EP3031951B1 - Traitement optimisé dans le pré-traitement du métal contre la corrosion à base de bains contenant du fluorure - Google Patents

Traitement optimisé dans le pré-traitement du métal contre la corrosion à base de bains contenant du fluorure Download PDF

Info

Publication number
EP3031951B1
EP3031951B1 EP14197667.0A EP14197667A EP3031951B1 EP 3031951 B1 EP3031951 B1 EP 3031951B1 EP 14197667 A EP14197667 A EP 14197667A EP 3031951 B1 EP3031951 B1 EP 3031951B1
Authority
EP
European Patent Office
Prior art keywords
mmol
titanium
water
pretreatment solution
soluble compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14197667.0A
Other languages
German (de)
English (en)
Other versions
EP3031951A1 (fr
Inventor
Jan-Willem Brouwer
Christian Stromberg
Frank-Oliver Pilarek
Jens KRÖMER
Fernando Jose RESANO ARTALEJO
Natascha HENZE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP14197667.0A priority Critical patent/EP3031951B1/fr
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to ES14197667.0T priority patent/ES2654893T3/es
Priority to PL14197667T priority patent/PL3031951T3/pl
Priority to HUE14197667A priority patent/HUE036114T2/hu
Priority to MX2017007556A priority patent/MX2017007556A/es
Priority to BR112017012144-1A priority patent/BR112017012144B1/pt
Priority to CN201580067239.3A priority patent/CN107002245B/zh
Priority to EP15804502.1A priority patent/EP3230490A1/fr
Priority to PCT/EP2015/078511 priority patent/WO2016091713A1/fr
Priority to CA2970405A priority patent/CA2970405A1/fr
Priority to JP2017531332A priority patent/JP6720175B2/ja
Priority to KR1020177015761A priority patent/KR102504477B1/ko
Priority to TW104141238A priority patent/TWI678434B/zh
Publication of EP3031951A1 publication Critical patent/EP3031951A1/fr
Priority to US15/618,229 priority patent/US10458022B2/en
Application granted granted Critical
Publication of EP3031951B1 publication Critical patent/EP3031951B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/86Regeneration of coating baths

