EP3011069B1 - Widerstandslegierung, daraus hergestelltes bauelement und herstellungsverfahren dafür - Google Patents
Widerstandslegierung, daraus hergestelltes bauelement und herstellungsverfahren dafür Download PDFInfo
- Publication number
- EP3011069B1 EP3011069B1 EP14734392.5A EP14734392A EP3011069B1 EP 3011069 B1 EP3011069 B1 EP 3011069B1 EP 14734392 A EP14734392 A EP 14734392A EP 3011069 B1 EP3011069 B1 EP 3011069B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resistance
- component
- temperature
- resistance alloy
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 58
- 239000000956 alloy Substances 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 30
- 239000010949 copper Substances 0.000 claims description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 20
- 239000011572 manganese Substances 0.000 claims description 17
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 11
- 230000032683 aging Effects 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 230000002123 temporal effect Effects 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 2
- 238000005491 wire drawing Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- UTICYDQJEHVLJZ-UHFFFAOYSA-N copper manganese nickel Chemical compound [Mn].[Ni].[Cu] UTICYDQJEHVLJZ-UHFFFAOYSA-N 0.000 description 14
- 229910000990 Ni alloy Inorganic materials 0.000 description 12
- 239000000788 chromium alloy Substances 0.000 description 6
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 6
- 238000010587 phase diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000005219 brazing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910000896 Manganin Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- -1 copper-manganese-nickel-aluminum-magnesium Chemical compound 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/05—Alloys based on copper with manganese as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the invention relates to a resistance alloy for an electrical resistance, in particular for a low-impedance current measuring resistor. Furthermore, the invention comprises a component manufactured therefrom and a corresponding production method.
- Copper-manganese-nickel alloys have long been used as materials for precision resistors, in particular for low-resistance current measuring resistors ("shunts").
- An example of such a copper-manganese-nickel alloy is the resistance alloy marketed by the applicant under the trade name Manganin® (eg Cu 84 Ni 4 Mn 12 ) with a copper content of 82-84%, a nickel content of 2% by mass. 4% and a mass fraction of manganese of 12-15%.
- the known copper-manganese-nickel alloys meet all the requirements that are placed on resistance alloys for precision resistors, such as a low temperature coefficient of electrical resistivity, a low thermal power to copper and a high temporal constancy of electrical resistance.
- the known copper-manganese-nickel alloys have good technological properties, in particular a good processing capability, which makes it possible to process these copper-manganese-nickel alloys into wires, tapes, films and resistance components.
- a disadvantage of the known copper-manganese-nickel alloys is the limitation to relatively low electrical resistivities of at most 0.5 ( ⁇ ⁇ mm 2 ) / m.
- nickel-chromium alloys For larger specific electrical resistances, for example, nickel-chromium alloys are known, which however also have various disadvantages. For one thing, nickel-chromium alloys are usually much more expensive than copper-manganese-nickel alloys. On the other hand, nickel-chromium alloys are difficult to handle in many respects in terms of production technology. For example, the hot workability of nickel-chromium alloys is relatively poor, and elaborate heat treatment processes are necessary for setting certain electrical-physical material properties. In addition, the working temperatures in the smelting process in the nickel-chromium alloys are 500K higher than in the copper-manganese-nickel alloys, which leads to higher energy costs and material wear of the work equipment. In addition, the otherwise desirable good acid resistance of nickel-chromium alloys poses major problems in the etch-making of resistor structures and makes the removal of heat-related oxides by pickling a costly and non-hazardous manufacturing step.
- the copper-manganese-nickel-aluminum-magnesium alloy 29-5-1 which has a resistivity of 1 ( ⁇ ⁇ mm 2 ) / m and thereby meets the demand for a low temperature coefficient of resistivity .
- this resistance alloy has a high thermo-power against copper at 20 ° C of +3 ⁇ V / K, resulting in high fault currents, which make this alloy unsuitable for precise metrological applications.
- the prior art also includes Pashkov KE ET AL: "Special features of brazing often copper-manganese-nickel system with a powder brazing alloy", WELDING INTERNATIONAL, TAYLOR & FRANCIS, ABINGDON, GB, Vol. 24, No. 5, May 1, 2010 (2010 -05-01), pages 385-389, XP001554242, ISSN: 0950-7116, DOI: 10.1080 / 09507110903399273 Table 1, US 3 451 808 A . JP 2006-270078 A . JP 2009-242895 A , "Research on Precision Resistance Materials” Author: Hiroyuki HIRAYAMA, JP H04-48041 . JP S62-202038 . KR 1999-0048844 and U.S. 3,712,837 ,
- a current measuring resistor having a resistive element made of a resistance alloy is known.
