EP3031951B1 - Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride - Google Patents

Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride Download PDF

Info

Publication number
EP3031951B1
EP3031951B1 EP14197667.0A EP14197667A EP3031951B1 EP 3031951 B1 EP3031951 B1 EP 3031951B1 EP 14197667 A EP14197667 A EP 14197667A EP 3031951 B1 EP3031951 B1 EP 3031951B1
Authority
EP
European Patent Office
Prior art keywords
mmol
titanium
water
pretreatment solution
soluble compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14197667.0A
Other languages
German (de)
French (fr)
Other versions
EP3031951A1 (en
Inventor
Jan-Willem Brouwer
Christian Stromberg
Frank-Oliver Pilarek
Jens KRÖMER
Fernando Jose RESANO ARTALEJO
Natascha HENZE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP14197667.0A priority Critical patent/EP3031951B1/en
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL14197667T priority patent/PL3031951T3/en
Priority to ES14197667.0T priority patent/ES2654893T3/en
Priority to HUE14197667A priority patent/HUE036114T2/en
Priority to CN201580067239.3A priority patent/CN107002245B/en
Priority to JP2017531332A priority patent/JP6720175B2/en
Priority to PCT/EP2015/078511 priority patent/WO2016091713A1/en
Priority to CA2970405A priority patent/CA2970405A1/en
Priority to KR1020177015761A priority patent/KR102504477B1/en
Priority to MX2017007556A priority patent/MX2017007556A/en
Priority to BR112017012144-1A priority patent/BR112017012144B1/en
Priority to EP15804502.1A priority patent/EP3230490A1/en
Priority to TW104141238A priority patent/TWI678434B/en
Publication of EP3031951A1 publication Critical patent/EP3031951A1/en
Priority to US15/618,229 priority patent/US10458022B2/en
Application granted granted Critical
Publication of EP3031951B1 publication Critical patent/EP3031951B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/86Regeneration of coating baths

Definitions

  • the present invention relates to a method for anticorrosive treatment, comprising a series of components with metallic surfaces of iron and / or zinc with a passivated aqueous pretreatment solution in a system tank containing compounds of zirconium and / or titanium and a source of fluoride ions in Contact is brought.
  • part of this pretreatment solution is discarded and replaced by a total of at least equal volume of one or more such supplemental solutions by metering into the system tank of the pretreatment.
  • Versch must not fall below a predetermined value depending on the molar ratio of fluoride ions to the content of zirconium and / or titanium, even in a complete abandonment of the use of chemicals to regulate the pickling rate or stabilize the ionic freight, a permanently satisfactory corrosion protection treatment To ensure the addition of supplementary solution is done in such a way that a maintenance of the concentration of the elements zirconium and / or titanium is ensured in the passivating aqueous pretreatment solution in the form of water-soluble compounds.
  • a continuous, precise monitoring of the pretreatment processes is fundamentally crucial for the optimum dosing of the active components and possibly regulating chemicals in the surface treatment of metallic surfaces of components. This effort can only in modern production lines by a largely Automated monitoring and control of process chemicals dosing to maintain a long-lasting, optimal ratio of chemicals in process baths to meet the principles of material efficiency and consistent pre-treatment quality.
  • the solution may contain further components selected from chlorate, bromate, nitrite, nitrate, permanganate, vanadate, hydrogen peroxide, tungstate, molybdate or in each case the associated acids.
  • Organic polymers may also be present.
  • a pretreatment bath for producing a passivating conversion layer on metal surfaces therefore requires in individual cases a large number of active components which have to be regularly replenished during operation of a pretreatment bath.
  • the DE 10 2008 038653 discloses in this context a method in which the entrained with the component in the sink active components of a pre-treatment in the rinse water before the actual pretreatment to produce a zirconium and / or titanium-based conversion layer are cascaded back.
  • the proportion of cascaded active components causes a partial passivation, which is completed in the subsequent pretreatment. In this way, it is already possible to reduce the actual amount of active components used per component to be treated and thus to increase the material efficiency.
  • a pretreatment bath aims at a steady state equilibrium, sometimes aiming at equilibrium concentrations for certain components, which have a detrimental effect on the result of the pretreatment can. So it is not enough to track only active components. Rather, the use of regulating chemicals is often necessary to prevent the quality of the pre-treatment during operation from deteriorating.
  • the fluoride scavengers are regulatory chemicals and in the specific case are preferably selected from compounds which release aluminum ions, calcium ions and / or iron ions.
  • the WO 2013/126632 discloses supplementary solutions for conversion solutions containing Zr.
  • the supplement solution contains fluorine-containing and fluorine-free zirconium compounds. Part of the spent conversion solution is discarded.
  • the object of the present invention is thus, in the serial corrosion-protective treatment of metallic surfaces having components by means of acidic aqueous pretreatment solutions of water-soluble compounds of the elements zirconium and / or titanium considerably simplify the process engineering effort to monitor and control the process-relevant bath parameters and at the same time Significantly increase material efficiency with regard to the use of regulating bath chemicals.
  • a further object was to optimize the process so that a reliable corrosion-protective conversion based on the zirconium and / or titanium elements takes place, in particular, on the iron surfaces of the components treated in series, which are then used in conjunction with an organic primer coating or an organic primer coating Dipping paint meets the high requirements for permanent corrosion protection.
  • This object is achieved by a method for anticorrosive treatment of a plurality of metallic surfaces of zinc and / or iron-containing components in series, in which each of these components with a present in a system tank passivating aqueous pretreatment solution at a temperature of less than 50 ° C in contact wherein the passivating aqueous pretreatment solution contains and is in contact with one or more water-soluble compounds of the elements zirconium and / or titanium and one or more water-soluble compounds which are a source of fluoride ions, and is contacted for such time; that on the metallic surfaces of zinc and / or iron, a coating layer of at least 0.1 mmol / m 2 based on the elements zirconium and / or titanium results, but none of these metallic surfaces relative a layer circulation of more than 0.7 mmol / m 2 to the elements zirconium and / or comprises titanium, and wherein during the anti-corrosion treatment of the components in series discarded part of the passivating aqueous pretreatment solution of
  • the method according to the invention has the effect that, via the regulated throw, the free fluoride portion in the pretreatment solution does not exceed values for which a structural change of the conversion layer already occurs, which is regularly accompanied by a worsening of the anticorrosive properties and the paint adhesion.
  • the throw is the liquid volume of pretreatment solution normalized to the unit surface (1 m 2 ) of the components to be treated which leaves the system tank during the serial pretreatment by passive extraction or due to a continuous or discontinuous overflow per square meter of a treated component.
  • a pre-treatment in series according to the present invention is when a plurality of components is brought into contact with the pre-treatment solution in the system tank, whereby the individual components are brought into contact one after the other and thus separated in time.
  • the system tank is the container in which the pretreatment solution is in series for the purpose of passivating pretreatment.
  • the area to be set in the method according to the invention for the layer coating based on the elements Zr and / or Ti can be coated by means of X-ray fluorescence analysis (RFA) after calibration using solutions of known molarity of H 2 ZrF 6 and H 2 TiF 6 in the dry-in-place method Metal surfaces are determined. The solutions of known molarity are applied to produce the calibration sample plates in a defined wet film thickness and the wet film is then completely dried.
  • RFA X-ray fluorescence analysis
  • the determination of the actual layer support according to the present invention can be based on these Kalibrierprobebleche both after drying the pretreated and rinsed surfaces of the components or after pretreatment and the first sink, for example, after rinsing a body immediately after the pretreatment in passing a so-called Nasshalteringes in the rinse water by several Spray valves are applied to the body.
  • compounds are "water-soluble" if their solubility in deionized water having a conductivity of not more than 1 ⁇ Scm -1 at a temperature of 20 ° C. is at least 1 g / l.
  • the maintenance of the concentration of the elements zirconium and / or titanium can be carried out by adding one or more supplementary solutions into the system tank.
  • the molar ratio of the total amount of fluorine in the form of compounds dissolved in water to the total amount of zirconium and / or titanium in the form of compounds dissolved in water should not be less than 4.5.
  • the dosage of a required amount of zirconium and / or titanium compounds dissolved in water may not be practicable since the compounds tend to form colloidal solutions and hence poorly soluble precipitates, thus providing one of the maintenance of the active components in the pretreatment solution Dosing such supplement solution can hardly be done reliably.
  • the molar ratio of the total amount of fluorine to the total amount of zirconium and / or titanium in the added total volume of replenishers is not less than 5.0, more preferably not less than 5.5.
  • the same ratio in the added total volume of the supplemental solutions in the inventive method is less than 0 . 4 mmol L - 1 c B me + 6 or alternatively is less than 9,25, so that the necessary Versch at pretreatment solution has such an upper limit, in which the inventive method can be operated economically useful for substantially all pre-treatment solutions included.
  • the inventive method makes due to the controlled Versches bath solution and the consequent replenishment of supplementary solution that the enrichment of free fluoride in the pretreatment solution is limited so that an adverse effect on the conversion coating based on the elements zirconium and / or titanium omitted. It should also be emphasized that the inventive method addition of fluoride scavengers - compounds which bind and thus reduce their concentration of free fluorides - makes superfluous, since the free fluoride concentration is completely controlled by the throw of bath solution.
  • the minimum throw is for the given conditions with respect to the concentration of active components in the pretreatment solution and the planned coating layer of a maximum of 0.7 mmol / m 2 based on the elements zirconium and titanium according to the semi-empirically found term (1) or the preferred semi
  • These terms for the minimum throw are only based on the specific concentration of zirconium and / or titanium in the pretreatment solution and the ratio of the elements fluorine in the form of compounds dissolved in water to the total amount Accordingly, in order to maintain optimum process conditions in the pretreatment, only the determination of the concentration of the active components in the form of the elements zirconium and / or titanium, which in any case is sufficient, is required Conversion layer training regularly z u is controlling. The monitoring of the amount of free fluoride in the pretreatment solution becomes unnecessary in the process according to the invention.
  • processes according to the invention are preferably processes for which the molar ratio of the total amount of the elements zirconium and / or titanium in each case to the total amount of one of the elements calcium, magnesium, aluminum, boron, iron, manganese or tungsten in the form of water-soluble compounds in the added total volume of the supplementary solution is greater is 5: 1, more preferably greater than 10: 1.
  • a further advantage of the method according to the invention is that sufficient coating deposits of zirconium and / or titanium are already achieved with relatively low concentrations of active components for corrosion protection and adhesion to a subsequently applied organic primer.
  • those methods according to the invention are preferred for material efficiency in which the passivating aqueous pretreatment solution in the system tank is less than 0.65 mmol / L, more preferably less than 0.55 mmol / L, most preferably less than 0.325 mmol / L of water-soluble compounds of the elements zirconium and / or titanium.
  • a low concentration of active components also causes the stationary by being carried over into a downstream sink introduced proportion of these compounds is low.
  • the pH of the passivating aqueous pretreatment solution in a preferred process according to the invention is not less than 3.0, more preferably not less than 3.5, but preferably not greater than 5.0, more preferably not greater than 4.5.
  • the “pH value” according to the present invention corresponds to the negative logarithm of the hydronium ion activity at 20 ° C. and can be determined by means of a pH-sensitive glass electrode.
  • the inventive method is preferably carried out at relatively low temperatures, so that evaporation losses in the system tank of Pretreatment solution can be neglected. Accordingly, in a preferred process of the invention, the temperature of the passivating aqueous pretreatment solution is not greater than 45 ° C, more preferably not greater than 40 ° C, most preferably not greater than 35 ° C.
  • the Versch provided in pretreatment solution according to the invention can be carried out during the corrosion protection treatment of the plurality of components process-related only quasi-continuous or discontinuous.
  • the inventive process of the series treatment requires that with each treated component a certain amount of pretreatment solution irrevocably leaves the system tank.
  • the amount of rejects entrained with each treated component is inherently discrete and therefore discontinuous and dependent on the specific treatment conditions and the geometry of the components.
  • the dragged portion of Versch is only partially accessible to a control, for example by rotation or tilting of the components when immersed in the pretreatment solution or blowing off the components when lifting out the components from the system tank of the pretreatment.
  • procedural measures are complex and usually justified by no special added value.
  • the processes are generally operated so that the components do not discharge properly pretreatment solution and usually be towed less than 50 ml per square meter of treated surface. If, in the following, therefore, a quasicontinuous or discontinuous throwing is used, only the actively dispensed volume of pretreatment solution is addressed and it has to be taken into account that the passively removed portion of the reject is always discarded discontinuously with each treated component.
  • the rejection of passivating aqueous pretreatment solution is preferably carried out both by extracting pretreatment solution with each component of the series of components to be treated and by actively discharging pretreatment solution in each case from the system tank of the pretreatment.
  • the volume of pretreatment solution to be actively sprayed may be adjusted to the zirconium and / or titanium layer deposited on the components in the pretreatment step to provide as much as required for a coating of zirconium and / or titanium to be achieved. but not more than necessary to feed pretreatment solution and proceed as economically as possible in this way.
  • the discontinuous throw in liters for a number n of components i treated in series is the value VW d ⁇ z e - 2 . 4 0 . 4 mmol L - 1 - c B me z e - 6 ⁇ ⁇ i n x i Zn ⁇ S i Zn + x i Fe ⁇ S i Fe ⁇ A i - VW a n
  • the Versch to be set according to the invention can also be made quasi-continuous.
  • the throwing by active feeding of passivating aqueous pretreatment solution and the replacement of discarded pretreatment solution with replenisher are carried out continuously during the pre-treatment of the components in series, more preferably by feeding a constant volume flow of replenishing replacer solution into the system tank of the pretreatment, wherein the continuous Versch at passivating aqueous pretreatment solution is preferably realized mainly by overflowing an open system tank.
  • Predominantly in this context means that more than 50%, preferably more than 80%, of the control accessible portion of the discarded pretreatment solution is not the inevitable part due to the scavenging effect of the components or the wet film adhered to the components owned by the Ver Dahles, is removed by an overflow from the system tank.
  • the overflow thus represents a particularly preferred type of Verthanes by active feeding.
  • the continuous Versch can also be realized by feeding a constant volume flow from the system tank.
  • Scattering and layering are interdependent variables, so that both in quasi-continuous and in discontinuous operation, the measurement of the actual coating layer (S, S i ) with knowledge of the bath concentration of zirconium and / or titanium is sufficient to specify on the setting of the continuous or discontinuous Versches the target state with respect to layer support for other components and an optimally protected against corrosion Lackhaftground.
  • an effective control that requires only the monitoring of the amount of zirconium and / or titanium in the pretreatment solution and on the iron and zinc surfaces.
  • the layer supports (S, S i ) based on the elements zirconium and / or titanium can be determined immediately after the pretreatment of the component by means of X-ray fluorescence analysis on the respective treated metal surface as described above.
  • the discontinuous Versch is carried out immediately after the first rinse, wherein the first sink is preferably carried out by means of a so-called wet holding ring by spraying the components with the first rinse water, wherein the rinse water again preferably at least partially fed as part of the supplement solution in the pretreatment solution becomes.
  • the Versch occurs quasi-continuously or if possible discontinuously as possible after each pretreatment of only a small number n of components.
  • VW c , VW d The simplification in the setting of the at least required discontinuous or continuous Ver Dahles (VW c , VW d ) is that the adjustment is made independently of the coating layer, but it is accepted that the proportion of free fluoride is in the respective limits, which just still ensure a sufficient conversion layer formation or not yet detrimental deterioration thereof.
  • At least 80% of the surfaces of the component will be formed by surfaces of the substrates iron, zinc and aluminum, more preferably at least 50% of the surfaces of the component being metallic surfaces of the substrates iron and / or zinc, again preferably at least 10%, particularly preferably at least 20%, of the metallic surfaces of the component are selected from surfaces of the substrate iron.
  • the surfaces of the substrates iron, zinc and aluminum are also their alloys if their main alloying constituent is formed by the respective substrate element.
  • a coating with an organic binder system preferably a powder coating or dip coating, more preferably an electrodeposition coating, more preferably a cathodic electrodeposition coating.
  • a drying step is characterized by performing technical measures for drying the surfaces of the component, for example, by supplying thermal energy or by supplying a dry air flow.
  • no further treatment step with an aqueous solution in which the solution more contains 10% of the proportion of the passivating aqueous pretreatment solution of water-soluble compounds of the elements zirconium and / or titanium, in particular no further such treatment step, serving on at least one metal surface of the component, a coating containing substrate-foreign metallic or semi-metallic elements with a layer of more than Form 0.1 mmol / m 2 based on these substrate-foreign elements.
  • substrate foreign in this context is any element that is not the main alloying element of the substrate in question.
  • a rinsing step is carried out by bringing the components into contact with a rinsing solution present in a system tank, during which part of the rinsing solution is serially treated during the anti-corrosive treatment of the components and replaced by an at least equal volume of a complementary rinse solution containing a total of less than 10 -5 mol / L of water-soluble compounds of the elements zirconium and / or titanium, and preferably less than 10 -4 mol / L of water-soluble compounds containing a Source of fluoride ions, based on the element contains fluorine. Also in this case, it should be ensured that an enrichment of active components from the passivating aqueous pretreatment solution in the rinse solution is tolerated only to a certain extent, since otherwise damage to the passive layer can not be completely ruled out.
  • the throw of rinsing solution per treated in series total surface area of the components is less than 2 liters / m 2 .
  • this upper limit can always be maintained without additional measures for working up the rinse solution being necessary.
  • the discarded rinsing solution is fed as a supplementary solution into the system tank of the passing aqueous pretreatment, with regularly additionally dosing a more concentrated supplementary solution for maintaining the bath concentration of water-soluble compounds of the elements zirconium and / or titanium in the passivating aqueous Pretreatment solution will be necessary.
  • the water-soluble compounds of the elements zirconium and / or titanium are therefore not restricted to any particular class of compounds both in the pretreatment solution and in the supplemental solutions, but preferred are oxyfluorides of the respective elements, particularly preferably the fluoroacids and salts thereof.
  • oxyfluorides of the respective elements particularly preferably the fluoroacids and salts thereof.
  • basic zirconium carbonate or titanyl sulfate these compounds then having to be reacted with a corresponding amount of fluoride-releasing compounds because of the ratio of fluorides dissolved in water according to the invention to compounds of zirconium and / or titanium dissolved in water in order to form an adequate supplementary solution.
  • Water-soluble compounds which are a source of fluoride ions and to which extent the process according to the invention can be based are, for example, hydrofluoric acid, ammonium bifluoride and sodium fluoride or the abovementioned oxyfluorides and fluoro acids of the elements zirconium and / or titanium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Korrosionsschutzbehandlung, bei dem eine Serie von Bauteilen mit metallischen Oberflächen von Eisen und/oder Zink mit einer in einem Systemtank befindlichen passivierenden wässrigen Vorbehandlungslösung enthaltend Verbindungen der Elemente Zirconium und/oder Titan sowie eine Quelle für Fluorid-Ionen in Kontakt gebracht wird. Im erfindungsgemäßen Verfahren wird ein Teil dieser Vorbehandlungslösung verworfen und durch einen in der Summe zumindest gleich großen Volumenteil einer oder mehrerer solcher Ergänzungslösungen durch Zudosierung in den Systemtank der Vorbehandlung ersetzt. Während der Verwurf in Abhängigkeit vom molaren Verhältnis der Fluorid-Ionen zum Gehalt an Zirconium und/oder Titan einen vorgegebenen Wert nicht unterschreiten darf, um auch bei einem vollständigen Verzicht auf den Einsatz von Chemikalien zur Regulierung der Beizrate oder Stabilisierung der lonenfracht eine dauerhaft zufriedenstellende Korrosionsschutzbehandlung sicherzustellen, geschieht die Zudosierung von Ergänzungslösung derart, dass eine Aufrechterhaltung der Konzentration der Elemente Zirconium und/oder Titan in der passivierenden wässrigen Vorbehandlungslösung in Form wasserlöslicher Verbindungen gewährleistet ist.The present invention relates to a method for anticorrosive treatment, comprising a series of components with metallic surfaces of iron and / or zinc with a passivated aqueous pretreatment solution in a system tank containing compounds of zirconium and / or titanium and a source of fluoride ions in Contact is brought. In the process according to the invention, part of this pretreatment solution is discarded and replaced by a total of at least equal volume of one or more such supplemental solutions by metering into the system tank of the pretreatment. While the Verwurf must not fall below a predetermined value depending on the molar ratio of fluoride ions to the content of zirconium and / or titanium, even in a complete abandonment of the use of chemicals to regulate the pickling rate or stabilize the ionic freight, a permanently satisfactory corrosion protection treatment To ensure the addition of supplementary solution is done in such a way that a maintenance of the concentration of the elements zirconium and / or titanium is ensured in the passivating aqueous pretreatment solution in the form of water-soluble compounds.

