RU2690550C2 - Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии - Google Patents

Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии Download PDF

Info

Publication number
RU2690550C2
RU2690550C2 RU2017103309A RU2017103309A RU2690550C2 RU 2690550 C2 RU2690550 C2 RU 2690550C2 RU 2017103309 A RU2017103309 A RU 2017103309A RU 2017103309 A RU2017103309 A RU 2017103309A RU 2690550 C2 RU2690550 C2 RU 2690550C2
Authority
RU
Russia
Prior art keywords
pressure
air
compressor
compressed
stream
Prior art date
Application number
RU2017103309A
Other languages
English (en)
Other versions
RU2017103309A3 (ru
RU2017103309A (ru
Inventor
Дмитрий ГОЛУБЕВ
Original Assignee
Линде Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезелльшафт filed Critical Линде Акциенгезелльшафт
Publication of RU2017103309A publication Critical patent/RU2017103309A/ru
Publication of RU2017103309A3 publication Critical patent/RU2017103309A3/ru
Application granted granted Critical
Publication of RU2690550C2 publication Critical patent/RU2690550C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится к получению продукта (72; 73) сжатого газа при помощи низкотемпературного разделения воздуха в системе дистилляционных колонн, которая имеет колонну (21) высокого давления и колонну (22) низкого давления. Весь используемый воздух сжимают в основном воздушном компрессоре (2). Первый частичный поток (8, 11, 14) сжатого используемого воздуха (7) охлаждают в основном теплообменнике (13), разряжают в первой воздушной турбине (15) и вводят (40, 18, 19, 20) в систему дистилляционных колонн. Второй частичный поток (12, 27, 29, 30) сжатого используемого воздуха сжимают в первом дожимном компрессоре (9), охлаждают в основном теплообменнике (13), разряжают (31) и вводят в систему дистилляционных колонн. Первый поток (69; 75) продукта извлекают в жидком виде из системы дистилляционных колонн, сжимают, в основном теплообменнике (13) испаряют и подогревают. В первом режиме работы получают первое количество первого продукта сжатого газа, а во втором режиме работы второе меньшее количество. В первом режиме работы первое количество разряженного воздуха (65, 66) сжимают в компрессоре (2), а во втором режиме работы в компрессоре (2) сжимают второе большее количество второго рабочего потока (65). Технический результат - обеспечение низкого удельного потребления энергии в широком диапазоне нагрузок. 2 н. и 8 з.п. ф-лы, 4 ил.

