WO2019127343A1 - 一种基于深冷精馏生产空气产品的方法及设备 - Google Patents

一种基于深冷精馏生产空气产品的方法及设备 Download PDF

Info

Publication number
WO2019127343A1
WO2019127343A1 PCT/CN2017/119773 CN2017119773W WO2019127343A1 WO 2019127343 A1 WO2019127343 A1 WO 2019127343A1 CN 2017119773 W CN2017119773 W CN 2017119773W WO 2019127343 A1 WO2019127343 A1 WO 2019127343A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
nitrogen
column
heat exchanger
liquid
Prior art date
Application number
PCT/CN2017/119773
Other languages
English (en)
French (fr)
Inventor
赵伯伟
布里格利亚阿兰
薛凤杰
Original Assignee
乔治洛德方法研究和开发液化空气有限公司
赵伯伟
布里格利亚阿兰
薛凤杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乔治洛德方法研究和开发液化空气有限公司, 赵伯伟, 布里格利亚阿兰, 薛凤杰 filed Critical 乔治洛德方法研究和开发液化空气有限公司
Priority to CN201780097978.6A priority Critical patent/CN111527361B/zh
Priority to PCT/CN2017/119773 priority patent/WO2019127343A1/zh
Priority to US16/958,809 priority patent/US11578916B2/en
Publication of WO2019127343A1 publication Critical patent/WO2019127343A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Definitions