Modernen Fertigungslinien, in denen eine Vorbehandlung zur korrosionsschützenden Beschichtung vor dem Aufbringen einer Lackierung erfolgt, wird nicht nur eine hohe Fertigungsrate verbunden mit einem hohen Materialverbrauch pro Zeiteinheit abverlangt, sondern auch eine hohe Flexibilität bezüglich der zu behandelnden Bauteile verbunden mit Schwankungen bezüglich des Chemikalienverbrauchs und der Art der Belastung der hierfür eingesetzten Bäder. So ist es nicht unüblich und in der automobilen Zulieferindustrie häufige Praxis, dass ein und dasselbe Vorbehandlungsbad für die serielle Beschichtung unterschiedlicher Bauteile mit unterschiedlichen Flächenanteilen verschiedener metallischer Materialien verwendet wird. Hingegen werden in Lackierstraßen von Fertigungslinien der Automobilindustrie üblicherweise baugleiche Karosserien bei Bandgeschwindigkeiten von 3 - 6 m/min in Durchlaufbecken enthaltend 150 - 450 m3 der Vorbehandlungslösung getaucht und auf diese Weise in Serie vorbehandelt, so dass bis zu 80 Karosserien mit jeweils ca. 100 m2 metallischer Oberfläche pro Stunde vorbehandelt werden.Modern production lines in which a pretreatment for anti-corrosive coating before applying a paint is demanded not only a high production rate associated with a high material consumption per unit time, but also a high flexibility in terms of the components to be treated in conjunction with variations in the chemical consumption and the Type of load of the baths used for this purpose. Thus, it is not uncommon and common practice in the automotive supply industry to use one and the same pre-treatment bath for the serial coating of different components with different surface portions of different metallic materials. On the other hand, in painting lines of production lines of the automobile industry usually identical bodies at belt speeds of 3 - 6 m / min immersed in pass tanks containing 150 - 450 m 3 of the pretreatment solution and pretreated in this way in series, so that up to 80 bodies, each with about 100 pretreated m 2 metallic surface per hour.

Eine kontinuierliche, präzise Überwachung der Vorbehandlungsprozesse ist dabei für eine optimale Dosierung der Aktivkomponenten und ggf. regulierend wirkender Chemikalien in der Oberflächenbehandlung metallischer Oberflächen von Bauteilen grundsätzlich entscheidend. Dieser Aufwand kann in modernen Fertigungslinien nur noch durch eine weitgehend automatisierte Überwachung und Steuerung der Dosierung von Prozesschemikalien geleistet werden, um ein dauerhaft optimales Verhältnis an Chemikalien in den Prozessbädern aufrecht zu erhalten, um den Grundsätzen der Materialeffizienz und einer gleichbleibenden Vorbehandlungsqualität gerecht werden zu können.A continuous, precise monitoring of the pretreatment processes is fundamentally crucial for the optimum dosing of the active components and possibly regulating chemicals in the surface treatment of metallic surfaces of components. This effort can only in modern production lines by a largely Automated monitoring and control of process chemicals dosing to maintain a long-lasting, optimal ratio of chemicals in process baths to meet the principles of material efficiency and consistent pre-treatment quality.

Im Speziellen ist nun die passivierende Vorbehandlung metallischer Bauteile auf Basis saurer wässriger Vorbehandlungslösungen von Fluorometallaten der Elemente Zirconium und/oder Titan als Alternative zum Chromatierverfahren, das wegen der toxischen Eigenschaften von Chrom(VI)-Verbindungen zunehmend weniger Verwendung findet, seit langem bekannt und etabliert. In der Regel sind derartigen Vorbehandlungslösungen zusätzliche Aktivkomponenten zugesetzt, die die Korrosionsschutzwirkung und Lackhaftung weiter verbessern sollen. Beispielhaft sei hier die EP 1 571 237 angeführt, die eine Vorbehandlungslösung geeignet für unterschiedliche Metalloberflächen enthaltend bis zu 5000 ppm Zirconium und/oder Titan sowie bis zu 100 ppm freies Fluorid offenbart. Zusätzlich kann die Lösung weitere Komponenten ausgewählt aus Chlorat, Bromat, Nitrit, Nitrat, Permanganat, Vanadat, Wasserstoffperoxid, Wolframat, Molybdat oder jeweils die zugehörigen Säuren enthalten. Organische Polymere können ebenfalls anwesend sein. Nach der Behandlung mit einer derartigen Lösung können die Metalloberflächen mit einer weiteren passivierenden Lösung nachgespült werden.In particular, the passivating pretreatment of metallic components based on acidic aqueous pretreatment solutions of fluorometallates of the elements zirconium and / or titanium as an alternative to the chromating process, which is becoming increasingly less popular because of the toxic properties of chromium (VI) compounds, has long been known and established , As a rule, such pretreatment solutions contain additional active components which are intended to further improve the anticorrosive action and paint adhesion. Exemplary here is the EP 1 571 237 which discloses a pretreatment solution suitable for various metal surfaces containing up to 5000 ppm zirconium and / or titanium and up to 100 ppm free fluoride. In addition, the solution may contain further components selected from chlorate, bromate, nitrite, nitrate, permanganate, vanadate, hydrogen peroxide, tungstate, molybdate or in each case the associated acids. Organic polymers may also be present. After treatment with such a solution, the metal surfaces can be rinsed with another passivating solution.

Ein Vorbehandlungsbad zur Erzeugung einer passivierenden Konversionsschicht auf Metalloberflächen bedarf im Einzelfall daher einer Vielzahl von Aktivkomponenten, die im laufenden Betrieb eines Vorbehandlungsbades regelmäßig nachdosiert werden müssen. Im Sinne einer möglichst hohen Materialeffizienz besteht ein steter Bedarf darin, die Vorbehandlungsverfahren ressourcenschonender zu gestalten, d.h. unter Bedingungen zu betreiben, unter denen die Aufwendung an Aktivkomponenten reduziert werden kann.A pretreatment bath for producing a passivating conversion layer on metal surfaces therefore requires in individual cases a large number of active components which have to be regularly replenished during operation of a pretreatment bath. In order to maximize material efficiency, there is a continuing need to make the pretreatment processes more resource efficient, i. operate under conditions in which the use of active components can be reduced.

Die DE 10 2008 038653 offenbart in diesem Zusammenhang ein Verfahren, bei dem die mit dem Bauteil in die Spüle ausgeschleppten Aktivkomponenten einer Vorbehandlung in das Spülwasser vor der eigentlichen Vorbehandlung zur Erzeugung einer Zirconium- und/oder Titan-basierter Konversionsschicht zurückkaskadiert werden. In dieser Vorspüle bewirkt der Anteil an zurückkaskadierten Aktivkomponenten eine partielle Passivierung, die in der nachfolgenden Vorbehandlung abgeschlossen wird. Auf diesem Wege gelingt es bereits, die tatsächliche, pro zu behandelndem Bauteil verwendete Menge an Aktivkomponenten zu reduzieren und so die Materialeffizienz zu erhöhen.The DE 10 2008 038653 discloses in this context a method in which the entrained with the component in the sink active components of a pre-treatment in the rinse water before the actual pretreatment to produce a zirconium and / or titanium-based conversion layer are cascaded back. In this pre-rinse, the proportion of cascaded active components causes a partial passivation, which is completed in the subsequent pretreatment. In this way, it is already possible to reduce the actual amount of active components used per component to be treated and thus to increase the material efficiency.

Ungeachtet dieser Fortschritte hinsichtlich Materialeffizienz bleibt der Wartungsaufwand eines Vorbehandlungsbades im laufenden Betrieb enorm groß, da die Menge der Aktivkomponenten in einem von der Art der Vorbehandlung vorgegebenen Regelungsfenster selbstverständlich ständig aufrechterhalten werden muss.Notwithstanding these advances in material efficiency, the maintenance effort of a pre-treatment bath during operation remains enormous, since the amount of active components in a control window dictated by the type of pre-treatment must, of course, be constantly maintained.