Description

Изобретение относится к способу и устройству для переменного получения продукта сжатого газа при помощи низкотемпературного разделения воздуха.
Способы и устройства для низкотемпературного разделения воздуха известны, например, из "Низкотемпературная техника", авторов Хаусен/Линде, 2-ое издание 1985, глава 4 (страницы с 281 по 337).
Система дистилляционных колонн такой установки может быть выполнена в виде системы двух колонн (например, в виде классической системы сдвоенных колонн от Linde) или же в виде системы трех или большего количества колонн. В дополнение к колоннам для разделения азота и кислорода система может иметь дальнейшие устройства для получения высокочистых продуктов и/или других компонентов воздуха, в частности инертных газов, например, получение аргона и/или получение криптона-ксенона.
Во время процесса в рамках "внутреннего сжатия" поданный в жидком виде под давлением поток продукта испаряется в противотоке с теплоносителем и затем получается в виде внутренне сжатого продукта сжатого газа. Этот способ обозначается также как внутреннее сжатие. Он служит для получения газообразного продукта под давлением. В случае сверхкритического давления отсутствует фазовый переход в истинном значении, в этом случае поток продукта "псевдоиспаряется". Говоря о потоке продукта, речь может идти, например, о продукте кислорода из колонны низкого давления системы двух колонн или о продукте азота из колонны высокого давления системы двух колонн или из камеры сжижения основного конденсатора, при помощи которого колонна высокого давления и колонна низкого давления находятся в передающем тепло соединении.
В противотоке с (псевдо)испаряющимся потоком продукта находящийся под высоким давлением теплоноситель сжижается (или псевдосжижается, если он находится под сверхкритическим давлением). Теплоноситель зачастую образуется частью воздуха, в данном случае "вторым частичным потоком" сжатого используемого воздуха.
Способы внутреннего сжатия известны, например из DE 830805, DE 901542 (=US 2712738/US 2784572), DE 952908, DE 1103363 (=US 3083544), DE 1112997 (=US 3214925), DE 1124529, DE 1117616 (=US 3280574), DE 1226616 (=US 3216206), DE 1229561 (=US 3222878), DE 1199293, DE 1187248 (=US 3371496), DE 1235347, DE 1258882 (=US 3426543), DE 1263037 (=US 3401531), DE 1501722 (=US 3416323), DE 1501723 (=US 3500651), DE 253132 (=US 4279631), DE 2646690, EP 93448 B1 (=US 4555256), EP 384483 B1 (=US 5036672), EP 505812 B1 (=US 5263328), EP 716280 B1 (=US 5644934), EP 842385 B1 (=US 5953937), EP 758733 B1 (=US 5845517), EP 895045 B1 (=US 6038885), DE 19803437 A1, EP 949471 B1 (=US 6185960 B1), EP 955509 A1 (=US 6196022 B1), EP 1031804 A1 (=US 6314755), DE 19909744 A1, EP 1067345 A1 (=US 6336345), EP 1074805 A1 (=US 6332337), DE 19954593 A1, EP 1134525 A1 (=US 6477860), DE 10013073 A1, EP 1139046 A1, EP 1146301 A1, EP 150082 A1, EP 1213552 A1, DE 10115258 A1, EP 1284404 A1 (=US 2003051504 A1), EP 1308680 A1 (=US 6612129 B2), DE 10213212 A1, DE 10213211 A1, EP 1357342 A1 или DE 10238282 A1, DE 10302389 A1, DE 10334559 A1, DE 10334560 A1, DE 10332863 A1, EP 1544559 A1, EP 1585926 A1, DE 102005029274 A1, EP 1666824 A1, EP 1672301 A1, DE 102005028012 A1, WO 2007033838 A1, WO 200704449 A1, EP 1845324 A1, DE 102006032731 A1, EP 1892490 A1, DE 102007014643 A1, EP 2015012 A2, EP 2015013 A2, EP 2026024 A1, WO 2009095188 A2 или DE 102008016355 A1.
DE 102010052545 A1 показывает постоянный способ внутреннего сжатия, при котором поток воздуха нагревается в основном теплообменнике и подводится обратно к основному воздушному компрессору.
Изобретение относится в частности к системам, в которых весь используемый воздух сжимается до давления, которое существенно выше максимального давления дистилляции, которое преобладает внутри колонн системы дистилляционных колонн (как правило, это - давление колонны высокого давления). Такие системы обозначаются также как HAP-процессы (HAP=high air pressure - высокое давление воздуха). При этом "первое давление", то есть выходное давление основного воздушного компрессора (MAC=main air compressor - основной воздушный компрессор), в котором весь воздух сжимается, например, более чем на 4 бар, в частности на 6-16 бар, выше максимального давления дистилляции. В абсолютных величинах "первое давление" составляет, например, от 17 до 25 бар. При HAP-способах основной воздушный компрессор обычно представляет собой единую, приводимую в действие внешней энергией машину для сжатия воздуха. Под "единой машиной" здесь понимается одноступенчатый или многоступенчатый компрессор, все ступени которого соединены с одним приводом, причем все ступени размещены в одном корпусе или соединены с одним передаточным механизмом.
Альтернативу подобным HAP-способам представляют так называемые MAC-BAC-способы, при которых воздух сжимается в основном воздушном компрессоре до относительно низкого полного давления воздуха, например, до рабочего давления колонны высокого давления (плюс потери напора в трубопроводе). Часть воздуха из основного воздушного компрессора сжимается в приводимом в действие внешней энергией воздушном дожимном компрессоре (BAC=booster air compressor - вспомогательный воздушный компрессор) до более высокого давления. Эта часть воздуха под более высоким давлением (называемая часто как дроссельный поток) выдает большую часть необходимого для (псевдо) испарения внутренне сжатого продукта тепла в основном теплообменнике. Эта часть воздуха разряжается ниже по потоку от основного воздушного компрессора в дроссельном клапане или в жидкостной турбине (DLE=dense liquid expander - плотный жидкостный детандер) до необходимого в системе дистилляционных колонн давления.
Непостоянная потребность во внутренне сжатом продукте часто заставляет рассчитывать установку разделения воздуха на переменную эксплуатацию с переменным производством сжатого газа. И наоборот может быть целесообразным эксплуатировать установку разделения воздуха непостоянно, несмотря на постоянное или по существу постоянное производство, благодаря тому, что предусмотрены различные режимы работы, которые имеют различное потребление энергии.
Конкретным примером подобного краевого условия является выработка внутренне сжатого кислорода (GOXIV) и при необходимости дальнейших газообразных и/или жидких продуктов на установке производства этиленоксида. В этом случае часто имеет место то, что потребность в кислороде адаптируется к состоянию катализатора при производстве этиленоксида; следовательно, она может варьироваться между 100% и приблизительно 70% во время срока службы катализатора (как правило, около 3 лет). При этом существенным является то, что в течение этого времени установка разделения воздуха эксплуатируется примерно одинаковые периоды с различными количествами (между 100% и примерно 70%) GOXIV-продукта. Поэтому важным является то, что установка эффективно эксплуатируется не только в проектном случае со 100% GOXIV, но и в случаях неполной нагрузки. Это требование осложняется еще тем, что производство других продуктов разделения воздуха не зависит от GOXIV-продукта; например, потребность в одном, нескольких или во всех, других продуктах разделения воздуха может оставаться неизменной, в то время как GOX-производство падает со 100% приблизительно до 70%. Говоря о таких "других продуктах разделения воздуха", речь может идти, например, об одном, нескольких или обо всех из следующих продуктов:
- внутренне сжатый продукт азота (GANIV);
- другой газообразный продукт под давлением, как например извлеченный в газообразном состоянии из колонны высокого давления азот под давлением (HPGAN), который при необходимости дополнительно сжимается в компрессоре азота;
- жидкий(ие) продукт(ы), как например жидкий кислород, жидкий азот и/или жидкий аргон.
При помощи общепринятого MAC-BAC-способа эту постановку задачи можно относительно хорошо реализовывать, так как оба компрессора (MAC и BAC) отвечают за функционально отдельные задачи. Основной воздушный компрессор предоставляет в принципе только используемый воздух для разделения; воздушный дожимной компрессор предоставляет энергию для внутреннего сжатия (GOXIV, GANIV) и для производства жидкости. При этом обе машины могут относительно просто регулироваться, как правило, между 70% и 100%.