- the resistance alloy here consists of a copper-manganese-nickel alloy, in particular with a copper content of 50-85 wt .-%, a manganese content of 12-30 wt .-% and a nickel content of 2-16% by weight.
- a low temperature dependence of the resistance value of the resistance alloy should be achieved.
- the invention is therefore based on the object, a correspondingly improved resistance alloy based on copper-manganese-nickel to provide, which has the highest possible specific electrical resistance, a low thermal power to copper, a low temperature coefficient of electrical resistance and a high temporal constancy of electrical resistivity and these properties with the initially described good technological properties (eg processability) of the known copper Manganese nickel alloys combined.
- the mass fractions of the various alloying constituents are matched to one another in such a way that the resistance alloy according to the invention has a low thermopower with respect to copper, which is less than ⁇ 1 ⁇ V / K, ⁇ 0.5 ⁇ V / K or even ⁇ 0 at 20 ° C. 3 ⁇ V / K.
- a preferred embodiment of a resistance alloy according to the invention is Cu 65 Ni 10 Mn 25 with a mass fraction of copper of 65%, a mass fraction of nickel of 10% and a mass fraction of manganese of 25%.
- Another embodiment of a resistance alloy according to the invention is Cu 64 Ni 10 Mn 25 Sn 1 with a mass fraction of copper of 64%, a mass fraction of nickel of 10%, a mass fraction of manganese of 25% and a mass fraction of tin of 1%.
- Another embodiment of a resistance alloy according to the invention is Cu 62 Ni 11 Mn 27 with a mass fraction of copper of 62%, a mass fraction of nickel of 11% and a mass fraction of manganese of 27%.
- Another embodiment of a resistance alloy according to the invention is Cu 61 Ni 11 Mn 27 Sn 1 with a mass fraction of copper of 61%, a mass fraction of manganese of 27%, a mass fraction of nickel of 11% and a mass fraction of tin of 1%.
- the specific electrical resistance is preferably in the range of 0.5 ( ⁇ ⁇ mm 2 ) / m to 2 ( ⁇ ⁇ mm 2 ) / m.
- the specific electrical resistance of the resistance alloy according to the invention preferably has a high temporal constancy with a relative change of less than ⁇ 0.5% or ⁇ 0.25%, in particular within a period of 3000 hours and a temperature of at least + 140 ° C. , where the higher temperature of at least + 140 ° C accelerates the aging process.
- the resistance alloy according to the invention preferably has a low thermal power to copper, which at 20 ° C is preferably less than ⁇ 0.5 ⁇ V / K or even none as ⁇ 0.3 ⁇ V / K.
- the resistivity is relatively constant in temperature with a low temperature coefficient of preferably less than ⁇ 50 ⁇ 10 -6 K -1 , ⁇ 35 ⁇ 10 -6 K -1 , ⁇ 30 ⁇ 10 -6 K -1 or ⁇ 20 ⁇ 10 -6 K -1 , especially in a temperature range from + 20 ° C to + 60 ° C.
- the resistance alloy has a resistance-temperature curve representing the relative resistance change as a function of the temperature, wherein the resistance-temperature curve has a second zero crossing, preferably at a temperature of more than + 20 ° C, + 30 ° C or + 40 ° C and / or at a temperature of less than + 110 ° C, + 100 ° C or + 90 ° C.
- the mechanical properties of the resistance alloy according to the invention include a mechanical tensile strength of at least 500 MPa, 550 MPa or 580 MPa. Moreover, the resistance alloy according to the invention preferably has a yield strength of at least 150 MPa, 200 MPa or 260 MPa, while the elongation at break is preferably greater than 30%, 35%, 40% or even 45%.
- the resistance alloy is preferably soft solderable and / or brazeable.
- the resistance alloy according to the invention can be produced in various forms of delivery, for example as a wire (for example round wire, flat wire), as a band, as a sheet, as a rod, as a tube or as a foil.
- the invention is not limited in terms of forms of delivery to the above-mentioned forms of delivery.
- the invention also includes an electrical or electronic component with a resistance element of the resistance alloy according to the invention.
- a resistance element of the resistance alloy according to the invention may be a resistor, in particular a low-impedance current measuring resistor, as it itself, for example EP 0 605 800 A1 is known.
- the invention also includes a corresponding manufacturing method according to the independent claim 7 as it is already known from the above Description of the resistance alloy according to the invention results.