Daneben findet im laufenden Betrieb eines Vorbehandlungsbades eine Anreicherung von in Wasser gelösten Komponenten statt, die entweder aus den Metalloberflächen der behandelten Bauteile herausgebeizt werden, Reaktanden der Aktivkomponenten darstellen oder aus vorgelagerten Behandlungsschritten, wie etwa einem nasschemischen Reinigungsschritt, in das Vorbehandlungsbad eingeschleppt werden. Ein Vorbehandlungsbad strebt daher je nach der materiellen Beschaffenheit der zu behandelnden Bauteile, der Art der Vorbehandlung sowie der vorhergehenden Behandlungsschritte und der verfahrenstechnischen Prozessführung ein stationäres Gleichgewicht an, wobei dabei mitunter Gleichgewichtskonzentrationen für bestimmte Komponenten angestrebt werden, die sich auf das Ergebnis der Vorbehandlung nachteilig auswirken können. Es genügt also nicht lediglich Aktivkomponenten nachzuführen. Vielmehr wird häufig auch der Einsatz regulierend wirkender Chemikalien notwendig, um zu verhindern, dass sich die Qualität der Vorbehandlung im laufenden Betrieb verschlechtert.In addition, during operation of a pretreatment bath, an accumulation of components dissolved in water takes place, which are either pickled out of the metal surfaces of the treated components, represent reactants of the active components or are introduced from upstream treatment steps, such as a wet chemical cleaning step, into the pretreatment bath. Therefore, depending on the material properties of the components to be treated, the type of pretreatment and the preceding treatment steps and the procedural process management, a pretreatment bath aims at a steady state equilibrium, sometimes aiming at equilibrium concentrations for certain components, which have a detrimental effect on the result of the pretreatment can. So it is not enough to track only active components. Rather, the use of regulating chemicals is often necessary to prevent the quality of the pre-treatment during operation from deteriorating.

So berichtet die DE 10 2008 014465 hinsichtlich der Korrosionsschutzbehandlung metallischer Bauteile mittels Vorbehandlungslösungen von Fluorometallaten der Elemente Zirconium und/oder Titan, dass die Einhaltung eines optimalen molaren Verhältnisses von Fluorid-Ionen zu Elementen der Elemente Zirconium und/oder Titan bei serieller Vorbehandlung, also im laufenden Betrieb, entscheidend ist. Weiterhin wird dort für eine gleichbleibend gute Qualität der korrosionsschützenden Vorbehandlung vorgeschlagen, bestimmte Mengen an Fluorid-Fängern dem Vorbehandlungsbad hinzu zu dosieren. Die Fluorid-Fänger stellen demnach regulierend wirkende Chemikalien dar und sind im speziellen Fall vorzugsweise ausgewählt aus Verbindungen die Aluminium-Ionen, Kalzium-Ionen und/oder Eisen-Ionen freisetzen. In diesem Zusammenhang wird dort wiederum festgestellt, dass ein zu hoher relativer Anteil an Aluminium-Ionen im Vorbehandlungsbad die Titan- und/oder Zirkon-basierte Konversionsschichtbildung insbesondere auf den Stahloberflächen der Bauteile inhibiert, so dass tendenziell niedrigere Schichtauflagen und damit ein ungenügender Korrosionsschutz resultieren.So reported the DE 10 2008 014465 with regard to the corrosion protection treatment of metallic components by means of pretreatment solutions of fluorometallates of the elements zirconium and / or titanium, it is crucial to maintain an optimum molar ratio of fluoride ions to elements of the elements zirconium and / or titanium during serial pretreatment, ie during operation. Furthermore, it is proposed there for a consistently good quality of the anticorrosive pretreatment to meter certain amounts of fluoride scavengers to the pretreatment. Accordingly, the fluoride scavengers are regulatory chemicals and in the specific case are preferably selected from compounds which release aluminum ions, calcium ions and / or iron ions. In this context, it is again found there that too high a relative proportion of aluminum ions in the pretreatment bath inhibits the titanium- and / or zirconium-based conversion layer formation, in particular on the steel surfaces of the components, so that lower layer coverings and thus insufficient corrosion protection tend to result.

Jede Zugabe eines Fluorid-Fängers als regulierend wirkende Chemikalie zur Aufrechterhaltung der Performanz der Vorbehandlung muss demnach zu exakt vorhersehbaren Konzentrationen der Aktivkomponenten im Vorbehandlungsbad führen, anderenfalls kann nicht gewährleistet werden, dass die serielle Vorbehandlung von Bauteilen unter optimalen Prozessbedingungen, nämlich unter Einhaltung der empirisch gefundenen stofflichen Parametergrenzen, erfolgt. Hier besteht zusätzlich die Schwierigkeit, unmittelbar die Menge an Gesamt-Fluorid oder freiem Fluorid messtechnisch zu bestimmen, da die konventionellen Methoden auf die Bestimmung mittels ionen-selektiver Elektroden beruhen und damit auf sich langsam einstellenden chemischen Gleichgewichten. Die Ableitung der Ist-Größe für die Einstellung der Soll-Größe mittels Fluorid-Fänger unterliegt damit einer zeitlichen Unschärfe, die je nach Fertigungsprozess in der Größenordnung der Behandlungszeit des metallischen Bauteils liegen kann. Eine gleichbleibende Qualität der seriellen korrosionsschützenden Vorbehandlung mittels saurer wässriger Vorbehandlungslösungen von Fluorometallaten der Elemente Zirconium und/oder Titan kann daher nur mit hohem analytischen und verfahrenstechnischen Aufwand und nicht zuletzt dem Einsatz erheblicher Mengen regulierender Chemikalien sichergestellt werden. Die WO-A-2013/126632 offenbart Ergänzungslösungen für Konversionslösungen, die Zr enthalten. Die Ergänzungslösung enthält fluorhaltige und fluorfreie Zirkoniumverbindungen. Ein Teil der verbrauchten Konversionslösung wird verworfen. Die Aufgabe der vorliegenden Erfindung besteht somit darin, in der seriellen korrosionsschützenden Behandlung von metallischen Oberflächen aufweisenden Bauteilen mittels saurer wässriger Vorbehandlungslösungen von wasserlöslichen Verbindungen der der Elemente Zirconium und/oder Titan den verfahrenstechnischen Aufwand zur Überwachung und Steuerung der prozessrelevanten Badparameter erheblich zu vereinfachen und gleichzeitig die Materialeffizienz hinsichtlich der Verwendung regulierender Badchemikalien deutlich zu erhöhen. Weiterhin bestand die Aufgabe darin, den Prozess dahingehend zu optimieren, dass eine zuverlässige vor Korrosion schützende Konversion auf Basis der Elemente Zirconium und/oder Titan insbesondere auf den Eisenoberflächen der in Serie behandelten Bauteile erfolgt, die sodann im Zusammenwirken mit einer organischen Primerbeschichtung oder einem organischen Tauchlack die hohen Anforderungen an einen permanenten Korrosionsschutz erfüllt.
Diese Aufgabe wird gelöst durch ein Verfahren zur Korrosionsschutzbehandlung einer Vielzahl von metallische Oberflächen von Zink und/oder Eisen aufweisenden Bauteilen in Serie, bei dem jedes dieser Bauteile mit einer in einem Systemtank befindlichen passivierenden wässrigen Vorbehandlungslösung bei einer Temperatur von weniger als 50 °C in Kontakt gebracht wird, wobei die passivierende wässrige Vorbehandlungslösung ein oder mehrere wasserlösliche Verbindungen der Elemente Zirconium und/oder Titan und ein oder mehrere wasserlösliche Verbindungen, die eine Quelle für Fluorid-Ionen darstellen, enthält und das In-Kontakt-Bringen für eine solche Zeit erfolgt, dass auf den metallischen Oberflächen von Zink und/oder Eisen eine Schichtauflage von zumindest 0,1 mmol/m2 bezogen auf die Elemente Zirconium und/oder Titan resultiert, jedoch keine dieser metallischen Oberflächen eine Schichtauflage von mehr als 0,7 mmol/m2 bezogen auf die Elemente Zirconium und/oder Titan aufweist, und wobei während der Korrosionsschutzbehandlung der Bauteile in Serie ein Teil der passivierenden wässrigen Vorbehandlungslösung des Systemtanks verworfen und durch einen in der Summe zumindest gleich großen Volumenteil einer oder mehrerer Ergänzungslösungen durch Zudosierung in den Systemtank auf eine Weise ersetzt wird, dass eine Aufrechterhaltung der Konzentration der Elemente Zirconium und/oder Titan in der passivierenden wässrigen Vorbehandlungslösung in Form wasserlöslicher Verbindungen resultiert, weiterhin dadurch gekennzeichnet, dass eine Konzentration der Elemente Zirconium und/oder Titan in der passivierenden wässrigen Vorbehandlungslösung in Form wasserlöslicher Verbindungen von zumindest 0,05 mmol/L, aber von insgesamt weniger als 0,8 mmol/L im Systemtank aufrechterhalten wird, und das molare Verhältnis der Gesamtmenge an Fluor in Form wasserlöslicher Verbindungen, die eine Quelle für Fluorid-Ionen darstellen (im folgenden "Gesamtmenge an Fluor"), zur Gesamtmenge der Elemente Zirconium und/oder Titan in Form wasserlöslicher Verbindungen (im folgenden "Gesamtmenge der Elemente Zirconium und/oder Titan") im hinzudosierten Gesamtvolumen der Ergänzungslösungen kleiner als das gleiche Verhältnis in der passivierenden wässrigen Vorbehandlungslösung, jedoch nicht kleiner als 4,5 ist, und der Verwurf an passivierender wässriger Vorbehandlungslösung in Liter pro in Serie behandeltem Quadratmeter an metallischen Oberflächen von Zink und Eisen zumindest folgenden Wert annimmt, d.h. größer gleich dem folgendem Wert ist: VW = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 10 1 mmol m 2

Figure imgb0001

VW:  Verwurf an Vorbehandlungslösung in L/m2;
c B Me :
Figure imgb0002
  Konzentration an Zirconium und/oder Titan in der Vorbehandlungslösung in mmol/L;
ZE:  molare Verhältnis der Gesamtmenge an Fluor zur Gesamtmenge der Elemente Zirconium und/oder Titan im hinzudosierten Gesamtvolumen der Ergänzungslösungen mit der Maßgabe, dass folgendes gilt: z E < 2 , 8 mmol L 1 c B Me + 6
Figure imgb0003
Each addition of a fluoride scavenger as a regulatory chemical to maintain the performance of the pretreatment must therefore result in accurately predictable concentrations of the active components in the pretreatment bath, otherwise it can not be guaranteed that the serial pretreatment of components takes place under optimal process conditions, namely in compliance with the empirically found material parameter limits. In addition, there is the difficulty of directly measuring the amount of total fluoride or free fluoride, since the conventional methods are based on the determination by means of ion-selective electrodes and thus on slowly adjusting chemical equilibria. The derivation of the actual size for setting the target size by means of fluoride scavenger is thus subject to a temporal blur, which may be depending on the manufacturing process in the order of the treatment time of the metallic component. A consistent quality of the serial anticorrosive pretreatment by means of acidic aqueous pretreatment solutions of fluorometalates of the elements zirconium and / or titanium can therefore only be ensured with a high level of analytical and process engineering effort, and last but not least, the use of considerable quantities of regulating chemicals. The WO 2013/126632 discloses supplementary solutions for conversion solutions containing Zr. The supplement solution contains fluorine-containing and fluorine-free zirconium compounds. Part of the spent conversion solution is discarded. The object of the present invention is thus, in the serial corrosion-protective treatment of metallic surfaces having components by means of acidic aqueous pretreatment solutions of water-soluble compounds of the elements zirconium and / or titanium considerably simplify the process engineering effort to monitor and control the process-relevant bath parameters and at the same time Significantly increase material efficiency with regard to the use of regulating bath chemicals. A further object was to optimize the process so that a reliable corrosion-protective conversion based on the zirconium and / or titanium elements takes place, in particular, on the iron surfaces of the components treated in series, which are then used in conjunction with an organic primer coating or an organic primer coating Dipping paint meets the high requirements for permanent corrosion protection.
This object is achieved by a method for anticorrosive treatment of a plurality of metallic surfaces of zinc and / or iron-containing components in series, in which each of these components with a present in a system tank passivating aqueous pretreatment solution at a temperature of less than 50 ° C in contact wherein the passivating aqueous pretreatment solution contains and is in contact with one or more water-soluble compounds of the elements zirconium and / or titanium and one or more water-soluble compounds which are a source of fluoride ions, and is contacted for such time; that on the metallic surfaces of zinc and / or iron, a coating layer of at least 0.1 mmol / m 2 based on the elements zirconium and / or titanium results, but none of these metallic surfaces relative a layer circulation of more than 0.7 mmol / m 2 to the elements zirconium and / or comprises titanium, and wherein during the anti-corrosion treatment of the components in series discarded part of the passivating aqueous pretreatment solution of the system tank and in total at least by a equivalent volume of one or more supplemental solutions is replaced by metering into the system tank in such a way that maintaining the concentration zirconium and / or titanium in the passivating aqueous pretreatment solution in the form of water-soluble compounds results, further characterized in that a concentration of the elements Zirconium and / or titanium in the passivating aqueous pretreatment solution in the form of water-soluble compounds of at least 0.05 mmol / L but less than 0.8 mmol / L in total is maintained in the system tank, and the molar ratio of the total amount of fluorine i n form of water-soluble compounds which are a source of fluoride ions (hereinafter "total amount of fluorine"), to the total amount of elements zirconium and / or titanium in the form of water-soluble compounds (hereinafter "total amount of elements zirconium and / or titanium") in the added total volume of the replenisher is less than the same ratio in the passivating aqueous pretreatment solution but not smaller than 4.5, and the amount of passivating aqueous pretreatment solution in liters per per square meter of metallic surfaces of zinc and iron is at least the following value ie greater than or equal to the following value: VW = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 10 - 1 mmol m - 2
Figure imgb0001

VW: throw on pretreatment solution in L / m 2 ;
c B me :
Figure imgb0002
Concentration of zirconium and / or titanium in the pretreatment solution in mmol / L;
Z E : molar ratio of the total amount of fluorine to the total amount of the elements zirconium and / or titanium in the added total volume of the replenisher with the proviso that z e < 2 . 8th mmol L - 1 c B me + 6
Figure imgb0003

Das erfindungsgemäße Verfahren bewirkt, dass über den geregelten Verwurf der freie Fluorid-Anteil in der Vorbehandlungslösung keine Werte überschreitet, für die bereits eine strukturelle Veränderung der Konversionsschicht eintritt, die regelmäßig mit einer Verschlechterung der Korrosionsschutzeigenschaften und der Lackhaftung einhergeht.The method according to the invention has the effect that, via the regulated throw, the free fluoride portion in the pretreatment solution does not exceed values for which a structural change of the conversion layer already occurs, which is regularly accompanied by a worsening of the anticorrosive properties and the paint adhesion.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens nimmt der Verwurf an Vorbehandlungslösung für die Erzielung desselben Zweckes zumindest folgenden Wert: VW = 3 z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 10 1 mmol m 2 ,

Figure imgb0004
besonders bevorzugt zumindest folgenden Wert an: VW = 7 z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 10 1 mmol m 2
Figure imgb0005
In a preferred embodiment of the method according to the invention, the throw of pretreatment solution for achieving the same purpose takes at least the following value: VW = 3 z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 10 - 1 mmol m - 2 .
Figure imgb0004
particularly preferably at least the following value: VW = 7 z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 10 - 1 mmol m - 2
Figure imgb0005

Der Verwurf ist erfindungsgemäß das auf die Einheitsoberfläche (1 m2) der zu behandelnden Bauteile normierte Flüssigkeitsvolumen an Vorbehandlungslösung, das den Systemtank während der seriellen Vorbehandlung durch passives Ausschleppen oder aufgrund eines kontinuierlichen oder diskontinuierlichen Überlaufs pro Quadratmeter eines behandelten Bauteils verlässt.According to the invention, the throw is the liquid volume of pretreatment solution normalized to the unit surface (1 m 2 ) of the components to be treated which leaves the system tank during the serial pretreatment by passive extraction or due to a continuous or discontinuous overflow per square meter of a treated component.

