EP2739524B1 - Système et procédé de récupération d'un engin submersible - Google Patents

Système et procédé de récupération d'un engin submersible Download PDF

Info

Publication number
EP2739524B1
EP2739524B1 EP12743943.8A EP12743943A EP2739524B1 EP 2739524 B1 EP2739524 B1 EP 2739524B1 EP 12743943 A EP12743943 A EP 12743943A EP 2739524 B1 EP2739524 B1 EP 2739524B1
Authority
EP
European Patent Office
Prior art keywords
ramp
underwater vehicle
wave compensation
receiving device
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12743943.8A
Other languages
German (de)
English (en)
Other versions
EP2739524A1 (fr
Inventor
Jörg Kalwa
Ralf Richter
Sven-Christian Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP2739524A1 publication Critical patent/EP2739524A1/fr
Application granted granted Critical
Publication of EP2739524B1 publication Critical patent/EP2739524B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B69/00Equipment for shipping not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/36Arrangement of ship-based loading or unloading equipment for floating cargo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/40Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for for transporting marine vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations

Definitions

  • the invention relates to a system and a method for recovering an underwater vehicle, in particular an unmanned underwater vehicle.
  • Such an underwater vehicle is usually transported by means of a ship in a deployment area and there from the ship or shore side, for example. From a pier, launched into the water. After carrying out his mission, the underwater vehicle must be recovered. For this purpose it is known to capture the free end of a rope attached to the underwater vehicle and to pull the underwater vehicle by means of the rope to the ship and catch up.
  • a known system for recovering an underwater vehicle has a mountain ramp, by means of which the underwater vehicle is obtained from the water on board the ship. The mountain ramp is fixed to the mountains of the underwater vehicle so relative to the ship that this mountain ramp from the deck of the ship obliquely protrudes into the water, so that the underwater vehicle can be used by means of the rope in the waterline or water surface of the water to the mountain ramp.
  • the ship with the mountain ramp has a much larger volume and a much larger mass compared to the underwater vehicle.
  • the position of the ship in the water is therefore essentially influenced by swell or waves of comparatively large wavelength.
  • the underwater vehicle largely follows comparatively smaller waves, which leave the ship largely uninfluenced. Consequently, with swell or swell, there is a vertical relative movement of the underwater vehicle relative to the mountain ramp.
  • the mountain ramp strikes, especially against the underwater vehicle, up and down and therefore can hit and damage the underwater vehicle during recovery, especially in the front part of the underwater vehicle. Even the mountain ramp itself can be damaged. Even in the event that the mountain ramp stationary, for example, on the pier, arranged is, the underwater vehicle can hit hard against the Bergerampe by swell.
  • WO 2008/025345 A1 and US 4 242 768 A are known devices for receiving boats or boats, which are not pulled by a rope.
  • DE 38 34 174 C2 and EP 1 216 918 A8 suggest such devices also for receiving dive objects.
  • DE 41 40 201 C2 discloses a device for retrieving a trailing body towed underwater on a towing cable via a slide which can be displaced on vertically arranged guide rails and has a pivotable carrying arm.
  • WO 2008/025345 A1 discloses a system and method for recovering an underwater vehicle according to the preambles of the appended claims 1 and 8. It is the object of the invention to improve the recovery of an underwater vehicle, in particular to make it safer for the underwater vehicle.
  • the invention solves this problem with a system for recovering an underwater vehicle according to claim 1 and with a method for recovering an underwater vehicle according to claim 8.
  • the system of the type mentioned has a mounted on the mountain ramp opposite this mountain ramp pivotable about a pivot axis and of a float supported wave compensation ramp for receiving the underwater vehicle and for retrieving the wave compensation ramp together with the recorded underwater vehicle by means of Bergerampe, especially on board the ship or on land, in particular on a pier.
  • the wave compensation ramp has a pivot axis opposite or free end, wherein the float is preferably arranged at this free end.
  • the system also includes the rope for pulling the underwater vehicle.
  • the wave compensation ramp adapts due to the float in the position of the waterline or water surface or the waves.
  • the wave balance ramp adapts at its free end to the movement of the underwater vehicle, so that the underwater vehicle and this free end of the mountain ramp are both located approximately in the region of the waterline.
  • a front and / or a rear float can be provided.
  • further floating bodies may be provided. Terms such as “a”, “an” or “an” such as in the term “a float” are in the description and in the claims not to be understood as number words, but as indefinite articles.
  • the pivot axis is preferably in the range, in particular up to half a meter, above a mean waterline or just above the area arranged in which the waterline is located in a calm sea.
  • the Bergerampe therefore only needs to reach down to this mean waterline and not dive further into the water.
  • the mountain ramp can be made shorter than the known mountain ramp mentioned above.
  • the mountain ramp of the system according to the invention can therefore be accommodated on board the ship or on land, for example. On a truck or in a container to save space.
  • the underwater vehicle is picked up by means of the wave compensation ramp and subsequently the wave compensation ramp is taken up together with the recorded watercraft by means of the mountain ramp.
  • the system according to the invention is also suitable and provided for exposing the underwater vehicle.
  • the wave compensation ramp is lowered together with the underwater vehicle on the mountain ramp, so that the underwater vehicle slips over the mountain ramp into the water.
  • the wave compensation ramp for this purpose preferably remains completely stored on the mountain ramp or does not need to be fully extended or not.
  • the system has a linearly displaceable on the rescue ramp guide carriage with a hinge for supporting the wave compensation ramp.
  • the joint thus provides the pivot axis.
  • the wave compensation ramp can be pulled up or lowered by means of the guide carriage Bergerampe.
  • the guide carriage is displaced linearly on the recovery ramp, wherein the joint supports the wave compensation ramp.
  • the system comprises a hydraulically driven belt drive for displacing the guide carriage.
