EP3312533A1 - Verfahren zur luftzerlegung und luftzerlegungsanlage - Google Patents

Verfahren zur luftzerlegung und luftzerlegungsanlage Download PDF

Info

Publication number
EP3312533A1
EP3312533A1 EP16002236.4A EP16002236A EP3312533A1 EP 3312533 A1 EP3312533 A1 EP 3312533A1 EP 16002236 A EP16002236 A EP 16002236A EP 3312533 A1 EP3312533 A1 EP 3312533A1
Authority
EP
European Patent Office
Prior art keywords
air
thomson
joule
air separation
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16002236.4A
Other languages
English (en)
French (fr)
Inventor
Alexander Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP16002236.4A priority Critical patent/EP3312533A1/de
Publication of EP3312533A1 publication Critical patent/EP3312533A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air

Definitions

  • the invention is in the field of air separation plants and relates to a method for air separation and an air separation plant according to the preambles of the independent claims.
  • Air separation plants have distillation column systems which include, for example, two or three column arrangements for providing nitrogen and oxygen rich air products.
  • at least one so-called (high) pressure column and a so-called low pressure column are present.
  • the operating pressure of the high-pressure column is, for example, 4.3 to 6.9 bar, preferably about 5.0 bar.
  • the low-pressure column is operated at an operating pressure of, for example, 1.3 to 1.7 bar, preferably about 1.5 bar.
  • the stated pressure values are present in the bottom of corresponding columns. It is also possible, for example, to provide so-called medium-pressure columns which are operated at an operating pressure which lies between the stated values.
  • the low-pressure column may also be formed in two parts. For details refer to the literature.
  • An air separation plant air so-called feed air, fed, which can be removed for example from the environment.
  • feed air which can be removed for example from the environment.
  • the air is compressed and then subjected to various processes in order to purify and cool it, for example, before it is fed to the high-pressure column.
  • the compressed feed air can be divided into sub-streams, possibly recompressed, and treated in different ways. If here and in the following of air is mentioned, should including both ambient air and air that has already undergone various processes, even if the composition deviates from the usual ambient air.
  • the present invention has as its object to make a process for air separation, in particular the air supply, more energy efficient.
  • the present invention is based on a per se known method for air separation, as explained in more detail, from.
  • a proportion of the compressed air which is to be decomposed in total in an air separation plant, ie a part of the total feed air, cooled and liquefied by means of a main heat exchanger of the air separation plant, said liquefied air in the course of a Joule-Thomson turbine relaxed and in the further course of a high-pressure column of the air separation plant, in particular the lower region, is supplied.
  • Joule-Thomson turbines also called Joule-Thomson expanders, liquid turbines or DFE or “Dense Fluid Expander”
  • the high-pressure liquid ie, here, liquid air, usually with a pressure of more than 20 bar
  • a medium pressure for example, about 6 bar
  • the task of the Joule-Thomson turbine is at Häring especially in the sections "Cold Section ( Fig. 2 .3A) "on page 24 and” Cryogenic Losses are Mainly Covered by the Turbine "on page 27.
  • Joule-Thomson turbines instead of Joule-Thomson (throttle) valves makes it possible to reduce the Joule-Thomson current by as much as 6%, depending on the situation, resulting in energy leaks, for example, to the booster air compressor (Booster Air Compressor or BAC) for so-called MAC-BAC processes, on the nitrogen cycle compressor for air separation plants with nitrogen circulation or on the main air compressor (Main Air Compressor or MAC) for so-called high-pressure air or HAP (High Air Pressure) air separation process means.
  • Booster Air Compressor or BAC booster air compressor
  • MAC-BAC MAC-BAC
  • HAP High Air Pressure
  • a MAC-BAC process differs from a HAP process in that only a portion of the feed air is compressed to a pressure that is substantially, i. is at least 3 bar above the operating pressure of the high pressure column.
  • the remaining feed air is only compressed to the operating pressure of the high-pressure column or a pressure typically deviating from it by not more than 1 to 2 bar and fed thereinto into the high-pressure column.
  • the compressed to the higher pressure portion of the feed air can be performed in a MAC-BAC process after cooling at least in part by the Joule-Thomson turbine.
  • the entire feed air is compressed to a pressure which is substantially, ie by at least 3 bar, above the operating pressure of the high pressure column.
  • the pressure difference used is at least 3 bar, but may also be significantly higher, for example at 4, 5, 6, 7, 8, 9 or 10 bar and up to 14, 16, 18 or 20 bar.
  • HAP methods are for example from EP 2 980 514 A1 and the EP 2 963 367 A1 known.
  • typically no booster is provided, the main compressor is the only compressor device driven by external energy.
  • boosters driven by expansion turbines can be provided, which compress the air streams to an even higher pressure. Even in a HAP process, a part of this air is passed through the Joule-Thomson turbine. The remaining air is also released before being fed into the distillation column system.
  • the expansion process ends in a two-phase region, that is part of the liquid, here the liquid air, is thereby evaporated.
  • the resulting vapor is also referred to as flash gas.
  • the Joule-Thomson turbine like all turbomachines, is sensitive to phase changes in the fluid to be expanded - in fact, flash gas in the machine itself can cause major mechanical damage, including destruction of the machine.
  • the high pressure liquid can not be relaxed to the medium pressure but to a slightly higher intermediate pressure (for example, about 10 to 16 bar).
  • the main criterion here is that the vapor content at the exit from the Joule-Thomson turbine remains as low as possible.
  • the remaining relaxation of this intermediate pressure on the medium pressure can then be done in a throttle valve.
  • the state of the air at the exit from the Joule-Thomson turbine is in a "safe area", i. that no or at least sufficiently little flash gas is formed or the two-phase region is not reached, since the conditions during the expansion are correspondingly changed by the cooling before entering the Joule-Thomson turbine.
  • a special regulation, as mentioned above, is therefore no longer necessary.
  • instrumentation costs as well as commissioning costs for the air separation plant are significantly reduced. Even during operation of the air separation plant can be ensured that the Joule-Thomson turbine is operated as optimally as possible.
  • the rectification in the lower portion of the high pressure column can be improved.
  • a throttle valve - depending on the cooling of the air - no longer absolutely necessary. It is understood that a throttle valve between the Joule-Thomson turbine and the supply to the high-pressure column - depending on the additional cooling of the air - can still be provided, but even then no regulation is necessary.
  • the liquefied air after leaving the heat exchanger and before it is fed to the Joule-Thomson turbine, is passed through an evaporator in which the air is further cooled by evaporation of a cryogenic liquid.
  • the use of an evaporator allows a particularly efficient cooling of the air.
  • the evaporator can be arranged particularly advantageous in the bottom of the high-pressure column of the air separation plant and serve here as a bottom evaporator for the evaporation of the oxygen-enriched liquid which separates in the bottom of the high-pressure column. In this way, heat can be introduced into the sump of the high-pressure column for evaporation, which is removed from the liquefied air.