Definitions

  • the present invention relates to a method for anticorrosive treatment, comprising a series of components with metallic surfaces of iron and / or zinc with a passivated aqueous pretreatment solution in a system tank containing compounds of zirconium and / or titanium and a source of fluoride ions in Contact is brought.
  • part of this pretreatment solution is discarded and replaced by a total of at least equal volume of one or more such supplemental solutions by metering into the system tank of the pretreatment.
  • Versch must not fall below a predetermined value depending on the molar ratio of fluoride ions to the content of zirconium and / or titanium, even in a complete abandonment of the use of chemicals to regulate the pickling rate or stabilize the ionic freight, a permanently satisfactory corrosion protection treatment To ensure the addition of supplementary solution is done in such a way that a maintenance of the concentration of the elements zirconium and / or titanium is ensured in the passivating aqueous pretreatment solution in the form of water-soluble compounds.
  • a continuous, precise monitoring of the pretreatment processes is fundamentally crucial for the optimum dosing of the active components and possibly regulating chemicals in the surface treatment of metallic surfaces of components. This effort can only in modern production lines by a largely Automated monitoring and control of process chemicals dosing to maintain a long-lasting, optimal ratio of chemicals in process baths to meet the principles of material efficiency and consistent pre-treatment quality.
  • the solution may contain further components selected from chlorate, bromate, nitrite, nitrate, permanganate, vanadate, hydrogen peroxide, tungstate, molybdate or in each case the associated acids.
  • Organic polymers may also be present.
  • a pretreatment bath for producing a passivating conversion layer on metal surfaces therefore requires in individual cases a large number of active components which have to be regularly replenished during operation of a pretreatment bath.
  • the DE 10 2008 038653 discloses in this context a method in which the entrained with the component in the sink active components of a pre-treatment in the rinse water before the actual pretreatment to produce a zirconium and / or titanium-based conversion layer are cascaded back.
  • the proportion of cascaded active components causes a partial passivation, which is completed in the subsequent pretreatment. In this way, it is already possible to reduce the actual amount of active components used per component to be treated and thus to increase the material efficiency.
  • a pretreatment bath aims at a steady state equilibrium, sometimes aiming at equilibrium concentrations for certain components, which have a detrimental effect on the result of the pretreatment can. So it is not enough to track only active components. Rather, the use of regulating chemicals is often necessary to prevent the quality of the pre-treatment during operation from deteriorating.
  • the fluoride scavengers are regulatory chemicals and in the specific case are preferably selected from compounds which release aluminum ions, calcium ions and / or iron ions.
  • the WO 2013/126632 discloses supplementary solutions for conversion solutions containing Zr.
  • the supplement solution contains fluorine-containing and fluorine-free zirconium compounds. Part of the spent conversion solution is discarded.
  • the object of the present invention is thus, in the serial corrosion-protective treatment of metallic surfaces having components by means of acidic aqueous pretreatment solutions of water-soluble compounds of the elements zirconium and / or titanium considerably simplify the process engineering effort to monitor and control the process-relevant bath parameters and at the same time Significantly increase material efficiency with regard to the use of regulating bath chemicals.
  • a further object was to optimize the process so that a reliable corrosion-protective conversion based on the zirconium and / or titanium elements takes place, in particular, on the iron surfaces of the components treated in series, which are then used in conjunction with an organic primer coating or an organic primer coating Dipping paint meets the high requirements for permanent corrosion protection.
  • This object is achieved by a method for anticorrosive treatment of a plurality of metallic surfaces of zinc and / or iron-containing components in series, in which each of these components with a present in a system tank passivating aqueous pretreatment solution at a temperature of less than 50 ° C in contact wherein the passivating aqueous pretreatment solution contains and is in contact with one or more water-soluble compounds of the elements zirconium and / or titanium and one or more water-soluble compounds which are a source of fluoride ions, and is contacted for such time; that on the metallic surfaces of zinc and / or iron, a coating layer of at least 0.1 mmol / m 2 based on the elements zirconium and / or titanium results, but none of these metallic surfaces relative a layer circulation of more than 0.7 mmol / m 2 to the elements zirconium and / or comprises titanium, and wherein during the anti-corrosion treatment of the components in series discarded part of the passivating aqueous pretreatment solution of
  • the method according to the invention has the effect that, via the regulated throw, the free fluoride portion in the pretreatment solution does not exceed values for which a structural change of the conversion layer already occurs, which is regularly accompanied by a worsening of the anticorrosive properties and the paint adhesion.
  • the throw is the liquid volume of pretreatment solution normalized to the unit surface (1 m 2 ) of the components to be treated which leaves the system tank during the serial pretreatment by passive extraction or due to a continuous or discontinuous overflow per square meter of a treated component.
  • a pre-treatment in series according to the present invention is when a plurality of components is brought into contact with the pre-treatment solution in the system tank, whereby the individual components are brought into contact one after the other and thus separated in time.
  • the system tank is the container in which the pretreatment solution is in series for the purpose of passivating pretreatment.
  • the area to be set in the method according to the invention for the layer coating based on the elements Zr and / or Ti can be coated by means of X-ray fluorescence analysis (RFA) after calibration using solutions of known molarity of H 2 ZrF 6 and H 2 TiF 6 in the dry-in-place method Metal surfaces are determined. The solutions of known molarity are applied to produce the calibration sample plates in a defined wet film thickness and the wet film is then completely dried.
  • RFA X-ray fluorescence analysis
  • the determination of the actual layer support according to the present invention can be based on these Kalibrierprobebleche both after drying the pretreated and rinsed surfaces of the components or after pretreatment and the first sink, for example, after rinsing a body immediately after the pretreatment in passing a so-called Nasshalteringes in the rinse water by several Spray valves are applied to the body.