  • the belt drive provides the traction for raising and lowering the counterbalance ramp, particularly along with the underwater vehicle picked up by the counterbalance ramp.
  • the belt drive shifts the guide carriage.
  • the system has a linearly displaceable on the wave compensation ramp front receiving device for guiding the rope and for guiding and preferably also for storing the underwater vehicle.
  • the front receiving device is moved linearly on the mountain ramp, wherein the front receiving device guides the rope and / or the underwater vehicle.
  • the rope for retrieving the underwater vehicle threaded through the front receiving device.
  • the underwater vehicle is pulled towards the front receiving device and onto the wave compensation ramp, wherein the front receiving device is displaced on the wave compensation ramp and guides the underwater vehicle.
  • the system comprises coupling means for coupling to a precursor attached to the underwater vehicle.
  • the underwater vehicle is coupled via the precursor with the receiving device, wherein the coupling means according to the method with the precursor couple.
  • the system comprises the front floating body for holding the front receiving means in coupling in the region of the waterline of the water body.
  • the front float keeps the front receiving device in the region of the waterline of the water body. This minimizes vertical relative movements of the coupling means relative to the underwater vehicle. The coupling is simplified.
  • the coupling means comprise a snap-action device for latching and holding the precursor.
  • the snap device is preferably designed with a pawl.
  • the snap connection locks the precursor and subsequently holds the precursor and thus the underwater vehicle so that the underwater vehicle can be guided by means of the front reception device and stored by the front reception device.
  • the snap device allows an independent engagement with subsequent secure hold of the precursor or the underwater vehicle.
  • the front receiving device on a negative shell for centering the underwater vehicle.
  • the negative shell centers the underwater vehicle, in particular relative to the front receiving device and thus relative to the longitudinal axis of the wave compensation ramp.
  • the negative shell supports the snapping by means of the snap device and also the holding and storage of the precursor or the underwater vehicle.
  • the negative shell has two or more than two in the process of negative shell to the free end of the wave compensation ramp, in particular a guide funnel forming guide rails for guiding the underwater vehicle during coupling, in particular for guiding the precursor to the front receiving device or for guiding the precursor to the coupling means, and to hold the underwater vehicle in his position.
  • the guide rails are arranged according to a variant in a plane, for example. In the horizontal plane, and thus spread laterally. This forms a two-dimensional guide funnel for the underwater vehicle.
  • the guide rails can be flexible and have floating bodies, in particular in the case that the guide rails spread laterally in the horizontal plane. This allows the guide rails to adapt to the surface of the water.
  • the, in particular more than two, guide rails are arranged radially or rotationally symmetrical about an axis along which the front receiving device is displaceable on the wave compensation ramp, so that the spread guide rails form a three-dimensional guide funnel.
  • the splayed guide rails guide the underwater vehicle through the rear receptacle centering the underwater vehicle.
  • the guide rails are passed through the rear receiving device. If the front receiving device in the region of the rear receiving device or in the region of the free end of the wave compensation ramp, the guide rails are spread. On the other hand, when the front receiving device is retracted, the guide rails are held together more closely by the rear receiving device.
  • the system has a rear receiving device attached to the wave compensation ramp, in particular for guiding and supporting the underwater vehicle.
  • the rear receiving means comprises the rear float for holding the free end of the wave balancing ramp in the region of the waterline of the water body.
  • the rear float of the rear receptacle and the front float of the front receptacle together provide that the front receptacle and the wave balance ramp together have an advantageous position for coupling and pulling on the wave balance ramp.
  • the rear receiving device has wheels for guiding and supporting the underwater vehicle.
  • the wheels are preferably arranged to contact with robust portions of the underwater vehicle and Do not touch or damage the sensors.
  • the rear receiving means comprises four wheels or alternatively a different number of wheels which restrict the freedom of movement of the underwater vehicle transverse to the longitudinal axis of the wave compensation ramp.
  • the system has a deflection roller mounted on the guide carriage or on the shaft compensation ramp in the region of the pivot axis for deflecting the cable from the shaft compensation ramp to the recovery ramp.
  • the deflection roller is arranged above the pivot axis or the joint when the recovery ramp is in a position for retrieving the underwater vehicle or when the guide carriage is positioned at the free end of the recovery ramp or in the region of the mean waterline.
  • the deflection roller is arranged in such a way that the buoyancy of the wave compensation ramp is supported when guided on the wave balance ramp underwater vehicle by train on the rope. The pull on the rope thus has a lifting effect on the wave compensation ramp. This counteracts a drop in the wave compensation ramp below the waterline or water surface.
  • the deflection roller supports the rope accordingly.
  • the system has a ship store for storing the rescue ramp on the ship or on land. Furthermore, the system preferably has a tipping pulley and a rocker arm for lifting the recovery ramp via the rocker arm to the ship's bearing. Preferably, a plurality of tilting rollers and rocker arms are provided.
  • the mountain ramp can be stored together with the wave compensation ramp and the underwater vehicle on board the ship or on land and lowered by tilting the rocker arm to the water or lifted by means of the rocker arm on the dump roller on board or ashore.
  • the ship's bearing has a hydraulic cylinder for driving the rocker arm. The hydraulic cylinder drives the rocker arm or hydraulically causes the lowering or lifting of the mountain ramp.
  • the system has an auxiliary rope, which can be caused by train on this auxiliary rope a lowering moment on the wave compensation ramp, so that the wave compensation ramp can be optionally lowered against the lifting moment caused by the rope.
  • the system on the underwater vehicle has the predecessor permanently connected to the underwater vehicle. Furthermore, the rope is preferably firmly connected to the precursor at its first end.