  • the evaporator is arranged separately, in particular outside the high-pressure column of the air separation plant. This allows variable positioning of the evaporator and does not require changes in the high pressure column.
  • the air leaving the Joule-Thomson turbine is subsequently fed completely to the evaporator for its operation and subsequently removed from the evaporator and fed to the high-pressure column.
  • the cooled air can be fully used to provide the necessary for the operation of the evaporator cold.
  • one or the other variant may be more energy efficient. In both cases, a part of the still liquid air taken from the Joule-Thomson turbine is vaporized by the liquefied air supplied to the Joule-Thomson turbine, and the former is cooled down at the same time.
  • Another preferred way to cool the liquid air is that the liquefied air, after leaving the heat exchanger and before it is fed to the Joule-Thomson turbine, is passed through another heat exchanger or subcooler to cool the air , Also in this way the necessary cooling of the liquid air can be achieved. It is particularly expedient if the further heat exchanger or the subcooler is used for at least one further cooling operation in the air separation plant, i. if the further heat exchanger or subcooler is present anyway, since then the integration of the proposed method, an existing air separation plant is particularly simple and fast.
  • a part of the compressed air to be decomposed in the air separation plant so a part of the feed air through a main heat exchanger so feasible that this portion of the feed air is cooled and liquefied, in the course of a Joule-Thomson Turbine is provided by which this liquefied air is feasible so that it is relaxed.
  • a high-pressure column is provided, which this air can be supplied in the further course.
  • a cooling unit ie in particular an evaporator, a another heat exchanger or a subcooler, provided by means of which this liquid air, after it has left the main heat exchanger and before it is fed to the Joule-Thomson turbine, can be cooled.
  • FIG. 1 An air separation plant of known type is shown, with which, among other air products, for example, gaseous (GAN) and liquid nitrogen (LIN) and liquid oxygen (LOX), in particular using an internal compression (ICLIN, ICLOX) can be provided.
  • GAN gaseous
  • LIN liquid nitrogen
  • LOX liquid oxygen
  • ICLIN internal compression
  • Air separation plants of the type shown are often described elsewhere, for example at H.-W. Haring (ed.), Industrial Gases Processing, Wiley-VCH, 2006, especially Section 2.2.5, "Cryogenic Rectification Reference should therefore be made to the corresponding specialist literature for detailed explanations on the structure and mode of operation
  • An air separation plant for use of the present invention may be designed in many different ways.
  • air separation plant 100 are shown substantially only the high-pressure column 111 and the low-pressure column 112 as part of a distillation column system. While distillation columns for crude argon and pure argon are indicated only as block 113, components such as main air compressor and pre-cooler are not shown.
  • a main heat exchanger 150 is only partially shown, namely insofar as air of a flow a (JT-AIR) is passed through the main heat exchanger 150 for cooling and liquefaction.
  • the other illustrated streams or media (UN2, GAN, FEED, ICLIN, ICLOX) can also be passed through the main heat exchanger 150, such as in FIG. 1 of the WO 2016/015850 A1 shown.
  • the apparatus provided upstream of the main heat exchanger 150 is also explicitly stated FIG. 1 of the WO 2016/015850 A1 and the related explanations.
  • feed air can be sucked in via a main air compressor, cooled in a pre-cooling unit and cleaned in a cleaning unit.
  • a partial flow can first be fed to a booster for recompression. From this, in turn, a part in the form of the flow a (JT-AIR) is recompressed in the after-compressor to a Nachverêtrenddruck warm supplied to the main heat exchanger 150 and taken this cold side.
  • JT-AIR a part in the form of the flow a
  • a Joule-Thomson turbine 170 After the air of the flow a has passed through the main heat exchanger 150, it is fed to a Joule-Thomson turbine 170, in which the air is expanded, as mentioned above.
  • a control system 171 is provided, which is indicated only schematically.
  • a throttle valve may be provided, which passes through the air before it is fed to the high-pressure column 111.
  • a subcooler 160 is provided for subcooling liquid or gaseous air products, which are guided from the high-pressure column 111, inter alia, into the low-pressure column 112.
  • the liquefied air through the main heat exchanger 150 in the Joule-Thomson turbine 170 is performed, for example, with a pressure of about 20 bar or higher.
  • the air is then depressurized, for example, to a pressure of about 10 to 16 bar to avoid the formation of flash gas.
  • the control system 171 is necessary.
  • FIG. 2 Now, an air separation plant according to an embodiment of the invention in the form of a schematic process flow diagram is shown.
  • the air separation plant 200 corresponds in its basic structure of the air separation plant 100 according to FIG. 1 ,
  • an evaporator 180 is now provided here, through which the air of the flow a, after it has been liquefied by the main heat exchanger 150, is guided.
  • the evaporator 180 is disposed in the sump of the high-pressure column 111 in order to obtain the for the operation and thus the cooling of the performed air. As it passes through the evaporator 180, heat of the stream a is transferred to the liquid bottom product of the high-pressure column 111, which is thereby partly vaporized. The air of the stream a cooled in this way in the evaporator 180 is then fed to the Joule-Thomson turbine 150, in which the air is expanded. Anschmanend then the air - as well as according to FIG. 1 - The high-pressure column 111 fed.
  • FIG. 3 a TS diagram is shown for a more detailed explanation of the invention.
  • the temperature T is plotted against the entropy S.
  • the relaxation of the air proceeds from point P1, which corresponds to a state in which the air leaves the main heat exchanger and enters the Joule-Thomson turbine (neglecting any conduction effects) via the point P2 to the point P3.
  • the air separation plant according to FIG. 2 or the corresponding procedure is the air, starting from the point P1 first by means of Evaporator further cooled without significant pressure change, that is, the point P4 is reached in the diagram, which corresponds to the state in which the air then enters the Joule-Thomson turbine. There, the air is then released to point P5.
  • the pressure at point P5 corresponds to that at point P3, which can be seen on the isobar, but less or no flash gas is generated. This means that no complex control is required.
  • FIG. 4 an air separation plant according to a further embodiment of the invention in the form of a schematic process flow diagram is shown.
  • the air separation plant 300 corresponds in its basic structure of the air separation plant 200 according to FIG. 2 ,
  • the evaporator 180 is now provided separately outside the high-pressure column 111. Again, the air is passed through the evaporator 180 after being liquefied by the main heat exchanger 150 (flow a).
  • the air After the air has left the evaporator 180, it is - as well as according to FIG. 2 - Guided by the Joule-Thomson turbine 170, in which the air is released. However, after leaving the Joule-Thomson turbine 170, the air is now first again passed through the evaporator 180, this time not for cooling but for the operation or cooling of the evaporator 180 itself. Subsequently, the liquid air from the bottom of the evaporator 180 of the high-pressure column fed.
  • Any resulting gaseous air from the upper portion of the evaporator 180 may also be supplied to the high-pressure column 111 at a corresponding location.
  • FIG. 5 an air separation plant according to a further embodiment of the invention in the form of a schematic process flow diagram is shown.
  • the air separation plant 400 corresponds in its basic structure of the air separation plant 300 according to FIG. 4 ,