Eine Vorbehandlung in Serie gemäß der vorliegenden Erfindung liegt vor, wenn eine Vielzahl von Bauteilen mit in der im Systemtank befindlichen Vorbehandlungslösung in Kontakt gebracht wird, wobei das In-Kontakt-Bringen der einzelnen Bauteile nacheinander und damit zeitlich voneinander getrennt erfolgt. Der Systemtank ist dabei das Behältnis, in dem sich die Vorbehandlungslösung, zum Zwecke der passivierenden Vorbehandlung in Serie befindet.A pre-treatment in series according to the present invention is when a plurality of components is brought into contact with the pre-treatment solution in the system tank, whereby the individual components are brought into contact one after the other and thus separated in time. The system tank is the container in which the pretreatment solution is in series for the purpose of passivating pretreatment.

Der im erfindungsgemäßen Verfahren einzustellende Bereich für die Schichtauflage bezogen auf die Elemente Zr und/oder Ti kann mittels Röntgenfluoreszenzanalyse (RFA) nach Kalibrierung anhand von mit Lösungen bekannter Molarität an H2ZrF6 und H2TiF6 im Dry-in-Place Verfahren beschichteter Metalloberflächen bestimmt werden. Die Lösungen bekannter Molarität werden zur Herstellung der Kalibrierprobebleche in definierter Nassfilmdicke appliziert und der Nassfilm anschließend zur Gänze aufgetrocknet. Die Bestimmung der tatsächlichen Schichtauflage gemäß vorliegender Erfindung kann anhand dieser Kalibrierprobebleche sowohl nach Trocknung der vorbehandelten und gespülten Oberflächen der Bauteile oder nach Vorbehandlung und der ersten Spüle, beispielsweise nach Spülen einer Karosserie unmittelbar nach der Vorbehandlung beim Passieren eines sogenannten Nasshalteringes, bei dem Spülwasser durch mehrerer Sprühventile auf die Karosserie appliziert wird.The area to be set in the method according to the invention for the layer coating based on the elements Zr and / or Ti can be coated by means of X-ray fluorescence analysis (RFA) after calibration using solutions of known molarity of H 2 ZrF 6 and H 2 TiF 6 in the dry-in-place method Metal surfaces are determined. The solutions of known molarity are applied to produce the calibration sample plates in a defined wet film thickness and the wet film is then completely dried. The determination of the actual layer support according to the present invention can be based on these Kalibrierprobebleche both after drying the pretreated and rinsed surfaces of the components or after pretreatment and the first sink, for example, after rinsing a body immediately after the pretreatment in passing a so-called Nasshalteringes in the rinse water by several Spray valves are applied to the body.

Verbindungen sind im Sinne der vorliegenden Erfindung "wasserlöslich", wenn ihre Löslichkeit in entionisiertem Wasser mit einer Leitfähigkeit von nicht mehr als 1 µScm-1 bei einer Temperatur von 20 °C zumindest 1 g/l beträgt.For the purposes of the present invention, compounds are "water-soluble" if their solubility in deionized water having a conductivity of not more than 1 μScm -1 at a temperature of 20 ° C. is at least 1 g / l.

Wie aus der Lösung der Aufgabe hervorgeht kann die Aufrechterhaltung der Konzentration der Elemente Zirconium und/oder Titan durch Zudosierung einer oder mehrerer Ergänzungslösungen in den Systemtank erfolgen. Im hinzudosierten Gesamtvolumen der Ergänzungslösung oder der Ergänzungslösungen soll das molare Verhältnis der Gesamtmenge an Fluor in Form von in Wasser gelösten Verbindungen zur Gesamtmenge der Elemente Zirconium und/oder Titan in Form von in Wasser gelösten Verbindungen nicht kleiner als 4,5 sein. Unterhalb dieses Wertes kann die Dosierung einer erforderlichen Menge an in Wasser gelösten Verbindungen der Elemente Zirconium und/oder Titan nicht praktikabel erfolgen, da die Verbindungen dazu tendieren kolloidale Lösungen und damit schwerlösliche Niederschläge zu bilden, so dass eine der Aufrechterhaltung der Aktivkomponenten in der Vorbehandlungslösung dienende Dosierung solcher Ergänzungslösung kaum mehr zuverlässig erfolgen kann. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist das molare Verhältnis der Gesamtmenge an Fluor zur Gesamtmenge der Elemente Zirconium und/oder Titan im hinzudosierten Gesamtvolumen der Ergänzungslösungen daher nicht kleiner als 5,0, besonders bevorzugt nicht kleiner als 5,5 ist. Umgekehrt ist bevorzugt, dass selbiges Verhältnis im hinzudosierten Gesamtvolumen der Ergänzungslösungen in erfindungsgemäßen Verfahren kleiner als 0 , 4 mmol L 1 c B Me + 6

Figure imgb0006
oder alternativ kleiner als 9,25 ist, so dass der notwendige Verwurf an Vorbehandlungslösung eine solche obere Grenze aufweist, bei der die erfindungsgemäßen Verfahren im Wesentlichen für alle umfassten Vorbehandlungslösungen noch wirtschaftlich sinnvoll betrieben werden können.As can be seen from the solution of the problem, the maintenance of the concentration of the elements zirconium and / or titanium can be carried out by adding one or more supplementary solutions into the system tank. In the added total volume of the replenisher or replenishers, the molar ratio of the total amount of fluorine in the form of compounds dissolved in water to the total amount of zirconium and / or titanium in the form of compounds dissolved in water should not be less than 4.5. Below this value, the dosage of a required amount of zirconium and / or titanium compounds dissolved in water may not be practicable since the compounds tend to form colloidal solutions and hence poorly soluble precipitates, thus providing one of the maintenance of the active components in the pretreatment solution Dosing such supplement solution can hardly be done reliably. In a preferred embodiment of the method according to the invention, therefore, the molar ratio of the total amount of fluorine to the total amount of zirconium and / or titanium in the added total volume of replenishers is not less than 5.0, more preferably not less than 5.5. Conversely, it is preferred that the same ratio in the added total volume of the supplemental solutions in the inventive method is less than 0 . 4 mmol L - 1 c B me + 6
Figure imgb0006
or alternatively is less than 9,25, so that the necessary Verwurf at pretreatment solution has such an upper limit, in which the inventive method can be operated economically useful for substantially all pre-treatment solutions included.

Im Folgenden wird zur sprachlichen Vereinfachung lediglich auf eine Ergänzungslösung verwiesen und dennoch der Fall mit umfasst sein, dass mehrere gleich oder verschieden zusammengesetzte Ergänzungslösungen dem Systemtank zum Ausgleich des Verwurfes und zur Aufrechterhaltung der Konzentration an Zirconium und/oder Titan hinzudosiert werden. Wenn also nachfolgend auf eine Ergänzungslösung und speziell auf eine extensive oder spezifische Eigenschaft selbiger Bezug genommen wird, so ist stets die Summe aller hinzudosierten Ergänzungslösungen eingeschlossen und die sich daraus ergebenen gemittelten extensiven oder spezifischen Eigenschaften in summarischer Betrachtung.In the following, for the purpose of linguistic simplification, reference will be made only to a supplementary solution, and the case will nevertheless be encompassed in that several identical or differently composed supplementary solutions are added to the system tank to compensate for the throwing and to maintain the concentration of zirconium and / or titanium. Thus, if reference is made below to a supplementary solution, and more specifically to an extensive or specific characteristic thereof, then the sum of all added supplementary solutions is always included and the resulting averaged extensive or specific characteristics in summary.

Das erfindungsgemäße Verfahren leistet aufgrund des kontrollierten Verwurfes an Badlösung und der damit einhergehenden Nachdosierung von Ergänzungslösung, dass die Anreicherung an freiem Fluorid in der Vorbehandlungslösung derart begrenzt wird, dass eine nachteilige Auswirkung auf die Konversionsbeschichtung auf Basis der Elemente Zirconium und/oder Titan unterbleibt. Hervorzuheben ist zudem, dass das erfindungsgemäße Verfahren eine Zudosierung von Fluorid-Fängern - also Verbindungen, die freie Fluoride binden und damit deren Konzentration reduzieren - überflüssig macht, da die freie Fluorid-Konzentration vollständig über den Verwurf an Badlösung kontrolliert wird. Der Mindestverwurf ist für die vorgegebenen Rahmenbedingungen bezüglich der Konzentration an Aktivkomponenten in der Vorbehandlungslösung und der vorgesehenen Schichtauflage von maximal 0,7 mmol/m2 bezogen auf die Elemente Zirconium und Titan gemäß dem semi-empirisch gefundenen Term (1) bzw. der bevorzugten semi-empirischen Terme (1') und (1") einzustellen. Diese Terme für den Mindestverwurf sind lediglich von der konkreten Konzentration an Zirconium und/oder Titan in der Vorbehandlungslösung und dem Verhältnis der Elemente Fluor in Form von in Wasser gelösten Verbindungen zur Gesamtmenge an Zirconium und/oder Titan in Form von in Wasser gelösten Verbindungen in der Ergänzungslösung abhängt. Entsprechend bedarf es für die Einhaltung optimaler Verfahrensbedingungen in der Vorbehandlung lediglich der Bestimmung der Konzentration der Aktivkomponenten in Form der Elemente Zirconium und/oder Titan, die ohnehin für eine hinreichende Konversionsschichtausbildung regelmäßig zu kontrollieren ist. Das Monitoring der Menge an freiem Fluorid in der Vorbehandlungslösung wird im erfindungsgemäßen Verfahren überflüssig.The inventive method makes due to the controlled Verwurfes bath solution and the consequent replenishment of supplementary solution that the enrichment of free fluoride in the pretreatment solution is limited so that an adverse effect on the conversion coating based on the elements zirconium and / or titanium omitted. It should also be emphasized that the inventive method addition of fluoride scavengers - compounds which bind and thus reduce their concentration of free fluorides - makes superfluous, since the free fluoride concentration is completely controlled by the throw of bath solution. The minimum throw is for the given conditions with respect to the concentration of active components in the pretreatment solution and the planned coating layer of a maximum of 0.7 mmol / m 2 based on the elements zirconium and titanium according to the semi-empirically found term (1) or the preferred semi These terms for the minimum throw are only based on the specific concentration of zirconium and / or titanium in the pretreatment solution and the ratio of the elements fluorine in the form of compounds dissolved in water to the total amount Accordingly, in order to maintain optimum process conditions in the pretreatment, only the determination of the concentration of the active components in the form of the elements zirconium and / or titanium, which in any case is sufficient, is required Conversion layer training regularly z u is controlling. The monitoring of the amount of free fluoride in the pretreatment solution becomes unnecessary in the process according to the invention.

Da wie bereits angeführt auf die Zudosierung von Fluorid-Fängern zur Vorbehandlungslösung verzichtet werden kann, ist deren Anteil im erfindungsgemäß hinzudosierten Volumen der Ergänzungslösung aus Gründen der Materialeffizienz gering. Dementsprechend sind erfindungsgemäße Verfahren bevorzugt Verfahren, für die das molare Verhältnis der Gesamtmenge der Elemente Zirconium und/oder Titan jeweils zur Gesamtmenge eines der Elemente Kalzium, Magnesium, Aluminium, Bor, Eisen, Mangan oder Wolfram in Form wasserlöslicher Verbindungen im hinzudosierten Gesamtvolumen der Ergänzungslösung größer als 5 : 1, besonders bevorzugt größer als 10 : 1 ist.Since, as already mentioned, the metered addition of fluoride scavengers to the pretreatment solution can be dispensed with, its proportion in the addition volume added according to the invention to the replenisher solution is low for reasons of material efficiency. Accordingly, processes according to the invention are preferably processes for which the molar ratio of the total amount of the elements zirconium and / or titanium in each case to the total amount of one of the elements calcium, magnesium, aluminum, boron, iron, manganese or tungsten in the form of water-soluble compounds in the added total volume of the supplementary solution is greater is 5: 1, more preferably greater than 10: 1.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass bereits mit verhältnismäßig niedrigen Konzentrationen an Aktivkomponenten für den Korrosionsschutz und die Haftung zu einem nachträglich aufgebrachten organischen Primer hinreichende Schichtauflagen an Zirconium und/oder Titan erzielt werden. In diesem Zusammenhang sind für die Materialeffizienz solche erfindungsgemäßen Verfahren bevorzugt, in denen die passivierende wässrige Vorbehandlungslösung im Systemtank insgesamt weniger als 0,65 mmol/L, besonders bevorzugt weniger als 0,55 mmol/L, insbesondere bevorzugt insgesamt weniger als 0,325 mmol/L an wasserlöslichen Verbindungen der Elemente Zirconium und/oder Titan enthält. Eine niedrige Konzentration an Aktivkomponenten führt auch dazu, dass der stationäre durch Verschleppung in eine nachgelagerte Spüle eingebrachte Anteil an diesen Verbindungen niedrig ist. Dies ist regelmäßig ebenfalls vorteilhaft, da eine zusätzliche Kontaktzeit der Bauteile mit Zusammensetzungen enthaltend Aktivkomponenten häufig zu einer Verschlechterung der Korrosionsschutzeigenschaften führt, so dass die Spüle üblicherweise weitgehend frei von verschleppten Anteilen aus dem Systemtank der Vorbehandlung zu halten ist. In den bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens ist dies nicht notwendig bzw. es kann auf besondere Maßnahmen zur Reduktion der Anteile an Aktivkomponenten im Systemtank der Spüle, beispielsweise das Einstellen eines erhöhten Überlaufs - also Verwurfes an Spüllösung - verzichtet werden.A further advantage of the method according to the invention is that sufficient coating deposits of zirconium and / or titanium are already achieved with relatively low concentrations of active components for corrosion protection and adhesion to a subsequently applied organic primer. In this context, those methods according to the invention are preferred for material efficiency in which the passivating aqueous pretreatment solution in the system tank is less than 0.65 mmol / L, more preferably less than 0.55 mmol / L, most preferably less than 0.325 mmol / L of water-soluble compounds of the elements zirconium and / or titanium. A low concentration of active components also causes the stationary by being carried over into a downstream sink introduced proportion of these compounds is low. This is also regularly advantageous, since an additional contact time of the components with compositions containing active components often leads to a deterioration of the anti-corrosion properties, so that the sink is usually kept largely free of entrained fractions from the system tank of the pretreatment. In the preferred embodiments of the method according to the invention, this is not necessary or it may be on special measures to reduce the proportions of active components in the system tank of the sink, for example, the setting of an increased overflow - ie Verwurfes to rinse solution - be dispensed with.