  • the invention relates to the field of cryogenic air separation, and in particular to a method and a device for producing an air product based on cryogenic rectification.
  • cryogenic separation method also known as cryogenic rectification
  • the essence is the gas liquefaction technology.
  • Mechanical methods such as throttling or adiabatic expansion, are used to compress and cool the gas, and then rectify using different differences in boiling points of different gases to separate the gases.
  • the cryogenic air separation principle uses air as a raw material, which is compressed, purified, and exchanged by heat to liquefy the air into a liquid space.
  • the liquid air is mainly a mixture of liquid oxygen and liquid nitrogen. By using liquid oxygen and liquid nitrogen at different boiling points, they are separated by rectification to obtain nitrogen and oxygen.
  • cryogenic air separation is more suitable by using a nitrogen circulation process, and thus is generally popularized.
  • the nitrogen circulation process since there is no air booster, if a medium-high pressure air product is to be produced, the conventional practice is to use a separate air booster, thereby greatly increasing the production cost.
  • the present invention provides a method for producing an air product based on cryogenic rectification, comprising:
  • the second oxygen-enriched liquid air or liquid air is extracted from the first tower and pressurized by the first pump, and then exchanged with the second nitrogen gas in the main heat exchanger to output the air product.
  • the second oxygen-enriched liquid or liquid air is pressurized to a different pressure range by using a first pump of different heads to output air products of different pressure ranges.
  • the second oxygen-enriched liquid or liquid air is pressurized to a different pressure range by a series of different numbers of first pumps to output air products of different pressure ranges.
  • a portion of the second liquid nitrogen is drawn to the first pump through a regulating valve for mixing with the second oxygen-enriched liquid or liquid air in an appropriate ratio to adjust the proportion of nitrogen and oxygen in the output air product.
  • liquid oxygen is extracted from the main condensing evaporator, pressurized by the second pump, sent to the main heat exchanger for vaporization, and the oxygen product is output.
  • a portion of the second liquid nitrogen is withdrawn, supercooled by a cooler, and sent to the top of the second column.
  • the sewage liquid nitrogen is extracted in the middle of the first tower, and is sent to the second column as a reflux liquid after being cooled by the cold device; the nitrogen gas is extracted from the second tower, and after being heated by the cold device, further sent to the main heat exchanger. Reheating; extracting the fourth nitrogen from the top of the second tower, after being warmed by the cooler, further feeding to the main heat exchanger for reheating.
  • the pressure reducing device is a second nitrogen expander and/or a throttle valve.
  • the first nitrogen expander is braked by a nitrogen compressor; the second nitrogen expander is braked by a generator.
  • the present invention also provides an apparatus for producing an air product based on cryogenic rectification, comprising:
  • At least one main air compressor at least one main air compressor, an air pre-cooling system, an air purification system, at least one main heat exchanger, at least one nitrogen compressor, one subcooler, and at least one nitrogen expander;
  • the pipeline for outputting the second oxygen-enriched liquid or liquid air in the first tower through the first pump and the main heat exchanger is further included.
  • a conduit connected between the outlet of the pressure reducing device and the inlet of the first pump and containing the regulating valve is also included.
  • a line for outputting liquid oxygen in the main condensing evaporator through the second pump and the main heat exchanger is further included.
  • it further includes a line leading from the outlet of the pressure reducing device and connected to the top of the second tower through the cooler.
  • the method further comprises: connecting the dirty liquid nitrogen in the middle of the first tower to the pipeline of the second tower through the cooler; and connecting the sewage nitrogen of the second tower to the pipeline of the main heat exchanger through the cooler, and The fourth nitrogen at the top of the second column is connected to the main heat exchanger via a cooler.
  • the pressure reducing device is a second nitrogen expander and/or a throttle valve.
  • the first nitrogen expander is coupled to a nitrogen compressor; the second nitrogen expander is coupled to a generator.
  • the main heat exchanger comprises a high pressure plate heat exchanger and a low pressure plate heat exchanger, or an integral combined heat exchanger.
  • the raw material air and nitrogen compressed by the compressor (main air compressor and nitrogen compressor) are cooled by the main heat exchanger (high-pressure plate heat exchanger and low-pressure plate heat exchanger or integral combined heat exchanger) , sent to the rectification system for low temperature separation.
  • main heat exchanger high-pressure plate heat exchanger and low-pressure plate heat exchanger or integral combined heat exchanger
  • the rectification system (the first column, the second column, and the main condensing evaporator), products such as oxygen and nitrogen are obtained by low-temperature separation, and oxygen-rich liquid is also obtained at the bottom or near the rectification column.
  • the oxygen-enriched liquid air or liquid air in the first tower is lifted to a target pressure through a low-temperature liquid-air pump (first pump), and the pressure may be medium-pressure, or high-pressure, or even ultra-high pressure.
  • Air products of various pressures can be produced by selecting cryogenic liquid pumps with different heads or by connecting different numbers of low temperature night air pumps.
  • the medium pressure/high pressure/ultra-high pressure oxygen-enriched liquid air or liquid air exchanges with the high-pressure nitrogen gas (second nitrogen) pressurized by the nitrogen compressor to obtain medium pressure/high pressure/ultra high pressure air. product.
  • second nitrogen high-pressure nitrogen gas
  • liquid nitrogen second liquid nitrogen
  • the present invention has the following beneficial effects:
  • the invention adopts a liquid pump to raise the pressure of the oxygen-rich liquid or liquid air, and then is vaporized by the high-pressure nitrogen in the main heat exchanger to obtain the required medium-high pressure air product.
  • the air booster has revolutionized the way in which high- and medium-pressure air products are produced in a nitrogen cycle. The importance of this is that it can significantly reduce production costs while providing greater flexibility.
  • this method can increase the oxygen extraction rate of the device, thereby improving the energy efficiency level.
  • FIG. 1 is a schematic view showing the structure of an apparatus for extracting a part of an oxygen-rich liquid space in a first tower to produce an air product according to the present invention
  • FIG. 2 is a schematic view showing the structure of an apparatus for extracting liquid air in a first tower to produce an air product according to the present invention.
  • feedstock air means a mixture mainly comprising oxygen and nitrogen.
  • oil nitrogen covers a gaseous fluid having a nitrogen content generally not less than 95 mole percent; the term “soil liquid nitrogen” refers to a liquid fluid having a molar percentage of nitrogen generally greater than 95.