При HAP-способе эти обе задачи (подача воздуха для разделения и предоставление энергии для внутреннего сжатия/производства жидкости) решаются с помощью одного единственного компрессора. Это может приводить к ситуациям, что определенные случаи эксплуатации находятся за пределами поля характеристик компрессора и не могут приводиться в действие. Общая потребность в энергии установки разделения воздуха определяется не только GOXIV-продуктом, но и в значительной степени производством жидкости или другими внутренне сжатыми продуктами. Однако для количества воздуха разделения GOXIV-продукт зачастую является определяющим. Если количество GOXIV значительно сокращается, то в установку подается также значительно меньшее количество воздуха разделения. Однако тем самым в систему вводится также значительно меньше энергии, что при определенных обстоятельствах может быть больше недостаточно для желаемого производства других продуктов (жидкостей, GANIV и т.д.). Для того чтобы, несмотря на значительно меньшее количество воздуха, предоставлять достаточное количество энергии, давление компрессора должно быть значительно выше. Однако при HAP-способе это возможно лишь частично, так как
a) поле характеристик машины ограничено, и
b) расчетное давление для "горячей" части установки (предварительное охлаждение, адсорбер и т.д.) не должно превышаться.
В основе изобретения лежит задача по предоставлению способа и соответствующего устройства, которые объединяют преимущества HAP-способа с универсальностью, которая аналогично известна при MAC-BAC-способе. Под "универсальностью" здесь понимается в частности то, что система может энергетически оптимально эксплуатироваться не только при определенном выпускаемом количестве внутренне сжатого продукта, но и в относительно широком диапазоне нагрузок при приблизительно неизменно низком удельном потреблении энергии. При этом в частности производство других продуктов разделения воздуха должно оставаться неизменным или изменяться, по меньшей мере, в меньшей степени, чем количество продукта внутреннего сжатия.
Эта задача решается с помощью признаков пункта 1 формулы изобретения.
У изобретения во втором режиме работы часть количества используемого воздуха проводится мимо всей системы дистилляционных колонн. В этом случае это количество не принимает участие в производстве первого потока продукта, однако, несмотря на это, оно может проводиться через первую турбину, для того чтобы производить тем самым достаточное количество холода и соответственно поставлять достаточное количество энергии в систему, для того чтобы была возможность сохранять производство жидкости или сокращать его, по крайней мере, в относительно меньшей степени, чем количество первого сжатого продукта.
Согласно изобретению часть используемого воздуха не вводится в систему дистилляционных колонн, а подается обратно в основной воздушный компрессор, благодаря тому, что
- многоступенчатый компрессор образуется посредством основного воздушного компрессора,
- первый рабочий поток образуется посредством всего используемого воздуха, и
- второй рабочий поток образуется посредством части разряженного во время выполнения работы первого частичного потока используемого воздуха.
Избыточный воздух не вводится в систему дистилляционных колонн, а сразу после разряжения в турбине проводится обратно в теплообменник и затем без дросселирования подается на соответствующее место (например, после второй или третьей ступени) основного воздушного компрессора. Вследствие этого необходимое количество "избытка" воздуха сжимается не с атмосферного давления, а, например, приблизительно с 5 бар, и экономится большое количество энергии.
Другая возможность (при отсутствующем компрессоре GAN низкого давления) заключается в том, чтобы избыточный воздух вводить в систему дистилляционных колонн и разделять. При этом может получаться имеющийся в этом количестве воздуха аргон. При этом избыточное количество кислорода может извлекаться в виде кислорода низкого давления из колонны низкого давления и подводится к UN2-потоку. В этом случае теряется в принципе только работа по разделению для получения дополнительных молекул кислорода, однако одновременно производится значительно большее количество аргона.
Однако переменная рециркуляция воздуха может также комбинироваться с промежуточной подачей азота в соответствующий компрессор, благодаря тому, что
- третий рабочий поток сжимается в компрессоре продукта азота с входного давления до конечного давления, и
- по меньшей мере, периодически четвертый рабочий поток смешивается ниже по потоку от первой ступени компрессора продукта азота с третьим рабочим потоком, причем
- третий рабочий поток образуется посредством первого потока газообразного азота из колонны низкого давления, и
- четвертый рабочий поток образуется посредством первого потока газообразного азота из колонны высокого давления.
Является оптимальным, если смешивание второго с первым рабочим потоком или четвертого со вторым рабочим потоком осуществляется на промежуточной ступени многоступенчатого компрессора.
Дополнительно во втором режиме работы поток газообразного кислорода может извлекаться из нижней области колонны низкого давления, смешиваться с насыщенным азотом потоком из верхней области колонны низкого давления и подогреваться в виде смеси в основном теплообменнике.
Кроме того, в частном варианте осуществления изобретения может использоваться вторая воздушная турбина, причем третий частичный поток сжатого в основном воздушном компрессоре используемого воздуха охлаждается в основном теплообменнике до промежуточной температуры и, выполняя работу, разряжается во второй воздушной турбине, и по меньшей мере одна первая часть разряженного во время выполнения работы третьего частичного потока вводится в систему дистилляционных колонн.
Кроме того, второй частичный поток сжатого в основном воздушном компрессоре используемого воздуха может охлаждаться в основном теплообменнике до промежуточной температуры, во втором дожимном компрессоре, который эксплуатируется в качестве холодного компрессора и приводится в действие второй турбиной, дополнительно сжиматься до третьего давления, которое выше чем первое давление, снова охлаждаться в основном теплообменнике, (псевдо) сжижаться и затем разряжаться и вводиться в систему дистилляционных колонн. Таким образом, давление второго частичного потока может дополнительно повышаться без внешних энергетических затрат. Может достигаться соответственно более высокое давление внутреннего сжатия.
Дополнительно четвертый частичный поток сжатого в основном воздушном компрессоре воздуха может охлаждаться под первым давлением в основном теплообменнике и затем разряжаться и вводиться в систему дистилляционных колонн. Благодаря подобному второму дроссельному потоку дополнительно оптимизируется процесс теплообмена в основном теплообменнике.
В другом варианте осуществления со второй турбиной является оптимальным, если третий частичный поток разряжается во второй воздушной турбине до давления, которое по меньшей мере на 1 бар выше, чем рабочее давление колонны высокого давления, и разряженный во время выполнения работы третий частичный поток снова охлаждается в основном теплообменнике и затем разряжается и вводится в систему дистилляционных колонн. Благодаря подобному третьему дроссельному потоку дополнительно оптимизируется процесс теплообмена в основном теплообменнике.
При соответствующем изобретению способе в частности при переходе с первого на второй режим работы сжатое в основном воздушном компрессоре общее количество воздуха практически не сокращается или сокращается в меньшей степени, чем количество продукта сжатого кислорода, благодаря тому, что
- в первом режиме работы первое количество используемого воздуха сжимается в основном воздушном компрессоре, и
- во втором режиме работы второе количество используемого воздуха сжимается в основном воздушном компрессоре, причем
- отношение второго количества использованного воздуха к первому количеству использованного воздуха больше, в частности по меньшей мере на 3%, в частности более чем на 5%, чем отношение второго количества первого продукта сжатого газа к первому количеству первого продукта сжатого газа.