  • compounds are "water-soluble" if their solubility in deionized water having a conductivity of not more than 1 ⁇ Scm -1 at a temperature of 20 ° C. is at least 1 g / l.
  • the maintenance of the concentration of the elements zirconium and / or titanium can be carried out by adding one or more supplementary solutions into the system tank.
  • the molar ratio of the total amount of fluorine in the form of compounds dissolved in water to the total amount of zirconium and / or titanium in the form of compounds dissolved in water should not be less than 4.5.
  • the dosage of a required amount of zirconium and / or titanium compounds dissolved in water may not be practicable since the compounds tend to form colloidal solutions and hence poorly soluble precipitates, thus providing one of the maintenance of the active components in the pretreatment solution Dosing such supplement solution can hardly be done reliably.
  • the molar ratio of the total amount of fluorine to the total amount of zirconium and / or titanium in the added total volume of replenishers is not less than 5.0, more preferably not less than 5.5.
  • the same ratio in the added total volume of the supplemental solutions in the inventive method is less than 0 . 4 mmol L - 1 c B me + 6 or alternatively is less than 9,25, so that the necessary Versch at pretreatment solution has such an upper limit, in which the inventive method can be operated economically useful for substantially all pre-treatment solutions included.
  • the inventive method makes due to the controlled Versches bath solution and the consequent replenishment of supplementary solution that the enrichment of free fluoride in the pretreatment solution is limited so that an adverse effect on the conversion coating based on the elements zirconium and / or titanium omitted. It should also be emphasized that the inventive method addition of fluoride scavengers - compounds which bind and thus reduce their concentration of free fluorides - makes superfluous, since the free fluoride concentration is completely controlled by the throw of bath solution.
  • the minimum throw is for the given conditions with respect to the concentration of active components in the pretreatment solution and the planned coating layer of a maximum of 0.7 mmol / m 2 based on the elements zirconium and titanium according to the semi-empirically found term (1) or the preferred semi
  • These terms for the minimum throw are only based on the specific concentration of zirconium and / or titanium in the pretreatment solution and the ratio of the elements fluorine in the form of compounds dissolved in water to the total amount Accordingly, in order to maintain optimum process conditions in the pretreatment, only the determination of the concentration of the active components in the form of the elements zirconium and / or titanium, which in any case is sufficient, is required Conversion layer training regularly z u is controlling. The monitoring of the amount of free fluoride in the pretreatment solution becomes unnecessary in the process according to the invention.
  • processes according to the invention are preferably processes for which the molar ratio of the total amount of the elements zirconium and / or titanium in each case to the total amount of one of the elements calcium, magnesium, aluminum, boron, iron, manganese or tungsten in the form of water-soluble compounds in the added total volume of the supplementary solution is greater is 5: 1, more preferably greater than 10: 1.
  • a further advantage of the method according to the invention is that sufficient coating deposits of zirconium and / or titanium are already achieved with relatively low concentrations of active components for corrosion protection and adhesion to a subsequently applied organic primer.
  • those methods according to the invention are preferred for material efficiency in which the passivating aqueous pretreatment solution in the system tank is less than 0.65 mmol / L, more preferably less than 0.55 mmol / L, most preferably less than 0.325 mmol / L of water-soluble compounds of the elements zirconium and / or titanium.
  • a low concentration of active components also causes the stationary by being carried over into a downstream sink introduced proportion of these compounds is low.
  • the pH of the passivating aqueous pretreatment solution in a preferred process according to the invention is not less than 3.0, more preferably not less than 3.5, but preferably not greater than 5.0, more preferably not greater than 4.5.
  • the “pH value” according to the present invention corresponds to the negative logarithm of the hydronium ion activity at 20 ° C. and can be determined by means of a pH-sensitive glass electrode.
  • the inventive method is preferably carried out at relatively low temperatures, so that evaporation losses in the system tank of Pretreatment solution can be neglected. Accordingly, in a preferred process of the invention, the temperature of the passivating aqueous pretreatment solution is not greater than 45 ° C, more preferably not greater than 40 ° C, most preferably not greater than 35 ° C.
  • the Versch provided in pretreatment solution according to the invention can be carried out during the corrosion protection treatment of the plurality of components process-related only quasi-continuous or discontinuous.
  • the inventive process of the series treatment requires that with each treated component a certain amount of pretreatment solution irrevocably leaves the system tank.
  • the amount of rejects entrained with each treated component is inherently discrete and therefore discontinuous and dependent on the specific treatment conditions and the geometry of the components.
  • the dragged portion of Versch is only partially accessible to a control, for example by rotation or tilting of the components when immersed in the pretreatment solution or blowing off the components when lifting out the components from the system tank of the pretreatment.
  • procedural measures are complex and usually justified by no special added value.
  • the processes are generally operated so that the components do not discharge properly pretreatment solution and usually be towed less than 50 ml per square meter of treated surface. If, in the following, therefore, a quasicontinuous or discontinuous throwing is used, only the actively dispensed volume of pretreatment solution is addressed and it has to be taken into account that the passively removed portion of the reject is always discarded discontinuously with each treated component.
  • the rejection of passivating aqueous pretreatment solution is preferably carried out both by extracting pretreatment solution with each component of the series of components to be treated and by actively discharging pretreatment solution in each case from the system tank of the pretreatment.
  • the volume of pretreatment solution to be actively sprayed may be adjusted to the zirconium and / or titanium layer deposited on the components in the pretreatment step to provide as much as required for a coating of zirconium and / or titanium to be achieved. but not more than necessary to feed pretreatment solution and proceed as economically as possible in this way.