Abstract

Die Erfindung betrifft ein Verfahren zur Luftzerlegung, bei dem ein Teil verdichteter Einsatzluft, die in einer Luftzerlegungsanlage (200) zerlegt werden soll, mittels eines Hauptwärmetauschers (150) abgekühlt und verflüssigt wird, wobei die flüssige Luft im weiteren Verlauf mittels einer Joule-Thomson-Turbine (170) entspannt und im weiteren Verlauf einer Hochdrucksäule (111) der Luftzerlegungsanlage (200) zugeführt wird, wobei die verflüssigte Luft, nachdem sie den Hauptwärmetauscher (150) verlassen hat und bevor sie der Joule-Thomson-Turbine (170) zugeführt wird, abgekühlt wird, sowie eine Luftzerlegungsanlage (200).

Description

  • Die Erfindung liegt auf dem Gebiet der Luftzerlegungsanlagen und betrifft ein Verfahren zur Luftzerlegung sowie eine Luftzerlegungsanlage gemäß den Oberbegriffen der unabhängigen Patentansprüche.
  • Stand der Technik
  • Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification", beschrieben.
  • Luftzerlegungsanlagen weisen Destillationssäulensysteme auf, die beispielsweise Zwei- oder Dreisäulenanordnungen zur Bereitstellung von stickstoff- und sauerstoffreichen Luftprodukten umfassen. Typischerweise sind dabei zumindest eine sogenannte (Hoch-)Drucksäule und eine sogenannte Niederdrucksäule vorhanden. Der Betriebsdruck der Hochdrucksäule beträgt beispielsweise 4,3 bis 6,9 bar, vorzugsweise etwa 5,0 bar. Die Niederdrucksäule wird bei einem Betriebsdruck von beispielsweise 1,3 bis 1,7 bar, vorzugsweise etwa 1,5 bar betrieben. Die genannten Druckwerte liegen im Sumpf entsprechender Säulen vor. Es können auch beispielsweise sogenannte Mitteldrucksäulen vorhanden sein, die bei einem Betriebsdruck betrieben werden, der zwischen den genannten Werten liegt. Insbesondere die Niederdrucksäule kann auch zweiteilig ausgebildet sein. Zu Details sei auf die Fachliteratur verwiesen.
  • Einer Luftzerlegungsanlage wird Luft, sogenannte Einsatzluft, zugeführt, die beispielsweise aus der Umgebung entnommen werden kann. Im Verlauf der Luftzuführung in der Luftzerlegungsanlage wird die Luft verdichtet und dann verschiedenen Prozessen unterzogen, um sie zu reinigen und zu kühlen, bevor sie beispielsweise der Hochdrucksäule zugeführt wird. Insbesondere kann die verdichtete Einsatzluft dabei in Teilströme aufgeteilt, ggf. nachverdichtet, und auf unterschiedliche Weise behandelt werden. Wenn hier und im Folgenden von Luft die Rede ist, soll hierunter sowohl Umgebungsluft als auch Luft, die bereits verschiedenen Prozessen unterzogen wurde, auch wenn die Zusammensetzung von der üblichen Umgebungsluft abweicht, verstanden werden.
  • Die vorliegende Erfindung stellt sich die Aufgabe, einen Prozess zur Luftzerlegung, insbesondere die Luftzuführung, energieeffizienter zu gestalten.
  • Offenbarung der Erfindung
  • Diese Aufgabe wird durch ein Verfahren zur Luftzerlegung sowie eine Luftzerlegungsanlage mit den Merkmalen der unabhängigen Patentansprüche gelöst. Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.
  • Vorteile der Erfindung
  • Die vorliegende Erfindung geht von einem an sich bekannten Verfahren zur Luftzerlegung, wie dies eingangs näher erläutert wurde, aus. Dabei wird ein Anteil der verdichteten Luft, die insgesamt in einer Luftzerlegungsanlage zerlegt werden soll, also ein Teil der gesamten Einsatzluft, mittels eines Hauptwärmetauschers der Luftzerlegungsanlage abgekühlt und verflüssigt, wobei diese verflüssigte Luft im weiteren Verlauf mittels einer Joule-Thomson-Turbine entspannt und im weiteren Verlauf einer Hochdrucksäule der Luftzerlegungsanlage, insbesondere deren unterem Bereich, zugeführt wird.
  • Sog. Joule-Thomson-Turbinen (auch als Joule-Thomson-Expander, Flüssigturbinen oder DFE bzw. "Dense Fluid Expander" bezeichnet) können in Luftzerlegungsanlagen anstelle von Drosselventilen oder zusätzlich zu diesen eingesetzt werden. Dabei wird die Hochdruckflüssigkeit (also hier flüssige Luft, in der Regel mit einem Druck von mehr als 20 bar) auf einen Mitteldruck (beispielsweise ca. 6 bar) entspannt, der dem Druck in der Hochdrucksäule (auch als Hochdruckkolonne bezeichnet) der Luftzerlegungsanlage entspricht oder sich nur geringfügig, beispielsweise um weniger als 1 bar, von diesem unterscheidet. Zu weiteren Details sei auch hier auf die zitierte Fachliteratur verwiesen. Die Aufgabe der Joule-Thomson-Turbine ist bei Häring insbesondere in den Abschnitten "Cold Section (Fig. 2.3A)" auf Seite 24 und "Cryogenic Losses are Mainly Covered by the Turbine" auf Seite 27 beschrieben.
  • Der Einsatz von Joule-Thomson-Turbinen anstelle von Joule-Thomson-Ventilen (Drosselventilen) ermöglicht es, den Joule-Thomson-Strom um -je nach Situation-um bis zu 6% zu reduzieren, was zu einer Energieeinsprung beispielsweise am Booster-Luftverdichter (Booster Air Compressor bzw. BAC) für sog. MAC-BAC-Prozesse, am Stickstoff-Kreislauf-Verdichter für Luftzerlegungsanlagen mit Stickstoff-Kreislauf oder am Hauptluftverdichter (Main Air Compressor bzw. MAC) für sogenannte Hochdruckluft- bzw. HAP (High Air Pressure)-Luftzerlegungsverfahren bedeutet.
  • Ein MAC-BAC-Verfahren unterscheidet sich von einem HAP-Verfahren dadurch, dass nur ein Teil der Einsatzluft auf einen Druck verdichtet wird, der wesentlich, d.h. um mindestens 3 bar oberhalb des Betriebsdrucks der Hochdrucksäule liegt. Die übrige Einsatzluft wird lediglich auf den Betriebsdruck der Hochdrucksäule oder einen typischerweise um nicht mehr als 1 bis 2 bar von diesem abweichenden Druck verdichtet und auf diesem in die Hochdrucksäule eingespeist. Der auf den höheren Druck verdichtete Anteil der Einsatzluft kann in einem MAC-BAC-Verfahren nach einer Abkühlung zumindest zum Teil durch die Joule-Thomson-Turbine geführt werden.