Für ein besonders wirtschaftliches erfindungsgemäßes Verfahren und für die Sicherstellung, dass eine hinreichende Menge an freiem Fluorid in der Vorbehandlungslösung des Systemtanks für eine unter üblichen Prozessbedingungen zu erfolgende Konversionsschichtbildung enthalten ist, ist es bevorzugt, wenn der Verwurf an passivierender wässriger Vorbehandlungslösung nicht größer als folgender Wert in Liter pro in Serie behandeltem Quadratmeter metallischen Bauteils ist: VW = 7 z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 10 1 mmol m 2

Figure imgb0007

VW:  Verwurf an Vorbehandlungslösung in L/m2;
c B Me :
Figure imgb0008
  Konzentration an Zirconium und/oder Titan in der Vorbehandlungslösung in mmol/L;
ZE:  molares Verhältnis der Gesamtmenge an Fluor zur Gesamtmenge der Elemente Zirconium und/oder Titan im hinzudosierten Gesamtvolumen der ErgänzungslösungenFor a particularly economical method according to the invention and for ensuring that a sufficient amount of free fluoride is contained in the pretreatment solution of the system tank for conversion layer formation to be carried out under conventional process conditions, it is preferred that the rejection of passivating aqueous pretreatment solution is not greater than the following value in liters per per square meter treated metallic component is: VW = 7 z e - 2 . 4 0 . 4 mmol L - 1 - c B me z e - 6 10 - 1 mmol m - 2
Figure imgb0007

VW: throw on pretreatment solution in L / m 2 ;
c B me :
Figure imgb0008
Concentration of zirconium and / or titanium in the pretreatment solution in mmol / L;
Z E : molar ratio of the total amount of fluorine to the total amount of the elements zirconium and / or titanium in the added total volume of the supplementary solutions

Weiterhin ist es für eine gute Stabilität und Konversion der metallischen Oberflächen der Bauteile vorteilhaft, wenn der pH-Wert der passivierenden wässrigen Vorbehandlungslösung in einem bevorzugten erfindungsgemäßen Verfahren nicht kleiner als 3,0, besonders bevorzugt nicht kleiner als 3,5, jedoch vorzugsweise nicht größer als 5,0, besonders bevorzugt nicht größer als 4,5 ist.Furthermore, it is advantageous for good stability and conversion of the metallic surfaces of the components if the pH of the passivating aqueous pretreatment solution in a preferred process according to the invention is not less than 3.0, more preferably not less than 3.5, but preferably not greater than 5.0, more preferably not greater than 4.5.

Der "pH-Wert" gemäß vorliegender Erfindung entspricht dem negativen Logarithmus der Hydronium-Ionen Aktivität bei 20°C und kann mittels pH-sensitiver Glaselektrode bestimmt werden.The "pH value" according to the present invention corresponds to the negative logarithm of the hydronium ion activity at 20 ° C. and can be determined by means of a pH-sensitive glass electrode.

Das erfindungsgemäße Verfahren wird vorzugsweise bei verhältnismäßig niedrigen Temperaturen durchgeführt, so dass Verdampfungsverluste im Systemtank der Vorbehandlungslösung vernachlässigt werden können. Dementsprechend ist in einem bevorzugten erfindungsgemäßen Verfahren die Temperatur der passivierenden wässrigen Vorbehandlungslösung nicht größer als 45 °C, besonders bevorzugt nicht größer als 40 °C, besonders bevorzugt nicht größer als 35 °C.The inventive method is preferably carried out at relatively low temperatures, so that evaporation losses in the system tank of Pretreatment solution can be neglected. Accordingly, in a preferred process of the invention, the temperature of the passivating aqueous pretreatment solution is not greater than 45 ° C, more preferably not greater than 40 ° C, most preferably not greater than 35 ° C.

Der im erfindungsgemäßen Verfahren vorgesehene Verwurf an Vorbehandlungslösung kann während der Korrosionsschutzbehandlung der Vielzahl von Bauteilen prozessbedingt nur quasikontinuierlich oder diskontinuierlich erfolgen. Der erfindungsgemäße Prozess der Serienbehandlung bedingt, dass mit jedem behandelten Bauteil eine gewisse Menge an Vorbehandlungslösung den Systemtank unwiderruflich verlässt. Der mit jedem behandelten Bauteil ausgeschleppte Anteil am Verwurf ist seiner Natur nach diskret und damit diskontinuierlich und von den konkreten Behandlungsbedingungen und der Geometrie der Bauteile abhängig. Weiterhin ist der ausgeschleppte Anteil am Verwurf nur bedingt einer Regelung zugänglich, beispielsweise durch Rotation oder Kippen der Bauteile beim Eintauchen in die Vorbehandlungslösung oder Abblasen der Bauteile beim Hinausheben der Bauteile aus dem Systemtank der Vorbehandlung. Derartige verfahrenstechnische Maßnahmen sind jedoch aufwendig und üblicherweise durch keinen besonderen Mehrwert gerechtfertigt. Jedoch werden die Verfahren im Stand der Technik grundsätzlich so betrieben, dass die Bauteile Vorbehandlungslösung nicht regelrecht schöpfend austragen und üblicherweise weniger als 50 ml pro Quadratmeter an behandelter Oberfläche ausgeschleppt werden. Wenn im Folgenden also auf einem quasikontinuierlichem oder diskontinuierlichen Verwurf abgestellt wird, ist lediglich das aktiv ausgespeiste Volumen an Vorbehandlungslösung angesprochen und zu berücksichtigen, dass der passiv ausgeschleppte Anteil am Verwurf stets diskontinuierlich mit jedem behandelten Bauteil verworfen wird.The Verwurf provided in pretreatment solution according to the invention can be carried out during the corrosion protection treatment of the plurality of components process-related only quasi-continuous or discontinuous. The inventive process of the series treatment requires that with each treated component a certain amount of pretreatment solution irrevocably leaves the system tank. The amount of rejects entrained with each treated component is inherently discrete and therefore discontinuous and dependent on the specific treatment conditions and the geometry of the components. Furthermore, the dragged portion of Verwurf is only partially accessible to a control, for example by rotation or tilting of the components when immersed in the pretreatment solution or blowing off the components when lifting out the components from the system tank of the pretreatment. However, such procedural measures are complex and usually justified by no special added value. However, in the prior art, the processes are generally operated so that the components do not discharge properly pretreatment solution and usually be towed less than 50 ml per square meter of treated surface. If, in the following, therefore, a quasicontinuous or discontinuous throwing is used, only the actively dispensed volume of pretreatment solution is addressed and it has to be taken into account that the passively removed portion of the reject is always discarded discontinuously with each treated component.

Erfindungsgemäß erfolgt der Verwurf an passivierender wässriger Vorbehandlungslösung daher bevorzugt sowohl durch Ausschleppen von Vorbehandlungslösung mit jedem Bauteil der Serie von zu behandelnden Bauteilen als auch durch aktives Ausspeisen von Vorbehandlungslösung jeweils aus dem Systemtank der Vorbehandlung.Therefore, according to the invention, the rejection of passivating aqueous pretreatment solution is preferably carried out both by extracting pretreatment solution with each component of the series of components to be treated and by actively discharging pretreatment solution in each case from the system tank of the pretreatment.

Für einen diskontinuierlichen Verwurf kann das aktiv auszuspeisende Volumen an Vorbehandlungslösung an das im Vorbehandlungsschritt auf den Bauteilen abgeschiedene Schichtauflage bezogen auf die Elemente Zirconium und/oder Titan angepasst werden, um für eine zu erzielende Schichtauflage an Zirconium und/oder Titan zwar so viel wie erforderlich, aber nicht mehr als nötig an Vorbehandlungslösung auszuspeisen und auf diese Weise möglichst wirtschaftlich zu verfahren.For a discontinuous throw, the volume of pretreatment solution to be actively sprayed may be adjusted to the zirconium and / or titanium layer deposited on the components in the pretreatment step to provide as much as required for a coating of zirconium and / or titanium to be achieved. but not more than necessary to feed pretreatment solution and proceed as economically as possible in this way.

Im diskontinuierlichen Betrieb sind dabei solche Verfahren bevorzugt, in denen der diskontinuierliche Verwurf VWd an passivierender wässriger Vorbehandlungslösung nach Vorbehandlung einer bestimmten Anzahl n von Bauteilen i erfolgt, wobei der diskontinuierliche Verwurf zumindest folgenden Wert in Liter für eine in Serie behandelte Anzahl n an Bauteilen i annimmt: VW d = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i VM a n

Figure imgb0009

VWd :  diskontinuierlicher Verwurf in Liter;
VW a n :
Figure imgb0010
  Verwurf durch Ausschleppung durch n Bauteile in Liter mit der Maßgabe das folgendes gilt: VW a n z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i ;
Figure imgb0011

x i Zn :
Figure imgb0012
Anteil von Zinkoberflächen bezogen auf die Gesamtoberfläche von Zink und Eisen des i-ten in Serie behandelten Bauteils;
x i Fe :
Figure imgb0013
Anteil von Eisenoberflächen bezogen auf die Gesamtoberfläche von Zink und Eisen des i-ten in Serie behandelten Bauteils;
S i Zn :
Figure imgb0014
Schichtauflage in mmol/m2 bezogen auf die Elemente Zirconium und/oder Titan auf den korrosionsschützend vorbehandelten Zinkoberflächen des i-ten in Serie behandelten Bauteils; und
S i Fe :
Figure imgb0015
Schichtauflage in mmol/m2 bezogen auf die Elemente Zirconium und/oder Titan auf den korrosionsschützend vorbehandelten Eisenoberflächen des i-ten in Serie behandelten Bauteils;
Ai: Gesamtfläche der metallischen Oberflächen von Zink und Eisen des i-ten in Serie behandelten Bauteils; und
n: positive natürliche Zahl {n ∈ N | n ≥ 1}In discontinuous operation, such processes are preferred in which the discontinuous Verwurf VW d is performed on passivating aqueous pretreatment solution after pretreatment of a certain number n of components i, wherein the discontinuous Verwurf at least the following value in liters for a series treated number n of components i assumes: VW d = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 Σ i n x i Zn S i Zn + x i Fe S i Fe A i - VM a n
Figure imgb0009

VW d : discontinuous throw in liters;
VW a n :
Figure imgb0010
Cast by extraction by n components in liters with the proviso that: VW a n z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 Σ i n x i Zn S i Zn + x i Fe S i Fe A i ;
Figure imgb0011

x i Zn :
Figure imgb0012
Proportion of zinc surface area relative to the total surface area of zinc and iron of the i-th series-treated component;
x i Fe :
Figure imgb0013
Percentage of iron surface area relative to the total surface area of zinc and iron of the i-th series-treated component;
S i Zn :
Figure imgb0014
Coating layer in mmol / m 2 based on the elements zirconium and / or titanium on the corrosion-protective pretreated zinc surfaces of the i-th in series-treated component; and
S i Fe :
Figure imgb0015
Coating layer in mmol / m 2 based on the elements zirconium and / or titanium on the anticorrosion pretreated iron surfaces of the ith component treated in series;
A i : total area of the metallic surfaces of zinc and iron of the ith series-treated component; and
n: positive natural number {n ∈ N | n ≥ 1}

Als bevorzugte Obergrenze für die diskontinuierlich ausgespeiste Vorbehandlungslösung sind Verfahren erfindungsgemäß bevorzugt, in denen der diskontinuierliche Verwurf in Liter für eine in Serie behandelte Anzahl n an Bauteilen i den Wert VW d z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i VW a n

Figure imgb0016
As a preferred upper limit for the discontinuously fed pretreatment solution, processes according to the invention are preferred in which the discontinuous throw in liters for a number n of components i treated in series is the value VW d z e - 2 . 4 0 . 4 mmol L - 1 - c B me z e - 6 Σ i n x i Zn S i Zn + x i Fe S i Fe A i - VW a n
Figure imgb0016

nicht überschreitet, wobei für das molare Verhältnis der Gesamtmenge an Fluor zur Gesamtmenge der Elemente Zirconium und/oder Titan in der Ergänzungslösung folgende Bedingung erfüllt vorliegt: z E < 0 , 4 mmol L 1 c B Me + 6.

Figure imgb0017
does not exceed, wherein for the molar ratio of the total amount of fluorine to the total amount of the elements zirconium and / or titanium in the supplementary solution the following condition is satisfied: z e < 0 . 4 mmol L - 1 c B me + 6th
Figure imgb0017

Selbstverständlich kann der erfindungsgemäß einzustellende Verwurf auch quasikontinuierlich vorgenommen werden. Für diese Betriebsweise ist es bevorzugt, wenn der Verwurf durch aktives Ausspeisen von passivierender wässriger Vorbehandlungslösung und das Ersetzen verworfener Vorbehandlungslösung mit Ergänzungslösung kontinuierlich während der Vorbehandlung der Bauteile in Serie erfolgt, besonders bevorzugt durch Einspeisen eines konstanten Volumenstroms von ersetzender Ergänzungslösung in den Systemtank der Vorbehandlung, wobei der kontinuierliche Verwurf an passivierender wässriger Vorbehandlungslösung vorzugsweise überwiegend durch ein Überlaufen eines offenen Systemtanks realisiert wird.Of course, the Verwurf to be set according to the invention can also be made quasi-continuous. For this mode of operation, it is preferable that the throwing by active feeding of passivating aqueous pretreatment solution and the replacement of discarded pretreatment solution with replenisher are carried out continuously during the pre-treatment of the components in series, more preferably by feeding a constant volume flow of replenishing replacer solution into the system tank of the pretreatment, wherein the continuous Verwurf at passivating aqueous pretreatment solution is preferably realized mainly by overflowing an open system tank.