  • the system comprises a buoy, which may be connected to the second end of the rope or is connected, at least when the rope is not attached to a winch of the ship at this second end.
  • the underwater vehicle For capturing the underwater vehicle, the underwater vehicle preferably sets off the buoy, which is caught by the ship from land by means of a rope or boat hook.
  • the second end of the rope On board the ship or on land, the second end of the rope is threaded through the rear receiving device and the front receiving device and placed around the pulley and fixed on board the ship or on land at the said winds.
  • This wind preferably belonging to the system, winds the rope or parts of the rope and thus pulls the underwater vehicle up to the wave compensation ramp and onto the wave compensation ramp or into the wave compensation ramp.
  • the front receiving device or the rear receiving device or the wave compensation ramp on at least one folding mechanism, preferably two side folding mechanisms and a lower folding mechanism, for the protection of external sensors of the underwater vehicle.
  • this folding mechanism folds away or gives way, so that a hard impact of the underwater vehicle or of sensors of the underwater vehicle against the wave compensation ramp is counteracted.
  • Fig. 1 shows a, designed in particular as a recovery device, system 1 for recovering an underwater vehicle 2 according to an embodiment of the invention.
  • the underwater vehicle 2 is, for example, an autonomous unmanned underwater vehicle which is equipped with sensors and is used for carrying out investigations below the water surface or waterline 4 of a body of water 6 or for conducting investigations at the bottom of the body of water 6.
  • the system 1 has a ship's bearing 10, which is arranged on board the ship 8, in particular at the stern of the ship 8.
  • the ship's bearing 10 is screwed, for example, by means of screws firmly to the deck of the ship 8.
  • the ship's bearing 10 is, for example, arranged and stored mobile on the deck of the ship 8.
  • the ship's bearing 10 may alternatively be a on land, for example. On a pier, arranged camp.
  • a mountain ramp 12 is mounted, which rests on a dump roller 14 attached to the ship's bearing 10.
  • the tilting roller 14 faces the stern of the ship 8 or the water.
  • the dump roll 14 will also face the water or a pier wall.
  • the rescue ramp 12 is connected to a first end 16 via a rocker arm 18 with the ship's bearing 10.
  • the rocker arm 18 is pivoted to the stern of the ship 8 or to the water such that a second end or free end 20 of the rescue ramp 12 is arranged in the region of the mean waterline 4 of the water body 6 is.
  • the mountain ramp 12 is thus lowered to the water 6.
  • the Bergerampe 12 is lifted by pivoting the rocker arm 18 via the tilting roller 14 and thus lowered depending on the direction of pivoting to the waterline 4 or to the water or caught on board the ship 8 or on land.
  • the rocker arm 18 is driven by a hydraulic cylinder 22.
  • the rocker arm 18 is, for example, at the water facing or alternatively to the arrangement according to Fig. 1 stored on the side facing away from the water of the ship's warehouse 10.
  • a wave compensation ramp 24 relative to the mountain ramp 12 is pivotally mounted about a pivot axis S.
  • the wave compensation ramp 24 is connected to a first end 26 via a joint 28 providing the pivot axis S indirectly with the recovery ramp 12.
  • the joint 28 is arranged on a guide carriage 30, which can be displaced linearly on the recovery ramp 12 by means of a belt drive 32 indicated by dashed lines.
  • the belt drive 32 is preferably hydraulically driven.
  • a second or free end 34 of the wave compensation ramp 24 opposite the first end 26 of the wave compensation ramp 24 is supported by a front float 36 and a rear float 38.
  • a rear receptacle 40 attached to the wave balance ramp 24 has the rear float 38.
  • the rear float 38 holds the free end 34 of the wave balance ramp 24, in particular with the support of the front float, in the water line 4 of the water body 6.
  • the water line 4 changes, the wave compensation ramp 24 their position to the current Waterline 4 in the region of the wave compensation ramp 24, in particular in the region of the rear float 38 and / or the front float 36, adapts.
  • a front receiving device 42 has the front float 36, which holds the front receptacle 42, in particular with the support of the rear float 38, in the region of the waterline 4 of the water body 6.
  • the front receiving device 42 has a negative shell 44 in relation to the positive shape defining bow of the underwater vehicle 2.
  • the shape of the front receiving device 42 is thus adapted to the shape of the bow of the underwater vehicle 2.
  • the front receiving device 42 has coupling means 46, by means of which the front receiving device 42 can couple with the underwater vehicle 2. The coupling takes place either directly with the underwater vehicle 2, but preferably indirectly via a fortified on the underwater vehicle 2 Precursor 48.
  • the precursor 48 or the underwater vehicle 2 is in turn directly connected to a cable 50, which is shown in dashed lines in the region of the wave compensation ramp 24.
  • the cable 50 is guided by the front receiving device 42 and by the rear receiving device 40. Furthermore, the cable 50 extends along the wave compensation ramp 24 towards a deflection roller 52, which is mounted above the pivot axis S on the guide carriage 30 and which deflects the cable 50 from the wave compensation ramp 24 to the rescue ramp 12.
  • the cable 50 extends further along the mountain ramp 12, possibly via one or more other pulleys, not shown, up to a winch 54, which can wind the cable 50 driven electrically or even unwind.
  • the underwater vehicle 2 In the in Fig. 1 shown position of the system 1 and the underwater vehicle 2, the underwater vehicle 2 has either been left on the water and can now be decoupled or it has, for example, after performing a mission, coupled to the front receiver 42 and can now salvaged or aboard the ship 8 are brought.
  • the uncoupling is usually preceded by a suspension of a buoy of the underwater vehicle 2, to which the free end of the rope 50 is attached, which in the illustration according to Fig. 1 attached to the winch 54.
  • the buoy is captured by a ship's hook, brought aboard the ship 8 and removed from the rope 50.
  • the free end of the rope 50 is subsequently threaded on the deck of the ship 8 through the front receiving device 42 and the rear receiving device 40, placed around the guide roller 52 and finally attached to the winch 54.
  • the winch 54 now winds the cable 50 and thereby pulls the underwater vehicle 2 for coupling to the front receiving device 42.
  • Ggf. are arranged on the front receiving device 42 or on the wave compensation ramp 24 in a development of the illustrated embodiment folding mechanisms, which counteract damage to sensors of the underwater vehicle 2 when approaching the front receiving device 42.