  • the discontinuous throw in liters for a number n of components i treated in series is the value VW d ⁇ z e - 2 . 4 0 . 4 mmol L - 1 - c B me z e - 6 ⁇ ⁇ i n x i Zn ⁇ S i Zn + x i Fe ⁇ S i Fe ⁇ A i - VW a n
  • the Versch to be set according to the invention can also be made quasi-continuous.
  • the throwing by active feeding of passivating aqueous pretreatment solution and the replacement of discarded pretreatment solution with replenisher are carried out continuously during the pre-treatment of the components in series, more preferably by feeding a constant volume flow of replenishing replacer solution into the system tank of the pretreatment, wherein the continuous Versch at passivating aqueous pretreatment solution is preferably realized mainly by overflowing an open system tank.
  • Predominantly in this context means that more than 50%, preferably more than 80%, of the control accessible portion of the discarded pretreatment solution is not the inevitable part due to the scavenging effect of the components or the wet film adhered to the components owned by the Ver Dahles, is removed by an overflow from the system tank.
  • the overflow thus represents a particularly preferred type of Verthanes by active feeding.
  • the continuous Versch can also be realized by feeding a constant volume flow from the system tank.
  • Scattering and layering are interdependent variables, so that both in quasi-continuous and in discontinuous operation, the measurement of the actual coating layer (S, S i ) with knowledge of the bath concentration of zirconium and / or titanium is sufficient to specify on the setting of the continuous or discontinuous Versches the target state with respect to layer support for other components and an optimally protected against corrosion Lackhaftground.
  • an effective control that requires only the monitoring of the amount of zirconium and / or titanium in the pretreatment solution and on the iron and zinc surfaces.
  • the layer supports (S, S i ) based on the elements zirconium and / or titanium can be determined immediately after the pretreatment of the component by means of X-ray fluorescence analysis on the respective treated metal surface as described above.
  • the discontinuous Versch is carried out immediately after the first rinse, wherein the first sink is preferably carried out by means of a so-called wet holding ring by spraying the components with the first rinse water, wherein the rinse water again preferably at least partially fed as part of the supplement solution in the pretreatment solution becomes.
  • the Versch occurs quasi-continuously or if possible discontinuously as possible after each pretreatment of only a small number n of components.
  • VW c , VW d The simplification in the setting of the at least required discontinuous or continuous Ver Dahles (VW c , VW d ) is that the adjustment is made independently of the coating layer, but it is accepted that the proportion of free fluoride is in the respective limits, which just still ensure a sufficient conversion layer formation or not yet detrimental deterioration thereof.
  • At least 80% of the surfaces of the component will be formed by surfaces of the substrates iron, zinc and aluminum, more preferably at least 50% of the surfaces of the component being metallic surfaces of the substrates iron and / or zinc, again preferably at least 10%, particularly preferably at least 20%, of the metallic surfaces of the component are selected from surfaces of the substrate iron.
  • the surfaces of the substrates iron, zinc and aluminum are also their alloys if their main alloying constituent is formed by the respective substrate element.
  • a coating with an organic binder system preferably a powder coating or dip coating, more preferably an electrodeposition coating, more preferably a cathodic electrodeposition coating.
  • a drying step is characterized by performing technical measures for drying the surfaces of the component, for example, by supplying thermal energy or by supplying a dry air flow.
  • no further treatment step with an aqueous solution in which the solution more contains 10% of the proportion of the passivating aqueous pretreatment solution of water-soluble compounds of the elements zirconium and / or titanium, in particular no further such treatment step, serving on at least one metal surface of the component, a coating containing substrate-foreign metallic or semi-metallic elements with a layer of more than Form 0.1 mmol / m 2 based on these substrate-foreign elements.
  • substrate foreign in this context is any element that is not the main alloying element of the substrate in question.
  • a rinsing step is carried out by bringing the components into contact with a rinsing solution present in a system tank, during which part of the rinsing solution is serially treated during the anti-corrosive treatment of the components and replaced by an at least equal volume of a complementary rinse solution containing a total of less than 10 -5 mol / L of water-soluble compounds of the elements zirconium and / or titanium, and preferably less than 10 -4 mol / L of water-soluble compounds containing a Source of fluoride ions, based on the element contains fluorine. Also in this case, it should be ensured that an enrichment of active components from the passivating aqueous pretreatment solution in the rinse solution is tolerated only to a certain extent, since otherwise damage to the passive layer can not be completely ruled out.
  • the throw of rinsing solution per treated in series total surface area of the components is less than 2 liters / m 2 .
  • this upper limit can always be maintained without additional measures for working up the rinse solution being necessary.
  • the discarded rinsing solution is fed as a supplementary solution into the system tank of the passing aqueous pretreatment, with regularly additionally dosing a more concentrated supplementary solution for maintaining the bath concentration of water-soluble compounds of the elements zirconium and / or titanium in the passivating aqueous Pretreatment solution will be necessary.
  • the water-soluble compounds of the elements zirconium and / or titanium are therefore not restricted to any particular class of compounds both in the pretreatment solution and in the supplemental solutions, but preferred are oxyfluorides of the respective elements, particularly preferably the fluoroacids and salts thereof.
  • oxyfluorides of the respective elements particularly preferably the fluoroacids and salts thereof.
  • basic zirconium carbonate or titanyl sulfate these compounds then having to be reacted with a corresponding amount of fluoride-releasing compounds because of the ratio of fluorides dissolved in water according to the invention to compounds of zirconium and / or titanium dissolved in water in order to form an adequate supplementary solution.
  • Water-soluble compounds which are a source of fluoride ions and to which extent the process according to the invention can be based are, for example, hydrofluoric acid, ammonium bifluoride and sodium fluoride or the abovementioned oxyfluorides and fluoro acids of the elements zirconium and / or titanium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Claims (17)