"Überwiegend" bedeutet in diesem Zusammenhang, dass mehr als 50%, vorzugsweise mehr als 80% des einer Regelung zugänglichen Teils der verworfenen Vorbehandlungslösung, zu dem nicht der unvermeidbare durch die schöpfende Wirkung der Bauteile oder der durch den auf den Bauteilen anhaftenden Nassfilm hervorgerufene Teil des Verwurfes gehört, durch einen Überlauf aus dem Systemtank entfernt wird. Der Überlauf stellt also eine besonders bevorzugte Art des Verwurfes durch aktives Ausspeisen dar. Alternativ kann der kontinuierliche Verwurf auch durch Ausspeisen eines konstanten Volumenstroms aus dem Systemtank realisiert werden."Predominantly" in this context means that more than 50%, preferably more than 80%, of the control accessible portion of the discarded pretreatment solution is not the inevitable part due to the scavenging effect of the components or the wet film adhered to the components owned by the Verwurfes, is removed by an overflow from the system tank. The overflow thus represents a particularly preferred type of Verwurfes by active feeding. Alternatively, the continuous Verwurf can also be realized by feeding a constant volume flow from the system tank.

In einem bevorzugten erfindungsgemäßen Verfahren nimmt der kontinuierliche Verwurf zumindest folgenden Wert in Liter pro in Serie behandeltem Quadratmeter an metallischen Oberflächen von Zink und Eisen an, um für eine zu erzielende Schichtauflage an Zirconium und/oder Titan zwar so viel wie erforderlich, aber nicht mehr als nötig an Vorbehandlungslösung auszuspeisen und auf diese Weise möglichst wirtschaftlich zu verfahren: VW C = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A VW a

Figure imgb0018

VWC :
kontinuierlicher Verwurf in Liter;
VW a :
gemittelter Verwurf durch Ausschleppung in Liter mit der Maßgabe das folgendes gilt: VW a = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A ;
Figure imgb0019
x Zn:
gemittelter Anteil von Zinkoberflächen bezogen auf die Gesamtoberflächen von Zink und Eisen einer Serie von behandelten Bauteilen;
x Fe:
gemittelter Anteil von Eisenoberflächen bezogen auf die Gesamtoberflächen von Zink und Eisen einer Serie von behandelten Bauteilen;
S Zn:
gemittelte Schichtauflage in mmol/m2 bezogen auf die Elemente Zirconium und/oder Titan auf den korrosionsschützend vorbehandelten Zinkoberflächen der in Serie behandelten Bauteile; und
S Fe:
gemittelte Schichtauflage in mmol/m2 bezogen auf die Elemente Zirconium und/oder Titan auf den korrosionsschützend vorbehandelten Eisenoberflächen der in Serie behandelten Bauteile
A :
gemittelte Fläche der Bauteile in m2
In a preferred process according to the invention, the continuous throw assumes at least the following value in liters per square meter of metallic surfaces of zinc and iron treated in order to obtain as much as required, but not more than, 20,000 for a coating of zirconium and / or titanium to be achieved necessary to deliver to pretreatment solution and proceed as economically as possible in this way: VW C = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 x ~ Zn S ~ Zn + x ~ Fe S ~ Fe A ~ - VW ~ a
Figure imgb0018
VW C :
continuous throw in liters;
VW a :
averaged throw by extraction in liters with the proviso that VW ~ a = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 x ~ Zn S ~ Zn + x ~ Fe S ~ Fe A ~ ;
Figure imgb0019
x Zn :
averaged proportion of zinc surfaces in terms of total zinc and iron surface area of a series of treated components;
x Fe :
average fraction of iron surfaces relative to the total surface area of zinc and iron of a series of treated components;
S Zn :
average layer coverage in mmol / m 2 based on the elements zirconium and / or titanium on the corrosion-protective pretreated zinc surfaces of the components treated in series; and
S Fe :
averaged coating layer in mmol / m 2 based on the elements zirconium and / or titanium on the corrosion-protective pretreated iron surfaces of the components treated in series
A :
average area of the components in m 2

Hierbei ist zu beachten, dass für die jeweiligen Mittelwerte stets über dieselbe behandelte metallische Oberfläche gemittelt wird, wobei die kleinste Einheit, über die gemittelt werden kann, das jeweilige zu behandelnde Bauteil selbst ist.It should be noted that for the respective average values is always averaged over the same treated metallic surface, wherein the smallest unit over which can be averaged, the respective component to be treated itself.

Als bevorzugte Obergrenze für die kontinuierlich ausgespeiste Vorbehandlungslösung sind Verfahren erfindungsgemäß bevorzugt, in denen der kontinuierliche Verwurf in Liter pro in Serie behandeltem Quadratmeter an metallischen Oberflächen von Zink und Eisen den Wert VW C = z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A VW a

Figure imgb0020
nicht überschreitet, wobei für das molare Verhältnis der Gesamtmenge an Fluor zur Gesamtmenge der Elemente Zirconium und/oder Titan in der Ergänzungslösung folgende Bedingung erfüllt vorliegt: z E < 0 , 4 mmol L 1 c B Me + 6
Figure imgb0021
Preferred upper limits for the continuously discharged pretreatment solution are processes according to the invention in which the continuous throw in liters per per square meter of metallic surfaces of zinc and iron treated in series has the value VW C = z e - 2 . 4 0 . 4 mmol L - 1 - c B me z e - 6 x ~ Zn S ~ Zn + x ~ Fe S ~ Fe A ~ - VW ~ a
Figure imgb0020
does not exceed, wherein for the molar ratio of the total amount of fluorine to the total amount of the elements zirconium and / or titanium in the supplementary solution the following condition is satisfied: z e < 0 . 4 mmol L - 1 c B me + 6
Figure imgb0021

Verwurf und Schichtauflage sind voneinander abhängige Variable, so dass sowohl im quasikontinuierlichen als auch im diskontinuierlichen Betrieb die Messung der tatsächlichen Schichtauflage (S,Si) bei Kenntnis der Badkonzentration an Zirconium und/oder Titan genügt, um über die Einstellung des kontinuierlichen bzw. diskontinuierlichen Verwurfes den Soll-Zustand hinsichtlich Schichtauflage für weitere Bauteile und einen optimal vor Korrosion schützenden Lackhaftgrund vorzugeben. Im erfindungsgemäßen Verfahren kann also für den Teil des Verwurfes, der aktiv auszuspeisen ist, ein effektive Regelung erfolgen, die lediglich das Monitoring der Menge an Zirconium und/oder Titan in der Vorbehandlungslösung und auf den Eisen- und Zinkoberflächen erfordert.
Die Schichtauflagen (S,Si) bezogen auf die Elemente Zirconium und/oder Titan können dabei unmittelbar nach der Vorbehandlung des Bauteils mittels Röntgenfluoreszenzanalyse auf der jeweiligen behandelten Metalloberfläche wie zuvor beschrieben bestimmt werden.
In einer bevorzugten Ausführungsform wird der diskontinuierliche Verwurf unmittelbar nach der ersten Spüle durchgeführt, wobei die erste Spüle vorzugsweise mittels eines sogenannten Nasshalteringes durch Besprühen der Bauteile mit dem ersten Spülwasser vorgenommen wird, wobei das Spülwasser wiederum vorzugsweise zumindest teilweise als Teil der Ergänzungslösung in die Vorbehandlungslösung eingespeist wird. Hierdurch wird gewährleistet, dass die Bestimmung der Schichtauflage möglichst zeitnah mit der tatsächlichen Vorbehandlung erfolgt, so dass eine optimale Einstellung der Vorbehandlungslösung über die Regelung des Verwurfes anhand der Schichtauflage nahezu unmittelbar erfolgen kann. In diesem Zusammenhang ist es auch bevorzugt, dass der Verwurf quasikontinuierlich oder wenn diskontinuierlich möglichst nach jeder Vorbehandlung einer nur geringen Anzahl n an Bauteilen erfolgt.
Scattering and layering are interdependent variables, so that both in quasi-continuous and in discontinuous operation, the measurement of the actual coating layer (S, S i ) with knowledge of the bath concentration of zirconium and / or titanium is sufficient to specify on the setting of the continuous or discontinuous Verwurfes the target state with respect to layer support for other components and an optimally protected against corrosion Lackhaftgrund. In the method according to the invention can thus be made for the part of the Verwurfes that is actively auszuspeisen, an effective control that requires only the monitoring of the amount of zirconium and / or titanium in the pretreatment solution and on the iron and zinc surfaces.
The layer supports (S, S i ) based on the elements zirconium and / or titanium can be determined immediately after the pretreatment of the component by means of X-ray fluorescence analysis on the respective treated metal surface as described above.
In a preferred embodiment, the discontinuous Verwurf is carried out immediately after the first rinse, wherein the first sink is preferably carried out by means of a so-called wet holding ring by spraying the components with the first rinse water, wherein the rinse water again preferably at least partially fed as part of the supplement solution in the pretreatment solution becomes. This ensures that the determination of the layer support takes place as promptly as possible with the actual pretreatment, so that an optimal adjustment of the pretreatment solution can be effected almost directly via the regulation of the cast due to the layer support. In this context, it is also preferred that the Verwurf occurs quasi-continuously or if possible discontinuously as possible after each pretreatment of only a small number n of components.

In einer vereinfachten und daher bevorzugten Ausführungsform der erfindungsgemäßen Verfahren, in denen der Verwurf zumindest teilweise durch aktives kontinuierliches oder diskontinuierliches Ausspeisen von Vorbehandlungslösung erfolgt, gilt das jeweils zumindest folgender Verwurf einzustellen ist: VW d = z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 0 , 1 mmol m 2 i n x i Zn + x i Fe A i VW a n

Figure imgb0022
besonders bevorzugt zumindest: VW d = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 0 , 3 mmol m 2 i n x i Zn + x i Fe A i VW a n
Figure imgb0023
insbesondere bevorzugt zumindest: VW d = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 0 , 7 mmol m 2 i n x i Zn + x i Fe A i VW a n
Figure imgb0024
bzw. zumindest: VW C = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 0 , 1 mmol m 2 A VW a
Figure imgb0025
besonders bevorzugt zumindest: VW C = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 0 , 3 mmol m 2 A VW a
Figure imgb0026
insbesondere bevorzugt zumindest: VW C = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 0 , 7 mmol m 2 A VW a
Figure imgb0027
In a simplified and therefore preferred embodiment of the inventive method in which the Verwurf takes place at least partially by active continuous or discontinuous feeding of pretreatment solution, the respective at least following Verwurf is set: VW d = z e - 2 . 4 0 . 4 mmol L - 1 - c B me z e - 6 0 . 1 mmol m - 2 Σ i n x i Zn + x i Fe A i - VW a n
Figure imgb0022
particularly preferably at least: VW d = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 0 . 3 mmol m - 2 Σ i n x i Zn + x i Fe A i - VW a n
Figure imgb0023
particularly preferably at least: VW d = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 0 . 7 mmol m - 2 Σ i n x i Zn + x i Fe A i - VW a n
Figure imgb0024
or at least: VW C = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 0 . 1 mmol m - 2 A ~ - VW ~ a
Figure imgb0025
particularly preferably at least: VW C = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 0 . 3 mmol m - 2 A ~ - VW ~ a
Figure imgb0026
particularly preferably at least: VW C = z e - 2 . 4 2 . 8th mmol L - 1 - c B me z e - 6 0 . 7 mmol m - 2 A ~ - VW ~ a
Figure imgb0027

Die Vereinfachung bei der Einstellung des zumindest erforderlichen diskontinuierlichen oder kontinuierlichen Verwurfes (VWc, VWd) besteht darin, dass die Einstellung unabhängig von der Schichtauflage erfolgt, wobei jedoch in Kauf genommen wird, dass der Anteil an freiem Fluorid in den jeweiligen Grenzbereichen liegt, die gerade noch eine hinreichende Konversionsschichtbildung oder eine noch nicht nachteilige Verschlechterung derselben gewährleisten.The simplification in the setting of the at least required discontinuous or continuous Verwurfes (VW c , VW d ) is that the adjustment is made independently of the coating layer, but it is accepted that the proportion of free fluoride is in the respective limits, which just still ensure a sufficient conversion layer formation or not yet detrimental deterioration thereof.

In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens werden zumindest 80% der Oberflächen des Bauteils von Oberflächen der Substrate Eisen, Zink und Aluminium gebildet werden, wobei besonders bevorzugt zumindest 50% der Oberflächen des Bauteils metallische Oberflächen der Substrate Eisen und/oder Zink darstellen, wobei wiederum vorzugsweise zumindest 10%, besonders bevorzugt zumindest 20%, der metallischen Oberflächen des Bauteils ausgewählt sind aus Oberflächen des Substrats Eisen. Als Oberflächen der Substrate Eisen, Zink und Aluminium gelten auch deren Legierungen sofern deren Hauptlegierungsbestandteil durch das jeweilige Substratelement gebildet wird.In a particular embodiment of the method according to the invention, at least 80% of the surfaces of the component will be formed by surfaces of the substrates iron, zinc and aluminum, more preferably at least 50% of the surfaces of the component being metallic surfaces of the substrates iron and / or zinc, again preferably at least 10%, particularly preferably at least 20%, of the metallic surfaces of the component are selected from surfaces of the substrate iron. As the surfaces of the substrates iron, zinc and aluminum are also their alloys if their main alloying constituent is formed by the respective substrate element.