  • the underwater vehicle 2 is guided and stored both by the front receiving device 42 and by the rear receiving device 40.
  • the rear receiving device 40 wheels 56 wherein preferably four wheels 56 are provided which guide the underwater vehicle 2 and store.
  • the wheels 56 preferably comprise a soft roll material for good cushioning.
  • the wheels 56 are preferably adjustable in height.
  • the wave compensation ramp 24 has a wheel or wheels 58 which support the wave compensation ramp 24 or the free end 34 of the wave compensation ramp 24 on the recovery ramp 12 when the wave compensation ramp 24 is pulled up the recovery ramp 12.
  • FIG. 12 shows a snap device 60 in a sectional view along with a portion of the precursor 48 latched into the snap device 60.
  • the coupling means 46 comprise the snap device 60, wherein the snap device 60 is designed to engage and hold the precursor 48 and thus to couple the precursor 48 to the front receptacle 42.
  • the precursor 48 has a spike or pin 62 which is guided by means of a guide 64.
  • the coupling means 46 are formed in the region of the snap device 60 in the form of an insertion funnel 66.
  • the snap device 60 has pivotable snapper 68 and 70.
  • the pin 62 is guided by the insertion funnel 66 and the guide 64 is guided to the snap device 60.
  • the cable 50 may optionally be passed through the pin 62 and the snap device 60 and the head end of the guide 64.
  • Projections 72 and 74 on the pin 62 and a circumferential projection having portions 72 and 74, upon insertion or threading of the pin 62 cause a pivoting of the snapper 68 and 70, said snapper 68 and 70 snap back after the projections 72 and 74 have passed the snapper 68 and 70.
  • the pin 62 and thus the precursor 48 is coupled by means of the snap device 60 to the front receiving device 42.
  • the snap device 60 may be configured such that the latches 68 and 70 reopen and clear the path for the projections 72 and 74 as the pin 62 is slid toward the front receiver 42. This can be done, for example, for uncoupling the underwater vehicle 2 in that the underwater vehicle 2 pushes by means of its drives in the direction of the front receiving device 42.
  • Fig. 3 shows the system 1 of the first embodiment of Fig. 1 when acquired Bergerampe 12, obtained wave compensation ramp 24 and overtaken underwater vehicle 2.
  • the same reference numerals designate the same components in all figures.
  • the recovery ramp 12, the wave compensation ramp 24 and the underwater vehicle 2 are positioned above the shipyard 10.
  • the rocker arm 18 is pivoted in such a way that the recovery ramp 12 is mounted on the tilting roller 14 in the region of the second or free end 20 of the recovery ramp 12.
  • This arrangement according to Fig. 3 arises before the underwater vehicle 2 is launched into the water, or when the underwater vehicle 2 is completely recovered.
  • the recovery ramp 12 and the wave compensation ramp 24 preferably assume the same position when the underwater vehicle 2 carries out its mission and when the rope 50 is captured, in particular at least until the rope 50 is attached to the winch 54.
  • Fig. 4 shows the system 1 of the embodiment according to Fig. 1 in an arrangement largely according to the arrangement Fig. 1
  • the underwater vehicle 2 is received by the wave compensation ramp 24.
  • the underwater vehicle 2 is thereby supported by the front receiving device 42 and the rear receiving device 40, wherein, inter alia, the negative shell 44 centers the bow of the underwater vehicle 2.
  • the front receiving device 42 has in the figure according to Fig. 4 reaches its outermost position in the direction of the first end 26 of the wave compensation ramp 24. Subsequently, the wave compensation ramp 24 by means of the belt drive 32, if necessary supported by train on the rope 50, the mountain ramp 12 is pulled up.
  • Fig. 4 The arrangement according to Fig. 4 is also achieved when the underwater vehicle 2 is to be launched, namely, when the guide carriage 30 has reached its end position in the region of the second or free end 20 of the rescue ramp 12 or in the region of the mean waterline 4.
  • Fig. 5 shows the system 1 of Fig. 1 in an arrangement in which the underwater vehicle 2 as in the arrangement according to Fig. 4 is received by the wave compensation ramp 24.
  • the wave compensation ramp 24 with the underwater vehicle 2 is completely absorbed by the recovery ramp 12.
  • the guide carriage 30 is positioned at the first end 16 of the recovery ramp 12 and holds there the wave compensation ramp 24 with the underwater vehicle 2.
  • the wave compensation ramp 24 is additionally mounted on the wheel or the wheels 58.
  • the system 1 is suitable for recovering and exposing the underwater vehicle 2.
  • the suspension takes place, starting from an arrangement according to Fig. 3 , about the arrangements according to the Fig. 5 . 4 and 1 ,
  • the recovery of the underwater vehicle takes place, starting from the arrangement according to Fig. 1
  • the underwater vehicle can be spent in other ways from the ship 8 in the water 6, since the exposure of the underwater vehicle 2 usually with respect to the mountains relatively lower risks of damage to the underwater vehicle 2 with brings.
  • the underwater vehicle 2 can be drained into the water 6 by means of a crane.
  • FIG. 12 is a block diagram illustrating a method 76 for recovering an underwater vehicle 2 of the first embodiment according to FIG Fig. 1 ,
  • the method 76 continually includes storing 78 the rescue ramp 12 on the ship's yard 10, or by means of the ship's yard 10, more particularly on the ship 8. Further, the method 76 continually includes storing 80 of the wave compensation ramp 24 on the hill ramp 12 pivotally opposite the hill ramp 12 the pivot axis S.
  • the wave compensation ramp 24 is thus considered to be movable during the mountains, whereas the rescue ramp 12 can indeed be lowered or lifted on board during the recovery process in the strict sense or when the underwater vehicle is coupled, but is to be regarded as fixed ,
  • a step 82 sets off a buoy fixed by means of the cable 50 with the precursor 48 of the underwater vehicle 2 connected is.
  • the buoy for example by means of a ship's hook, captured.
  • the buoy is removed from the free end of the rope 50.
  • the free end of the cable 50 is threaded through the front receiver 42 and through the rear receiver 40 and attached to the winch 54 according to a step 88.
  • the recovery ramp 12 which is located above the ship's bearing 10, lifted over the tilting roller 14 and lowered in the direction of the waterline 4.
  • the free end 20 of the rescue ramp 12 is now in the region of the mean waterline 4.
  • the wave compensation ramp 24 is extended by means of the guide carriage 30.
  • the wave compensation ramp 24 is now with its free end 34 in the area of the actual waterline 4 and fluctuates with the waves up and down.