  1. Procédé de traitement anticorrosion d'une pluralité de surfaces métalliques de composants contenant du zinc et/ou du fer en série, dans lequel chacun de ces composants est mis en contact avec une solution aqueuse de prétraitement par passivation, se trouvant dans un réservoir de système, à une température inférieure à 50°C, la solution aqueuse de prétraitement par passivation contenant un ou plusieurs composés hydrosolubles des éléments zirconium et/ou titane et un ou plusieurs composés hydrosolubles qui représentent une source d'ions fluorure, et la mise en contact se faisant pendant un temps tel qu'il résulte sur les surfaces métalliques de zinc et/ou de fer une couche d'au moins 0,1 mmol/m2 sur la base des éléments zirconium et/ou titane, cependant aucune de ces surfaces métalliques ne comportant une couche de plus de 0,7 mmol/m2 sur la base des éléments zirconium et/ou titane et, pendant le traitement anticorrosion des composants en série, une partie de la solution aqueuse de prétraitement par passivation du réservoir de système est rejetée et remplacée par une partie, au moins de même volume au total, d'une ou de plusieurs solutions de complément par addition dosée dans le réservoir de système de façon à maintenir la concentration des éléments zirconium et/ou titane sous la forme de composés hydrosolubles dans la solution aqueuse de prétraitement par passivation, caractérisé en ce qu'une concentration des éléments zirconium et/ou titane sous la forme de composés hydrosolubles dans la solution aqueuse de prétraitement par passivation est maintenue à au moins 0,05 mmol/l, mais au total de moins de 0,8 mmol/l, dans le réservoir de système, et le rapport molaire de la quantité totale de fluor sous la forme de composés hydrosolubles, qui sont une source d'ions fluorure, à la quantité totale des éléments zirconium et/ou titane sous forme de composés hydrosolubles dans le volume total additionné de façon dosée des solutions de complément est inférieur au même rapport dans la solution aqueuse de prétraitement par passivation, mais non inférieur à 4,5, et le rejet de la solution aqueuse de prétraitement par passivation en litres par mètre carré traité en série de surfaces métalliques de zinc prend au moins la valeur suivante : VW = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 10 1 mmol m 2
    Figure imgb0066
    VW : Rejet de solution de prétraitement en L/m2;
    c B Me :
    Figure imgb0067
    concentration en zirconium et/ou en titane dans la solution de prétraitement en mmol/L ;
    ZE : rapport molaire de la quantité totale de fluor sous la forme de composés hydrosolubles, qui sont une source d'ions fluorure, à la quantité totale des éléments zirconium et/ou titane sous forme de composés hydrosolubles dans le volume total additionné de façon dosée des solutions de compléments, à la condition que l'on ait :
    z E < 0 , 4 mmol L 1 c B Me + 6
    Figure imgb0068
  2. Procédé selon la revendication 1, caractérisé en ce que, pour le rapport molaire de la quantité totale de fluor sous la forme de composés hydrosoluble, qui représentent une source de fluorure, à la quantité totale des éléments zirconium et/ou titane sous la forme de composés hydrosolubles dans le volume total additionné de façon dosée des solutions de complément, la condition suivante est remplie : z E < 0 , 4 mmol L 1 c B Me + 6
    Figure imgb0069
  3. Procédé selon la revendication 2, caractérisé en ce que la quantité rejetée de solution aqueuse de prétraitement par passivation n'est pas supérieure à la valeur suivante en litres par mètre carré traité en série du composant métallique : VW = 7 z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 10 1 mmol m 2
    Figure imgb0070
    VW : Rejet de solution de prétraitement en L/m2;
    c B Me :
    Figure imgb0071
    concentration en zirconium et/ou en titane dans la solution de prétraitement en mmol/L ;
    ZE : rapport molaire de la quantité totale de fluor sous la forme de composés hydrosolubles, qui sont une source d'ions fluorure, à la quantité totale des éléments zirconium et/ou titane sous forme de composés hydrosolubles dans le volume total additionné de façon dosée des solutions de compléments.
  4. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que le rapport molaire de la quantité totale de fluor sous la forme de composés hydrosolubles, qui représentent une source d'ions fluorure, à la quantité totale des éléments zirconium et/ou titane sous la forme de composés hydrosolubles dans le volume total additionné de façon dosée des solutions de complément n'est pas inférieur à 5,0, de préférence à 5,5.
  5. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que le rapport molaire de la quantité totale des éléments zirconium et/ou titane sous la forme de composés hydrosolubles respectivement à la quantité totale des éléments calcium, magnésium, aluminium, bore, fer, manganèse ou tungstène sous la forme de composés hydrosolubles dans le volume total additionné de façon dosée des solutions de complément est supérieur à 5:1.
  6. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la solution de prétraitement par passivation dans le réservoir de système contient au total moins de 0,55 mmol/L, de préférence au total moins de 0,325 mmol/L, de composés hydrosolubles des éléments zirconium et/ou titane.
  7. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la valeur du pH de la solution de prétraitement par passivation n'est pas inférieure à 3,0, de préférence n'est pas inférieure à 3,5 mais n'est pas supérieure à 5,0, de préférence n'est pas supérieure à 4,5.
  8. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la température de la de prétraitement par passivation n'est pas supérieure à 45°C, de préférence n'est pas supérieure à 40°C, de manière particulièrement préférée n'est pas supérieure à 35°C.
  9. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que le rejet de solution de prétraitement par passivation se fait par charriage de la solution de prétraitement par passivation par chaque composant de la série de composants à traiter et par alimentation active en solution de prétraitement à partir du réservoir de système du prétraitement.
  10. Procédé selon la revendication 9, caractérisé en ce que le rejet par alimentation active de solution aqueuse de prétraitement par passivation se fait de manière discontinue après un prétraitement d'un certain nombre n de composants, le rejet discontinu prenant au moins une valeur suivante en litres pour un nombre n de composants i traités en série : VW d = z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i VW a n
    Figure imgb0072
    VWd : Rejet discontinu en litres
    VW a n :
    Figure imgb0073
    rejet par charriage par n composants en litres, avec la condition que: VW a n z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i ;
    Figure imgb0074
    x i Zn :
    Figure imgb0075
    proportion de surfaces de zinc rapportée à la surface totale de zinc et de fer du ième composant traité en série ;
    x i Fe :
    Figure imgb0076
    proportion de surfaces de fer rapportée à la surface totale de zinc et de fer du ième composant traité en série ;
    S i Zn :
    Figure imgb0077
    couche en mmol/m2 rapportée aux éléments zirconium et/ou titane sur les surfaces de zinc soumises un prétraitement anticorrosion du i-ième composant traité en série ; et
    S i Fe :
    Figure imgb0078
    couche en mmol/m2 rapportée aux éléments zirconium et/ou titane sur les surfaces de fer soumise à un prétraitement anticorrosion du i-ième composant traité en série ;