  • Bei einem HAP-Verfahren wird hingegen die gesamte Einsatzluft auf einen Druck verdichtet wird, der wesentlich, d.h. um mindestens 3 bar, oberhalb des Betriebsdrucks der Hochdrucksäule liegt. Der verwendete Druckunterschied beträgt dabei mindestens 3 bar, kann jedoch auch deutlich höher sein, beispielsweise bei 4, 5, 6, 7, 8, 9 oder 10 bar und bis zu 14, 16, 18 oder 20 bar liegen. HAP-Verfahren sind beispielsweise aus der EP 2 980 514 A1 und der EP 2 963 367 A1 bekannt. In einem HAP-Verfahren ist typischerweise kein Nachverdichter vorgesehen, der Hauptverdichter stellt die einzige mit externer Energie angetriebene Verdichtereinrichtung dar. Gleichwohl können über Entspannungsturbinen angetriebene Booster vorgesehen sein, die Luftströme auf einen nochmals höheren Druck verdichten. Auch bei einem HAP-Verfahren wird ein Teil dieser Luft durch die Joule-Thomson-Turbine geführt. Auch die restliche Luft wird vor der Einspeisung in das Destillationssäulensystem entspannt.
  • Bei der Entspannung des Turbinenstroms endet der Entspannungsvorgang in einem Zweiphasengebiet, das heißt ein Teil der Flüssigkeit, hier der flüssigen Luft, wird dabei verdampft. Der entstehende Dampf wird auch als Flash-Gas bezeichnet. Die Joule-Thomson-Turbine ist wie alle Strömungsmaschinen gegenüber Phasenänderungen des zu entspannenden Fluids empfindlich - Flash-Gas in der Maschine selbst kann nämlich zu großen mechanischen Schäden bis hin zur Zerstörung der Maschine führen.
  • Daher kann vorgesehen sein, die Entspannung in der Joule-Thomson-Turbine verfahrenstechnisch zweistufig zu gestalten. Zunächst kann die Hochdruckflüssigkeit nicht auf den Mitteldruck sondern auf einen etwas höheren Zwischendruck (beispielsweise ca. 10 bis 16 bar) entspannt werden. Das Hauptkriterium dabei ist, dass der Dampfanteil am Austritt aus der Joule-Thomson-Turbine möglichst gering bleibt. Die restliche Entspannung von diesem Zwischendruck auf den Mitteldruck kann dann in einem Drosselventil erfolgen.
  • Hierzu ist jedoch üblicherweise ein Regelungssystem nötig, das in der Lage sein muss, nicht nur einen regulären Betrieb zu ermöglichen, sondern auch gefährliche Situationen, die insbesondere beim Verstellen der Anlage auftreten können, zu vermeiden. Zweckmäßig ist hierbei, dass der Zwischendruck höher als ein verfahrenstechnisch optimaler Druck gehalten wird, so dass immer ein gewisser Sicherheitsabstand gegeben ist. Das vorhandene Energieeinsparungspotential bei einer solchen Anlage wird dabei in der Regel jedoch nicht ausgeschöpft.
  • Für sog. "flexible" Luftzerlegungsanlagen, d.h. Luftzerlegungsanlagen, die oft verstellt werden, kann dieser Nachteil dazu führen, dass sich der Einsatz von Joule-Thomson-Turbinen, insbesondere gegenüber Drosselventilen, nicht mehr lohnt. Möglich ist auch, Laufräder der Joule-Thomson-Turbinen mit spezieller Geometrie auszubilden, sodass die Turbine für einen höheren Anteil an Flash-Gas verwendbar ist, jedoch ist hierzu ein hoher Herstellungsaufwand nötig. Das erwähnte Regelungssystem wäre hierbei jedoch unverändert. Dabei gilt in der Regel, dass das Verfahren umso effizienter ist, je niedriger der Zwischendruck gewählt wird. Je niedriger der Zwischendruck ist, desto höher ist jedoch die Gefahr, dass bei der Entspannung das Zweiphasengebiet auftritt. Ein gutes Regelungssystem ist hierbei also fast unvermeidlich.
  • Erfindungsgemäß wird nun jedoch die flüssige Luft, nachdem sie den Hauptwärmetauscher verlassen hat und bevor sie der Joule-Thomson-Turbine zugeführt wird, weiter abgekühlt. Zweckmäßig ist hierbei eine Abkühlung bis auf eine Temperatur zwischen 98 und105 K.
  • Mit dem vorgeschlagenen Verfahren kann erreicht werden, dass der Zustand der Luft am Austritt aus der Joule-Thomson-Turbine in einem "sicheren Bereich" liegt, d.h. dass sich kein oder zumindest hinreichend wenig Flash-Gas bildet bzw. das Zweiphasengebiet nicht erreicht wird, da durch die Abkühlung vor Einritt in die Joule-Thomson-Turbine die Verhältnisse bei der Entspannung entsprechend verändert werden. Eine spezielle Regelung, wie oben erwähnt, ist somit nicht mehr nötig. Weiterhin werden ein Instrumentierungsaufwand sowie ein Inbetriebnahme-Aufwand für die Luftzerlegungsanlage deutlich reduziert. Auch im Betrieb der Luftzerlegungsanlage kann gewährleistet werden, dass die Joule-Thomson-Turbine möglichst optimal betrieben wird. Zusätzlich kann die Rektifikation im unteren Abschnitt der Hochdrucksäule verbessert werden. Ebenso ist ein Drosselventil - je nach Abkühlung der Luft - nicht mehr zwingend nötig. Es versteht sich, dass ein Drosselventil zwischen der Joule-Thomson-Turbine und der Zuführung zur Hochdrucksäule - je nach zusätzlicher Abkühlung der Luft - dennoch vorgesehen sein kann, aber auch dann ist keine Regelung nötig.
  • Vorzugsweise wird die verflüssigte Luft, nachdem sie den Wärmetauscher verlassen hat und bevor sie der Joule-Thomson-Turbine zugeführt wird, durch einen Verdampfer geführt, in dem die Luft durch Verdampfen einer tiefkalten Flüssigkeit weiter abgekühlt wird. Die Verwendung eines Verdampfers ermöglicht dabei eine besonders effiziente Abkühlung der Luft. Der Verdampfer kann dabei besonders vorteilhaft im Sumpf der Hochdrucksäule der Luftzerlegungsanlage angeordnet werden und hier gleichzeitig als Sumpfverdampfer zur Verdampfung der sich im Sumpf der Hochdrucksäule abscheidenden sauerstoffangereicherten Flüssigkeit dienen. Auf diese Weise kann in den Sumpf der Hochdrucksäule Wärme zur Verdampfung eingebracht werden, die der verflüssigten Luft entzogen wird.