  • oxygen-rich liquid space refers to a liquid fluid having a molar percentage of oxygen greater than 30; the term “liquid air” refers to a liquid fluid having a molar percentage of oxygen of not more than 30; the term “liquid oxygen” covers a liquid having a molar percentage of oxygen greater than 99.
  • the fluid, and the "liquid oxygen” content of oxygen is higher than the "oxygen-rich liquid”.
  • the cryogenic rectification of the present invention is a rectification process carried out at least partially at a temperature of 150 K or less.
  • “tower” herein is meant a distillation or fractionation column or zone in which the liquid phase and the gas phase are countercurrently contacted to effectively separate the fluid mixture.
  • the "first column” in the present invention generally has an operating pressure of 5 to 6.5 bara, which is higher than the normal operating pressure of the "second column” of 1.1 to 1.5 bara.
  • the second tower can be installed vertically at the top of the first tower or two towers can be installed side by side.
  • the "first tower” is also commonly referred to as the medium pressure tower or the lower tower, and the “second tower” is also generally referred to as the low pressure tower or the upper tower.
  • the main condensing evaporator is generally located at the bottom of the "second column", which can obtain pure liquid nitrogen at the top of the first column by condensing the pure nitrogen produced at the top of the first column with the pure liquid oxygen generated at the bottom of the second column. At the same time, the pure liquid oxygen is partially evaporated.
  • the type of the main condensing evaporator includes a shell-and-tube type, a falling film type, a bath type, and the like, and a dip-type condensing evaporator can be employed in the present invention.
  • the air pre-cooling system of the present invention is used to pre-cool the high temperature air (70-120 ° C) discharged from the main air compressor to a temperature suitable for entering the air purification system (typically 10-25 ° C).
  • the high-temperature air is generally in contact with the ordinary circulating cooling water and the low-temperature water (generally 5-20 ° C) in the air cooling tower to achieve heat transfer.
  • the low temperature water can be obtained by heat exchange of ordinary circulating cooling water with a gas product or by-product produced by an air separation plant, such as a nitrogen gas, or by a freezer.
  • the air purification system refers to a purification device that removes dust, water vapor, CO 2 , hydrocarbons, and the like in the air.
  • a pressure swing adsorption mode is generally employed in which the adsorbent is optionally a molecular sieve plus alumina or only a molecular sieve.
  • the compressed, pre-cooled, purified feed air and the gas and/or liquid product produced by rectification are subjected to non-contact heat exchange and are cooled to a rectification temperature close to or equal to one column, generally low At 150K.
  • Common main heat exchangers include split or integrated.
  • the main heat exchanger is divided into a high pressure (>20 bara pressure) and a low pressure ( ⁇ 20 bara pressure) heat exchanger according to a suitable pressure range.
  • a high pressure plate heat exchanger and a low pressure plate heat exchanger or an integral combined heat exchanger can be used at the same time.
  • the ultra-low pressure is generally 1-2 bara
  • the low pressure is generally 2-10 bara
  • the medium pressure is generally 10-50 bara
  • the high pressure is generally 50-90 bara
  • the ultra-high pressure is generally 90 bara or more
  • the first nitrogen pressure is generally 2- At 10 bara
  • the second nitrogen pressure is typically 50-90 bara
  • the third nitrogen pressure is typically 50-90 bara
  • the fourth nitrogen pressure is typically 1-2 bara.
  • the feed air 101 is pressurized to 6 bara by the main air compressor 4, and then purified by the pre-cooling system 5 pre-cooling and purification system 6, and then sent to the low-pressure plate heat exchanger 72 and the second from the rectification.
  • Ultra-low pressure nitrogen (fourth nitrogen 105) at 1.1 bara at the top of column 2 and sewage nitrogen 112 at 1.15 bara at the top of second column 2, optionally with low pressure high purity nitrogen from the top of the first column 1 at 5.2 bara (first nitrogen 102)
  • the indirect heat exchange is carried out, and after cooling to about -176 ° C, it is sent to the lower portion of the first column 1 for rectification.
  • a portion of the first nitrogen gas 102 withdrawn from the top of the first column 1 is optionally sent to the low pressure plate heat exchanger 72 for temperature rise and then pressurized by the fourth nitrogen gas compressor 414 to obtain a medium pressure high purity nitrogen product 114; Another portion of the nitrogen gas 102 is heated by the high pressure plate heat exchanger 71 to obtain 5.6 bara of low pressure and high purity nitrogen gas, and then pressurized by the first nitrogen gas compressor 411 to obtain 40 bara of medium pressure high purity nitrogen gas, a part of which is sent to the second nitrogen gas compression. Machine 412, another portion is fed to a third nitrogen compressor 413.
  • the second nitrogen compressor 412 continuously pressurizes the medium-pressure high-purity nitrogen gas from the first nitrogen gas compressor 411 to obtain 80 bara of high-pressure high-purity nitrogen gas 1031 (second nitrogen gas), and then sent to the high-pressure plate heat exchanger 71 to be cooled to obtain 80 bara.
  • the high purity liquid nitrogen (first liquid nitrogen 1061) was expanded and depressurized by the second nitrogen expander 122 to obtain 6 bara of high purity liquid nitrogen (second liquid nitrogen 1062).
  • a portion of the second liquid nitrogen 1062 is optionally further expanded and decompressed via a throttle valve 31 to obtain 5.3 bara of high purity liquid nitrogen and sent to the top of the first column 1 as a reflux; the second liquid nitrogen The other portion of 1062 is subcooled by cooler 8 and sent to the top of second column 2 for reflux.
  • the third nitrogen compressor 413 further pressurizes the medium-pressure high-purity nitrogen gas from the first nitrogen compressor 411 to obtain 60 bara of high-pressure high-purity nitrogen gas 1032 (second nitrogen), and then partially cools the high-pressure plate heat exchanger 71 to obtain 60 bara.
  • the high pressure high purity nitrogen (third nitrogen 104), after expansion by the first nitrogen expander 121, gives 5.2 bara of high purity nitrogen to the top of the first column 1, optionally to the top of the second column 2.
  • a portion of 6 bara of 37% O 2 oxygen-rich liquid space (first oxygen-enriched liquid space 1081) was withdrawn from the bottom of the first column 1, passed through the cooler 8 and sent to the second column 2 as a reflux liquid.
  • Another portion of 6bara of 37% O 2 oxygen-rich liquid space (second oxygen-enriched liquid space 1082) is pumped from the bottom of the first column 1 to be pressurized by the first pump 21 to obtain 80 bara of high-pressure oxygen-rich liquid space, and then sent to a high-pressure plate type.
  • an 80 bara high pressure air product 109 is obtained.
  • a portion of the second liquid nitrogen 1062 depressurized by the second nitrogen expander 122 is mixed with the second oxygen-enriched liquid space 1082 via the regulator valve 32 to thereby adjust the nitrogen oxides in the output high pressure air product 109.
  • proportion. 1.4 bara of liquid oxygen 107 (-180 ° C) is withdrawn from the main condensing evaporator 3, and pressurized by the second pump 22 to obtain 80 bara of high-pressure liquid oxygen 107, which is sent to a high-pressure plate heat exchanger 71 to obtain 80 bara of high-pressure oxygen.
  • An ultra-low pressure nitrogen gas (fourth nitrogen gas 105) of 1.1 bara was withdrawn from the top of the first column 1 and then heated through the cooler 8 and the low-pressure plate heat exchanger 72 to obtain ultra-low pressure nitrogen gas.