Dem erfindungsgemäßen Verfahren können sich weitere Verfahrensschritte zur Oberflächenbehandlung anschließen. In einem bevorzugten Verfahren folgt nach dem In-Kontakt-Bringen mit der passivierenden wässrigen Vorbehandlungslösung mit oder ohne dazwischenliegenden Spülschritten eine Beschichtung mit einem organischen Bindemittelsystem, vorzugsweise eine Pulverlackbeschichtung oder Tauchlackierung, besonders bevorzugt eine Elektrotauchlackierung, insbesondere bevorzugt eine kathodische Elektrotauchlackierung. Im Fall der nachträglichen Tauchlackierung, insbesondere einer nachträglichen Elektrotauchlackierung, erfolgt nach dem In-Kontakt-Bringen mit der passivierenden wässrigen Vorbehandlungslösung und vor der Tauchlackierung vorzugsweise kein Trocknungsschritt, wobei ein Trocknungsschritt gekennzeichnet ist durch die Durchführung technische Maßnahmen zum Trocknen der Oberflächen des Bauteils, beispielsweise durch Zuführung thermischer Energie oder durch Zuführung eines trockenen Luftstroms.The process according to the invention may be followed by further process steps for surface treatment. In a preferred method, after bringing into contact with the passivating aqueous pretreatment solution with or without intermediate rinsing steps, a coating with an organic binder system, preferably a powder coating or dip coating, more preferably an electrodeposition coating, more preferably a cathodic electrodeposition coating. In the case of subsequent dip coating, in particular a subsequent electrocoating, preferably no drying step takes place after bringing into contact with the passivating aqueous pretreatment solution and before the dip coating, wherein a drying step is characterized by performing technical measures for drying the surfaces of the component, for example, by supplying thermal energy or by supplying a dry air flow.

Nach der erfindungsgemäßen Behandlung der Bauteile in Serie, also nach dem In-Kontakt-Bringen mittels der passivierenden wässrigen Vorbehandlungslösung, und vor einer möglichen Beschichtung mit einem organischen Bindemittelsystem folgt in einer bevorzugten Ausführungsform kein weiterer Behandlungsschritt mit einer wässrigen Lösung, bei dem die Lösung mehr als 10 % des Anteils der passivierenden wässrigen Vorbehandlungslösung an wasserlöslichen Verbindungen der Elemente Zirconium und/oder Titan enthält, insbesondere kein weiterer solcher Behandlungsschritt, der dazu dient auf zumindest einer Metalloberfläche des Bauteils eine Beschichtung enthaltend substratfremde metallische oder halbmetallische Elemente mit einer Schichtauflage von mehr als 0,1 mmol/m2 bezogen auf diese substratfremden Elemente auszubilden. Wie bereits erwähnt ist eine solche Nachbehandlung häufig schädlich für die zuvor erzeugte Passivierung mittels der Vorbehandlungslösung. "Substratfremd" in diesem Zusammenhang ist jedes Element, das nicht Hauptlegierungselement des betreffenden Substrates ist.After the inventive treatment of the components in series, ie after contacting by means of the passivating aqueous pretreatment solution, and before a possible coating with an organic binder system, in a preferred embodiment, no further treatment step with an aqueous solution, in which the solution more contains 10% of the proportion of the passivating aqueous pretreatment solution of water-soluble compounds of the elements zirconium and / or titanium, in particular no further such treatment step, serving on at least one metal surface of the component, a coating containing substrate-foreign metallic or semi-metallic elements with a layer of more than Form 0.1 mmol / m 2 based on these substrate-foreign elements. As already mentioned, such aftertreatment is often detrimental to the previously produced passivation by means of the pretreatment solution. "Substrate foreign" in this context is any element that is not the main alloying element of the substrate in question.

In einem weiteren bevorzugten erfindungsgemäßen Verfahren erfolgt unmittelbar nach dem In-Kontakt-Bringen mit der passivierenden wässrigen Vorbehandlungslösung ein Spülschritt durch In-Kontakt-Bringen der Bauteile mit einer in einem Systemtank befindlichen Spüllösung, wobei während der Korrosionsschutzbehandlung der Bauteile in Serie ein Teil der Spüllösung verworfen und durch einen zumindest gleich großen Volumenteil einer ergänzenden Spüllösung ersetzt wird, die insgesamt weniger als 10-5 mol/L an wasserlöslichen Verbindungen der Elemente Zirconium und/oder Titan und vorzugsweise weniger als 10-4 mol/L an wasserlöslichen Verbindungen, die eine Quelle für Fluorid Ionen darstellen, bezogen auf das Element Fluor enthält. Auch in diesem Fall soll sichergestellt sein, dass eine Anreicherung von Aktivkomponenten aus der passivierenden wässrigen Vorbehandlungslösung in der Spüllösung nur bis zu einem gewissen Grad toleriert wird, da ansonsten eine Schädigung der Passivschicht nicht gänzlich ausgeschlossen werden kann.In a further preferred method according to the invention, immediately after bringing into contact with the passivating aqueous pretreatment solution, a rinsing step is carried out by bringing the components into contact with a rinsing solution present in a system tank, during which part of the rinsing solution is serially treated during the anti-corrosive treatment of the components and replaced by an at least equal volume of a complementary rinse solution containing a total of less than 10 -5 mol / L of water-soluble compounds of the elements zirconium and / or titanium, and preferably less than 10 -4 mol / L of water-soluble compounds containing a Source of fluoride ions, based on the element contains fluorine. Also in this case, it should be ensured that an enrichment of active components from the passivating aqueous pretreatment solution in the rinse solution is tolerated only to a certain extent, since otherwise damage to the passive layer can not be completely ruled out.

Aus wirtschaftlichen Gründen ist jedoch bevorzugt, dass im Spülschritt der Verwurf an Spüllösung pro in Serie behandelter Gesamtoberfläche der Bauteile weniger als 2 Liter/m2 beträgt. Aufgrund der vergleichsweise niedrigen Badkonzentration an Zirconium und/oder Titan in der passivierenden wässrigen Vorbehandlungslösung kann diese Obergrenze jedoch stets eingehalten werden, ohne dass zusätzlich Maßnahmen zur Aufarbeitung der Spüllösung notwendig wären.For economic reasons, however, it is preferred that in the rinsing step the throw of rinsing solution per treated in series total surface area of the components is less than 2 liters / m 2 . However, due to the comparatively low bath concentration of zirconium and / or titanium in the passivating aqueous pretreatment solution, this upper limit can always be maintained without additional measures for working up the rinse solution being necessary.

Es ist weiterhin bevorzugt, wenn zumindest ein Teil der verworfenen Spüllösung als Ergänzungslösung in den Systemtank der passierenden wässrigen Vorbehandlung eingespeist wird, wobei regelmäßig zusätzlich die Dosierung einer konzentrierteren Ergänzungslösung zur Aufrechterhaltung der Badkonzentration an wasserlöslichen Verbindungen der Elemente Zirconium und/oder Titan in der passivierenden wässrigen Vorbehandlungslösung notwendig sein wird.It is furthermore preferred if at least part of the discarded rinsing solution is fed as a supplementary solution into the system tank of the passing aqueous pretreatment, with regularly additionally dosing a more concentrated supplementary solution for maintaining the bath concentration of water-soluble compounds of the elements zirconium and / or titanium in the passivating aqueous Pretreatment solution will be necessary.

Die wasserlöslichen Verbindungen der Elemente Zirconium und/oder Titan sind im Rahmen der vorliegenden Erfindung also sowohl zur Bereitstellung in der Vorbehandlungslösung als auch in den Ergänzungslösungen auf keine bestimmte Verbindungsklasse beschränkt, bevorzugt sind jedoch Oxyfluoride der jeweiligen Elemente, besonders bevorzugt die Fluorosäuren sowie deren Salze. Es kann aber auch basisches Zirconiumcarbonat oder Titanylsulfat eingesetzt werden, wobei diese Verbindungen dann allerdings aufgrund des erfindungsgemäß vorgegebenen Verhältnisses von in Wasser gelösten Fluoriden zu in Wasser gelösten Verbindungen der Elemente Zirconium und/oder Titan mit einer entsprechenden Menge an Fluorid-freisetzenden Verbindungen umgesetzt werden müssen, um eine adäquate Ergänzungslösung bilden zu können.In the context of the present invention, the water-soluble compounds of the elements zirconium and / or titanium are therefore not restricted to any particular class of compounds both in the pretreatment solution and in the supplemental solutions, but preferred are oxyfluorides of the respective elements, particularly preferably the fluoroacids and salts thereof. However, it is also possible to use basic zirconium carbonate or titanyl sulfate, these compounds then having to be reacted with a corresponding amount of fluoride-releasing compounds because of the ratio of fluorides dissolved in water according to the invention to compounds of zirconium and / or titanium dissolved in water in order to form an adequate supplementary solution.

Wasserlösliche Verbindungen, die eine Quelle für Fluorid-Ionen darstellen, und insoweit dem erfindungsgemäßen Verfahren zugrunde gelegt werden können, sind beispielsweise Flußsäure, Ammoniumbifluorid und Natriumfluorid oder eben zuvor genannte Oxyfluoride und Fluorosäuren der Elemente Zirconium und/oder Titan.Water-soluble compounds which are a source of fluoride ions and to which extent the process according to the invention can be based are, for example, hydrofluoric acid, ammonium bifluoride and sodium fluoride or the abovementioned oxyfluorides and fluoro acids of the elements zirconium and / or titanium.

Claims (17)