  • Alternativ ist es bevorzugt, wenn der Verdampfer separat, insbesondere außerhalb der Hochdrucksäule der Luftzerlegungsanlage, angeordnet wird. Dies ermöglicht eine variable Positionierung des Verdampfers und benötigt keine Veränderungen in der Hochdrucksäule.
  • Bei der separaten Anordnung des Verdampfers ist es vorteilhaft, wenn ein Teil der Luft, die die Joule-Thomson-Turbine verlässt, dem Verdampfer zu dessen Betrieb zugeführt und anschließend aus dem Verdampfer abgeführt und separat von der übrigen Luft, die die Joule-Thomson-Turbine verlässt, der Hochdrucksäule zugeführt wird. Die für den Betrieb des Verdampfers nötige Kälte kann also direkt aus dem Strom der gekühlten Luft abgezweigt bzw. entnommen werden.
  • Alternativ ist es jedoch auch bevorzugt, wenn die Luft, die die Joule-Thomson-Turbine verlässt, im weiteren Verlauf vollständig dem Verdampfer zu dessen Betrieb zugeführt und anschließend aus dem Verdampfer abgeführt und der Hochdrucksäule zugeführt wird. Damit kann die gekühlte Luft vollständig zur Bereitstellung der für den Betrieb des Verdampfers nötigen Kälte verwendet werden. Je nach Situation kann dabei die eine oder die andere Variante energieeffizienter sein. In beiden Fällen wird durch die der Joule-Thomson-Turbine zugeführte verflüssigte Luft ein Teil der der Joule-Thomson-Turbine entnommenen, noch flüssigen Luft verdampft und erstere gleichzeitig abgekühlt.
  • Eine weitere bevorzugte Möglichkeit zur Abkühlung der flüssigen Luft ist es, dass die verflüssigte Luft, nachdem sie den Wärmetauscher verlassen hat und bevor sie der Joule-Thomson-Turbine zugeführt wird, durch einen weiteren Wärmetauscher oder einen Unterkühler geführt wird, damit die Luft abgekühlt wird. Auch auf diese Weise kann die nötige Abkühlung der flüssigen Luft erreicht werden. Besonders zweckmäßig ist es dabei, wenn der weitere Wärmetauscher oder der Unterkühler für wenigstens einen weiteren Kühlvorgang in der Luftzerlegungsanlage verwendet wird, d.h. wenn der weitere Wärmetauscher bzw. Unterkühler ohnehin vorhanden ist, da dann die Einbindung des vorgeschlagene Verfahrens eine bestehende Luftzerlegungsanlage besonders einfach und schnell möglich ist.
  • Bei einer erfindungsgemäßen Luftzerlegungsanlage ist ein Teil der verdichteten Luft, die in der Luftzerlegungsanlage zerlegt werden soll, also ein Teil der Einsatzluft, durch einen Hauptwärmetauscher derart führbar, dass dieser Anteil der Einsatzluft abgekühlt und verflüssigt wird, wobei im weiteren Verlauf eine Joule-Thomson-Turbine vorgesehen ist, durch die diese verflüssigte Luft derart führbar ist, dass sie entspannt wird. Zudem ist eine Hochdrucksäule vorgesehen, welcher diese Luft im weiteren Verlauf zuführbar ist. Dabei ist eine Kühleinheit, also insbesondere ein Verdampfer, ein weiterer Wärmetauscher oder ein Unterkühler, vorgesehen, mittels welcher diese flüssige Luft, nachdem sie den Hauptwärmetauscher verlassen hat und bevor sie der Joule-Thomson-Turbine zugeführt wird, abkühlbar ist.
  • Bzgl. vorteilhafter Ausgestaltungen sowie den Vorteilen der erfindungsgemäßen Luftzerlegungsanlage sei zur Vermeidung von Wiederholungen auf obige Ausführungen zum Verfahren verwiesen, die dort entsprechend gelten.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügte Zeichnung näher erläutert, welche verschiedene Anlagenteile zeigt, anhand derer die erfindungsgemäßen Maßnahmen erläutert werden.
  • Kurze Beschreibung der Zeichnung
  • Figur 1
    zeigt eine nicht erfindungsgemäße Luftzerlegungsanlage in Form eines schematischen Prozessflussdiagramms.
    Figur 2
    zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in Form eines schematischen Prozessflussdiagramms.
    Figur 3
    zeigt ein T-S-Diagramm zur Erläuterung der Erfindung.
    Figur 4
    zeigt eine Luftzerlegungsanlage gemäß einer weiteren Ausführungsform der Erfindung in Form eines schematischen Prozessflussdiagramms.
    Figur 5
    zeigt eine Luftzerlegungsanlage gemäß einer weiteren Ausführungsform der Erfindung in Form eines schematischen Prozessflussdiagramms.
    Ausführliche Beschreibung der Zeichnung
  • In Figur 1 ist eine Luftzerlegungsanlage an sich bekannter Art dargestellt, mit der neben anderen Luftprodukten beispielsweise gasförmiger (GAN) und flüssiger Stickstoff (LIN) und flüssiger Sauerstoff (LOX), insbesondere unter Verwendung einer Innenverdichtung (ICLIN, ICLOX), bereitgestellt werden können. Luftzerlegungsanlagen der gezeigten Art sind vielfach an anderer Stelle beschrieben, beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification". Für detaillierte Erläuterungen zu Aufbau und Funktionsweise sei daher auf entsprechende Fachliteratur verwiesen. Eine Luftzerlegungsanlage zum Einsatz der vorliegenden Erfindung kann auf unterschiedlichste Weise ausgebildet sein.
  • Von der in Figur 1 gezeigten Luftzerlegungsanlage 100 sind im Wesentlichen nur die Hochdrucksäule 111 sowie die Niederdrucksäule 112 als Teil eines Destillationssäulensystems gezeigt. Während Destillationssäulen für Rohargon und Reinargon nur als Block 113 angedeutet sind, sind Komponenten wie Hauptluftverdichter und Vorkühleinrichtung nicht gezeigt. Ein Hauptwärmetauscher 150 ist nur teilweise gezeigt, nämlich insoweit als Luft eines Stroms a (JT-AIR) durch den Hauptwärmetauscher 150 zu Kühlung und Verflüssigung geführt wird. Auch die anderen dargestellten Ströme bzw. Medien (UN2, GAN, FEED, ICLIN, ICLOX) können durch den Hauptwärmetauscher 150 geführt werden, wie beispielsweise in Figur 1 der WO 2016/015850 A1 gezeigt.