  • the dirty liquid nitrogen 111 is withdrawn from the first column 1 and passed through the cooler 8 to be cooled, and then sent to the second column 2 as a reflux liquid.
  • the 1.15 bara of the contaminated nitrogen gas 112 is withdrawn from the second column 2 and sent to the subcooler 8 and the low pressure plate heat exchanger 72 for reheating.
  • the second oxygen-enriched liquid space 1082 extracted from the bottom of the first column 1 is pressurized to a different pressure range by the first pump 21 of different heads to output air products 109 of different pressure ranges. .
  • the second oxygen-enriched liquid space 1082 is pressurized to a different pressure range by a series of different numbers of first pumps 21 to output air products 109 of different pressure ranges.
  • the first liquid nitrogen 1061 may be expanded and depressurized by the second nitrogen expander 122 and/or the throttle valve 31 and sent to the top of the first column 1 and/or the second column 2.
  • the high pressure plate heat exchanger 71 and the low pressure plate heat exchanger 72 may be replaced by an integral combined heat exchanger as the main heat exchanger.
  • the first nitrogen expander 121 is braked by a third nitrogen compressor 413 connected thereto; the second nitrogen expander 122 is braked by a generator 9 connected thereto.
  • various materials are flowed as a transport medium through a line connected between the devices.
  • the main difference between the embodiment shown in Fig. 2 and Fig. 1 is that the raw material for producing the air product 109 is different.
  • the liquid air 113 in the first column 1 is selected instead of the oxygen-enriched liquid at the bottom of the first column 1 in Fig. 1.
  • the air is introduced into the first pump 21 for supercharging.
  • the other parts in the embodiment shown in Fig. 2 are the same as the embodiment shown in Fig. 1. Both of them are examples of the implementation of the present invention, but the spirit and scope of the present invention are not limited at all. Specifically, in the embodiment shown in FIG.
  • the feed air 101 is pressurized to 6 bara by the main air compressor 4, and then purified by the pre-cooling system 5 pre-cooling and purification system 6, and then sent to the low-pressure plate heat exchanger.
  • 72 with ultra-low pressure nitrogen (fourth nitrogen 105) from the top of the second column 2 at 1.1 bara and a nitrogen gas 112 at the upper portion of the second column 2 at 1.15 bara, optionally with a low pressure of 5.2 bara from the top of the first column 1
  • the high purity nitrogen gas (first nitrogen gas 102) undergoes indirect heat exchange, is cooled to about -176 ° C, and is sent to the lower portion of the first column 1 for rectification.
  • a portion of the first nitrogen gas 102 withdrawn from the top of the first column 1 is optionally sent to the low pressure plate heat exchanger 72 for temperature rise and then pressurized by the fourth nitrogen gas compressor 414 to obtain a medium pressure high purity nitrogen product 114; Another portion of the nitrogen gas 102 is heated by the high pressure plate heat exchanger 71 to obtain 5.6 bara of low pressure and high purity nitrogen gas, and then pressurized by the first nitrogen gas compressor 411 to obtain 40 bara of medium pressure high purity nitrogen gas, a part of which is sent to the second nitrogen gas compression. Machine 412, another portion is fed to a third nitrogen compressor 413.
  • the second nitrogen compressor 412 continuously pressurizes the medium-pressure high-purity nitrogen gas from the first nitrogen gas compressor 411 to obtain 80 bara of high-pressure high-purity nitrogen gas 1031 (second nitrogen gas), and then sent to the high-pressure plate heat exchanger 71 to be cooled to obtain 80 bara.
  • the high purity liquid nitrogen (first liquid nitrogen 1061) was expanded and depressurized by the second nitrogen expander 122 to obtain 6 bara of high purity liquid nitrogen (second liquid nitrogen 1062).
  • a portion of the second liquid nitrogen 1062 is optionally further expanded and decompressed via a throttle valve 31 to obtain 5.3 bara of high purity liquid nitrogen and sent to the top of the first column 1 as a reflux; the second liquid nitrogen The other portion of 1062 is subcooled by cooler 8 and sent to the top of second column 2 for reflux.
  • the third nitrogen compressor 413 further pressurizes the medium-pressure high-purity nitrogen gas from the first nitrogen compressor 411 to obtain 60 bara of high-pressure high-purity nitrogen gas 1032 (second nitrogen), and then partially cools the high-pressure plate heat exchanger 71 to obtain 60 bara.
  • the high pressure high purity nitrogen (third nitrogen 104), after expansion by the first nitrogen expander 121, gives 5.2 bara of high purity nitrogen to the top of the first column 1, optionally to the top of the second column 2.
  • 6 bara of oxygen-rich liquid space containing 37% O 2 (first oxygen-enriched liquid space 1081) was taken, cooled by the cooler 8 and sent to the second column 2 as a reflux liquid.
  • Extracting 6 bara of liquid air 113 from the first column 1 (the molar percentage of oxygen is not more than 30) is pressurized by the first pump 21 to obtain 80 bara of high-pressure oxygen-rich liquid space, and then sent to the high-pressure plate heat exchanger 71 to obtain 80 bara.
  • High pressure air product 109 is pressurized by the first pump 21 to obtain 80 bara of high-pressure oxygen-rich liquid space, and then sent to the high-pressure plate heat exchanger 71 to obtain 80 bara.
  • a portion of the second liquid nitrogen 1062 depressurized by the second nitrogen expander 122 is mixed with the liquid air 113 via the regulating valve 32 to thereby adjust the ratio of nitrogen to oxygen in the output high pressure air product 109.
  • 1.4 bara of liquid oxygen 107 (-180 ° C) is withdrawn from the main condensing evaporator 3, and pressurized by the second pump 22 to obtain 80 bara of high-pressure liquid oxygen 107, which is sent to a high-pressure plate heat exchanger 71 to obtain 80 bara of high-pressure oxygen.
  • An ultra-low pressure nitrogen gas (fourth nitrogen gas 105) of 1.1 bara was withdrawn from the top of the first column 1 and then heated through the cooler 8 and the low-pressure plate heat exchanger 72 to obtain ultra-low pressure nitrogen gas.
  • the dirty liquid nitrogen 111 is withdrawn from the first column 1 and passed through the cooler 8 to be cooled, and then sent to the second column 2 as a reflux liquid.
  • the 1.15 bara of the contaminated nitrogen gas 112 is withdrawn from the second column 2 and sent to the subcooler 8 and the low pressure plate heat exchanger 72 for reheating.
  • the liquid air 113 drawn from the bottom of the first column 1 is pressurized to a different pressure range by the first pump 21 of different heads to output air products 109 of different pressure ranges.
  • the liquid air 113 is pressurized to a different pressure range by a series of different numbers of first pumps 21 to output air products 109 of different pressure ranges.
  • the first liquid nitrogen 1061 may be expanded and depressurized by the second nitrogen expander 122 and/or the throttle valve 31 and sent to the top of the first column 1 and/or the second column 2.
  • the high pressure plate heat exchanger 71 and the low pressure plate heat exchanger 72 may be replaced by an integral combined heat exchanger as the main heat exchanger.
  • the first nitrogen expander 121 is braked by a third nitrogen compressor 413 connected thereto; the second nitrogen expander 122 is braked by a generator 9 connected thereto.
  • various materials are flowed as a transport medium through a line connected between the devices.