В случаях эксплуатации с меньшим производством GOXIV "искусственно" увеличивается количество подаваемого воздуха в холодный отсек, то есть большее количество воздуха подается в часть установки с низкой температурой, чем это необходимо для получения специфицированных для этого случая эксплуатации продуктов сжатого кислорода. Если используемый воздух подается "с избытком", то давление на выходе компрессора может понижаться, так как подача энергии для (псевдо) испарения GOXIV-продукта осуществляется в этом случае не при помощи давления воздуха, а при помощи количества воздуха. При этом значение имеет то, что воздух не только подается просто с избытком (будучи сжат в основном воздушном компрессоре, охлажден в теплообменнике, разряжен в турбине до давления колонны высокого давления, снова подогрет в теплообменнике и наконец задросселирован до атмосферного давления), но и при помощи описанных выше признаков достигаются также дальнейшие преимущества.
Кроме того, благодаря этим мерам имеется в распоряжении достаточное количество воздуха для получения других продуктов. Например, может производиться достаточное количество холода, для того чтобы предоставлять остающееся неизменным количество жидких продуктов.
У изобретения первый частичный поток сжатого в основном воздушном компрессоре используемого воздуха дополнительно сжимается выше по потоку от своего входа в основной теплообменник в первом дожимном компрессоре, который эксплуатируется в качестве горячего компрессора и приводится в действие первой турбиной. Вследствие этого входное давление первой турбины значительно выше, чем первое давление, до которого сжимается весь воздух. Воздух же для второй турбины, например, дополнительно не сжимается, то есть ее входное давление находится на более низком уровне первого давления.
Кроме того, изобретение относится к устройству согласно пункту 10 формулы изобретения. Соответствующее изобретению устройство может дополняться признаками устройства, которые соответствуют признакам зависимых пунктов формулы изобретения относительно способа.
Говоря о "средствах для переключения между первым и вторым режимом работы", речь идет о комплексных устройствах регулировки и управления, которые во взаимодействии друг с другом делают возможным, по меньшей мере, частично автоматическое переключение между обоими режимами работы, например, посредством запрограммированной соответствующим образом системы управления эксплуатационным процессом.
Изобретение, а также дальнейшие подробности изобретения разъясняются в дальнейшем более подробно при помощи схематично изображенных на чертеже примеров осуществления. При этом на чертеже показаны:
фиг. 1 - пример осуществления изобретения с рециркуляцией воздуха турбины к основному воздушному компрессору во втором режиме работы;
фиг. 2 - вариант способа, который не является частью заявленного здесь изобретения, однако служит для дальнейшего разъяснения изобретения, включающий в себя ввод газообразного азота из колонны высокого давления в компрессор продукта азота; и
фиг. 3 и 4 - модификации фиг. 1 третьим дроссельным потоком.
Сначала при помощи фиг. 1 описывается первый режим работы первого варианта осуществления способа согласно изобретению. Атмосферный воздух (AIR) засасывается через фильтр 1 основным воздушным компрессором 2. Основной воздушный компрессор имеет в примере пять ступеней и сжимает общий поток воздуха до "первого давления", например, в 22 бар. Общий поток 3 воздуха ниже по потоку от основного воздушного компрессора 2 охлаждается под первым давлением в предварительном охладителе 4. Предварительно охлажденный общий поток 5 воздуха очищается в устройстве 6 очистки, которое образуется в частности посредством пары переключаемых адсорберов молекулярного сита. Очищенный общий поток 7 воздуха первой частью 8 дополнительно сжимается в эксплуатируемом в качестве горячего компрессора воздушном дожимном компрессоре 9 с добавочным охладителем 10 до второго давления, например, в 28 бар, и затем разделяется на "первый частичный поток" 11 (первый поток воздуха турбины) и "второй частичный поток" 12 (первый дроссельный поток).
Первый частичный поток 11 охлаждается в основном теплообменнике 13 до первой промежуточной температуры. Охлажденный первый частичный поток 14 разряжается, выполняя работу, в первой воздушной турбине 15 со второго давления примерно до 5,5 бар. Первая воздушная турбина 15 приводит в действие горячий воздушный дожимной компрессор 9. Разряженный во время выполнения работы первый частичный поток 16 вводится в сепаратор (разделитель фаз) 17. Жидкая фракция 18 вводится по трубопроводам 19 и 20 в колонну 22 низкого давления системы дистилляционных колонн.
Система дистилляционных колонн включает в себя колонну 21 высокого давления, колонну 22 низкого давления, основной конденсатор 23, а также общепринятую систему 24 получения аргона с колонной 25 сырого аргона и колонной 26 чистого аргона. Основной конденсатор 23 выполнен в виде конденсатора-испарителя, в данном примере в виде каскадного испарителя. Рабочее давление в голове колонны высокого давления составляет в примере 5,3 бар, а в голове колонны низкого давления 1,35 бар.
Второй частичный поток 12 используемого воздуха охлаждается в основном теплообменнике 13 до второй промежуточной температуры, которая выше чем первая промежуточная температура, по трубопроводу 27 подается к холодному компрессору 28 и там дополнительно сжимается до "третьего давления" примерно в 40 бар. Дополнительно сжатый второй частичный поток 29 при третьей промежуточной температуре, которая выше чем вторая промежуточная температура, снова вводится в основной теплообменник 13 и там охлаждается до холодного конца. Холодный второй частичный поток 30 разряжается в дроссельном клапане 31 примерно до рабочего давления колонный высокого давления и по трубопроводу 32 подается в колонну 21 высокого давления. Часть 33 снова извлекается, охлаждается в противоточном теплообменнике 34 глубокого охлаждения и по трубопроводам 35 и 20 подается в колонну 22 низкого давления.
"Третий частичный поток" 36 используемого воздуха под первым давлением вводится в основной теплообменник 13 и там охлаждается до четвертой промежуточной температуры, которая в примере несколько ниже, чем первая промежуточная температура. Охлажденный третий частичный поток 37, выполняя работу, разряжается во второй воздушной турбине 38 с первого давления примерно до давления колонный высокого давления. Вторая воздушная турбина 38 приводит в действие холодный компрессор 28. Разряженный во время выполнения работы третий частичный поток 39 подается по трубопроводу 40 в нижнюю часть колонны 21 высокого давления.
"Четвертый частичный поток" 41 (второй дроссельный поток) проходит через основной теплообменник 13 от горячего к холодному концу под первым давлением. Холодный четвертый частичный поток 42 разряжается в дроссельном клапане 43 примерно до рабочего давления колонный высокого давления и по трубопроводу 32 подается в колонну 21 высокого давления.
Насыщенная кислородом кубовая жидкость колонны 21 высокого давления охлаждается в противоточном теплообменнике 34 глубокого охлаждения и по трубопроводу 45 вводится в необязательную систему 24 получения аргона. Произведенный из нее пар 46 и оставшаяся жидкость 47 подаются в колонну 22 низкого давления.
Первая часть 49 азота 48 из головы колонны 21 высокого давления полностью или по существу полностью сжижается в камере сжижения основного конденсатора 23 в противотоке с испаряющимся в испарительной камере жидким кислородом из нижней части колонны низкого давления. Первая часть 51 произведенного при этом жидкого азота 50 подается в качестве обратного потока в колонну 21 высокого давления. Вторая часть 52 охлаждается в противоточном теплообменнике 34 глубокого охлаждения и по трубопроводу 53 подается в колонну 22 низкого давления. По меньшей мере одна часть жидкого азота 53 низкого давления служит в качестве обратного потока в колонне 22 низкого давления; другая часть 54 может получаться в виде продукта (LIN) жидкого азота.