  • Zu den stromauf des Hauptwärmetauschers 150 vorgesehenen Apparaten sei ebenfalls explizit auf Figur 1 der WO 2016/015850 A1 und die zugehörigen Erläuterungen verwiesen. Wie dort gezeigt und erläutert, kann Einsatzluft dabei über einen Hauptluftverdichter angesaugt, in einer Vorkühleinheit gekühlt und in einer Reinigungseinheit gereinigt werden. Ein Teilstrom kann zunächst zur Nachverdichtung einem Nachverdichter zugeführt werden. Von diesem wird wiederum ein Teil in Form des Stroms a (JT-AIR) in dem Nachverdichter auf einen Nachverdichterenddruck nachverdichtet, warmseitig dem Hauptwärmetauscher 150 zugeführt und diesem kaltseitig entnommen.
  • Nachdem die Luft des Stroms a den Hauptwärmetauscher 150 durchlaufen hat, wird sie einer Joule-Thomson-Turbine 170 zugeführt, in welcher die Luft entspannt wird, wie eingangs erwähnt. Hierzu ist ein Regelsystem 171 vorgesehen, das nur schematisch angedeutet ist. Nach der Joule-Thomson-Turbine 170 kann ein Drosselventil vorgesehen sein, das die Luft durchläuft, bevor sie der Hochdrucksäule 111 zugeführt wird.
  • Weiterhin ist ein Unterkühler 160 zur Unterkühlung von flüssigen oder gasförmigen Luftprodukten vorgesehen, die aus der Hochdrucksäule 111 unter anderem in die Niederdrucksäule 112 geführt werden.
  • In der hier gezeigten Luftzerlegungsanlage 100 wird also, wie eingangs beschrieben, die durch den Hauptwärmetauscher 150 verflüssigte Luft in die Joule-Thomson-Turbine 170 geführt, beispielsweise mit einem Druck von ca. 20 bar oder höher. In der Joule-Thomson-Turbine 150 wird die Luft dann beispielsweise auf einen Druck von ca. 10 bis 16 bar entspannt, um die Bildung von Flash-Gas zu vermeiden. Hierzu ist insbesondere das Regelsystem 171 nötig.
  • In Figur 2 ist nun eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in Form eines schematischen Prozessflussdiagramms dargestellt. Die Luftzerlegungsanlage 200 entspricht in ihrem grundlegenden Aufbau der Luftzerlegungsanlage 100 gemäß Figur 1. Im Unterschied dazu ist hier nun jedoch ein Verdampfer 180 vorgesehen, durch den die Luft des Stroms a, nachdem sie durch den Hauptwärmetauscher 150 verflüssigt worden ist, geführt wird.
  • Der Verdampfer 180 ist im Sumpf der Hochdrucksäule 111 angeordnet, um die für den Betrieb und damit die Abkühlung der durchgeführten Luft, zu erhalten. Beim Durchlaufen des Verdampfers 180 wird Wärme des Stroms a auf das flüssige Sumpfprodukt der Hochdrucksäule 111 übertragen, die dadurch teilweise verdampft wird. Die auf diese Weise im Verdampfer 180 abgekühlte Luft des Stroms a wird dann der Joule-Thomson-Turbine 150 zugeführt, in der die Luft entspannt wird. Anschießend wird die Luft dann - wie auch gemäß Figur 1 - der Hochdrucksäule 111 zugeführt.
  • In Figur 3 ist ein T-S-Diagramm zur näheren Erläuterung der Erfindung dargestellt. Hierbei ist die Temperatur T über der Entropie S aufgetragen. Bei einer herkömmlichen Luftzerlegungsanlage mit Joule-Thomson-Turbine, wie in Figur 1 gezeigt, verläuft die Entspannung der Luft ausgehend von Punkt P1, der einem Zustand entspricht, in dem die Luft den Hauptwärmetauscher verlässt und in die Joule-Thomson-Turbine eintritt (etwaige Leitungseffekte vernachlässigt), über den Punkt P2 hin zum Punkt P3.
  • Bei der Luftzerlegungsanlage gemäß Figur 2 bzw. dem entsprechenden Verfahrensablauf wird die die Luft, ausgehend vom Punkt P1 zunächst mittels des Verdampfers ohne nennenswerte Druckänderung weiter abgekühlt, d.h. es wird der Punkt P4 im Diagramm erreicht, welcher dem Zustand entspricht, zu dem die Luft dann in die Joule-Thomson-Turbine eintritt. Dort wird die Luft dann hin zum Punkt P5 entspannt. Der Druck bei Punkt P5 entspricht demjenigen beim Punkt P3, was an der Isobare zu sehen ist, allerdings wird weniger bis gar kein Flash-Gas erzeugt. Dies bedeutet, dass keine aufwändige Regelung mehr erforderlich ist.
  • In Figur 4 ist eine Luftzerlegungsanlage gemäß einer weiteren Ausführungsform der Erfindung in Form eines schematischen Prozessflussdiagramms dargestellt. Die Luftzerlegungsanlage 300 entspricht in ihrem grundlegenden Aufbau der Luftzerlegungsanlage 200 gemäß Figur 2.
  • Im Unterschied dazu ist hier nun jedoch der Verdampfer 180 separat und zwar außerhalb der Hochdrucksäule 111 vorgesehen. Auch hier wird die Luft durch den Verdampfer 180 geführt, nachdem sie durch den Hauptwärmetauscher 150 verflüssigt worden ist, geführt wird (Strom a).
  • Nachdem die Luft den Verdampfer 180 verlassen hat, wird sie - wie auch gemäß Figur 2 - durch die Joule-Thomson-Turbine 170 geführt, in der die Luft entspannt wird. Nach Verlassen der Joule-Thomson-Turbine 170 wird die Luft nun jedoch zunächst erneut durch den Verdampfer 180 geführt, dieses Mal nicht zur Abkühlung sondern zum Betrieb bzw. Kühlung des Verdampfers180 selbst. Anschließend wird die flüssige Luft aus dem Sumpf des Verdampfers 180 der Hochdrucksäule zugeführt.
  • Eventuell entstehende gasförmige Luft aus dem oberen Bereich des Verdampfers 180 kann ebenso der Hochdrucksäule 111 an einer entsprechenden Stelle zugeführt werden.
  • In Figur 5 ist eine Luftzerlegungsanlage gemäß einer weiteren Ausführungsform der Erfindung in Form eines schematischen Prozessflussdiagramms dargestellt. Die Luftzerlegungsanlage 400 entspricht in ihrem grundlegenden Aufbau der Luftzerlegungsanlage 300 gemäß Figur 4.
  • Im Unterschied dazu wird hier nun jedoch die in der Joule-Thomson-Turbine 170 entspannte und flüssige Luft nicht vollständig in den Verdampfer 180 geleitet, sondern nur teilweise. Der übrige Teil wird - ähnlich zu Figur 2 - direkt in die Hochdrucksäule 111 geführt. Auch auf diese Weise sind eine Kühlung und damit ein Betrieb des Verdampfers 180 möglich.
  • Mit jeder der in den Figuren 2, 4 und 5 gezeigten Ausführungsformen der Luftzerlegungsanlage bzw. dem entsprechenden Verfahren zur Luftzerlegung ist nun kein aufwändiges Regelsystem für die Joule-Thomson-Turbine mehr nötig.