Abstract

一种基于深冷精馏生产空气产品的方法及设备,通过压缩机(4)压缩后的原料空气(101)及氮气经过主换热器降温后,送入到精馏系统进行低温分离。在精馏系统中,通过低温分离,得到氧氮等产品,同时也将在精馏塔底部或附近得到富氧液空(1081,1082)。将精馏系统中的富氧液空(1081,1082)或液态空气通过低温液空泵提升到目标压力后送出,通过选择不同扬程的低温液空泵或串联不同数量的低温液空泵,可以生产各种压力的空气产品。采用这种方法,可以避免被迫设置额外的空气压缩机,彻底改变了氮气循环流程中生产中高压空气产品的方法,其重要性在于能够极大的降低生产成本,同时还能够具有更大的灵活性。同时采用这种方法,可以提高装置的氧气提取率,从而提高能效水平。

Description

一种基于深冷精馏生产空气产品的方法及设备 技术领域
本发明涉及深冷空气分离领域,具体涉及一种基于深冷精馏生产空气产品的方法及设备。
背景技术
深冷分离法又称低温精馏法,1902年由林德教授发明。实质就是气体液体化技术。通常采用机械方法,如用节流膨胀或绝热膨胀等方法,把气体压缩、冷却后,利用不同气体沸点上的差异进行精馏,使不同气体得到分离。
深冷法空气分离原理以空气为原料,经过压缩、净化、用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同,通过精馏,使它们分离来获得氮气和氧气。
在特定的煤化工项目中,尤其是合成氨工厂,往往需要大量的氮气产品,在这种情况下,深冷法空气分离采用氮气循环流程比较适合,因而被普遍推广。但是氮气循环流程中,由于没有空气增压机,如果要生产中高压空气产品,以往通常的做法是采用独立的空气增压机,故而大大增加了生产成本。
发明的公开
本发明的目的是提供一种基于深冷精馏生产空气产品的方法及设备,以极大地降低生产成本,同时提供更大的生产灵活性。
为达到上述目的,本发明提供了一种基于深冷精馏生产空气产品的方法,包括:
(a)提供第一塔和第二塔,所述第一塔的顶部和第二塔的底部通过主冷凝蒸发器以热量交换的方式连通,且第一塔的操作压力高于第二塔的操作压力;
(b)提供至少一个主空气压缩机,一个空气预冷系统,一个空气纯化系 统,至少一个主换热器,至少一个氮气压缩机,一个过冷器,及,至少一个氮气膨胀机;
(c)将经过主空气压缩机增压后的原料空气进一步预冷和纯化后,在主换热器中冷却后送入第一塔进行精馏;
(d)在第一塔或第二塔的顶部抽取第一氮气,经主换热器复热后,通过至少一个氮气压缩机增压后形成第二氮气;所述第二氮气中的至少一部分在主换热器冷却后形成第一液氮,经减压装置减压后形成第二液氮并送入第一塔和/或第二塔的顶部;所述第二氮气中的至少另一部分在主换热器部分冷却后形成第三氮气,经第一氮气膨胀机膨胀后送入第一塔和/或第二塔的顶部;
(e)从第一塔中抽取第一富氧液空经过冷器过冷后送入第二塔作为回流液;
其中,从第一塔中抽取第二富氧液空或液态空气经第一泵增压后在主换热器中与所述第二氮气换热后输出空气产品。
可选地,通过使用不同扬程的第一泵将第二富氧液空或液态空气增压至不同压力范围,以输出不同压力范围的空气产品。
可选地,所述第二富氧液空或液态空气通过串联不同数量的第一泵增压至不同压力范围,以输出不同压力范围的空气产品。
可选地,将第二液氮中的一部分通过调节阀引出至第一泵,用以和第二富氧液空或液态空气按适当比例混合,进而调节输出空气产品中氮氧的比例。
可选地,在主冷凝蒸发器中抽取液氧,经第二泵增压后送入主换热器汽化后,输出氧气产品。
可选地,将第二液氮中的一部分引出,经过冷器过冷后送入第二塔顶部。
可选地,在第一塔中部抽取污液氮,经过冷器过冷后送入第二塔作为回流液;从第二塔抽取污氮气,经过冷器升温后,进一步送入主换热器复热;从第二塔顶部抽取第四氮气,经过冷器升温后,进一步送入主换热器复热。
可选地,所述减压装置为第二氮气膨胀机和/或节流阀。
可选地,所述第一氮气膨胀机通过氮气压缩机制动;所述第二氮气膨胀机通过发电机制动。
此外,本发明还提供了一种基于深冷精馏生产空气产品的设备,包括:
(a)第一塔和第二塔,所述第一塔的顶部和第二塔的底部通过主冷凝蒸 发器以热量交换的方式连通,且第一塔的操作压力高于第二塔的操作压力;
(b)至少一个主空气压缩机,一个空气预冷系统,一个空气纯化系统,至少一个主换热器,至少一个氮气压缩机,一个过冷器,及,至少一个氮气膨胀机;
(c)将原料空气经主空气压缩机、空气预冷系统、空气纯化系统和主换热器连入第一塔的管路;
(d)将第一塔或第二塔顶部的第一氮气,经主换热器、至少一个氮气压缩机、再次经主换热器、并分别经第一氮气膨胀机或减压装置连入第一塔和/或第二塔顶部的管路;
(e)将第一塔中的第一富氧液空经过冷器连入第二塔的管路;
其中,还包括将第一塔中的第二富氧液空或液态空气经第一泵和主换热器输出的管路。
可选地,还包括在减压装置的出口和第一泵的入口之间相连并包含有调节阀的管路。
可选地,还包括将主冷凝蒸发器中的液氧经第二泵和主换热器输出的管路。
可选地,还包括从减压装置的出口引出,经过冷器连入第二塔顶部的管路。
可选地,还包括将第一塔中部的污液氮经过冷器连入第二塔的管路;将第二塔的污氮气经过冷器连入主换热器的管路,及,将第二塔顶部的第四氮气经过冷器连入主换热器的管路。
可选地,所述减压装置为第二氮气膨胀机和/或节流阀。
可选地,所述第一氮气膨胀机与氮气压缩机相连;所述第二氮气膨胀机与发电机相连。
可选地,主换热器包括高压板式换热器和低压板式换热器,或整体组合式换热器。
本发明通过压缩机(主空气压缩机和氮气压缩机)压缩后的原料空气及氮气经过主换热器(高压板式换热器和低压板式换热器,或整体组合式换热器)降温后,送入到精馏系统进行低温分离。
在精馏系统(第一塔、第二塔及主冷凝蒸发器)中,通过低温分离,得 到氧氮等产品,同时也将在精馏塔底部或附近得到富氧液空。
将第一塔中的富氧液空或液态空气通过低温液空泵(第一泵)提升到目标压力后送出,该压力可以是中压,或者高压,甚至超高压。通过选择不同扬程的低温液空泵或者串联不同数量的低温夜空泵,可以生产各种压力的空气产品。
在主换热器中,这股中压/高压/超高压富氧液空或液态空气与氮气压缩机增压后的高压氮气(第二氮气)换热,得到中压/高压/超高压空气产品。
如果需要调节空气产品中氮氧比例,可通过与来自减压装置后的液氮(第二液氮)按适当比例混合,从而得到需要的氮氧比例。
相对于现有技术,本发明具有以下有益效果:
本发明采用了液体泵提升富氧液空或液态空气的压力,然后在主换热器里被高压氮气汽化,从而得到需要的中高压空气产品,采用这种方法,可以避免被迫设置额外的空气增压机,彻底改变了氮气循环流程中生产中高压空气产品的方法,其重要性在于能够极大的降低生产成本,同时还能够具有更大的灵活性。同时采用这种方法,可以提高装置的氧气提取率,从而提高能效水平。
附图的简要说明
图1为本发明采用抽取第一塔中部分富氧液空以生产空气产品的设备结构示意图;
图2为本发明采用抽取第一塔中液态空气以生产空气产品的设备结构示意图。
实现本发明的最佳方式
以下结合附图通过具体实施例对本发明作进一步的描述,这些实施例仅用于说明本发明,并不是对本发明保护范围的限制。
在本发明中,术语“原料空气”指主要包含氧和氮的混合物。
术语“污氮气”覆盖了氮含量一般不低于95摩尔百分比的气态流体;术语“污液氮”指氮的摩尔百分比一般大于95的液态流体。
术语“富氧液空”指氧的摩尔百分比大于30的液态流体;术语“液态 空气”指氧的摩尔百分比不大于30的液态流体;术语“液氧”覆盖了氧的摩尔百分比大于99的液态流体,并且“液氧”中氧的含量高于“富氧液空”。
本发明的低温精馏是至少部分在温度为150K或低于150K下进行的精馏方法。此处的“塔”意指一蒸馏或分馏塔或区,其中液相和气相逆流接触以有效地分离流体混合物。本发明中的“第一塔”的操作压力一般为5~6.5bara,高于“第二塔”的一般操作压力1.1~1.5bara。第二塔可以垂直地安装在第一塔顶部或两个塔并排安装。“第一塔”一般也被称为中压塔或下塔,“第二塔”一般也被称为低压塔或上塔。主冷凝蒸发器一般位于“第二塔”的底部,它可以使第一塔顶部产生的纯氮气经与第二塔底部产生的纯液氧换热冷凝后在第一塔的顶部得到纯液氮,同时将纯液氧部分蒸发。主冷凝蒸发器的种类包括管壳式,降膜式,浸浴式等,本发明中可采用浸浴式冷凝蒸发器。
本发明中的空气预冷系统用来将主空气压缩机排出的高温空气(70-120℃)预冷到适合进入空气纯化系统的温度(一般为10-25℃)。高温空气一般在空冷塔中与普通循环冷却水及低温的水(一般为5-20℃)接触换热从而达到冷却的目的。低温的水可以通过将普通循环冷却水与由空分设备产生的气体产品或副产品,比如污氮气接触换热或通过冷冻机来获得。