    Ai: surface totale des surfaces métalliques de zinc et de fer du ième composant traité en série ; et
    N : un entier naturel positif {n ∈ N |n ≥ 1}
  11. Procédé selon la revendication 10, caractérisé en ce que le rejet discontinu en litres pour un nombre n de composants i traités en série ne dépasse la valeur VW d = z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i VW a n
    Figure imgb0079
    et pour le rapport molaire de la quantité totale de fluor sous la forme de composés hydrosolubles, qui sont une source d'ions fluorure, à la quantité totale des éléments zirconium et/ou titane sous forme de composés hydrosolubles dans le volume total additionné de façon dosée des solutions de complément satisfait à la condition suivante : z E < 0 , 4 mmol L 1 c B Me + 6
    Figure imgb0080
  12. Procédé selon la revendication 9, caractérisé en ce que le rejet par charriage actif de solution de prétraitement par passivation et le remplacement de solution de prétraitement rejeté par une ou plusieurs solutions de complémentent se font de façon continue pendant le prétraitement de composants en série, de préférence par injection d'un débit volumique constant de solution de complément de remplacement dans le réservoir de système du prétraitement, le rejet continu de solution de prétraitement par passivation étant effectué de préférence essentiellement par débordement d'un réservoir de système ouvert.
  13. Procédé selon la revendication 12, caractérisé en ce que le rejet continu prend au moins une valeur suivante en litres par mètre carré traité en série de surfaces métalliques de zinc et de fer: VW c = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A VW a
    Figure imgb0081
    VWC : rejet continu en litres ;
    VW a rejet moyen pr charriage en litres, avec la condition que : VW a z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A ;
    Figure imgb0082
    x Zn : proportion moyenne de surfaces de zinc rapportée aux surfaces totales de zinc et de fer d'une série de composants traités ;
    x Fe : proportion moyenne de surface de fer rapportée aux surfaces totales de zinc et de fer d'une série de composants traités ;
    S Zn : couche moyenne en mmol/m2 rapportée aux éléments zirconium et/ou titane sur les surfaces de zinc, soumises à un prétraitement anticorrosion, des composants traités en série ;
    S Fe : couche moyenne en mmol/m2 rapportée aux éléments Zirconium et/ou titane sur les surfaces de fer, soumises à un prétraitement anticorrosion, des composants traités en série
    A : superficie moyenne des composants en m2
  14. Procédé selon la revendication 13, caractérisé en ce que le rejet discontinu en litres pour un nombre n de composants i traités en série ne dépasse la valeur VW c = z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A
    Figure imgb0083
    et pour le rapport molaire de la quantité totale de fluor sous la forme de composés hydrosolubles, qui sont une source d'ions fluorure, à la quantité totale des éléments zirconium et/ou titane sous forme de composés hydrosolubles dans le volume total additionné de façon dosée des solutions de complément satisfait à la condition suivante : z E < 0 , 4 mmol L 1 c B Me + 6
    Figure imgb0084
  15. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la mise en contact avec la solution aqueuse de prétraitement par passivation est suivie, avec ou sans étapes de rinçage intermédiaire, d'un revêtement par immersion, de préférence d'un revêtement par électrodéposition, de façon particulièrement préférée d'un revêtement par électrodéposition cathodique.
  16. Procédé selon la revendication 15, caractérisé en ce que la mise en contact avec la solution aqueuse de prétraitement par passivation n'est suivie d'aucune autre étape de traitement avec une solution aqueuse dans laquelle la solution contient plus de 10% de la proportion de la solution aqueuse de prétraitement par passivation de composés hydrosolubles des éléments zirconium et/ou titane, en particulier d'aucune autre étape de traitement servant à former sur au moins une surface métallique du composant un revêtement contenant des éléments métalliques ou semi-métalliques dépourvus de substrat et comportant une couche de plus de 0,1 mmol/m2 rapportée à ces éléments dépourvus de substrat.
  17. Procédé une des revendications 15 à 16 ou les deux, caractérisé en ce que la mise en contact avec la solution aqueuse de prétraitement par passivation est immédiatement suivie d'une étape de rinçage par mise en contact des composants avec une solution de rinçage contenu dans un réservoir de système, pendant le traitement anticorrosion des composants en série une partie de la solution de rinçage étant rejetée et remplacée par un volume au moins aussi important d'une solution de rinçage de complément qui contient au total moins de 10-5 mol/l de composés hydrosolubles des éléments zirconium et/ou titane et de préférence moins de 10-4 mol/L de composés hydrosolubles, qui représentent une source d'ions fluorure, rapportés à l'élément fluor.
EP14197667.0A 2014-12-12 2014-12-12 Traitement optimisé dans le pré-traitement du métal contre la corrosion à base de bains contenant du fluorure Active EP3031951B1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES14197667.0T ES2654893T3 (es) 2014-12-12 2014-12-12 Control de proceso optimizado en el pretratamiento de metal anticorrosión a base de baños que contienen fluoruro
PL14197667T PL3031951T3 (pl) 2014-12-12 2014-12-12 Zoptymalizowane prowadzenie procesu w antykorozyjnej obróbce wstępnej metali w oparciu o kąpiele zawierające fluorki
HUE14197667A HUE036114T2 (hu) 2014-12-12 2014-12-12 Optimalizált eljárási rendszer fluorid-tartalmú fürdõkön alapuló korrózióvédelmi fém-elõkezeléshez
EP14197667.0A EP3031951B1 (fr) 2014-12-12 2014-12-12 Traitement optimisé dans le pré-traitement du métal contre la corrosion à base de bains contenant du fluorure
KR1020177015761A KR102504477B1 (ko) 2014-12-12 2015-12-03 플루오린화물 배스를 사용하는 금속의 부식 방지 전처리에서의 최적화된 작동
CN201580067239.3A CN107002245B (zh) 2014-12-12 2015-12-03 基于含氟化物的槽液的防腐蚀金属预处理中的优化的过程控制
EP15804502.1A EP3230490A1 (fr) 2014-12-12 2015-12-03 Conduite de traitement optimisée pour le pré-traitement anti-corrosion du métal sur la base de bains riches en fluorure
PCT/EP2015/078511 WO2016091713A1 (fr) 2014-12-12 2015-12-03 Conduite de traitement optimisée pour le pré-traitement anti-corrosion du métal sur la base de bains riches en fluorure
MX2017007556A MX2017007556A (es) 2014-12-12 2015-12-03 Operacion optimizada en pretratamiento anti-corrosivo de metal que usa baños de fluoruro.
JP2017531332A JP6720175B2 (ja) 2014-12-12 2015-12-03 フッ化物含有浴に基づく腐食防止金属前処理におけるプロセス制御の最適化
BR112017012144-1A BR112017012144B1 (pt) 2014-12-12 2015-12-03 Método para o tratamento anticorrosivo de uma pluralidade de superfícies metálicas de componentes compreendendo zinco e/ou ferro em uma operação serial com base em banhos contendo fluoreto
CA2970405A CA2970405A1 (fr) 2014-12-12 2015-12-03 Conduite de traitement optimisee pour le pre-traitement anti-corrosion du metal sur la base de bains riches en fluorure
TW104141238A TWI678434B (zh) 2014-12-12 2015-12-09 對多個具有鋅及/或鐵之金屬表面的部件進行批量防腐處理的方法
US15/618,229 US10458022B2 (en) 2014-12-12 2017-06-09 Optimized process control in the anti-corrosive metal pretreatment based on fluoride-containing baths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14197667.0A EP3031951B1 (fr) 2014-12-12 2014-12-12 Traitement optimisé dans le pré-traitement du métal contre la corrosion à base de bains contenant du fluorure