  • a step 94 the underwater vehicle 2 is pulled by means of the cable 50.
  • the winch 54 causes a pulling force on the rope 50.
  • the rear receiving device 40 in particular by means of the rear float 38, is held in the area of the water surface or water line 4 according to a step 96.
  • the cable 50 is guided by means of the front receiving device 42 in accordance with a step 98.
  • the cable 50 is deflected by means of the deflection roller 52 from the wave compensation ramp 24 to the recovery ramp 12.
  • the step 100 includes a step 102, according to which the buoyancy of the wave compensation ramp 24 is supported by means of the tensile force of the rope, which is achieved by the arrangement of the guide roller 52 above the pivot axis S. As a result, a lifting moment on the wave compensation ramp 24 is effected.
  • the underwater vehicle 2 is picked up according to a step 104 by means of the wave compensation ramp 24.
  • the front receiving device 42 in particular by means of the front float 36, held in the region of the water surface or water line 4.
  • the coupling means 46 couple with the precursor 48.
  • the coupling in step 108 includes snapping the precursor 108 by snap connection 60 according to step 110.
  • Step 104 further comprises guiding and supporting the underwater vehicle 2 by means of the rear receiving device 40, in particular by means of the wheels 56 of the rear receiving device 40, according to a step 116.
  • the front receiving device 42 moves linearly on the wave compensation ramp 24 according to a step 118 for picking up the underwater vehicle 2 by means of the wave compensation ramp 24 according to step 104.
  • the shifting takes place by means of the pulling force exerted by the winch 54 via the cable 50.
  • step 94 the underwater vehicle 2 is retrieved by means of the rescue ramp 12 aboard the ship 8 or to a position above the ship's yard 10 in step 122, the wave compensation ramp 24 caught together with the recorded underwater vehicle 2 or brought on board the ship 8 and the ship's warehouse 10.
  • step 124 the guide carriage 30 is displaced, in particular by means of the belt drive 32, and thus the shaft compensation ramp 24 is lifted in accordance with step 126. Subsequently, the wave compensation ramp 24 lies completely on the recovery ramp 12.
  • a step 128 the lifting of the recovery ramp 12 by means of the rocker arm 18 via the tilting roller 14, in particular by means of the hydraulic cylinder 22.
  • the underwater vehicle 2 is finally on the wave compensation ramp 24, the rescue ramp 12 and the ship's warehouse 10 and salvaged on board the ship 8.
  • the system 1 is also preferably used to deploy the underwater vehicle 2.
  • the necessary process steps are similar in parts to the process steps for recovering the underwater vehicle 2 in the reverse order.
  • the rope 50 is not attached to the winch 54, but is together with the buoy attached to the rope 50 on the underwater vehicle 2.
  • the underwater vehicle 2 is subject to the fact that the rescue ramp 12 by means of the rocker arm 18 via the tilting roller 14th lowered together with the wave compensation ramp 24 thereon and the underwater vehicle 2 thereon. Subsequently, the underwater vehicle 2 slips over the mountain ramp 12 into the water.
  • the guide carriage 30 is moved down the rescue ramp 12 and thus lowered the wave compensation ramp.
  • the coupling means 46 the coupling of the underwater vehicle 2 or the precursor 48 at the front receiving device 42 is released.
  • the front receiving device 42 is either held by means of a holding means in the region of the first end 26 of the wave compensation ramp 24 or has previously moved to the second or free end 34 of the wave compensation ramp.
  • Fig. 7 shows a negative shell 44 'in a sectional view from above with two laterally spread guide rails 130 and 132.
  • the guide rails 130 and 132 may be spread in other directions, such as the guide rail 130 upwards and the guide rail 132 down, where Fig. 7 according to this alternative example is a sectional view of a side view.
  • further guide strips can be provided, which are spread open in several directions and together form a three-dimensional funnel.
  • the negative shell 44 'or the front receiving device 42 For spreading the guide rails 130 and 132, the negative shell 44 'or the front receiving device 42, not shown here, with the negative shell 44' from the first end 26 of the wave compensation ramp 24, not shown here, moved to the second or free end 34 of the wave compensation ramp 24, wherein the guide rails 130 and 132 spread apart and finally, as in Fig. 7 are shown, spread apart, when the negative shell 44 'in the region of the firmly connected to the Wellenau GmbHsrampe 24 rear receiving device 40 is arranged.
  • the underwater vehicle 2 whose bow in Fig.
  • the guide rails 130 and 132 prevent abutment of the underwater vehicle 2 against the rear receiving device 40.
  • the guide rails 130 and 132 have floating bodies and are mounted so flexibly and / or movably that these laterally spread guide rails 130 and 132 also locally m area of the water surface of the body of water 6 are arranged.
  • the underwater vehicle 2 and local portions of the guide rails 130 and 132, to which the underwater vehicle 2 moves, are thus approximately at the same height, so that the underwater vehicle 2 can not reach a position above or below a guide rail, in which there would be danger to be struck vertically by the respective guide rail 130 or 132.
  • Fig. 8 shows the negative shell 44 'of Fig. 7 with the underwater vehicle 2.
  • the underwater vehicle 2 is held by the guide rails 130 and 132 in its position.
  • the negative shell 44 'or the front receiving device 42 with the negative shell 44' is located in the region of the first end 26 of the wave compensation ramp 24, not shown here, so that the underwater vehicle 2 is mounted on the wave compensation ramp 24.
  • the presentation becomes according to Fig. 8 achieved by the underwater vehicle 2 is drawn to the wave compensation ramp 24 after coupling to the front receptacle 42 and to the negative shell 44 ', wherein the negative shell 44' from the free end 34 of the wave compensation ramp 24 in the direction of the first end 26 of the wave compensation ramp 24th shifts or wherein the negative shell 44 'is retracted.
  • the guide rails 130 and 132 partially slide through the rear receiving device 40, so that these guide rails 130 and 132 are pressed together by means of the rear receiving device 40 or pressed in the direction of the underwater vehicle 2.
  • the invention prevents a hard hitting the underwater vehicle 2 to the recovery ramp 12 both during weaning and when recovering the underwater vehicle 2 even in waves or swell.
  • Underwater vehicles 2 can by means of the system 1 according to the invention or by means of the method 76 according to the invention thus at a reduced risk of damage to the underwater vehicle 2 are exposed and recovered even in waves and swells.