  1. A method for the anti-corrosion treatment of a plurality of metal surfaces of components in series that comprise zinc and/or iron, in which each of said components is brought into contact with a passivating aqueous pretreatment solution, located in a system tank, at a temperature of less than 50 °C, the passivating aqueous pretreatment solution containing one or more water-soluble compounds of the elements zirconium and/or titanium and one or more water-soluble compounds that are a source for fluoride ions, and being brought into contact for such a time that, on the metal surfaces of zinc and/or iron, a coating layer of at least 0.1 mmol/m2 based on the elements zirconium and/or titanium is formed, although none of these metal surfaces comprises a coating layer of greater than 0.7 mmol/m2 based on the elements zirconium and/or titanium, and, during the anti-corrosion treatment of the components in series, some of the passivating aqueous pretreatment solution in the system tank being rejected and replaced by a part by volume, which is in total at least the same size, of one or more additional solutions by metered addition into the system tank in such a way that the concentration of the elements zirconium and/or titanium in the passivating aqueous pretreatment solution is maintained in the form of water-soluble compounds, characterized in that a concentration of the elements zirconium and/or titanium in the passivating aqueous pretreatment solution is maintained in the form of water-soluble compounds of at least 0.05 mmol/L but of a total of less than 0.8 mmol/L in the system tank, and the molar ratio of the total amount of fluorine in the form of water-soluble compounds that are a source for fluoride ions to the total amount of the elements zirconium and/or titanium in the form of water-soluble compounds in the metered total volume of the additional solutions is less than the same ratio in the passivating aqueous pretreatment solution, but no less than 4.5, and the rejection of passivating aqueous pretreatment solution in liters per square meter of metal surfaces of zinc and iron treated in series assumes at least the following value: VW = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 10 1 mmol m 2
    Figure imgb0047
    VW: rejection of pretreatment solution in L/m2;
    c B Me :
    Figure imgb0048
    concentration of zirconium and/or titanium in the pretreatment solution in mmol/L;
    ZE: molar ratio of the total amount of fluorine in the form of water-soluble compounds that are a source for fluoride ions to the total amount of the elements zirconium and/or titanium in the form of water-soluble compounds in the metered total volume of the additional solutions with the proviso that the following applies: z E < 2 , 8 mmol L 1 c B Me + 6
    Figure imgb0049
  2. The method according to claim 1, characterized in that, for the molar ratio of the total amount of fluorine in the form of water-soluble compounds that are a source for fluoride ions to the total amount of the elements zirconium and/or titanium in the form of water-soluble compounds in the metered total volume of the additional solutions, the following condition is met: z E < 0 , 4 mmol L 1 c B Me + 6
    Figure imgb0050
  3. The method according to claim 2, characterized in that the rejection of passivating aqueous pretreatment solution is not greater than the following value in liters per square meter of the metal component treated in series: VW = 7 z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 10 1 mmol m 2
    Figure imgb0051
    VW: rejection of pretreatment solution in L/m2;
    c B Me :
    Figure imgb0052
    concentration of zirconium and/or titanium in the pretreatment solution in mmol/L;
    ZE : molar ratio of the total amount of fluorine in the form of water-soluble compounds that are a source for fluoride ions to the total amount of the elements zirconium and/or titanium in the form of water-soluble compounds in the metered total volume of the additional solutions
  4. The method according to one or more the preceding claims, characterized in that the molar ratio of the total amount of fluorine in the form of water-soluble compounds that are a source for fluoride ions to the total amount of the elements zirconium and/or titanium in the form of water-soluble compounds in the metered total volume of the additional solutions is no less than 5.0, preferably no less than 5.5.
  5. The method according to one or more of the preceding claims, characterized in that the molar ratio of the total amount of the elements zirconium and/or titanium in the form of water-soluble compounds in each case to the total amount of one of the elements calcium, magnesium, aluminum, boron, iron, manganese or tungsten, in each case in the form of water-soluble compounds in the metered total volume of the additional solutions, is greater than 5:1.
  6. The method according to one or more of the preceding claims, characterized in that the passivating aqueous pretreatment solution in the system tank contains in total less than 0.55 mmol/L, preferably in total less than 0.325 mmol/L of water-soluble compounds of the elements zirconium and/or titanium.
  7. The method according to one or more the preceding claims, characterized in that the pH of the passivating aqueous pretreatment solution is no less than 3.0, preferably no less than 3.5, but no greater than 5.0, preferably no greater than 4.5.
  8. The method according to one or more of the preceding claims, characterized in that the temperature of the passivating aqueous pretreatment solution is no higher than 45 °C, preferably no higher than 40 °C, particularly preferably no higher than 35 °C.
  9. The method according to one or more the preceding claims, characterized in that the passivating aqueous pretreatment solution is rejected by dragging out pretreatment solution with each component from the series of components to be treated and by actively feeding out pretreatment solution in each case from the pretreatment system tank.
  10. The method according to claim 9, characterized in that the rejection takes place by actively feeding out passivating aqueous pretreatment solution intermittently after pretreating a particular number n of components i, the intermittent rejection assuming at least the following value in liters for a number n of components i treated in series: VW d = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i VW a n
    Figure imgb0053
    VWd : intermittent rejection in liters;
    VW a n :
    Figure imgb0054
    rejection by drag-out by n components in liters with the proviso that the following applies: VW a n z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i ;
    Figure imgb0055
    x 1 Zn :
    Figure imgb0056
    proportion of zinc surfaces based on the total surface area of zinc and iron of the i-th component treated in series;
    x i Fe :
    Figure imgb0057
    proportion of iron surfaces based on the total surface area of zinc and iron of the i-th component treated in series;
    S i Zn :
    Figure imgb0058
    coating layer in mmol/m2 based on the elements zirconium and/or titanium on the anti-corrosive pretreated zinc surface of the i-th component treated in series; and
    S i Fe :
    Figure imgb0059
    coating layer in mmol/m2 based on the elements zirconium and/or titanium on the anti-corrosive pretreated iron surfaces of the i-th component treated in series;
    Ai: total surface area of the metal surfaces of zinc and iron of the i-th component treated in series; and
    n: positive natural number {n ∈ N | n ≥1}
  11. The method according to claim 10, characterized in that the intermittent rejection in liters for a number n of components i treated in series does not exceed the value VW d = z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 i n x i Zn S i Zn + x i Fe S i Fe A i VW a n
    Figure imgb0060
    and,
    for the molar ratio of the total amount of fluorine in the form of water-soluble compounds that are a source for fluoride ions to the total amount of the elements zirconium and/or titanium in the form of water-soluble compounds in the metered total volume of the additional solutions, the following condition is met: z E < 0 , 4 mmol L 1 c B Me + 6
    Figure imgb0061
  12. The method according to claim 9, characterized in that the rejection takes place by actively feeding out passivating aqueous pretreatment solution and the rejected pretreatment solution is replaced with one or more additional solutions continuously throughout the pretreatment of the components in series, preferably by feeding a constant volume flow of replaced additional solution into the pretreatment system tank, the continuous rejection of passivating aqueous pretreatment solution preferably being achieved predominantly by an overflow of an open system tank.
  13. The method according to claim 12, characterized in that the continuous rejection assumes at least the following value in liters per square meter of metal surfaces of zinc and iron treated in series: VW C = z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A VW a
    Figure imgb0062
    VWC: continuous rejection in liters;
    VW a: averaged rejection by drag-out in liters with the proviso that the following applies: VW a z E 2 , 4 2 , 8 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A ;
    Figure imgb0063
    x Zn: averaged proportion of zinc surfaces based on the total surface areas of zinc and iron of a series of treated components;
    -Fex Fe: averaged proportion of iron surfaces based on the total surface areas of zinc and iron of a series of treated components;
    S Zn: averaged coating layer in mmol/m2 based on the elements zirconium and/or titanium on the anti-corrosive pretreated zinc surfaces of the components treated in series; and
    S Fe: averaged coating layer in mmol/m2 based on the elements zirconium and/or titanium on the anti-corrosive pretreated iron surfaces of the components treated in series
    A : averaged surface area of the components in m2
  14. The method according to claim 13, characterized in that the continuous rejection in liters per square meter of metal surfaces of zinc and iron pretreated in series does not exceed the value VW c = z E 2 , 4 0 , 4 mmol L 1 c B Me z E 6 x Zn S Zn + x Fe S Fe A
    Figure imgb0064
    and,
    for the molar ratio of the total amount of fluorine in the form of water-soluble compounds that are a source for fluoride ions to the total amount of the elements zirconium and/or titanium in the form of water-soluble compounds in the metered total volume of the additional solutions, the following condition is met: z E < 0 , 4 mmol L 1 c B Me + 6
    Figure imgb0065
  15. The method according to one or more of the preceding claims, characterized in that, after the contact with the passivating aqueous pretreatment solution, with or without intermediate rinsing steps, there is subsequent dip coating, preferably electrocoating, particularly preferably cathodic electrocoating.
  16. The method according to claim 15, characterized in that, after the contact with the passivating aqueous pretreatment solution, there is no subsequent additional pretreatment step with an aqueous solution in which the solution contains more than 10% of the proportion of the passivating aqueous pretreatment solution of water-soluble compounds of the elements zirconium and/or titanium, in particular there is no subsequent additional treatment step of this kind that is used to form, on at least one metal surface of the component, a coating containing substrate-extraneous metal or semi-metal elements and having a coating layer of more than 0.1 mmol/m2 based on said substrate-extraneous elements.
  17. The method according to one or both of claims 15-16, characterized in that, immediately after the contact with the passivating aqueous pretreatment solution, a rinsing step is carried out by bringing the components into contact with a rinsing solution located in a system tank; during the anti-corrosion treatment of the components in series, some of the rinsing solution being rejected and replaced by a part by volume, which is in total at least the same size, of an additional rinsing solution which contains in total less than 10-5 mol/L of water-soluble compounds of the elements zirconium and/or titanium and preferably less than 10-4 mol/L of water-soluble compounds that are a source for fluoride ions, based on the element fluorine.
EP14197667.0A 2014-12-12 2014-12-12 Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride Active EP3031951B1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
PL14197667T PL3031951T3 (en) 2014-12-12 2014-12-12 Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride
ES14197667.0T ES2654893T3 (en) 2014-12-12 2014-12-12 Optimized process control in the pretreatment of anti-corrosion metal based on fluoride-containing baths
HUE14197667A HUE036114T2 (en) 2014-12-12 2014-12-12 Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride
EP14197667.0A EP3031951B1 (en) 2014-12-12 2014-12-12 Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride
EP15804502.1A EP3230490A1 (en) 2014-12-12 2015-12-03 Optimised operation in anti-corrosion pretreatment of metal using fluoride baths
PCT/EP2015/078511 WO2016091713A1 (en) 2014-12-12 2015-12-03 Optimised operation in anti-corrosion pretreatment of metal using fluoride baths
CA2970405A CA2970405A1 (en) 2014-12-12 2015-12-03 Optimised process control in the anti-corrosive metal pretreatment basedon fluoride-containing baths
KR1020177015761A KR102504477B1 (en) 2014-12-12 2015-12-03 Optimised operation in anti-corrosion pretreatment of metal using fluoride baths
CN201580067239.3A CN107002245B (en) 2014-12-12 2015-12-03 The process control of optimization in the corrosion-resistant metal pretreatment of tank liquor based on fluoride
BR112017012144-1A BR112017012144B1 (en) 2014-12-12 2015-12-03 METHOD FOR THE ANTICORROSIVE TREATMENT OF A PLURALITY OF METALLIC SURFACES OF COMPONENTS INCLUDING ZINC AND/OR IRON IN A SERIAL OPERATION BASED ON BATHS CONTAINING FLUORIDE
JP2017531332A JP6720175B2 (en) 2014-12-12 2015-12-03 Optimization of process control in corrosion-preventing metal pretreatment based on fluoride-containing bath
MX2017007556A MX2017007556A (en) 2014-12-12 2015-12-03 Optimised operation in anti-corrosion pretreatment of metal using fluoride baths.
TW104141238A TWI678434B (en) 2014-12-12 2015-12-09 Method for a serial corrosion protection treatment of components having metallic surfaces of zinic and/or iron
US15/618,229 US10458022B2 (en) 2014-12-12 2017-06-09 Optimized process control in the anti-corrosive metal pretreatment based on fluoride-containing baths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14197667.0A EP3031951B1 (en) 2014-12-12 2014-12-12 Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride

Publications (2)

Publication Number Publication Date
EP3031951A1 EP3031951A1 (en) 2016-06-15
EP3031951B1 true EP3031951B1 (en) 2017-10-04

Family

ID=52021123

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14197667.0A Active EP3031951B1 (en) 2014-12-12 2014-12-12 Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride
EP15804502.1A Withdrawn EP3230490A1 (en) 2014-12-12 2015-12-03 Optimised operation in anti-corrosion pretreatment of metal using fluoride baths

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15804502.1A Withdrawn EP3230490A1 (en) 2014-12-12 2015-12-03 Optimised operation in anti-corrosion pretreatment of metal using fluoride baths

Country Status (13)

Country Link
US (1) US10458022B2 (en)
EP (2) EP3031951B1 (en)
JP (1) JP6720175B2 (en)
KR (1) KR102504477B1 (en)
CN (1) CN107002245B (en)
BR (1) BR112017012144B1 (en)
CA (1) CA2970405A1 (en)
ES (1) ES2654893T3 (en)
HU (1) HUE036114T2 (en)
MX (1) MX2017007556A (en)
PL (1) PL3031951T3 (en)
TW (1) TWI678434B (en)
WO (1) WO2016091713A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129783A (en) * 2019-04-15 2019-08-16 汉腾汽车有限公司 A kind of Pretreatment Technology Before Finishing

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US587392A (en) * 1897-08-03 Metal arch for culverts
US3515600A (en) * 1966-10-19 1970-06-02 Hooker Chemical Corp Metal treating process and composition
JP3349851B2 (en) * 1994-12-22 2002-11-25 日本パーカライジング株式会社 Surface treatment composition for aluminum-containing metal material excellent in sludge suppression property and surface treatment method
US5873952A (en) * 1996-08-20 1999-02-23 Henkel Corporaiton Process for forming a protective coating on zinciferous metal surfaces
US6720032B1 (en) * 1997-09-10 2004-04-13 Henkel Kommanditgesellschaft Auf Aktien Pretreatment before painting of composite metal structures containing aluminum portions
JP4408474B2 (en) * 1999-01-25 2010-02-03 トピー工業株式会社 Aluminum alloy substrate coating method and wheel
JP2003155578A (en) * 2001-11-20 2003-05-30 Toyota Motor Corp Chemical conversion treatment agent for iron and/or zinc
JP2004018865A (en) * 2002-06-12 2004-01-22 Nissan Motor Co Ltd Coating pretreatment apparatus and coating pretreatment method
JP4205939B2 (en) 2002-12-13 2009-01-07 日本パーカライジング株式会社 Metal surface treatment method
JP2008184690A (en) * 2002-12-24 2008-08-14 Nippon Paint Co Ltd Pretreatment method for coating
EP1433877B1 (en) * 2002-12-24 2008-10-22 Chemetall GmbH Pretreatment method for coating
JP2005344186A (en) * 2004-06-04 2005-12-15 Nippon Paint Co Ltd Chemical conversion treatment method for metal
JP2006161067A (en) * 2004-12-02 2006-06-22 Nippon Paint Co Ltd Fuel tank or oil feed pipe for automotive use
JP2006219691A (en) * 2005-02-08 2006-08-24 Nippon Parkerizing Co Ltd Metal surface treatment method
DE102008014465B4 (en) 2008-03-17 2010-05-12 Henkel Ag & Co. Kgaa Optimized Ti / Zr passivation agent for metal surfaces and conversion treatment method
DE102008038653A1 (en) 2008-08-12 2010-03-25 Henkel Ag & Co. Kgaa Successive anti-corrosive pretreatment of metal surfaces in a multi-stage process
US8951362B2 (en) * 2009-10-08 2015-02-10 Ppg Industries Ohio, Inc. Replenishing compositions and methods of replenishing pretreatment compositions
DE102009047522A1 (en) * 2009-12-04 2011-06-09 Henkel Ag & Co. Kgaa Multi-stage pre-treatment process for metallic components with zinc and iron surfaces
CN104145045B (en) * 2012-02-23 2018-03-02 Ppg工业俄亥俄公司 The method of supplement composition and supplement pretreatment compositions
KR101726536B1 (en) * 2013-05-28 2017-04-12 니혼 파커라이징 가부시키가이샤 Supplement, surface-treated metal material, and production method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HUE036114T2 (en) 2018-06-28
ES2654893T3 (en) 2018-02-15
CN107002245A (en) 2017-08-01
CN107002245B (en) 2019-04-09
KR20170110575A (en) 2017-10-11
JP6720175B2 (en) 2020-07-08
BR112017012144B1 (en) 2021-06-22
US20170283955A1 (en) 2017-10-05
EP3031951A1 (en) 2016-06-15
US10458022B2 (en) 2019-10-29
PL3031951T3 (en) 2018-03-30
BR112017012144A2 (en) 2018-01-02
CA2970405A1 (en) 2016-06-16
WO2016091713A1 (en) 2016-06-16
TW201631212A (en) 2016-09-01
EP3230490A1 (en) 2017-10-18
MX2017007556A (en) 2017-10-31
KR102504477B1 (en) 2023-02-28
TWI678434B (en) 2019-12-01
JP2017537229A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
DE69737195T2 (en) Solution and method for the production of protective layers on metals
DE60226078T2 (en) TREATMENT LIQUID FOR THE SURFACE TREATMENT OF ALUMINUM OR MAGNESIUM BASED METAL AND SURFACE TREATMENT METHOD
DE69108087T2 (en) Phosphating process for metal surfaces for the production of a zinc phosphate coating.
DE102016205815A1 (en) Process for nickel-free phosphating of metallic surfaces
EP0261704B1 (en) Process for producing phosphate coatings on metal surfaces
EP2250301A1 (en) Coating method for a work piece
EP3230491B1 (en) Integration of light metals into steel pickling and pretreating processes
EP3031951B1 (en) Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride
EP1029111A1 (en) Corrosion protection for galvanised and alloy galvanised steel strips
EP1029112B1 (en) Method of controlling a phosphating device
EP0366941A1 (en) Process for the electrophoretic coating of chromizable metal surfaces
DE1248427B (en) Method and solution for applying coatings to aluminum and its alloys
DE10026850A1 (en) Process for treating or pretreating components with aluminum surfaces
US20190032223A1 (en) Conveyor frame treatment for suppressing phosphate dragging resulting from the plant design in a dip coating process sequence
DE2354911A1 (en) PROCESS FOR SURFACE TREATMENT OF ZINC OR ZINC ALLOYS
DE1194674B (en) Process for the regeneration of chromating solutions
US20190032224A1 (en) Suppression of phosphate dragging resulting from the plant design in a dip coating process sequence
EP1433879B1 (en) Process for metal surface coating with an alkali phosphate solution, aqueous concentrate and use of such coated metal surfaces
DE3413905A1 (en) METHOD FOR MONITORING FLUORIDE-CONTAINING BATHS FOR THE SURFACE TREATMENT OF METALS
DE1287413B (en) Process for preparing steel for electrophoretic coating with paints
DE1914052B2 (en) PROCESS FOR PRODUCING A PHOSPHATE COATING ON A MOVING IRON OR STEEL SURFACE
WO2023174611A1 (en) Passivating layer for metal-containing substrates
DE1078847B (en) Process for the production of coatings on titanium and its alloys
DE1078848B (en) Process for applying coatings to titanium and its alloys
DE2141596A1 (en) Process for the production of chromate conversion coatings on zinc-containing surfaces, as well as solutions and concentrates for its implementation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 934126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005666

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2654893

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E036114

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014005666

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 934126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191212

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 10

Ref country code: HU

Payment date: 20231222

Year of fee payment: 10

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240129

Year of fee payment: 10