空气纯化系统是指将空气中的灰尘、水蒸汽、CO 2、碳氢化合物等去除的净化装置。在本发明中一般采用变压吸附的方式,其中的吸附剂可选择地为分子筛加氧化铝或仅用分子筛。
在主换热器中,经过压缩、预冷、纯化的原料空气和精馏产生的气体和/或液体产品进行非接触换热,并被冷却到接近或等于一塔的精馏温度,一般低于150K。常见的主换热器包括分体式或一体式等方式。主换热器根据适合的压力范围分为高压(>20bara压力)和低压(<20bara压力)换热器。本发明中可同时使用高压板式换热器和低压板式换热器或整体组合式换热器。
在本发明中,超低压一般为1-2bara,低压一般为2-10bara,中压一般为10-50bara,高压一般为50-90bara,超高压一般为90bara以上;第一氮气压力一般为2-10bara,第二氮气压力一般为50-90bara,第三氮气压力一般为50-90bara,第四氮气压力一般为1-2bara。
如图1所示,原料空气101经过主空气压缩机4增压至6bara后进而通 过预冷系统5预冷和纯化系统6纯化后,送入低压板式换热器72与精馏后来自第二塔2顶部1.1bara的超低压氮气(第四氮气105)和第二塔2上部1.15bara的污氮气112,可选择地与来自第一塔1顶部5.2bara的低压高纯氮气(第一氮气102)进行间接换热,冷却至约为-176℃后送入第一塔1的下部进行精馏。从第一塔1顶部抽取的第一氮气102中的一部分可选择地送入低压板式换热器72升温后经第四氮气压缩机414增压得到中压高纯氮气产品114;所述第一氮气102的另一部分经高压板式换热器71升温后得到5.6bara的低压高纯氮气,进而经过第一氮气压缩机411增压得到40bara的中压高纯氮气,其中一部分送入第二氮气压缩机412,另一部分送入第三氮气压缩机413。第二氮气压缩机412将来自第一氮气压缩机411的中压高纯氮气继续增压得到80bara的高压高纯氮气1031(第二氮气),进而送入高压板式换热器71冷却后得到80bara的高纯液氮(第一液氮1061),并经第二氮气膨胀机122膨胀减压后得到6bara的高纯液氮(第二液氮1062)。所述第二液氮1062中的一部分可选择地经节流阀31进一步膨胀减压后得到5.3bara的高纯液氮并送入第一塔1的顶部做回流液;所述第二液氮1062的另一部分经过冷器8过冷后送入第二塔2的顶部做回流液。第三氮气压缩机413将来自第一氮气压缩机411的中压高纯氮气继续增压得到60bara的高压高纯氮气1032(第二氮气),进而经高压板式换热器71部分冷却后得到60bara的高压高纯氮(第三氮气104),在通过第一氮气膨胀机121膨胀后得到5.2bara的高纯氮送入第一塔1的顶部,可选择地送入第二塔2的顶部。从第一塔1底部抽取一部分6bara含37%O 2的富氧液空(第一富氧液空1081),经过冷器8过冷后送入第二塔2做回流液。从第一塔1底部抽取另一部分6bara含37%O 2的富氧液空(第二富氧液空1082)经第一泵21增压得到80bara的高压富氧液空,进而送入高压板式换热器71升温后得到80bara的高压空气产品109。可选地,将经第二氮气膨胀机122减压后的第二液氮1062中的一部分经调节阀32与第二富氧液空1082混合,进而调节输出的高压空气产品109中氮氧的比例。从主冷凝蒸发器3中抽取1.4bara的液氧107(-180℃),经第二泵22增压得到80bara的高压液氧107,进而送入高压板式换热器71升温得到80bara的高压氧气产品110。从第一塔1顶部抽取1.1bara的超低压氮气(第四氮气105)依次经过冷器8和低压板式换热器72升温后得到超低压氮气。从第一塔1中抽取污 液氮111经过冷器8过冷后送入第二塔2做回流液。从第二塔2中抽取1.15bara的污氮气112依次送入过冷器8和低压板式换热器72复热。
在本实施例中,可选择地,将从第一塔1底部抽取的第二富氧液空1082通过不同扬程的第一泵21增压至不同压力范围,以输出不同压力范围的空气产品109。也可选择地,所述第二富氧液空1082通过串联不同数量的第一泵21增压至不同压力范围,以输出不同压力范围的空气产品109。可选择地,所述第一液氮1061可以通过第二氮气膨胀机122和/或节流阀31膨胀减压后送入第一塔1和/或第二塔2的顶部。可选择地,所述高压板式换热器71和低压板式换热器72可由整体组合式换热器代替作为主换热器。所述第一氮气膨胀机121通过与其相连的第三氮气压缩机413制动;所述第二氮气膨胀机122通过与其相连的发电机9制动。在本实施例中,各种物料皆是通过设备之间所连接的管路作为输送介质进行流动。
图2所示的实施例与图1的主要区别在于生产空气产品109的原料不同,在图2中,选择第一塔1中的液态空气113替代图1中第一塔1底部的富氧液空引入第一泵21中进行增压。图2所示的实施例中的其它部分与图1所示的实施例相同。二者都是本发明实现的一种示例,但不对本发明的精神和范围进行任何限定。具体说来,在图2所示的实施例中,原料空气101经过主空气压缩机4增压至6bara后进而通过预冷系统5预冷和纯化系统6纯化后,送入低压板式换热器72与精馏后来自第二塔2顶部1.1bara的超低压氮气(第四氮气105)和第二塔2上部1.15bara的污氮气112,可选择地与来自第一塔1顶部5.2bara的低压高纯氮气(第一氮气102)进行间接换热,冷却至约为-176℃后送入第一塔1的下部进行精馏。从第一塔1顶部抽取的第一氮气102中的一部分可选择地送入低压板式换热器72升温后经第四氮气压缩机414增压得到中压高纯氮气产品114;所述第一氮气102的另一部分经高压板式换热器71升温后得到5.6bara的低压高纯氮气,进而经过第一氮气压缩机411增压得到40bara的中压高纯氮气,其中一部分送入第二氮气压缩机412,另一部分送入第三氮气压缩机413。第二氮气压缩机412将来自第一氮气压缩机411的中压高纯氮气继续增压得到80bara的高压高纯氮气1031(第二氮气),进而送入高压板式换热器71冷却后得到80bara的高纯液氮(第一液氮1061),并经第二氮气膨胀机122膨胀减压后得到6bara的高纯液氮(第二液 氮1062)。所述第二液氮1062中的一部分可选择地经节流阀31进一步膨胀减压后得到5.3bara的高纯液氮并送入第一塔1的顶部做回流液;所述第二液氮1062的另一部分经过冷器8过冷后送入第二塔2的顶部做回流液。第三氮气压缩机413将来自第一氮气压缩机411的中压高纯氮气继续增压得到60bara的高压高纯氮气1032(第二氮气),进而经高压板式换热器71部分冷却后得到60bara的高压高纯氮(第三氮气104),在通过第一氮气膨胀机121膨胀后得到5.2bara的高纯氮送入第一塔1的顶部,可选择地送入第二塔2的顶部。从第一塔1底部抽取6bara含37%O 2的富氧液空(第一富氧液空1081),经过冷器8过冷后送入第二塔2做回流液。从第一塔1中抽取6bara的液态空气113(氧的摩尔百分比不大于30)经第一泵21增压得到80bara的高压富氧液空,进而送入高压板式换热器71升温后得到80bara的高压空气产品109。可选地,将经第二氮气膨胀机122减压后的第二液氮1062中的一部分经调节阀32与液态空气113混合,进而调节输出的高压空气产品109中氮氧的比例。从主冷凝蒸发器3中抽取1.4bara的液氧107(-180℃),经第二泵22增压得到80bara的高压液氧107,进而送入高压板式换热器71升温得到80bara的高压氧气产品110。从第一塔1顶部抽取1.1bara的超低压氮气(第四氮气105)依次经过冷器8和低压板式换热器72升温后得到超低压氮气。从第一塔1中抽取污液氮111经过冷器8过冷后送入第二塔2做回流液。从第二塔2中抽取1.15bara的污氮气112依次送入过冷器8和低压板式换热器72复热。
在本实施例中,可选择地,将从第一塔1底部抽取的液态空气113通过不同扬程的第一泵21增压至不同压力范围,以输出不同压力范围的空气产品109。也可选择地,所述液态空气113通过串联不同数量的第一泵21增压至不同压力范围,以输出不同压力范围的空气产品109。可选择地,所述第一液氮1061可以通过第二氮气膨胀机122和/或节流阀31膨胀减压后送入第一塔1和/或第二塔2的顶部。可选择地,所述高压板式换热器71和低压板式换热器72可由整体组合式换热器代替作为主换热器。所述第一氮气膨胀机121通过与其相连的第三氮气压缩机413制动;所述第二氮气膨胀机122通过与其相连的发电机9制动。在本实施例中,各种物料皆是通过设备之间所连接的管路作为输送介质进行流动。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (17)