Claims (14)

  1. Système de récupération d'un engin submersible (2), le système (1) comportant une rampe de récupération (12) destinée à haler l'engin submersible (2) hors des eaux (6) à bord d'un navire (8) ou à terre au moyen d'un câble (50) destiné à tirer l'engin submersible (2) et au moyen de la rampe de récupération (12),
    caractérisé par
    une rampe de compensation des vagues (24) montée sur la rampe de récupération (12) pivotante par rapport à cette rampe de récupération (12) autour d'un axe de pivotement (S) et supportée par un corps flottant (36, 38), destinée à recevoir l'engin submersible (2) et à haler la rampe de compensation des vagues (24) conjointement avec l'engin submersible (2) reçu au moyen de la rampe de récupération (12).
  2. Système selon la revendication 1,
    caractérisé par
    un chariot de guidage (30) mobile de manière linéaire sur la rampe de récupération (12) comprenant une articulation (28) destinée à supporter la rampe de compensation des vagues (24) ainsi qu'un entraînement par courroie (32) à commande hydraulique destiné à déplacer le chariot de guidage (30).
  3. Système selon la revendication 1 ou 2,
    caractérisé par
    par un dispositif de réception avant (42) mobile de manière linéaire sur la rampe de compensation des vagues (24), destiné à guider le câble (50) et l'engin submersible (2), comprenant des moyens de couplage (46) destinés au couplage avec un élément antérieur (48) fixé sur l'engin submersible (2) et comprenant un corps flottant avant (36) destiné à maintenir le dispositif de réception avant (42) lors du couplage dans la zone de la ligne de flottaison (4) dans les eaux (6).
  4. Système selon la revendication 3,
    caractérisé en ce que
    les moyens de couplage (46) comportent un dispositif d'encliquetage (60) destiné à s'enclencher avec et maintenir l'élément antérieur (48), et le dispositif de réception avant (42) comporte une coque négative (44 ; 44') destinée à centrer l'engin submersible (2).
  5. Système selon l'une des revendications précédentes,
    caractérisé par
    un dispositif de réception arrière (40) fixé sur la rampe de compensation des vagues (24), comprenant un corps flottant arrière (38) destiné à maintenir l'extrémité libre (34) de la rampe de compensation des vagues (24) dans la zone de la ligne de flottaison (4) dans les eaux (6) et comprenant des roues (56) destinées à guider et supporter l'engin submersible (2).
  6. Système selon l'une des revendications précédentes,
    caractérisé par
    une poulie de renvoi (52) montée sur le chariot de guidage (30) ou sur la rampe de compensation des vagues (24) dans la zone de l'axe de pivotement (S), en particulier au-dessus de l'axe de pivotement (S), destinée à renvoyer le câble (50) de la rampe de compensation des vagues (24) à la rampe de récupération (12) de telle manière que la flottabilité de la rampe de compensation des vagues (24) est favorisée par la traction sur le câble (50) lorsque l'engin submersible (2) est guidé sur la rampe de compensation des vagues (24).
  7. Système selon l'une des revendications précédentes,
    caractérisé par
    un support de navire (10) destiné à supporter la rampe de récupération (12), un culbuteur (18) destiné à lever la rampe de récupération (12) sur le support de navire (10) par le biais d'un rouleau de basculement (14) et un vérin hydraulique (22) destiné à entraîner le culbuteur (18).
  8. Procédé de récupération d'un engin submersible (2), l'engin submersible (2) étant halé (120) hors des eaux (6) à bord d'un navire (8) ou à terre au moyen d'un câble (50), au moyen duquel l'engin submersible (2) est tiré (94), et au moyen d'une rampe de récupération (12),
    caractérisé en ce que
    l'engin submersible (2) est reçu (104) au moyen d'une rampe de compensation des vagues (24) montée (80) sur la rampe de récupération (12) pivotante par rapport à cette rampe de récupération (12) autour d'un axe de pivotement (S) et supportée par un corps flottant (36, 38), et la rampe de compensation des vagues (24) est halée (120) conjointement avec l'engin submersible (2) reçu au moyen de la rampe de récupération (12).
  9. Procédé selon la revendication 8,
    caractérisé en ce qu'
    un entraînement par courroie (30) à commande hydraulique déplace (124) un chariot de guidage (30) de manière linéaire sur la rampe de récupération (12), une articulation (28) du chariot de guidage (30) supportant (80) la rampe de compensation des vagues (24).
  10. Procédé selon la revendication 8 ou 9,
    caractérisé en ce que
    des moyens de couplage (46) sur un dispositif de réception avant (42) se couplent (108) à un élément antérieur (48) fixé sur l'engin submersible (2), un corps flottant avant (36) du dispositif de réception avant (42) maintenant (106) ce dispositif de réception avant (42) dans la zone de la ligne de flottaison (4) dans les eaux (6), et le dispositif de réception avant (42) étant déplacé (118) de manière linéaire sur la rampe de compensation des vagues (24), le dispositif de réception avant (42) guidant (98) le câble (50) et/ou l'engin submersible (2).
  11. Procédé selon la revendication 10,
    caractérisé en ce qu'
    un dispositif d'encliquetage (60) des moyens de couplage (46) s'enclenche (110) avec l'élément antérieur (48) et le maintient et une coque négative (44 ; 44') du dispositif de réception avant (42) centre (112) l'engin submersible (2).
  12. Procédé selon l'une des revendications 8 à 11,
    caractérisé en ce qu'
    un corps flottant arrière (38) d'un dispositif de réception arrière (40) fixé sur la rampe de compensation des vagues (24) maintient (96) l'extrémité libre (34) de la rampe de compensation des vagues (24) dans la zone de la ligne de flottaison (4) dans les eaux (6), et des roues (56) du dispositif de réception arrière (40) guident et supportent (116) l'engin submersible (2).
  13. Procédé selon l'une des revendications 8 à 12,
    caractérisé en ce qu'
    une poulie de renvoi (52) montée sur le chariot de guidage (30) ou sur la rampe de compensation des vagues (24) dans la zone de l'axe de pivotement (S), en particulier au-dessus de l'axe de pivotement (S), renvoie (100) le câble (50) de la rampe de compensation des vagues (24) à la rampe de récupération (12) de telle manière que la flottabilité de la rampe de compensation des vagues (24) est favorisée (102) par la traction sur le câble (50) lorsque l'engin submersible (2) est guidé sur la rampe de compensation des vagues (24).
  14. Procédé selon l'une des revendications 8 à 13,
    caractérisé en ce qu'
    un culbuteur (18) lève (128) la rampe de récupération (12) sur un support de navire (10) par le biais d'un rouleau de basculement (14), un vérin hydraulique (22) entraînant le culbuteur (18), et le support de navire (10) supporte (78) la rampe de récupération (12).
EP12743943.8A 2011-08-01 2012-07-19 Système et procédé de récupération d'un engin submersible Not-in-force EP2739524B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011109092A DE102011109092A1 (de) 2011-08-01 2011-08-01 System und Verfahren zum Bergen eines Unterwasserfahrzeugs
PCT/EP2012/064152 WO2013017414A1 (fr) 2011-08-01 2012-07-19 Système et procédé de récupération d'un engin submersible