Газообразный азот 55 низкого давления вытягивается из головы колонны 22 низкого давления и подогревается в противоточном теплообменнике 34 глубокого охлаждения и в основном теплообменнике 13. Горячий азот 56 низкого давления сжимается в состоящем из двух секций компрессоре 57, 59 продукта азота с промежуточным и добавочным охладителем 58, 60 до необходимого давления продукта, которое в примере составляет 12 бар. Первая секция 57 компрессора продукта азота состоит, например, из двух или трех ступеней с соответствующими добавочными охладителями; вторая секция 59 имеет по меньшей мере одну ступень и предпочтительно также промежуточный и добавочный охладитель.
Газообразный неочищенный азот 61 вытягивается из промежуточного участка колонны 22 низкого давления и подогревается в противоточном теплообменнике 34 глубокого охлаждения и в основном теплообменнике 13. Горячий неочищенный азот 62 может выпускаться 63 в атмосферу (ATM) и/или использоваться в качестве восстановительного газа 64 для устройства 6 очистки.
Трубопроводы 67 и 68 (так называемый переход аргона) соединяют колонну 22 низкого давления с колонной 25 сырого аргона системы 24 получения аргона.
Первая часть 70 жидкого кислорода 69 из нижней части колонны 22 низкого давления вытягивается в качестве "первого потока продукта", доводится в кислородном насосе 71 до "первого давления продукта", например, в 37 бар, под первым давлением продукта испаряется в основном теплообменнике 13 и наконец по трубопроводу 72 получается в виде "первого продукта сжатого газа" (GOX IC - внутренне сжатый газообразный кислород).
Вторая часть 73 жидкого кислорода 69 из нижней части колонны 22 низкого давления при необходимости охлаждается в противоточном теплообменнике 34 глубокого охлаждения и по трубопроводу 74 получается в виде продукта (LOX) жидкого кислорода.
В примере также третья часть 75 жидкого азота 50 из колонны 21 высокого давления или основного конденсатора 23 подвергается внутреннему сжатию, благодаря тому, что она доводится в азотном насосе 76 до второго давления продукта, например, в 37 бар, под вторым давлением продукта псевдоиспаряется в основном теплообменнике 13 и наконец по трубопроводу 77 получается в виде продукта (GAN IC) внутренне сжатого газообразного азота.
Вторая часть 78 газообразного азота 48 из головы колонны 21 высокого давления подогревается в основном теплообменнике и по трубопроводу 79 либо получается в виде газообразного продукта среднего давления, либо - как изображено - используется в качестве уплотнительного газа (Sealgas) для одного или нескольких из изображенных технологических насосов.
Если в качестве "первого режима работы" обозначить режим работы с максимальным производством кислорода (100% согласно конструктивному исполнению), то в этом режиме работы изображенные жирными линиями трубопроводы 65/66 остаются вне эксплуатации.
В этом случае более низкое производство кислорода (например, 75%) может рассматриваться как "второй режим работы". В этом случае часть газообразной фракции 17 разряженного во время выполнения работы первого частичного потока 16 подводится в качестве "второго рабочего потока" по трубопроводам 65, 66 через основной теплообменник обратно к промежуточной ступени основного воздушного компрессора 2. В примере обратный поток между второй и третьей ступенью или между третьей и четвертой ступенью основного воздушного компрессора примешивается к используемому воздуху. (Этот используемый воздух представляет собой здесь "первый рабочий поток".) Вследствие этого количество воздуха через турбину 15 может удерживаться относительно высоким, и может получаться неизменное - или, по меньшей мере, сокращенное в меньшей степени - количество продукта азота и жидких продуктов.
С тем же успехом режим работы 95% мог бы рассматриваться в качестве "первого режима работы". В этом случае "второй режим работы" достигается, например, при производстве кислорода в 90% расчетного значения.
Следующая таблица приводит в качестве примера численные значения двух различных режимов работы установки с фиг. 1:
Количество 72 GOX-IC Количество воздуха через фильтр 1 Обратное количество 65/66*
100% 100% 0%
76% 83% 4,2%
Обратное количество касается в таблице фактического количества воздуха через фильтр 1. Все процентные данные относятся здесь и в остальном тексте к молярным количествам, если не указано иное.
Универсальность способа может дополнительно повышаться благодаря описанной в дальнейшем необязательной мере. При этом во втором режиме работы газообразный кислород 181 вытягивается из колонны низкого давления и смешивается с газообразным неочищенным азотом 61 из колонны низкого давления. Смешивание происходит, например, ниже по потоку от противоточного теплообменника 34 глубокого охлаждения. В первом режиме работы трубопровод 181 закрыт, или через трубопровод 181 проводится меньшее количество газа.
На фиг. 2 изображен вариант осуществления второго варианта способа. Он отличается от фиг. 1 следующими признаками.
Обратный трубопровод 65, 66 для воздуха здесь отсутствует. Вместо этого во втором режиме работы в дополнение к количеству 79 уплотнительного газа дополнительная часть 180 газообразного азота 48 отводится из головы колонны высокого давления в качестве "второго рабочего потока" 180 по трубопроводам 178, 179 и наконец между обеими секциями 57, 59 компрессора продукта азота смешивается с азотом 56 из колонны низкого давления, который в варианте образует "первый рабочий поток".
Соответствующее количество 180 азота из колонны высокого давления не конденсируется в основном конденсаторе 23 и не вводится в колонну низкого давления. Вследствие этого оно не участвует в ректификации в колонне низкого давления (ни косвенно через испарение кубового кислорода, ни напрямую посредством использования в качестве рециркулирующей жидкости) и при этом делает возможным сокращение производства кислорода. Одновременно имеется в распоряжении такое же количество воздуха (или лишь несущественно меньшее) для производства холода и азота.
В первом режиме работы меньшее количество второго рабочего потока 180 подается на промежуточный участок компрессора продукта азота или трубопровод 180 и вовсе закрыт.
Универсальность способа может дополнительно повышаться благодаря описанной в дальнейшем необязательной мере. При этом во втором режиме работы газообразный кислород 181 вытягивается из колонны низкого давления и смешивается с газообразным неочищенным азотом 61 из колонны низкого давления. Смешивание происходит, например, ниже по потоку от противоточного теплообменника 34 глубокого охлаждения. В первом режиме работы трубопровод 181 закрыт, или через трубопровод 181 проводится меньшее количество газа.
Следующая таблица приводит в качестве примера численные значения двух различных режимов работы установки с фиг. 2:
Количество 72 GOX-IC Количество воздуха через основной воздушный компрессор 2 Количество азота через трубопровод 180 Количество азота через трубопровод 181
100% 100% 0% 0%
76% 83% 5% 0%
Количество азота через трубопровод 180 касается количества воздуха через фильтр 1 в проектном случае.
Фиг. 3 отличается от фиг. 1 третьим дроссельным потоком. Для этого вторая турбина 38 эксплуатируется при относительно большом выходном давлении и относительно высокой выходной температуре. В этом случае разряженный во время выполнения работы поток 339 турбины имеет давление, которое по меньшей мере на 1 бар, в частности на 4-11 бар, выше рабочего давления колонны высокого давления, и температуру, которая по меньшей мере на 10 K, в частности на 20-60 K, выше входной температуры потоков 55, 61 азота низкого давления на холодном конце основного теплообменника. Затем этот поток дополнительно охлаждается в холодной области основного теплообменника. Дополнительно охлажденный третий частичный поток 340 разряжается в качестве третьего дроссельного потока в дроссельном клапане 341 примерно до давления колонны высокого давления и по трубопроводу 32 вводится в колонну высокого давления. Вследствие этого можно дополнительно оптимизировать процесс теплообмена в основном теплообменнике.
На фиг. 4 в отличие от фиг. 3 третий частичный поток 436 вводится во вторую турбину 38 не под первым давлением, а под более высоким вторым давлением.
Дополнительные меры с фиг. 3 и 4 могут использоваться не только в изобретении, но и в варианте согласно фиг. 2.