Claims (15)

  1. Verfahren zur Luftzerlegung, bei dem ein Teil verdichteter Einsatzluft, die in einer Luftzerlegungsanlage (200, 300, 400) zerlegt wird, zunächst mittels eines Hauptwärmetauschers (150) abgekühlt und verflüssigt wird, wobei die verflüssigte Luft im weiteren Verlauf mittels einer Joule-Thomson-Turbine (170) entspannt und im weiteren Verlauf einer Hochdrucksäule (111) der Luftzerlegungsanlage (200, 300, 400) zugeführt wird,
    dadurch gekennzeichnet, dass die verflüssigte Luft, nachdem sie den Hauptwärmetauscher (150) verlassen hat und bevor sie der Joule-Thomson-Turbine (170) zugeführt wird, weiter abgekühlt wird.
  2. Verfahren nach Anspruch 1, wobei die verflüssigte Luft, nachdem sie den Wärmetauscher (150) verlassen hat und bevor sie der Joule-Thomson-Turbine (170) zugeführt wird, auf eine Temperatur zwischen 98 und105 K abgekühlt wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei die verflüssigte Luft, nachdem sie den Wärmetauscher (150) verlassen hat und bevor sie er Joule-Thomson-Turbine (170) zugeführt wird, durch einen Verdampfer (180) geführt wird, in welchem die Luft durch Übertragung von Wärme auf eine tiefkalte Flüssigkeit abgekühlt wird.
  4. Verfahren nach Anspruch 3, wobei der Verdampfer (180) in einem Sumpf der Hochdrucksäule (150) der Luftzerlegungsanlage (200) angeordnet wird.
  5. Verfahren nach Anspruch 3, wobei der Verdampfer (180) separat, insbesondere außerhalb der Hochdrucksäule (111) der Luftzerlegungsanlage (300, 400), angeordnet wird.
  6. Verfahren nach Anspruch 5, wobei ein Teil der Luft, die die Joule-Thomson-Turbine (170) verlässt, dem Verdampfer (180) zu dessen Betrieb zugeführt und anschließend aus dem Verdampfer (180) abgeführt und separat von der übrigen Luft, die die Joule-Thomson-Turbine (170) verlässt, der Hochdrucksäule (111) zugeführt wird.
  7. Verfahren nach Anspruch 5, wobei die Luft, die die Joule-Thomson-Turbine (170) verlässt, im weiteren Verlauf vollständig dem Verdampfer (180) zu dessen Betrieb zugeführt und anschließend aus dem Verdampfer (180) abgeführt und der Hochdrucksäule (111) zugeführt wird.
  8. Verfahren nach Anspruch 1 oder 2, wobei die verflüssigte Luft, nachdem sie den Wärmetauscher (150) verlassen hat und bevor sie der Joule-Thomson-Turbine (170) zugeführt wird, durch einen weiteren Wärmetauscher oder einen Unterkühler (160) geführt wird, damit die Luft abgekühlt wird.
  9. Verfahren nach Anspruch 8, wobei der weitere Wärmetauscher oder der Unterkühler (160) für wenigstens einen weiteren Kühlvorgang in der Luftzerlegungsanlage verwendet wird.
  10. Luftzerlegungsanlage (200, 300, 400), bei der ein Teil verdichteter Einsatzluft, die in der Luftzerlegungsanlage (200, 300, 400) zerlegt wird, zunächst durch einen Hauptwärmetauscher (150) derart führbar ist, dass die Luft abgekühlt und verflüssigt wird, wobei im weiteren Verlauf eine Joule-Thomson-Turbine (170) vorgesehen ist, durch die die verflüssigte Luft derart führbar ist, dass sie entspannt wird, und wobei eine Hochdrucksäule (111) vorgesehen ist, welcher die Luft im weiteren Verlauf zuführbar ist,
    dadurch gekennzeichnet, dass eine Kühleinheit vorgesehen ist, mittels welcher die verflüssigte Luft, nachdem sie den Hauptwärmetauscher (150) verlassen hat und bevor sie der Joule-Thomson-Turbine (170) zugeführt wird, abkühlbar ist.
  11. Luftzerlegungsanlage (200, 300, 400) nach Anspruch 10, wobei die Kühleinheit als Verdampfer (180) ausgebildet ist, der insbesondere in einem Sumpf der Hochdrucksäule (111) der Luftzerlegungsanlage (200) angeordnet ist.
  12. Luftzerlegungsanlage (200, 300, 400) nach Anspruch 10, wobei die Kühleinheit als Verdampfer (180) ausgebildet ist, der separat, insbesondere außerhalb der Hochdrucksäule (111) der Luftzerlegungsanlage (300, 400), angeordnet ist
  13. Luftzerlegungsanlage (400) nach Anspruch 12, die derart ausgebildet ist, dass ein Teil der Luft, die die Joule-Thomson-Turbine (170) verlässt, dem Verdampfer (180) zu dessen Betrieb zuführbar und anschließend aus dem Verdampfer (180) abführbar und separat von der übrigen Luft, die die Joule-Thomson-Turbine (150) verlässt, der Hochdrucksäule (111) zuführbar ist.
  14. Luftzerlegungsanlage (300) nach Anspruch 12, die derart ausgebildet ist, dass die Luft, die die Joule-Thomson-Turbine verlässt, im weiteren Verlauf vollständig dem Verdampfer zu dessen Betrieb zuführbar und anschließend aus dem Verdampfer abführbar und der Hochdrucksäule zuführbar ist.
  15. Luftzerlegungsanlage (200, 300, 400) nach Anspruch 10, wobei die Kühleinheit als weiterer Wärmetauscher oder als Unterkühler (160) der Luftzerlegungsanlage (200, 300, 400), der insbesondere für wenigstens einen weiteren Kühlvorgang in der Luftzerlegungsanlage vorgesehen ist, ausgebildet ist.
EP16002236.4A 2016-10-18 2016-10-18 Verfahren zur luftzerlegung und luftzerlegungsanlage Withdrawn EP3312533A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16002236.4A EP3312533A1 (de) 2016-10-18 2016-10-18 Verfahren zur luftzerlegung und luftzerlegungsanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16002236.4A EP3312533A1 (de) 2016-10-18 2016-10-18 Verfahren zur luftzerlegung und luftzerlegungsanlage