Publications (2)

Publication Number Publication Date
EP2739524A1 EP2739524A1 (fr) 2014-06-11
EP2739524B1 true EP2739524B1 (fr) 2015-11-25

Family

ID=46639469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12743943.8A Not-in-force EP2739524B1 (fr) 2011-08-01 2012-07-19 Système et procédé de récupération d'un engin submersible

Country Status (5)

Country Link
US (1) US20140116312A1 (fr)
EP (1) EP2739524B1 (fr)
CA (1) CA2838900A1 (fr)
DE (1) DE102011109092A1 (fr)
WO (1) WO2013017414A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105923110A (zh) * 2016-04-27 2016-09-07 武昌船舶重工集团有限公司 一种波浪补偿智能登乘装置
DE102017209514A1 (de) 2017-06-06 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Aufnehmen eines Unterwasserfahrzeugs

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112333A1 (de) * 2012-07-06 2014-01-09 Technische Universität Berlin Vorrichtung mit einer Aussetz- und Bergungseinrichtung
FR3002916B1 (fr) * 2013-03-05 2015-03-06 Thales Sa Systeme et procede de recuperation d'un engin sous-marin autonome
IL228662B (en) * 2013-10-01 2019-09-26 Israel Aerospace Ind Ltd System and method for launch and placement
US10328999B2 (en) * 2014-01-10 2019-06-25 Wt Industries, Llc System for launch and recovery of remotely operated vehicles
WO2015143491A1 (fr) * 2014-03-25 2015-10-01 Trelleborg Marine Systems Melbourne Pty Ltd Appareil de récupération et procédé de capture d'un objet en mer
DE102014005349A1 (de) 2014-04-11 2015-10-15 Frank Ehlers Vorrichtung zur Aufnahme eines zu bergenden Unterwasserfahrzeuges
IL242226B2 (en) 2015-10-22 2023-03-01 Peleg Amitai System and method for launching and mooring a vessel
JP6815084B2 (ja) * 2016-02-25 2021-01-20 三菱重工業株式会社 揚収装置及び船舶
DE102017219251A1 (de) 2017-10-26 2019-05-02 Thyssenkrupp Ag Aufnahmevorrichtung und Aufnahmeverfahren für ein Wasserfahrzeug
DE102017220932A1 (de) 2017-11-23 2019-05-23 Thyssenkrupp Ag Vorrichtung und Verfahren zum Aufnehmen eines Wasserfahrzeugs mittels einer Kette
NO345094B1 (en) 2018-09-21 2020-09-28 Usea As A marine structure comprising a launch and recovery system
CN109178224A (zh) * 2018-11-02 2019-01-11 珠海云洲智能科技有限公司 一种布放回收装置以及无人船的回收方法
CN111361693B (zh) * 2018-12-25 2021-07-27 中国科学院沈阳自动化研究所 一种应用于布放回收水下拖曳体的自动锁紧和解锁机构
CN111361687B (zh) * 2018-12-25 2021-07-27 中国科学院沈阳自动化研究所 应用于布放回收水下拖曳体的自动锁紧和解锁机构及方法
CN113815786B (zh) * 2021-09-01 2023-02-28 广州船舶及海洋工程设计研究院(中国船舶工业集团公司第六0五研究院) 一种船载艇收放对中导向装置
CN114313115B (zh) * 2022-01-20 2023-11-14 上海彩虹鱼深海装备科技有限公司 Auv自动布放回收系统和方法
ES1289841Y (es) * 2022-04-06 2022-07-26 Mera Garcia Jose Luis Dispositivo para botadura de pequenos implementos acuaticos desde embarcaciones