- the resistance alloy can be subjected to an artificial thermal aging process, wherein the resistance alloy is heated from an initial temperature to an aging temperature. This process can be repeated several times as part of the aging process, wherein the resistance alloy is repeatedly heated periodically to the aging temperature and cooled back to the starting temperature.
- the aging temperature may be, for example, in the range of + 80 ° C to + 300 ° C, while the starting temperature is preferably less than + 30 ° C or + 20 ° C.
- FIG. 1 shows a phase diagram of a copper-manganese-nickel alloy, wherein the mass fraction of copper is indicated on the axis top left, while the mass fraction of nickel is reproduced on the axis top right. The mass fraction of manganese, however, is found on the lower axis.
- phase diagram shows in hatched form a region 1 in which the resistance alloy tends to harden.
- the resistance alloy has a specific electrical resistance in this line, which is independent of the temperature.
- phase diagram also shows a region 3, which characterizes the resistance alloy according to the invention, wherein the mass fraction of manganese in the region 3 is between 23% and 28%, while the mass fraction of nickel in the region 3 is between 9% and 13%.
- FIG. 2 shows a simplified perspective view of a current sense resistor 4 according to the invention, as it itself already out EP 0 605 800 A1 is known, so that reference is made to avoid repetition of this patent application, the content of which is attributable to the present description in its entirety.
- the current measuring resistor 4 essentially consists of two plate-shaped connection parts 5, 6 made of copper and a resistance element 7 arranged therebetween of the resistance alloy according to the invention, which may be, for example, Cu 65 Ni 10 Mn 25 .
- FIG. 3 shows the temperature-dependent course of the relative resistance change DR / R20 as a function of the temperature.
- FIG. 4 shows the long-term stability of the resistance alloy according to the invention. It can be seen that the relative change in resistance dR over a period of 3000 hours is substantially less than 0.25%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Non-Adjustable Resistors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Ceramic Engineering (AREA)
- Electromagnetism (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013010301.0A DE102013010301A1 (de) | 2013-06-19 | 2013-06-19 | Widerstandslegierung, daraus hergestelltes Bauelement und Herstellungsverfahren dafür |
PCT/EP2014/001669 WO2014202221A1 (de) | 2013-06-19 | 2014-06-18 | Widerstandslegierung, daraus hergestelltes bauelement und herstellungsverfahren daf?r |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3011069A1 EP3011069A1 (de) | 2016-04-27 |
EP3011069B1 true EP3011069B1 (de) | 2019-04-03 |
Family
ID=51059406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14734392.5A Active EP3011069B1 (de) | 2013-06-19 | 2014-06-18 | Widerstandslegierung, daraus hergestelltes bauelement und herstellungsverfahren dafür |
Country Status (8)
Country | Link |
---|---|
US (2) | US20160115570A1 (es) |
EP (1) | EP3011069B1 (es) |
JP (1) | JP6467408B2 (es) |
KR (1) | KR102194267B1 (es) |
CN (1) | CN105308204B (es) |
DE (1) | DE102013010301A1 (es) |
ES (1) | ES2733024T3 (es) |
WO (1) | WO2014202221A1 (es) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016039688A1 (en) * | 2014-09-08 | 2016-03-17 | Agency For Science, Technology And Research | Reference clock signal generators and methods for generating a reference clock signal |
TW201702393A (zh) * | 2015-03-18 | 2017-01-16 | 麥提利恩公司 | 錳銅鎳錫合金 |
JP2017053015A (ja) * | 2015-09-11 | 2017-03-16 | 日立金属株式会社 | 抵抗材料 |
CN105603252B (zh) * | 2016-01-14 | 2017-12-08 | 厦门大学 | 一种基于调幅分解的铜镍合金作为强化恒电阻率合金的应用 |
CN105648267A (zh) * | 2016-03-30 | 2016-06-08 | 广东合科泰实业有限公司 | 一种低温度系数电阻体及其制备方法以及采用该低温度系数电阻体的低温度系数电阻 |
KR102463644B1 (ko) * | 2017-01-10 | 2022-11-07 | 후루카와 덴키 고교 가부시키가이샤 | 저항재용 구리 합금 재료 및 그 제조 방법, 및 저항기 |