Publications (1)

Publication Number Publication Date
EP3312533A1 true EP3312533A1 (de) 2018-04-25

Family

ID=57153232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16002236.4A Withdrawn EP3312533A1 (de) 2016-10-18 2016-10-18 Verfahren zur luftzerlegung und luftzerlegungsanlage

Country Status (1)

Country Link
EP (1) EP3312533A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620739A1 (de) * 2018-09-05 2020-03-11 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2020160844A1 (de) 2019-02-07 2020-08-13 Linde Gmbh Verfahren und anordnung zur bereitstellung eines ersten verfahrensprodukts und eines zweiten verfahrensprodukts

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE633686C (de) * 1934-02-11 1936-08-04 Messer & Co G M B H Verfahren zur kontinuierlichen Trocknung von komprimierten, durch Verfluessigung zu zerlegenden Gasgemischen
DE880893C (de) * 1949-04-08 1953-06-25 Adolf Messer G M B H Verfahren zur Zerlegung von Luft bei gleichzeitiger Gewinnung von fluessigem oder komprimiertem Sauerstoff
US2822675A (en) * 1954-04-23 1958-02-11 Air Liquide Production of gaseous oxygen under pressure
EP0644388A1 (de) * 1993-08-23 1995-03-22 The Boc Group, Inc. Tieftemperaturzerlegung von Luft
US5440885A (en) * 1993-02-09 1995-08-15 L'air Liquide, Societe Anonyme Pour L'etude Process and installation for the production of ultra-pure nitrogen by distillation of air
EP1310753A1 (de) * 2001-11-10 2003-05-14 Messer AGS GmbH Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP2980514A1 (de) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
WO2016015850A1 (de) 2014-07-31 2016-02-04 Linde Aktiengesellschaft Gewinnung eines luftprodukts in einer luftzerlegungsanlage mit kältespeichereinheit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE633686C (de) * 1934-02-11 1936-08-04 Messer & Co G M B H Verfahren zur kontinuierlichen Trocknung von komprimierten, durch Verfluessigung zu zerlegenden Gasgemischen
DE880893C (de) * 1949-04-08 1953-06-25 Adolf Messer G M B H Verfahren zur Zerlegung von Luft bei gleichzeitiger Gewinnung von fluessigem oder komprimiertem Sauerstoff
US2822675A (en) * 1954-04-23 1958-02-11 Air Liquide Production of gaseous oxygen under pressure
US5440885A (en) * 1993-02-09 1995-08-15 L'air Liquide, Societe Anonyme Pour L'etude Process and installation for the production of ultra-pure nitrogen by distillation of air
EP0644388A1 (de) * 1993-08-23 1995-03-22 The Boc Group, Inc. Tieftemperaturzerlegung von Luft
EP1310753A1 (de) * 2001-11-10 2003-05-14 Messer AGS GmbH Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP2980514A1 (de) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
WO2016015850A1 (de) 2014-07-31 2016-02-04 Linde Aktiengesellschaft Gewinnung eines luftprodukts in einer luftzerlegungsanlage mit kältespeichereinheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Industrial Gases Processing", 2006, WILEY-VCH, article "Cryogenic Rectification"

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620739A1 (de) * 2018-09-05 2020-03-11 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2020048634A1 (de) 2018-09-05 2020-03-12 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2020160844A1 (de) 2019-02-07 2020-08-13 Linde Gmbh Verfahren und anordnung zur bereitstellung eines ersten verfahrensprodukts und eines zweiten verfahrensprodukts

Similar Documents

Publication Publication Date Title
EP2980514A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP3164654B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3179187B1 (de) Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage
EP2963370B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP3101374A2 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2963369B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP3410050A1 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP2979051B1 (de) Verfahren und vorrichtung zur erzeugung von gasförmigem drucksauerstoff mit variablem energieverbrauch
EP3312533A1 (de) Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2053331A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
EP3339784A1 (de) Verfahren zum betreiben einer anlage und anordnung mit einer anlage
WO2014154339A2 (de) Verfahren zur luftzerlegung und luftzerlegungsanlage
WO2015003808A2 (de) Verfahren zur erzeugung zumindest eines luftprodukts, luftzerlegungsanlage, verfahren und vorrichtung zur erzeugung elektrischer energie
DE102013002094A1 (de) Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
EP3034974A1 (de) Verfahren und anlage zur verflüssigung von luft und zur speicherung und rückgewinnung von elektrischer energie
EP3696486A1 (de) Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
EP2906889B1 (de) Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft
EP1199532A1 (de) Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft
EP2784420A1 (de) Verfahren zur Luftzerlegung und Luftzerlegungsanlage
EP2835506A1 (de) Verfahren zur Erzeugung von elektrischer Energie und Energieerzeugungsanlage
EP2863156A1 (de) Verfahren zur Gewinnung wenigstens eines Luftprodukts in einer Luftbehandlungsanlage und Luftbehandlungsanlage
DE10147047A1 (de) Zwei-oder Drei-Turbinen-Kreislauf zur Erzeugung eines Flüssigkeitsprodukts
EP3870917B1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181026