodiment, mixing column 103 is concentric with and surrounds pure nitrogen column 102.
Mixing column 103 has an open cylindrical shape, or the shape of a torus with a rectangular cross-section. Mixing column 103 has an interior 129, which has an inner diameter D3. Pure nitrogen column 102 has a second nominal diameter D2. Inner diameter D3 is nominally greater than second nominal diameter D2. This concentric arrangement of mixing column 103 and pure nitrogen column 102 results in lower capital expenditure, since an additional independent pressure vessel is no longer necessary.
During such times of surplus oxygen, liquid oxygen 117, which may pass through liquid oxygen reflux valve 121, is introduced into the top of mixing column 103 and undergoes a countercurrent exchange with the impure nitrogen stream arriving at the bottom of mixing column 103. Mixing column 103 is supplied at the top by liquid oxygen by stream 117. This leads to the evacuation of rich oxygen waste stream 114 and the removal of a rich nitrogen liquid stream 118 consisting of nitrogen containing a few percent of oxygen. Rich oxygen waste stream 114 may be combined with waste nitrogen stream 112 from the low-pressure column, after passing through waste nitrogen balancing valve 123.
The combined rich oxygen waste stream 114 and waste nitrogen stream 112 may then be introduced into argon column 133. At least a portion of the combined stream 131 may be introduced into argon column 133 prior to having passed through sub-cooler 104. At least a portion of the combined stream 132 may be introduced into argon column 133 after having passed through sub-cooler 104.
The double column 125 /101 is equipped with an additional column 102, called a "minaret" , or pure nitrogen column, for the production of pure nitrogen under low-pressure. Column 102 is supplied at the bottom with impure nitrogen 120, and at the top. by the sub-cooled liquid nitrogen reflux 111 taken from the top of the column 125, by conduit 110, sub-cooled in sub-cooler 104 and controlled a liquid nitrogen reflux valve 124. The pure nitrogen leaves at the head of the column 102 by conduit 115, and rich nitrogen liquid 119 is removed from the bottom of pure nitrogen column 102.

Claims (5)

  1. An air separation apparatus, comprising;
    · an air separation unit comprising a low-pressure column (101) , a mixing column (103) , and a pure nitrogen column (102) ,
    · wherein the low-pressure column (101) has a first nominal diameter (D1) , the pure nitrogen column (102) has a second nominal diameter (D2) which is smaller than the first nominal diameter (D1) ,
    · wherein the mixing column (103) has an open cylindrical shape, with an interior (129) having an inner diameter (D3) nominally greater than the second nominal diameter (D2) , with the pure nitrogen column (102) located within the mixing column interior (129) .
  2. The apparatus of claim 1, wherein the mixing column (103) and the pure nitrogen column (102) are in fluidic contact with a distil end (130) of the low-pressure column (101) .
  3. The apparatus of claim 1 or 2, wherein the mixing column (103) is configured to:
    · receive liquid oxygen reflux (117) ,
    · produce rich oxygen waste (114) ,
    · receive waste nitrogen (113) from the low-pressure column (101) , and
    · return rich liquid (118) to the low-pressure column (101) .
  4. The apparatus of claim 1 or 2, wherein the pure nitrogen column (102) is configured to:
    · receive sub-cooled liquid nitrogen reflux (111) ,
    · produce pure nitrogen (115) ,
    · receive waste nitrogen (120) from the low-pressure column (101) , and
    · return rich nitrogen liquid (119) to the low-pressure column (101) .
  5. A process for enhanced Argon recovery, comprising:
    · an air separation unit comprising a low-pressure column (101) , a mixing column (103) , and a pure nitrogen column (102) , wherein the low-pressure column (101) has a first nominal diameter (D1) , the pure nitrogen column (102) has a second nominal diameter (D2) which is smaller than the first nominal diameter (D1) ,
    · wherein the mixing column (103) has an open cylindrical shape, with an  interior (129) having an inner diameter (D3) nominally greater than the second nominal diameter (D2) , with the pure nitrogen column (102) located within the mixing column interior (129)
    · wherein the mixing column (103) and the pure nitrogen column (102) are in fluidic contact with a distil end (130) of the low-pressure column (101) ,
    · wherein the mixing column (103) :
    ο receives a liquid oxygen reflux stream (117) ,
    ο produces a rich oxygen waste stream (114) ,
    ο receives a waste nitrogen stream (113) from the low-pressure column (101) , and
    ο returns a rich liquid stream (118) to the low-pressure column (101) ,
    · wherein the pure nitrogen column (102) :
    ο receives a sub-cooled liquid nitrogen reflux stream (111) ,
    ο produces a pure nitrogen stream (115) ,
    ο receives a waste nitrogen stream (119) from the low-pressure column (101) , and
    ο returns a rich nitrogen liquid stream (102) to the low-pressure column (101) ,
    · wherein the rich oxygen waste stream (114) and a waste nitrogen stream (112) from the low-pressure column (101) are introduced into an argon column (133) .
PCT/CN2020/103506 2020-07-22 2020-07-22 Argon enhancing method and device WO2022016416A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/103506 WO2022016416A1 (en) 2020-07-22 2020-07-22 Argon enhancing method and device
CN202080102251.4A CN115885146A (en) 2020-07-22 2020-07-22 Argon enhancement method and apparatus
EP20945890.0A EP4185824A4 (en) 2020-07-22 2020-07-22 Argon enhancing method and device
US18/016,626 US20230296314A1 (en) 2020-07-22 2020-07-22 Argon enhancing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103506 WO2022016416A1 (en) 2020-07-22 2020-07-22 Argon enhancing method and device

Publications (1)

Publication Number Publication Date
WO2022016416A1 true WO2022016416A1 (en) 2022-01-27