  1. 一种基于深冷精馏生产空气产品的方法,包括:
    (a)提供第一塔和第二塔,所述第一塔的顶部和第二塔的底部通过主冷凝蒸发器以热量交换的方式连通,且第一塔的操作压力高于第二塔的操作压力;
    (b)提供至少一个主空气压缩机,一个空气预冷系统,一个空气纯化系统,至少一个主换热器,至少一个氮气压缩机,一个过冷器,及,至少一个氮气膨胀机;
    (c)将经过主空气压缩机增压后的原料空气进一步预冷和纯化后,在主换热器中冷却后送入第一塔进行精馏;
    (d)在第一塔或第二塔的顶部抽取第一氮气,经主换热器复热后,通过至少一个氮气压缩机增压后形成第二氮气;所述第二氮气中的至少一部分在主换热器冷却后形成第一液氮,经减压装置减压后形成第二液氮并送入第一塔和/或第二塔的顶部;所述第二氮气中的至少另一部分在主换热器部分冷却后形成第三氮气,经第一氮气膨胀机膨胀后送入第一塔和/或第二塔的顶部;
    (e)从第一塔中抽取第一富氧液空经过冷器过冷后送入第二塔作为回流液;
    其特征在于,从第一塔中抽取第二富氧液空或液态空气经第一泵增压后在主换热器中与所述第二氮气换热后输出空气产品。
  2. 如权利要求1所述的基于深冷精馏生产空气产品的方法,其特征在于,通过使用不同扬程的第一泵将第二富氧液空或液态空气增压至不同压力范围,以输出不同压力范围的空气产品。
  3. 如权利要求1所述的基于深冷精馏生产空气产品的方法,其特征在于,所述第二富氧液空或液态空气通过串联不同数量的第一泵增压至不同压力范围,以输出不同压力范围的空气产品。
  4. 如权利要求1所述的基于深冷精馏生产空气产品的方法,其特征在于,将第二液氮中的一部分通过调节阀引出至第一泵,用以和第二富氧液空或液 态空气按适当比例混合,进而调节输出空气产品中氮氧的比例。
  5. 如权利要求1所述的基于深冷精馏生产空气产品的方法,其特征在于,在主冷凝蒸发器中抽取液氧,经第二泵增压后送入主换热器汽化后,输出氧气产品。
  6. 如权利要求1所述的基于深冷精馏生产空气产品的方法,其特征在于,将第二液氮中的一部分引出,经过冷器过冷后送入第二塔顶部。
  7. 如权利要求1所述的基于深冷精馏生产空气产品的方法,其特征在于,在第一塔中部抽取污液氮,经过冷器过冷后送入第二塔作为回流液;从第二塔抽取污氮气,经过冷器升温后,进一步送入主换热器复热;从第二塔顶部抽取第四氮气,经过冷器升温后,进一步送入主换热器复热。
  8. 如权利要求1所述的基于深冷精馏生产空气产品的方法,其特征在于,所述减压装置为第二氮气膨胀机和/或节流阀。
  9. 如权利要求8所述的基于深冷精馏生产空气产品的方法,其特征在于,所述第一氮气膨胀机通过氮气压缩机制动;所述第二氮气膨胀机通过发电机制动。
  10. 一种基于深冷精馏生产空气产品的设备,包括:
    (a)第一塔和第二塔,所述第一塔的顶部和第二塔的底部通过主冷凝蒸发器以热量交换的方式连通,且第一塔的操作压力高于第二塔的操作压力;
    (b)至少一个主空气压缩机,一个空气预冷系统,一个空气纯化系统,至少一个主换热器,至少一个氮气压缩机,一个过冷器,及,至少一个氮气膨胀机;
    (c)将原料空气经主空气压缩机、空气预冷系统、空气纯化系统和主换热器连入第一塔的管路;
    (d)将第一塔或第二塔顶部的第一氮气,经主换热器、至少一个氮气压缩机、再次经主换热器、并分别经第一氮气膨胀机或减压装置连入第一塔和/或第二塔顶部的管路;
    (e)将第一塔中的第一富氧液空经过冷器连入第二塔的管路;
    其特征在于,还包括将第一塔中的第二富氧液空或液态空气经第一泵和主换热器输出的管路。
  11. 如权利要求10所述的基于深冷精馏生产空气产品的设备,其特征在于,还包括在减压装置的出口和第一泵的入口之间相连并包含有调节阀的管路。
  12. 如权利要求10所述的基于深冷精馏生产空气产品的设备,其特征在于,还包括将主冷凝蒸发器中的液氧经第二泵和主换热器输出的管路。
  13. 如权利要求10所述的基于深冷精馏生产空气产品的设备,其特征在于,还包括从减压装置的出口引出,经过冷器连入第二塔顶部的管路。
  14. 如权利要求10所述的基于深冷精馏生产空气产品的设备,其特征在于,还包括将第一塔中部的污液氮经过冷器连入第二塔的管路;将第二塔的污氮气经过冷器连入主换热器的管路,及,将第二塔顶部的第四氮气经过冷器连入主换热器的管路。
  15. 如权利要求10所述的基于深冷精馏生产空气产品的设备,其特征在于,所述减压装置为第二氮气膨胀机和/或节流阀。
  16. 如权利要求15所述的基于深冷精馏生产空气产品的设备,其特征在于,所述第一氮气膨胀机与氮气压缩机相连;所述第二氮气膨胀机与发电机相连。
  17. 如权利要求10-16中任意一项所述的基于深冷精馏生产空气产品的设备,其特征在于,主换热器包括高压板式换热器和低压板式换热器,或整体组合式换热器。
PCT/CN2017/119773 2017-12-29 2017-12-29 一种基于深冷精馏生产空气产品的方法及设备 WO2019127343A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780097978.6A CN111527361B (zh) 2017-12-29 2017-12-29 一种基于深冷精馏生产空气产品的方法及设备
PCT/CN2017/119773 WO2019127343A1 (zh) 2017-12-29 2017-12-29 一种基于深冷精馏生产空气产品的方法及设备
US16/958,809 US11578916B2 (en) 2017-12-29 2017-12-29 Method and device for producing air product based on cryogenic rectification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119773 WO2019127343A1 (zh) 2017-12-29 2017-12-29 一种基于深冷精馏生产空气产品的方法及设备