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371461A (en) * 1943-11-11 1945-03-13 Foster S Newell Marine carriage
US3596623A (en) * 1967-05-31 1971-08-03 Litton Systems Inc Double-hinged flotation ramp
US3508510A (en) * 1968-08-21 1970-04-28 Litton Systems Inc Lighter hydrolift device
US4242768A (en) * 1979-07-02 1981-01-06 Darrell T. Mosley Means for attaching a boat to a trailer
DE3834174A1 (de) * 1988-10-07 1990-04-12 Adolf Janssen Vorrichtung fuer ein schiff zum anbordnehmen und ausbringen von schwimm- oder tauchobjekten, insbesondere von booten
DE4140201C2 (de) * 1991-12-03 1996-04-04 Fr Luerssen Werft Gmbh & Co Vorrichtung für das Ausbringen und Einholen von Schleppkörpern
DE19500182C2 (de) * 1995-01-06 1999-07-15 Adolf Janssen Vorrichtung für ein Wasserfahrzeug zum Aufnehmen und Aussetzen von Booten
DE19719306C2 (de) * 1997-05-07 2000-05-18 Stn Atlas Elektronik Gmbh Schleppkörper
DE20021841U1 (de) * 2000-12-22 2002-05-02 Macor Neptun Gmbh Vorrichtung für ein Wasserfahrzeug zum Aufnehmen und Aussetzen von Schwimm- oder Tauchgegenständen
DE20316247U1 (de) * 2003-10-20 2005-03-03 Abeking & Rasmussen Schiffs- Und Yachtwerft Gmbh & Co. Kg Vorrichtung zum Aussetzen und Aufnehmen eines tauchfähigen Wasserfahrzeuges, Vorrichtung zum Schleppen eines tauchfähigen Wasserfahrzeuges sowie Überwasserfahrzeug mit einer solchen Vorrichtung
US7699015B1 (en) * 2006-03-15 2010-04-20 Lockheed Martin Corp. Sub-ordinate vehicle recovery/launch system
DE102006040617A1 (de) * 2006-08-30 2008-03-20 Janssen, Adolf Vorrichtung für ein Wasserfahrzeug zum Aufnehmen und Aussetzen von Booten
US7581507B2 (en) * 2007-02-26 2009-09-01 Physical Sciences, Inc. Launch and recovery devices for water vehicles and methods of use
US8225735B1 (en) * 2008-03-03 2012-07-24 The United States Of America As Represented By The Secretary Of The Navy Contemporaneous latching and fueling arrangement for fueling a water vessel
US8430049B1 (en) * 2009-07-13 2013-04-30 Vehicle Control Technologies, Inc. Launch and recovery systems and methods
US8967067B2 (en) * 2010-12-07 2015-03-03 Thales System for launching and recovering underwater vehicles, notably towed underwater vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105923110A (zh) * 2016-04-27 2016-09-07 武昌船舶重工集团有限公司 一种波浪补偿智能登乘装置
CN105923110B (zh) * 2016-04-27 2018-10-02 武昌船舶重工集团有限公司 一种波浪补偿智能登乘装置
DE102017209514A1 (de) 2017-06-06 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Aufnehmen eines Unterwasserfahrzeugs
WO2018224207A1 (fr) 2017-06-06 2018-12-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif et procédé pour loger un navire submersible

Also Published As

Publication number Publication date
WO2013017414A1 (fr) 2013-02-07
DE102011109092A1 (de) 2013-02-07
US20140116312A1 (en) 2014-05-01
CA2838900A1 (fr) 2013-02-07
EP2739524A1 (fr) 2014-06-11

Similar Documents

Publication Publication Date Title
EP2739524B1 (fr) Système et procédé de récupération d'un engin submersible
EP2988991B1 (fr) Véhicule submersible autonome, et procédé pour haler un tel véhicule submersible
EP2425200B1 (fr) Dispositif et procédé pour lancer un engin sous-marin autopropulsé
EP2610163A1 (fr) Dispositif de récupération et procédé de récupération pour la récupération de matières condensées se trouvant à la surface de l'eau, notamment un véhicule sousmarin sans équipage
DE102009025111B3 (de) Unterseeboot
WO2019052801A1 (fr) Système d'évacuation et procédé d'évacuation avec flèche à ligne de proue raccourcissable
DE3150066A1 (de) Anhalteeinrichtung auf einem wasserfahrzeug zum sichern einer bojenleine
DE1280698B (de) Einrichtung zum Festmachen eines Tankschiffes an einer verankerten, zum Beladen bzw. Loeschen desselben mit fluessiger Ladung dienende Boje
DE4140201C2 (de) Vorrichtung für das Ausbringen und Einholen von Schleppkörpern
DE102012112333A1 (de) Vorrichtung mit einer Aussetz- und Bergungseinrichtung
EP1935779B1 (fr) Submersible
WO2018224207A1 (fr) Dispositif et procédé pour loger un navire submersible
DE102017212126B4 (de) System und Vorrichtung zum Bergen eines Fahrzeugs
DE2533600C3 (de) Wasserfahrzeug zum Aufnehmen eines schwimmenden Gegenstandes
EP0046547B1 (fr) Procédé et dispositif pour amarrer un navire à une construction
WO2019081194A1 (fr) Dispositif de réception et procédé de réception pour une embarcation
DE20316247U1 (de) Vorrichtung zum Aussetzen und Aufnehmen eines tauchfähigen Wasserfahrzeuges, Vorrichtung zum Schleppen eines tauchfähigen Wasserfahrzeuges sowie Überwasserfahrzeug mit einer solchen Vorrichtung
DE2752266C2 (de) Umschlagstation zum Be- und Entladen von Schiffen
DE2740608A1 (de) Hydraulisch betaetigtes hebezeug fuer ein schiff zur aufnahme von schwimmenden gegenstaenden aus der see
DE19940396A1 (de) Verfahren zum Zuwasserlassen, zum Schleppen und zur Bergung eines drahtgelenkten Untersee-Geräts und Vorrichtung zur Umsetzung dieses Verfahrens
DE1929419C (de) Hochseeschubverband
DE2156179A1 (de) Vertaeuboje fuer den umschlag von fluessigkeiten und dgl
DE1033075B (de) Einrichtung zum Aus- und Einsetzen von Rettungsbooten in das Wasser
DE102013004222A1 (de) Jack-up-Schiff mit mindestens einem sich längs in Fahrtrichtung erstreckendem Auftriebskörper
DE2716970A1 (de) Verfahren und vorrichtung zum aufnehmen von schwimmenden tonnen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150610

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 762446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012005362

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20151125

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012005362

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20160725

Year of fee payment: 5

Ref country code: GB

Payment date: 20160721

Year of fee payment: 5

Ref country code: DE

Payment date: 20160722

Year of fee payment: 5

26N No opposition filed

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160720

Year of fee payment: 5

Ref country code: FR

Payment date: 20160721

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012005362

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170720

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120719

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 762446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719