CN108346496B (zh) * | 2018-05-18 | 2019-11-12 | 常熟市夸克电阻合金有限公司 | 一种ptc热敏电阻合金丝 |
JP7194145B2 (ja) | 2020-04-01 | 2022-12-21 | Koa株式会社 | 抵抗器用の合金及び抵抗器用合金の抵抗器への使用 |
JP7430121B2 (ja) * | 2020-08-07 | 2024-02-09 | Koa株式会社 | シャント抵抗器に用いられる抵抗合金、抵抗合金のシャント抵抗器への使用及び抵抗合金を用いたシャント抵抗器 |
CN117157418A (zh) | 2021-06-28 | 2023-12-01 | 古河电气工业株式会社 | 铜合金材料以及使用其的电阻器用电阻材料及电阻器 |
KR20240026277A (ko) | 2021-06-28 | 2024-02-27 | 후루카와 덴키 고교 가부시키가이샤 | 구리 합금재와, 이를 이용한 저항기용 저항 재료 및 저항기 |
JP7167385B1 (ja) | 2021-06-28 | 2022-11-08 | 古河電気工業株式会社 | 銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器 |
FR3147294A1 (fr) | 2023-03-29 | 2024-10-04 | Lebronze Alloys | Alliage résistif de précision à base de cuivre, de manganèse, de nickel et d’étain |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011249475A (ja) * | 2010-05-25 | 2011-12-08 | Denso Corp | 電力半導体装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1858415A (en) * | 1924-09-23 | 1932-05-17 | Westinghouse Electric & Mfg Co | Alloy |
DE1092218B (de) * | 1952-12-20 | 1960-11-03 | Isabellen Huette Heusler Kom G | Verfahren zur Herstellung ausgehaerteter Gegenstaende aus Kupfer-Nickel-Mangan-Zink-Legierungen |
DE1033423B (de) * | 1953-12-29 | 1958-07-03 | Isabellen Huette Heusler Kom G | Verwendung von Draehten bzw. Baendern aus Kupfer-Mangan-Nickel-Legierungen als elektrisches Widerstandsmaterial |
US3451808A (en) * | 1966-12-06 | 1969-06-24 | Isabellen Hutte Heusler Kg | Copper-manganese alloys and articles made therefrom |
US3985589A (en) * | 1974-11-01 | 1976-10-12 | Olin Corporation | Processing copper base alloys |
JPS60255425A (ja) * | 1984-05-31 | 1985-12-17 | ヤマハ株式会社 | 装飾用材料 |
JPH0768597B2 (ja) * | 1986-02-28 | 1995-07-26 | 株式会社東芝 | 非磁性バネ材及びその製造方法 |
JP2989390B2 (ja) * | 1992-09-28 | 1999-12-13 | 三洋電機株式会社 | 混成集積回路装置 |
JPH06112614A (ja) * | 1992-09-28 | 1994-04-22 | Sanyo Electric Co Ltd | 混成集積回路装置 |
DE4243349A1 (de) | 1992-12-21 | 1994-06-30 | Heusler Isabellenhuette | Herstellung von Widerständen aus Verbundmaterial |
DE50106520D1 (de) * | 2001-04-19 | 2005-07-21 | Wieland Werke Ag | Verwendung einer sprühkompaktierten Kupfer-Nickel-Mangan-Legierung |
JP2004136299A (ja) * | 2002-10-16 | 2004-05-13 | Sumitomo Special Metals Co Ltd | ろう材、クラッド材およびろう接構造物 |
JP4974544B2 (ja) * | 2005-02-25 | 2012-07-11 | コーア株式会社 | 抵抗用合金材料、抵抗器および抵抗器の製造方法 |
JP2007119874A (ja) * | 2005-10-31 | 2007-05-17 | Bridgestone Corp | 銅系合金及び銅系合金の製造方法 |
JP2009242895A (ja) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | 曲げ加工性に優れた高強度銅合金 |
TWI348716B (en) * | 2008-08-13 | 2011-09-11 | Cyntec Co Ltd | Resistive component and making method thereof |
-
2013
- 2013-06-19 DE DE102013010301.0A patent/DE102013010301A1/de not_active Withdrawn
-
2014
- 2014-06-18 CN CN201480034310.3A patent/CN105308204B/zh active Active
- 2014-06-18 JP JP2016520313A patent/JP6467408B2/ja active Active
- 2014-06-18 EP EP14734392.5A patent/EP3011069B1/de active Active
- 2014-06-18 WO PCT/EP2014/001669 patent/WO2014202221A1/de active Application Filing
- 2014-06-18 ES ES14734392T patent/ES2733024T3/es active Active
- 2014-06-18 KR KR1020167000636A patent/KR102194267B1/ko active IP Right Grant
- 2014-06-18 US US14/891,133 patent/US20160115570A1/en not_active Abandoned
-
2020
- 2020-03-30 US US16/834,935 patent/US20200224293A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011249475A (ja) * | 2010-05-25 | 2011-12-08 | Denso Corp | 電力半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
DE102013010301A1 (de) | 2014-12-24 |
KR20160021195A (ko) | 2016-02-24 |
US20200224293A1 (en) | 2020-07-16 |
KR102194267B1 (ko) | 2020-12-22 |
US20160115570A1 (en) | 2016-04-28 |
WO2014202221A1 (de) | 2014-12-24 |
EP3011069A1 (de) | 2016-04-27 |
JP2016528376A (ja) | 2016-09-15 |
CN105308204B (zh) | 2018-12-04 |
ES2733024T3 (es) | 2019-11-27 |
JP6467408B2 (ja) | 2019-02-13 |
CN105308204A (zh) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3011069B1 (de) | Widerstandslegierung, daraus hergestelltes bauelement und herstellungsverfahren dafür | |
EP3210214B1 (de) | Elektrisches bauelement, herstellungsverfahren dafür und verbundmaterialband zum herstellen des bauelements | |