Publications (1)

Publication Number Publication Date
WO2019127343A1 true WO2019127343A1 (zh) 2019-07-04

Family

ID=67062889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119773 WO2019127343A1 (zh) 2017-12-29 2017-12-29 一种基于深冷精馏生产空气产品的方法及设备

Country Status (3)

Country Link
US (1) US11578916B2 (zh)
CN (1) CN111527361B (zh)
WO (1) WO2019127343A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112320764A (zh) * 2020-10-14 2021-02-05 杭州电子科技大学 一种节能型便携制氧装置
CN112414003A (zh) * 2020-11-24 2021-02-26 乔治洛德方法研究和开发液化空气有限公司 一种基于深冷精馏生产空气产品的方法及设备
CN113606867A (zh) * 2021-08-14 2021-11-05 张家港市东南气体灌装有限公司 一种能实现氧气内外压缩流程互换的空气分离装置及方法
WO2022016416A1 (en) * 2020-07-22 2022-01-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Argon enhancing method and device
CN115406180A (zh) * 2022-03-30 2022-11-29 鞍钢股份有限公司 一种制氧机冷状态速启动的方法
CN115790077A (zh) * 2023-02-03 2023-03-14 杭氧集团股份有限公司 一种制造高纯氮和超纯氧的装置及其使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781321B (zh) * 2020-12-31 2022-07-12 乔治洛德方法研究和开发液化空气有限公司 一种具有氮液化器的空气分离装置和方法
CN114413569B (zh) * 2022-01-19 2023-03-24 四川空分设备(集团)有限责任公司 一种双塔制氮装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082135A (en) * 1999-01-29 2000-07-04 The Boc Group, Inc. Air separation method and apparatus to produce an oxygen product
CN1407303A (zh) * 2001-08-19 2003-04-02 中国科学技术大学 利用液化天然气冷能的空气分离装置
CN101886870A (zh) * 2010-06-24 2010-11-17 上海启元科技发展有限公司 一种生产带压力的高纯氮及高纯氧的方法和装置
EP2447653A1 (en) * 2010-11-02 2012-05-02 Linde Aktiengesellschaft Process for cryogenic air separation using a side condenser
CN102721263A (zh) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 一种利用深冷技术分离空气的系统及方法
CN203928597U (zh) * 2014-05-14 2014-11-05 中国海洋石油总公司 一种lng冷能中断期间维持连续运行的空气分离系统
CN106440659A (zh) * 2016-08-19 2017-02-22 浙江智海化工设备工程有限公司 一种低能耗内压缩空分装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0093448B1 (de) * 1982-05-03 1986-10-15 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
US5257504A (en) * 1992-02-18 1993-11-02 Air Products And Chemicals, Inc. Multiple reboiler, double column, elevated pressure air separation cycles and their integration with gas turbines
US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
GB9903908D0 (en) * 1999-02-19 1999-04-14 Boc Group Plc Air separation
EP1767884A1 (en) * 2005-09-23 2007-03-28 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20070095100A1 (en) * 2005-11-03 2007-05-03 Rankin Peter J Cryogenic air separation process with excess turbine refrigeration
CN102052256B (zh) * 2009-11-09 2013-12-18 中国科学院工程热物理研究所 超临界空气储能系统
US20120036891A1 (en) * 2010-08-12 2012-02-16 Neil Mark Prosser Air separation method and apparatus
EP2963367A1 (de) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
CN105066587A (zh) * 2015-09-16 2015-11-18 开封空分集团有限公司 深冷分离及生产低纯度氧、高纯度氧和氮的装置及方法
CN105783424B (zh) * 2016-04-22 2017-12-12 暨南大学 利用液化天然气冷能生产高压富氧气体的空气分离方法
CN106123489A (zh) * 2016-06-29 2016-11-16 苏州制氧机股份有限公司 一种混合塔制氧方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082135A (en) * 1999-01-29 2000-07-04 The Boc Group, Inc. Air separation method and apparatus to produce an oxygen product
CN1407303A (zh) * 2001-08-19 2003-04-02 中国科学技术大学 利用液化天然气冷能的空气分离装置
CN101886870A (zh) * 2010-06-24 2010-11-17 上海启元科技发展有限公司 一种生产带压力的高纯氮及高纯氧的方法和装置
EP2447653A1 (en) * 2010-11-02 2012-05-02 Linde Aktiengesellschaft Process for cryogenic air separation using a side condenser
CN102721263A (zh) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 一种利用深冷技术分离空气的系统及方法
CN203928597U (zh) * 2014-05-14 2014-11-05 中国海洋石油总公司 一种lng冷能中断期间维持连续运行的空气分离系统
CN106440659A (zh) * 2016-08-19 2017-02-22 浙江智海化工设备工程有限公司 一种低能耗内压缩空分装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016416A1 (en) * 2020-07-22 2022-01-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Argon enhancing method and device
CN112320764A (zh) * 2020-10-14 2021-02-05 杭州电子科技大学 一种节能型便携制氧装置
CN112414003A (zh) * 2020-11-24 2021-02-26 乔治洛德方法研究和开发液化空气有限公司 一种基于深冷精馏生产空气产品的方法及设备
CN112414003B (zh) * 2020-11-24 2022-06-21 乔治洛德方法研究和开发液化空气有限公司 一种基于深冷精馏生产空气产品的方法及设备
CN113606867A (zh) * 2021-08-14 2021-11-05 张家港市东南气体灌装有限公司 一种能实现氧气内外压缩流程互换的空气分离装置及方法
CN113606867B (zh) * 2021-08-14 2022-12-02 张家港市东南气体灌装有限公司 一种能实现氧气内外压缩流程互换的空气分离装置及方法
CN115406180A (zh) * 2022-03-30 2022-11-29 鞍钢股份有限公司 一种制氧机冷状态速启动的方法
CN115406180B (zh) * 2022-03-30 2023-09-26 鞍钢股份有限公司 一种制氧机冷状态速启动的方法
CN115790077A (zh) * 2023-02-03 2023-03-14 杭氧集团股份有限公司 一种制造高纯氮和超纯氧的装置及其使用方法
CN115790077B (zh) * 2023-02-03 2023-05-23 杭氧集团股份有限公司 一种制造高纯氮和超纯氧的装置及其使用方法

Also Published As

Publication number Publication date
US11578916B2 (en) 2023-02-14
US20210071948A1 (en) 2021-03-11
CN111527361A (zh) 2020-08-11
CN111527361B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2019127343A1 (zh) 一种基于深冷精馏生产空气产品的方法及设备
CN101097112B (zh) 低温分离空气进料的方法
CA2063928C (en) Process for low-temperature air fractionation
CN111406192B (zh) 通过与氮气膨胀机联动制动的膨胀机增压机来产生增压空气的深冷精馏方法与设备
TW201607598A (zh) 以可變能耗低溫分離空氣之方法與裝置
US7665329B2 (en) Cryogenic air separation process with excess turbine refrigeration
CN112414003B (zh) 一种基于深冷精馏生产空气产品的方法及设备
US20160025408A1 (en) Air separation method and apparatus
US9733014B2 (en) Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
CN204115392U (zh) 带补气压缩机的全液体空分设备
TW201940824A (zh) 氮製造方法及氮製造裝置
CA2058847C (en) Air separation
TW201637998A (zh) 用於提取加壓氮產品之方法及裝置
CN106595221A (zh) 制氧系统和制氧方法
CN107606875A (zh) 通过低温分离空气产生压缩氮和液氮的方法和设备
JPH1054658A (ja) 空気から種々の比率で液体製品を製造する方法及び装置
US8191386B2 (en) Distillation method and apparatus
CN102901322B (zh) 通过低温空气分离获得压力氮和压力氧的方法和装置
US20150114037A1 (en) Air separation method and apparatus
CN102192637A (zh) 空气分离方法和设备
CN111542723B (zh) 一种基于深冷精馏工艺生产空气产品的方法及空分系统
US20060272353A1 (en) Process and apparatus for the separation of air by cryogenic distillation
CN112781321B (zh) 一种具有氮液化器的空气分离装置和方法
JPH07151459A (ja) 空気から圧力下の少なくとも一つのガスを製造する方法及び設備
US20160245585A1 (en) System and method for integrated air separation and liquefaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936822

Country of ref document: EP

Kind code of ref document: A1