Family

ID=79728403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103506 WO2022016416A1 (en) 2020-07-22 2020-07-22 Argon enhancing method and device

Country Status (4)

Country Link
US (1) US20230296314A1 (en)
EP (1) EP4185824A4 (en)
CN (1) CN115885146A (en)
WO (1) WO2022016416A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071000A (en) * 1991-08-07 1993-04-14 乔治·克劳德工艺研究开发有限公司 The method and apparatus of air distillation and in the application in steel rolling mill's air feed
US6397632B1 (en) * 2001-07-11 2002-06-04 Praxair Technology, Inc. Gryogenic rectification method for increased argon production
CN101033909A (en) * 2007-04-11 2007-09-12 杭州杭氧股份有限公司 Air separation system for generating liquid oxygen and liquid nitrogen
CN101266095A (en) * 2007-03-13 2008-09-17 普莱克斯技术有限公司 Air separation method
CN104755360A (en) * 2012-05-11 2015-07-01 乔治洛德方法研究和开发液化空气有限公司 Method and apparatus for air separation by cryogenic distillation
US20160153712A1 (en) * 2014-05-01 2016-06-02 Karl K. Kibler System and method for production of argon by cryogenic rectification of air
CN107131718A (en) * 2015-12-07 2017-09-05 林德股份公司 Liquid and the method and air separation equipment of gaseous state oxygen-enriched air product are obtained in air separation equipment
WO2019127343A1 (en) * 2017-12-29 2019-07-04 乔治洛德方法研究和开发液化空气有限公司 Method and device for producing air product based on cryogenic rectification
CN110822812A (en) * 2018-08-09 2020-02-21 乔治洛德方法研究和开发液化空气有限公司 Air separation plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2550325A1 (en) * 1983-08-05 1985-02-08 Air Liquide METHOD AND INSTALLATION FOR AIR DISTILLATION USING A DOUBLE COLUMN
FR2655137B1 (en) * 1989-11-28 1992-10-16 Air Liquide AIR DISTILLATION PROCESS AND INSTALLATION WITH ARGON PRODUCTION.
DE60127145T3 (en) * 2001-12-04 2010-04-15 Air Products And Chemicals, Inc. Method and apparatus for cryogenic air separation
DE102013019147A1 (en) * 2013-11-15 2015-05-21 Linde Aktiengesellschaft Process for obtaining at least one oxygen product in an air separation plant and air separation plant

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071000A (en) * 1991-08-07 1993-04-14 乔治·克劳德工艺研究开发有限公司 The method and apparatus of air distillation and in the application in steel rolling mill's air feed
US6397632B1 (en) * 2001-07-11 2002-06-04 Praxair Technology, Inc. Gryogenic rectification method for increased argon production
CN101266095A (en) * 2007-03-13 2008-09-17 普莱克斯技术有限公司 Air separation method
CN101033909A (en) * 2007-04-11 2007-09-12 杭州杭氧股份有限公司 Air separation system for generating liquid oxygen and liquid nitrogen
CN104755360A (en) * 2012-05-11 2015-07-01 乔治洛德方法研究和开发液化空气有限公司 Method and apparatus for air separation by cryogenic distillation
US20160153712A1 (en) * 2014-05-01 2016-06-02 Karl K. Kibler System and method for production of argon by cryogenic rectification of air
CN107131718A (en) * 2015-12-07 2017-09-05 林德股份公司 Liquid and the method and air separation equipment of gaseous state oxygen-enriched air product are obtained in air separation equipment
WO2019127343A1 (en) * 2017-12-29 2019-07-04 乔治洛德方法研究和开发液化空气有限公司 Method and device for producing air product based on cryogenic rectification
CN110822812A (en) * 2018-08-09 2020-02-21 乔治洛德方法研究和开发液化空气有限公司 Air separation plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4185824A4 *

Also Published As

Publication number Publication date
CN115885146A (en) 2023-03-31
EP4185824A1 (en) 2023-05-31
EP4185824A4 (en) 2024-04-17
US20230296314A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
JP4331460B2 (en) Method and apparatus for producing krypton and / or xenon by low temperature air separation
US4560397A (en) Process to produce ultrahigh purity oxygen
EP0520738B1 (en) Production of nitrogen of ultra-high purity
JPH102664A (en) Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
KR20000011251A (en) Method and apparatus for carrying out cryogenic rectification of feed air to produce oxygen
KR100339631B1 (en) Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
US20060021380A1 (en) Method and installation for production of noble gases and oxygen by means of cryrogenic air distillation
US5106398A (en) Air separation
JPH02282684A (en) Very low temperature rectifying method for superhigh purity nitrogen
JPH067601A (en) Method of separating multiple component stream
JP2007064617A (en) Method of manufacturing krypton and/or xenon by cryogenic air separation
US5511380A (en) High purity nitrogen production and installation
KR970004729B1 (en) Cryogenic air separation process and apparatus
US5078766A (en) Equipment for air distillation to produce argon
WO2022016416A1 (en) Argon enhancing method and device
JPH11325717A (en) Separation of air
JPH08240380A (en) Separation of air
JP4002233B2 (en) Low temperature separation method and apparatus for air
EP0539268A1 (en) Process for removing hydrogen by cryogenic distillation in the production of high purity nitrogen
JPH10153384A (en) Method of producing ultrapure liquid oxygen
US20040141902A1 (en) Process and apparatus for producing a krypton/xenon mixture from air
AU683651B2 (en) Air separation process and apparatus for the production of high purity nitrogen
JPH11132654A (en) Air separating method and air separating device
JPH03158693A (en) Nitrogen gas and oxygen gas manufacturing device
JPH04214174A (en) Cryogenic air separating system with hybrid type argon column

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020945890

Country of ref document: EP

Effective date: 20230222