Claims (58)

1. Способ получения продукта (72; 73) сжатого газа при помощи низкотемпературного разделения воздуха в системе дистилляционных колонн, которая имеет колонну (21) высокого давления и колонну (22) низкого давления, при котором
- весь используемый воздух сжимают в основном воздушном компрессоре (2) до первого давления, которое по меньшей мере на 4 бар выше, чем рабочее давление колонны (21) высокого давления,
- первый частичный поток (8, 11, 14) сжатого в основном воздушном компрессоре (2) используемого воздуха (7) охлаждают в основном теплообменнике (13) до промежуточной температуры и, выполняя работу, разряжают в первой воздушной турбине (15),
- по меньшей мере одну первую часть разряженного во время выполнения работы первого частичного потока (16) вводят (40; 18, 19, 20) в систему дистилляционных колонн,
- второй частичный поток (12, 27, 29, 30) используемого воздуха, сжатого в основном воздушном компрессоре (2), дополнительно сжимают в первом дожимном компрессоре (9), который эксплуатируют в качестве горячего компрессора и приводят в действие первой турбиной (15), до второго давления, которое выше чем первое давление, охлаждают в основном теплообменнике (13) и затем разряжают (31) и вводят в систему дистилляционных колонн,
- первый поток (69; 75) продукта извлекают в жидком виде из системы дистилляционных колонн и подвергают повышению (71; 76) давления до первого давления продукта,
- первый поток продукта под первым давлением продукта в основном теплообменнике (13) испаряют или псевдоиспаряют и подогревают,
- подогретый первый поток (72; 77) продукта получают в виде первого продукта сжатого газа,
- первый рабочий поток, который содержит по меньшей мере 78 мол.% азота, сжимают в многоступенчатом компрессоре (2) с входного давления до конечного давления, причем
- многоступенчатый компрессор образуется основным воздушным компрессором (2), и
- первый рабочий поток образуется всем используемым воздухом,
- по меньшей мере, периодически второй рабочий поток (65), который содержит по меньшей мере 78 мол.% азота, смешивают ниже по потоку от первой ступени многоступенчатого компрессора (2) с первым рабочим потоком, причем второй рабочий поток образуется частью (65) разряженного во время выполнения работы первого частичного потока (16) используемого воздуха,
- в первом режиме работы получают первое количество первого продукта сжатого газа,
- во втором режиме работы получают второе количество первого продукта сжатого газа, которое меньше чем первое количество,
- в первом режиме работы первое количество второго рабочего потока (65), которое может также равняться нулю, сжимают в многоступенчатом компрессоре (2), и
- во втором режиме работы в многоступенчатом компрессоре (2) сжимают второе количество второго рабочего потока (65), которое больше чем первое количество второго рабочего потока.
2. Способ по п.1, отличающийся тем, что
- третий рабочий поток сжимают в компрессоре продукта азота с входного давления до конечного давления, и
- по меньшей мере, периодически четвертый рабочий поток смешивают ниже по потоку от первой ступени компрессора продукта азота с третьим рабочим потоком, причем
- третий рабочий поток образуют первым потоком газообразного азота из колонны низкого давления, и
- четвертый рабочий поток образуют первым потоком газообразного азота из колонны высокого давления.
3. Способ по п.1 или 2, отличающийся тем, что второй рабочий поток или четвертый рабочий поток смешивают в промежуточной ступени многоступенчатого компрессора с первым рабочим потоком или со вторым рабочим потоком.
4. Способ по п.1, отличающийся тем, что во втором режиме работы поток (181) газообразного кислорода извлекают из нижней области колонны (22) низкого давления, смешивают с насыщенным азотом потоком (61) из верхней области колонны (22) низкого давления, и смесь подогревают в основном теплообменнике (13).
5. Способ по п.1, отличающийся тем, что
- третий частичный поток (36, 37) сжатого в основном воздушном компрессоре (2) используемого воздуха (7) охлаждают в основном теплообменнике (13) до промежуточной температуры и, выполняя работу, разряжают во второй воздушной турбине (38), и
- по меньшей мере одну первую часть разряженного во время выполнения работы третьего частичного потока (39) вводят (40) в систему дистилляционных колонн,
- причем входное давление второй воздушной турбины в частности равно первому давлению.
6. Способ по п.5, отличающийся тем, что второй частичный поток (12, 27, 29, 30) сжатого в основном воздушном компрессоре (2) используемого воздуха (7) охлаждают ниже по потоку от первого дожимного компрессора (9) в основном теплообменнике (13) до промежуточной температуры, во втором дожимном компрессоре (28), который эксплуатируют в качестве холодного компрессора и приводят в действие второй турбиной (38), дополнительно сжимают до третьего давления, которое выше чем первое давление, снова охлаждают в основном теплообменнике (13) и затем разряжают (31) и вводят (32) в систему дистилляционных колонн.
7. Способ по п.1, отличающийся тем, что четвертый частичный поток (41, 42) сжатого в основном воздушном компрессоре (2) воздуха (7) охлаждают под первым давлением в основном теплообменнике (13) и затем разряжают (43) и вводят в систему дистилляционных колонн.
8. Способ по любому из пп.5-7, отличающийся тем, что
- третий частичный поток (37, 339) разряжают во второй воздушной турбине (38) до давления, которое по меньшей мере на 1 бар выше, чем рабочее давление колонны (21) высокого давления, и
- разряженный во время выполнения работы третий частичный поток (339) снова охлаждают в основном теплообменнике (13) и затем разряжают (341) и вводят в систему дистилляционных колонн.
9. Способ по п.1, отличающийся тем, что
- в первом режиме работы первое количество используемого воздуха сжимают в основном воздушном компрессоре (2), и
- во втором режиме работы второе количество используемого воздуха сжимают в основном воздушном компрессоре (2), причем
- отношение второго количества использованного воздуха к первому количеству использованного воздуха больше, в частности более чем на 3%, чем отношение второго количества первого продукта сжатого газа к первому количеству первого продукта сжатого газа.
10. Устройство для получения продукта (72; 73) сжатого газа при помощи низкотемпературного разделения воздуха, включающее в себя
- систему дистилляционных колонн, которая имеет колонну (21) высокого давления и колонну (22) низкого давления,
- основной воздушный компрессор (2) для сжатия всего используемого воздуха до первого давления, которое по меньшей мере на 4 бар выше, чем рабочее давление колонны (21) высокого давления,
- средства для охлаждения первого частичного потока (8, 11, 14) сжатого в основном воздушном компрессоре (2) используемого воздуха (7) в основном теплообменнике (13) до промежуточной температуры,
- первую воздушную турбину (15) для производящего работу разряжения охлажденного первого частичного потока,
- средства для ввода (40; 18, 19, 20) разряженного во время выполнения работы первого частичного потока (16) в систему дистилляционных колонн,
- первый дожимной компрессор (9) для дополнительного сжатия второго частичного потока (12, 27, 29, 30) сжатого в основном воздушном компрессоре (2) используемого воздуха до второго давления, которое выше чем первое давление, причем дожимной компрессор (9) может эксплуатироваться в качестве горячего компрессора и приводится в действие в частности первой турбиной (15),
- средства для охлаждения дополнительно сжатого второго частичного потока в основном теплообменнике (13),
- средства для разряжения (31) и ввода в систему дистилляционных колонн охлажденного второго частичного потока,
- средства для извлечения в жидком виде первого потока (69; 75) продукта из системы дистилляционных колонн и для повышения (71; 76) давления жидкого первого потока продукта до первого давления продукта,
- средства для испарения или псевдоиспарения и подогрева первого потока продукта под первым давлением продукта в основном теплообменнике (13),
- средства для получения подогретого первого потока (72; 77) продукта в виде первого продукта сжатого газа,
- многоступенчатый компрессор (2) для сжатия первого рабочего потока, который содержит по меньшей мере 78 мол.% азота, с входного давления до конечного давления, причем
- многоступенчатый компрессор образован посредством основного воздушного компрессора (2), и
- первый рабочий поток образован посредством всего используемого воздуха,
- средства для смешивания второго рабочего потока (65), который содержит по меньшей мере 78 мол.% азота, с первым рабочим потоком ниже по потоку от первой ступени многоступенчатого компрессора (2; 57/59), причем второй рабочий поток (180) образован посредством части (65) разряженного во время выполнения работы первого частичного потока (16) используемого воздуха,
- средства для переключения между первым и вторым режимом работы, причем
- в первом режиме работы получается первое количество первого продукта сжатого газа,
- во втором режиме работы получается второе количество первого продукта сжатого газа, которое меньше чем первое количество, и
- средства для переключения между первым и вторым режимом работы выполнены таким образом, что
- в первом режиме работы первое количество второго рабочего потока (65), которое может также равняться нулю, сжимается в многоступенчатом компрессоре (2) с входного давления до конечного давления, и
- во втором режиме работы в многоступенчатом компрессоре (2; 57/59) сжимается второе количество второго рабочего потока (65; 180), которое больше чем первое количество второго рабочего потока.
RU2017103309A 2014-07-05 2015-06-25 Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии RU2690550C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14002307.8A EP2963367A1 (de) 2014-07-05 2014-07-05 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP14002307.8 2014-07-05
PCT/EP2015/001284 WO2016005030A1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch

Publications (3)

Publication Number Publication Date
RU2017103309A RU2017103309A (ru) 2018-08-06
RU2017103309A3 RU2017103309A3 (ru) 2018-12-18
RU2690550C2 true RU2690550C2 (ru) 2019-06-04

Family

ID=51176034

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2017103309A RU2690550C2 (ru) 2014-07-05 2015-06-25 Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии
RU2017103099A RU2691210C2 (ru) 2014-07-05 2015-06-25 Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2017103099A RU2691210C2 (ru) 2014-07-05 2015-06-25 Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии

Country Status (6)

Country Link
US (2) US10215489B2 (ru)
EP (3) EP2963367A1 (ru)
CN (2) CN106662394B (ru)
RU (2) RU2690550C2 (ru)
TW (2) TW201607599A (ru)
WO (2) WO2016005031A1 (ru)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963367A1 (de) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP3507556A2 (en) * 2016-08-30 2019-07-10 8 Rivers Capital, LLC Cryogenic air separation method for producing oxygen at high pressures
EP3312533A1 (de) 2016-10-18 2018-04-25 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
DE102017010001A1 (de) 2016-11-04 2018-05-09 Linde Aktiengesellschaft Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE102016015292A1 (de) 2016-12-22 2018-06-28 Linde Aktiengesellschaft Verfahren zur Bereitstellung eines oder mehrerer Luftprodukte mit einer Luftzerlegungsanlage
EP3343158A1 (de) 2016-12-28 2018-07-04 Linde Aktiengesellschaft Verfahren zur herstellung eines oder mehrerer luftprodukte und luftzerlegungsanlage
US10359231B2 (en) 2017-04-12 2019-07-23 Praxair Technology, Inc. Method for controlling production of high pressure gaseous oxygen in an air separation unit
FR3066809B1 (fr) * 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil pour la separation de l'air par distillation cryogenique
WO2018219501A1 (de) 2017-05-31 2018-12-06 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
HUE045459T2 (hu) * 2017-06-02 2019-12-30 Linde Ag Eljárás egy vagy több levegõtermék kinyerésére és levegõszétválasztó létesítmény
FR3072451B1 (fr) * 2017-10-13 2022-01-21 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
WO2019127343A1 (zh) * 2017-12-29 2019-07-04 乔治洛德方法研究和开发液化空气有限公司 一种基于深冷精馏生产空气产品的方法及设备
WO2019214847A1 (de) 2018-05-07 2019-11-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP3620739A1 (de) 2018-09-05 2020-03-11 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2020074120A1 (de) 2018-10-09 2020-04-16 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2020083520A1 (de) 2018-10-26 2020-04-30 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
DE202018005045U1 (de) 2018-10-31 2018-12-17 Linde Aktiengesellschaft Anlage zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP3671085A1 (de) 2018-12-18 2020-06-24 Linde GmbH Anordnung und verfahren zum rückgewinnen von verdichtungswärme aus luft, die in einer luftbearbeitungsanlage verdichtet und bearbeitet wird
DE102019000335A1 (de) 2019-01-18 2020-07-23 Linde Aktiengesellschaft Verfahren zur Bereitstellung von Luftprodukten und Luftzerlegungsanlage
EP3696486A1 (de) 2019-02-13 2020-08-19 Linde GmbH Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
EP3699535A1 (de) 2019-02-19 2020-08-26 Linde GmbH Verfahren und luftzerlegungsanlage zur variablen bereitstellung eines gasförmigen, druckbeaufschlagten luftprodukts
EP3699534A1 (de) 2019-02-19 2020-08-26 Linde GmbH Verfahren und luftzerlegungsanlage zur variablen bereitstellung eines gasförmigen, druckbeaufschlagten luftprodukts
WO2022053173A1 (de) 2020-09-08 2022-03-17 Linde Gmbh Verfahren und anlage zur tieftemperaturzerlegung von luft
EP4211409A1 (de) 2020-09-08 2023-07-19 Linde GmbH Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
US20240003620A1 (en) 2020-11-24 2024-01-04 Linde Gmbh Process and plant for cryogenic separation of air
EP4356052A1 (de) 2021-06-17 2024-04-24 Linde GmbH Verfahren und anlage zur bereitstellung eines druckbeaufschlagten sauerstoffreichen, gasförmigen luftprodukts
DE202021002439U1 (de) 2021-07-17 2021-10-20 Linde Gmbh Verdichter
TW202326047A (zh) 2021-09-02 2023-07-01 德商林德有限公司 獲取一種或數種空氣產物的方法及空氣分離設備
DE202021002895U1 (de) 2021-09-07 2022-02-09 Linde GmbH Anlage zur Tieftemperaturzerlegung von Luft
CN117940727A (zh) 2021-09-29 2024-04-26 林德有限责任公司 用于低温分离空气的方法和空气分离设备
CN114674112A (zh) * 2022-04-07 2022-06-28 安阳钢铁股份有限公司 一种液化装置氧氮自动转换方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU787829A1 (ru) * 1976-09-10 1980-12-15 Предприятие П/Я А-3605 Способ получени жидких и газообразных компонентов воздуха
EP0316768A2 (de) * 1987-11-13 1989-05-24 Linde Aktiengesellschaft Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
RU2054609C1 (ru) * 1990-12-04 1996-02-20 Балашихинское научно-производственное объединение криогенного машиностроения им.40-летия Октября "Криогенмаш" Способ разделения воздуха
DE102010052545A1 (de) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) * 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (de) 1944-11-19 1952-02-07 Linde Eismasch Ag Verfahren zur Gas-, insbesondere zur Luftzerlegung
DE901542C (de) 1952-01-10 1954-01-11 Linde Eismasch Ag Verfahren zur Zerlegung von Luft durch Verfluessigung und Rektifikation
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (de) 1953-10-11 1956-11-22 Linde Eismasch Ag Verfahren zur Zerlegung von Luft
DE1124529B (de) 1957-07-04 1962-03-01 Linde Eismasch Ag Verfahren und Einrichtung zur Durchfuehrung von Waermeaustauschvorgaengen in einer mit vorgeschalteten Regeneratoren arbeitenden Gaszerlegungsanlage
DE1103363B (de) 1958-09-24 1961-03-30 Linde Eismasch Ag Verfahren und Vorrichtung zur Erzeugung eines ausgeglichenen Kaeltehaushaltes bei der Gewinnung von unter hoeherem Druck stehenden Gasgemischen und/oder Gasgemisch-komponenten durch Rektifikation
DE1112997B (de) 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
DE1117616B (de) 1960-10-14 1961-11-23 Linde Eismasch Ag Verfahren und Einrichtung zum Gewinnen besonders reiner Zerlegungsprodukte in Tieftemperaturgaszerlegungsanlagen
DE1226616B (de) 1961-11-29 1966-10-13 Linde Ag Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
DE1229561B (de) 1962-12-21 1966-12-01 Linde Ag Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes
DE1199293B (de) 1963-03-29 1965-08-26 Linde Eismasch Ag Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
DE1187248B (de) 1963-03-29 1965-02-18 Linde Eismasch Ag Verfahren und Einrichtung zur Gewinnung von Sauerstoffgas mit 70 bis 98% O-Gehalt
DE1258882B (de) 1963-06-19 1968-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung durch Rektifikation unter Verwendung eines Hochdruckgas-Kaeltekreislaufes zur Druckverdampfung fluessigen Sauerstoffs
DE1235347B (de) 1964-05-13 1967-03-02 Linde Ag Verfahren und Vorrichtung zum Betrieb von umschaltbaren Waermeaustauschern bei der Tieftemperaturgaszerlegung
DE1263037B (de) 1965-05-19 1968-03-14 Linde Ag Verfahren zur Zerlegung von Luft in einer Rektifikationssaeule und damit gekoppelterZerlegung eines Wasserstoff enthaltenden Gasgemisches
DE1501722A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung zur Erzeugung von hochverdichtetem gasfoermigem und/oder fluessigem Sauerstoff
DE1501723A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren und Vorrichtung zur Erzeugung gasfoermigen Hochdrucksauerstoffs bei der Tieftemperaturrektifikation von Luft
DE2535132C3 (de) 1975-08-06 1981-08-20 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zur Herstellung von Drucksauerstoff durch zweistufige Tieftemperaturrektifikation von Luft
DE2646690A1 (de) 1976-10-15 1978-04-20 Linde Ag Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0383994A3 (de) 1989-02-23 1990-11-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
DE4109945A1 (de) 1991-03-26 1992-10-01 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
FR2689224B1 (fr) 1992-03-24 1994-05-06 Lair Liquide Procede et installation de production d'azote sous haute pression et d'oxygene.
FR2692664A1 (fr) * 1992-06-23 1993-12-24 Lair Liquide Procédé et installation de production d'oxygène gazeux sous pression.
DE4443190A1 (de) 1994-12-05 1996-06-13 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19526785C1 (de) 1995-07-21 1997-02-20 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts
DE19529681C2 (de) 1995-08-11 1997-05-28 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
DE19732887A1 (de) 1997-07-30 1999-02-04 Linde Ag Verfahren zur Luftzerlegung
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE19815885A1 (de) 1998-04-08 1999-10-14 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft
EP0955509B1 (de) 1998-04-30 2004-12-22 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
EP1031804B1 (de) 1999-02-26 2004-02-04 Linde AG Tieftemperaturzerlegung von Luft mit Stickstoff Rückführung
DE19908451A1 (de) 1999-02-26 2000-08-31 Linde Tech Gase Gmbh Zweisäulensystem zur Tieftemperaturzerlegung von Luft
DE19909744A1 (de) 1999-03-05 2000-05-04 Linde Ag Zweisäulensystem zur Tieftemperaturzerlegung von Luft
US6116052A (en) * 1999-04-09 2000-09-12 Air Liquide Process And Construction Cryogenic air separation process and installation
ATE269526T1 (de) 1999-07-05 2004-07-15 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE19936816A1 (de) 1999-08-05 2001-02-08 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
DE19954593B4 (de) 1999-11-12 2008-04-10 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013075A1 (de) 2000-03-17 2001-09-20 Linde Ag Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
DE10013073A1 (de) 2000-03-17 2000-10-19 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10015602A1 (de) 2000-03-29 2001-10-04 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10018200A1 (de) 2000-04-12 2001-10-18 Linde Gas Ag Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10021081A1 (de) 2000-04-28 2002-01-03 Linde Ag Verfahren und Vorrichtung zum Wärmeaustausch
DE10060678A1 (de) 2000-12-06 2002-06-13 Linde Ag Maschinensystem zur arbeitsleistenden Entspannung zweier Prozess-Ströme
DE10115258A1 (de) 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
DE10139727A1 (de) 2001-08-13 2003-02-27 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10153252A1 (de) 2001-10-31 2003-05-15 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
US7188492B2 (en) * 2002-01-18 2007-03-13 Linde Aktiengesellschaft Plate heat exchanger
FR2831249A1 (fr) * 2002-01-21 2003-04-25 Air Liquide Procede et installation de separation d'air par distillation cryogenique
DE10213211A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung mit abgeschottetem Kreislaufsystem
DE10213212A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren und Vorrichtung zur Erzeugung zweier Druckprodukte durch Tieftemperatur-Luftzerlegung
DE10217091A1 (de) 2002-04-17 2003-11-06 Linde Ag Drei-Säulen-System zur Tieftemperatur-Luftzerlegung mit Argongewinnung
DE10238282A1 (de) 2002-08-21 2003-05-28 Linde Ag Verfahren zur Tieftemperatur-Zerlegung von Luft
CN1748114A (zh) 2002-12-19 2006-03-15 卡格斯-福尔康布里奇股份有限公司 用于液相萃取的系统和方法
DE10302389A1 (de) 2003-01-22 2003-06-18 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10334559A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334560A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10332863A1 (de) 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
EP1544559A1 (de) 2003-12-20 2005-06-22 Linde AG Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
DE102005029274A1 (de) 2004-08-17 2006-02-23 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
EP1666824A1 (de) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP1666823A1 (de) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
DE102005028012A1 (de) 2005-06-16 2006-09-14 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2007033838A1 (de) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE102006012241A1 (de) 2006-03-15 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1845323A1 (de) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung
DE102006032731A1 (de) 2006-07-14 2007-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung
EP1892490A1 (de) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Verfahren und Vorrichtung zur variablen Gewinnung eines Druckprodukts durch Tieftemperatur-Gaszerlegung
US8020408B2 (en) * 2006-12-06 2011-09-20 Praxair Technology, Inc. Separation method and apparatus
DE102007014643A1 (de) 2007-03-27 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
EP2026024A1 (de) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
JP5425100B2 (ja) 2008-01-28 2014-02-26 リンデ アクチエンゲゼルシャフト 低温空気分離方法及び装置
DE102008016355A1 (de) 2008-03-29 2009-10-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2600090B1 (de) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
FR2995393B1 (fr) * 2012-09-12 2014-10-03 Air Liquide Procede et appareil de separation d'air par distillation cryogenique.
EP2963367A1 (de) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU787829A1 (ru) * 1976-09-10 1980-12-15 Предприятие П/Я А-3605 Способ получени жидких и газообразных компонентов воздуха
EP0316768A2 (de) * 1987-11-13 1989-05-24 Linde Aktiengesellschaft Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
RU2054609C1 (ru) * 1990-12-04 1996-02-20 Балашихинское научно-производственное объединение криогенного машиностроения им.40-летия Октября "Криогенмаш" Способ разделения воздуха
DE102010052545A1 (de) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) * 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft

Also Published As

Publication number Publication date
RU2017103309A3 (ru) 2018-12-18
CN106662394A (zh) 2017-05-10
RU2017103099A (ru) 2018-08-06
CN106489059A (zh) 2017-03-08
TW201607599A (zh) 2016-03-01
US20170131028A1 (en) 2017-05-11
US10458702B2 (en) 2019-10-29
CN106662394B (zh) 2019-11-05
WO2016005030A1 (de) 2016-01-14
EP3164654A1 (de) 2017-05-10
US20170153058A1 (en) 2017-06-01
RU2017103309A (ru) 2018-08-06
RU2691210C2 (ru) 2019-06-11
RU2017103099A3 (ru) 2018-12-20
EP2963367A1 (de) 2016-01-06
WO2016005031A1 (de) 2016-01-14
EP3164653A1 (de) 2017-05-10
TW201607598A (zh) 2016-03-01
EP3164654B1 (de) 2020-07-29
US10215489B2 (en) 2019-02-26
CN106489059B (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
RU2690550C2 (ru) Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии
RU2387934C2 (ru) Способ разделения воздуха на составные части при помощи криогенной дистилляции
US9534836B2 (en) Air separation plant and process operating by cryogenic distillation
RU2681901C2 (ru) Способ и устройство для низкотемпературного разделения воздуха
RU2722074C2 (ru) Способ получения жидкого и газообразного, обогащенного кислородом продукта разделения воздуха в установке разделения воздуха и установка разделения воздуха
CN103069238B (zh) 通过空气的低温分离获得压缩氧和压缩氮的方法和装置
CN107606875A (zh) 通过低温分离空气产生压缩氮和液氮的方法和设备
US11175091B2 (en) Method and apparatus for the cryogenic separation of air
RU2761562C2 (ru) Способ и устройство для разделения воздуха криогенной дистилляцией
AU782163B2 (en) Process and apparatus for separating a gas mixture with emergency operation
US20110083469A1 (en) Process and Device for Obtaining Liquid Nitrogen by Low Temperature Air Fractionation
CN111542723B (zh) 一种基于深冷精馏工艺生产空气产品的方法及空分系统
US20080264101A1 (en) Process and Apparatus for Nitrogen Production
EA024400B1 (ru) Способ генерирования газообразного сжатого кислородного продукта низкотемпературным разделением воздуха
RU2647297C2 (ru) Способ и установка для производства жидких и газообразных кислородсодержащих продуктов низкотемпературным разделением воздуха
RU2696846C2 (ru) Способ и устройство для получения сжатого газообразного продукта посредством низкотемпературного разделения воздуха
TW202140974A (zh) 低溫分離空氣的方法、空氣分離設備以及由至少兩個空氣分離設備組成的聯合裝置
RU2783184C2 (ru) Способ получения одного или более продуктов разделения воздуха, а также установка разделения воздуха
RU2794009C2 (ru) Способ и установка для подготовки одного или более обогащенных кислородом газообразных продуктов разделения воздуха
US20230038170A1 (en) Process and plant for low-temperature separation of air
RU2721195C2 (ru) Способ низкотемпературного разделения воздуха и установка разделения воздуха
US20210381762A1 (en) Method for obtaining one or more air products, and air separation unit
KR20210077687A (ko) 저온 공기 분리를 위한 방법 및 유닛