Publications (2)

Publication Number Publication Date
EP3031951A1 EP3031951A1 (fr) 2016-06-15
EP3031951B1 true EP3031951B1 (fr) 2017-10-04

Family

ID=52021123

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14197667.0A Active EP3031951B1 (fr) 2014-12-12 2014-12-12 Traitement optimisé dans le pré-traitement du métal contre la corrosion à base de bains contenant du fluorure
EP15804502.1A Withdrawn EP3230490A1 (fr) 2014-12-12 2015-12-03 Conduite de traitement optimisée pour le pré-traitement anti-corrosion du métal sur la base de bains riches en fluorure

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15804502.1A Withdrawn EP3230490A1 (fr) 2014-12-12 2015-12-03 Conduite de traitement optimisée pour le pré-traitement anti-corrosion du métal sur la base de bains riches en fluorure

Country Status (13)

Country Link
US (1) US10458022B2 (fr)
EP (2) EP3031951B1 (fr)
JP (1) JP6720175B2 (fr)
KR (1) KR102504477B1 (fr)
CN (1) CN107002245B (fr)
BR (1) BR112017012144B1 (fr)
CA (1) CA2970405A1 (fr)
ES (1) ES2654893T3 (fr)
HU (1) HUE036114T2 (fr)
MX (1) MX2017007556A (fr)
PL (1) PL3031951T3 (fr)
TW (1) TWI678434B (fr)
WO (1) WO2016091713A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129783A (zh) * 2019-04-15 2019-08-16 汉腾汽车有限公司 一种涂装前处理工艺

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US587392A (en) * 1897-08-03 Metal arch for culverts
US3515600A (en) * 1966-10-19 1970-06-02 Hooker Chemical Corp Metal treating process and composition
JP3349851B2 (ja) * 1994-12-22 2002-11-25 日本パーカライジング株式会社 スラッジ抑制性に優れたアルミニウム含有金属材料用表面処理組成物および表面処理方法
US5873952A (en) * 1996-08-20 1999-02-23 Henkel Corporaiton Process for forming a protective coating on zinciferous metal surfaces
US6720032B1 (en) * 1997-09-10 2004-04-13 Henkel Kommanditgesellschaft Auf Aktien Pretreatment before painting of composite metal structures containing aluminum portions
JP4408474B2 (ja) * 1999-01-25 2010-02-03 トピー工業株式会社 アルミニウム合金基材の塗装方法及びホイール
JP2003155578A (ja) * 2001-11-20 2003-05-30 Toyota Motor Corp 鉄及び/又は亜鉛系基材用化成処理剤
JP2004018865A (ja) * 2002-06-12 2004-01-22 Nissan Motor Co Ltd 塗装前処理装置及び塗装前処理方法
JP4205939B2 (ja) 2002-12-13 2009-01-07 日本パーカライジング株式会社 金属の表面処理方法
ES2316706T3 (es) * 2002-12-24 2009-04-16 Chemetall Gmbh Metodo de pre-tratamiento para revestir.
JP2008184690A (ja) * 2002-12-24 2008-08-14 Nippon Paint Co Ltd 塗装前処理方法
JP2005344186A (ja) * 2004-06-04 2005-12-15 Nippon Paint Co Ltd 金属の化成処理方法
JP2006161067A (ja) * 2004-12-02 2006-06-22 Nippon Paint Co Ltd 自動車用燃料タンク又は給油管
JP2006219691A (ja) * 2005-02-08 2006-08-24 Nippon Parkerizing Co Ltd 金属表面処理方法
DE102008014465B4 (de) 2008-03-17 2010-05-12 Henkel Ag & Co. Kgaa Mittel zur optimierten Passivierung auf Ti-/Zr-Basis für Metalloberflächen und Verfahren zur Konversionsbehandlung
DE102008038653A1 (de) 2008-08-12 2010-03-25 Henkel Ag & Co. Kgaa Sukzessive korrosionsschützende Vorbehandlung von Metalloberflächen in einem Mehrstufenprozess
US8951362B2 (en) * 2009-10-08 2015-02-10 Ppg Industries Ohio, Inc. Replenishing compositions and methods of replenishing pretreatment compositions
DE102009047522A1 (de) * 2009-12-04 2011-06-09 Henkel Ag & Co. Kgaa Mehrstufiges Vorbehandlungsverfahren für metallische Bauteile mit Zink- und Eisenoberflächen
EP2817435B1 (fr) * 2012-02-23 2016-02-17 PPG Industries Ohio, Inc. Compositions de régénérateur et procédés de régénération de compositions de prétraitement
CN105378144B (zh) * 2013-05-28 2017-05-31 日本帕卡濑精株式会社 补给剂、表面处理金属材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107002245A (zh) 2017-08-01
HUE036114T2 (hu) 2018-06-28
PL3031951T3 (pl) 2018-03-30
CA2970405A1 (fr) 2016-06-16
EP3031951A1 (fr) 2016-06-15
US20170283955A1 (en) 2017-10-05
CN107002245B (zh) 2019-04-09
US10458022B2 (en) 2019-10-29
JP2017537229A (ja) 2017-12-14
BR112017012144A2 (pt) 2018-01-02
KR102504477B1 (ko) 2023-02-28
TWI678434B (zh) 2019-12-01
TW201631212A (zh) 2016-09-01
BR112017012144B1 (pt) 2021-06-22
JP6720175B2 (ja) 2020-07-08
MX2017007556A (es) 2017-10-31
WO2016091713A1 (fr) 2016-06-16
KR20170110575A (ko) 2017-10-11
ES2654893T3 (es) 2018-02-15
EP3230490A1 (fr) 2017-10-18