DE10147968B4 (de) | Kupferlegierung von hoher mechanischer Festigkeit | |
DE3520407C2 (de) | Verfahren zur thermomechanischen Behandlung von kobalthaltigen Kupfer-Beryllium-Legierungen | |
DE19904765A1 (de) | Lötmittel-Legierungen | |
DE112017005596T5 (de) | Ummanteltes Stromkabel, mit einem Anschluss versehenes Stromkabel, Kupferlegierungsdraht, undKupferlegierungslitze | |
DE112021002136T5 (de) | Legierung für einen Widerstand und Verwendung einer Widerstandslegierung in einem Widerstand | |
EP2527479B1 (de) | Hochleitfähige Aluminiumlegierung für elektrisch leitfähige Produkte | |
DE2932275A1 (de) | Material fuer elektrische kontakte aus innen oxidierter ag-sn-bi-legierung | |
DE112021004216T5 (de) | Widerstandslegierung zur Verwendung in einem Shunt-Widerstand, Verwendung einer Widerstandslegierung in einem Shunt-Widerstand und Shunt-Widerstand mit Widerstandslegierung | |
EP3529389B1 (de) | Kupfer-zink-legierung | |
EP2989224B1 (de) | Kupfergusslegierung für asynchronmaschinen | |
DE112017005481T5 (de) | Aluminiumlegierungsdraht, Aluminiumlegierungs-Litzendraht, ummantelter elektrischer Draht und mit einer Anschlussklemme ausgestatteter elektrischer Draht | |
DE3522118A1 (de) | Verfahren zur herstellung von kupfer-beryllium-legierungsmaterial sowie danach hergestellte teile | |
DE102020004695A1 (de) | Elektrisches kontaktmaterial, anschlusspassstück, verbinder und kabelbaum | |
DE102007013806B4 (de) | Elektrischer Leiter mit Messwiderstand | |
EP1292422A1 (de) | Verbindungstechnik zwischen formgedächtnis-material und stahl- oder kupfermaterial | |
DE112017005602T5 (de) | Bedeckter elektrischer Draht, elektrischer Draht mit einer Klemme, Kupfer-Legierungsdraht und Kupfer-Legierungslitze | |
DE112019004187T5 (de) | Bedeckter elektrischer Draht, mit Anschluss ausgerüsteter elektrischer Draht, Kupferlegierungsdraht, Kupferlegierungslitze und Verfahren zur Herstellung eines Kupferlegierungsdrahtes | |
DE102017220681A1 (de) | Bleifreie Lotzusammensetzung | |
EP1936388A1 (de) | Elektrisches Leitermaterial mit Messwiderstand | |
DE102010046955A1 (de) | Elektrisches Kabel | |
EP0367978A1 (de) | Legierung, insbesondere zur Verwendung zur Herstellung von Brillengestellen | |
DE112017000659T5 (de) | Überzogener elektrischer Draht, mit Anschluss versehener elektrischer Draht, Kupferlegierungsdraht und Kupferlegierungslitzendraht | |
DE102015116314A1 (de) | Verwendung eines aus einer Kupfer-Zink-Mangan-Legierung ausgebildeten metallischen Elements als elektrisches Heizelement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151023 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20160426 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181030 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTC | Intention to grant announced (deleted) | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
INTG | Intention to grant announced |
Effective date: 20190222 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1115824 Country of ref document: AT Kind code of ref document: T Effective date: 20190415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014011319 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190803 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2733024 Country of ref document: ES Kind code of ref document: T3 Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190704 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014011319 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
26N | No opposition filed |
Effective date: 20200106 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190618 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1115824 Country of ref document: AT Kind code of ref document: T Effective date: 20190618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230426 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230607 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230719 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240621 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240628 Year of fee payment: 11 |