Similar Documents

Publication Publication Date Title
DE69737195T2 (de) Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
DE60226078T2 (de) Behandlungsflüssigkeit für die oberflächenbehandlung von auf aluminium oder magnesium basierendem metall und oberflächenbehandlungsverfahren
DE102016205815A1 (de) Verfahren zur nickelfreien Phosphatierung von metallischen Oberflächen
EP0261704B1 (fr) Procédé pour produire des revêtements de phosphate sur des surfaces métalliques
DE69906555T2 (de) Verzinkte, mit einer hydroxysulfat-schmierschicht überzogene stahlbleche und verfahren zur herstellung
EP2250301A1 (fr) Procédé d&#39;enduction pour une pièce à usiner
EP3230491B1 (fr) Réception de métaux légers dans un procédé de prétraitement et de décapage de l&#39;acier
EP3031951B1 (fr) Traitement optimisé dans le pré-traitement du métal contre la corrosion à base de bains contenant du fluorure
EP0366941B1 (fr) Procédé de revêtement par électrodéposition de surfaces métalliques aptes au chromatage
WO1999024638A1 (fr) Protection anti-corrosion de feuillards acier galvanises et galvanises par alliage
DE1248427B (de) Verfahren und Loesung zum Aufbringen von UEberzuegen auf Aluminium und dessen Legierungen
DE10026850A1 (de) Verfahren zum Behandeln bzw. Vorbehandeln von Bauteilen mit Aluminium-Oberflächen
DE2354911A1 (de) Verfahren zur oberflaechenbehandlung von zink oder zinklegierungen
DE1194674B (de) Verfahren zum Regenerieren von Chromatierungsloesungen
US20190032224A1 (en) Suppression of phosphate dragging resulting from the plant design in a dip coating process sequence
US20190032223A1 (en) Conveyor frame treatment for suppressing phosphate dragging resulting from the plant design in a dip coating process sequence
EP1433879B1 (fr) Procédé de revêtement de surfaces métalliques avec une solution de phosphate alcalin, concentré aqueux et utilisation des surfaces métalliques ainsi revêtues
DE3413905A1 (de) Verfahren zur ueberwachung fluoridhaltiger baeder zur oberflaechenbehandlung von metallen
DE1287413B (de) Verfahren zur Vorbereitung von Stahl fuer die elektrophoretische Beschichtung mit Lacken
DE1914052B2 (de) Verfahren zur herstellung eines phosphatueberzuges auf einer sich bewegenden eisen bzw stahloberflaeche
WO2023174611A1 (fr) Couche de passivation pour substrats contenant un métal
DE1078847B (de) Verfahren zur Herstellung von UEberzuegen auf Titan und seinen Legierungen
DE1078848B (de) Verfahren zum Aufbringen von UEberzuegen auf Titan und dessen Legierungen
DE2141596A1 (de) Verfahren zur Herstellung von Chromat-Umwandlungsüberzügen auf zinkhaltigen Oberflächen, sowie Lösungen und Konzentrate zu seiner Durchführung
DE1771719A1 (de) Verfahren und Vorrichtung zur Schichtkontrolle beim Aufbringen eines chemischen UEberzuges auf Metalloberflaechen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 934126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005666

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2654893

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E036114

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014005666

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 934126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191212

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 10

Ref country code: HU

Payment date: 20231222

Year of fee payment: 10

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240129

Year of fee payment: 10