EP2274122B1 - Geruchs- und schadstoffadsorbierende beschichtungsmasse für den kastengebundenen metallguss - Google Patents

Geruchs- und schadstoffadsorbierende beschichtungsmasse für den kastengebundenen metallguss Download PDF

Info

Publication number
EP2274122B1
EP2274122B1 EP09753896.1A EP09753896A EP2274122B1 EP 2274122 B1 EP2274122 B1 EP 2274122B1 EP 09753896 A EP09753896 A EP 09753896A EP 2274122 B1 EP2274122 B1 EP 2274122B1
Authority
EP
European Patent Office
Prior art keywords
casting
layer
casting mould
mold
harmful substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09753896.1A
Other languages
English (en)
French (fr)
Other versions
EP2274122A1 (de
Inventor
Michael Kloskowski
Antoni Gieniec
Reinhard Stötzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASK Chemicals GmbH
Original Assignee
ASK Chemicals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASK Chemicals GmbH filed Critical ASK Chemicals GmbH
Publication of EP2274122A1 publication Critical patent/EP2274122A1/de
Application granted granted Critical
Publication of EP2274122B1 publication Critical patent/EP2274122B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns

Definitions

  • the invention relates to a casting mold for metal casting, a method for producing a casting mold and the use of the casting mold.
  • cores usually only a very small area is available, through which the gases can be derived. If there is too much gas, there is a risk that gas will pass from the core into the liquid metal and lead to the formation of casting defects.
  • the internal cavities are therefore imaged by cores solidified by cold-box binders, a polyurethane-based binder, while the outer contour of the casting is represented by lower cost forms, such as a green sand mold, a furan resin mold. or a phenol resin bound form or by a steel mold.
  • Casting molds are made of a refractory material, such as quartz sand, whose grains are connected after molding of the mold by a suitable binder to ensure sufficient mechanical strength of the mold.
  • a refractory molding material which is mixed with a suitable binder.
  • the molding material mixture obtained from molding material and binder is preferably present in a free-flowing form, so that it can be filled into a suitable mold and compacted there.
  • the binder produces a firm cohesion between the particles of the molding material, so that the casting mold obtains the required mechanical stability.
  • both organic and inorganic binders can be used, the curing of which can be effected by cold or hot processes.
  • Cold processes are processes which essentially be carried out at room temperature without heating the molding material mixture.
  • the curing is usually carried out by a chemical reaction, which can be triggered, for example, by passing a gaseous catalyst through the molding material mixture to be cured, or by adding a liquid catalyst to the molding material mixture.
  • hot processes the molding material mixture is heated to a sufficiently high temperature after molding to drive off, for example, the solvent contained in the binder, or to initiate a chemical reaction by which the binder is cured by crosslinking.
  • organic binders e.g. Polyurethane, furan resin or epoxy-acrylate binders used, wherein the curing of the binder is carried out by adding a catalyst.
  • binder depends on the shape and size of the casting to be produced, the conditions of production and the material used for the casting. For example, in the production of small castings that are produced in large numbers, polyurethane binders are often used because they allow fast cycle times and thus also a series production.
  • Processes in which the curing of the molding material mixture by heat or by subsequent addition of a catalyst have the advantage that the processing of the molding material mixture is not subject to any special time restrictions.
  • the molding material mixture can first be produced in larger quantities, which are then processed within a longer period of time, usually several hours.
  • the curing of the molding material mixture takes place only after molding, with a rapid reaction is sought.
  • the mold can be removed immediately after curing from the mold, so that short cycle times can be realized. However, in order to obtain a good strength of the mold, the curing of the molding material mixture must be uniform within the mold. If the curing of the molding material mixture by subsequent addition of a catalyst, the mold is gassed after molding with the catalyst. For this purpose, the gaseous catalyst is passed through the casting mold.
  • the molding material mixture cures directly after contact with the catalyst and can therefore be removed very quickly from the mold.
  • the gassing times are prolonged, but can still arise sections in the mold, which are achieved very poorly or not at all by the gaseous catalyst.
  • the amount of catalyst therefore increases sharply with increasing size of the mold.
  • no-bake binders are used mostly.
  • the refractory molding material is first coated with a catalyst.
  • the binder is added and mixed evenly distributed on the already coated with the catalyst grains of the refractory molding material.
  • the molding material mixture can then be shaped into a shaped body. Since binder and catalyst are evenly distributed in the molding material mixture, the curing is largely uniform even with large moldings.
  • the cured binder is said to decompose under the influence of the heat of the liquid metal and the reducing atmosphere generated during casting, so that the casting mold loses its strength.
  • the mold can then be easily removed from the casting. It is particularly important that the cores used in the mold lose their strength, so that the sand, which was used for the production of the cores, can easily pour out of the cavities of the mold.
  • the decomposition of the binder releases a number of gaseous pollutants which, for example, must be collected and removed by suitably designed suction devices.
  • the harmful substances are formed on the one hand by the decomposition of the resin and on the other hand by the decomposition of components which have been added to the binder for curing or for modifying its properties.
  • the aromatic sulfonic acids used as catalyst in the no-bake process in particular p-toluenesulfonic acid, benzenesulfonic acid and xylenesulfonic acid, decompose and, besides sulfur dioxide, release aromatic pollutants such as benzene, toluene or xylene (BTX).
  • aromatic pollutants such as benzene, toluene or xylene (BTX).
  • MAK maximum workplace concentration
  • the composition of the gaseous mixture produced during the casting is very complex and comprises a large number of compounds which can have very different chemical properties.
  • aromatic substances already mentioned, it is also possible, for example, for acidic components, such as sulfur compounds, or basic components, for example amines, to be present in the exhaust gases.
  • acidic components such as sulfur compounds
  • basic components for example amines
  • the exhaust gas produced during casting also contains dusts that are carried along by the released gas. These dusts are usually very fine and therefore can also be harmful to health.
  • the CN 86106521 A and the CN 86106485 A discloses sizing for the inner surfaces of a mold, inter alia, to minimize the adhesion of sand to the surface of castings or to make it more easily removable from the casting. Molds thus treated result in castings having low roughness casting surfaces.
  • the US 1717820 A discloses release agents in particulate form for the inner surfaces of a mold.
  • the DE 1212250 B relates to a mold dressing for steel casting, which consists of finely divided carbon slurried in water as the main constituent and an organic binder. It is stated that it is possible with the sizing to compensate for roughness and unevenness of the mold and thus to produce castings with a particularly smooth surface.
  • the WO 03/015956 A2 discloses a method for reducing pollutant emissions, in particular those which are released in the form of pyrolysis products from metal casting boxes by means of an added combustible substance, which - if it is not gaseous - when heated in the gaseous state passes and on exit from the metal casting boxes together with the Burns pollutants.
  • the additional combustible substance is preferably a wax or an oil.
  • the invention therefore an object of the invention to provide a mold available that releases a smaller amount of interfering gaseous substances during casting.
  • a layer of a gas discharge surfaces of the outer surface of the mold at least Pollutant absorbing material arranged.
  • the layer of the pollutant-absorbing material is also referred to below as the "absorber layer”.
  • Gas outlet surfaces are understood to be the surfaces of the casting mold through which gaseous components can escape from the casting mold during the casting.
  • the gas exit surface may correspond to the entire outer surface of the mold. But it is also possible that only a part of the outer surface of the mold is used for the discharge of gaseous components.
  • a box is used for the construction of the mold, which covers the bottom and the side surfaces of the mold. These surfaces are then available for a levy gaseous components or only very limited available. In this case, essentially only the upper side of the casting mold is available for dispensing gaseous components.
  • An outer surface of the casting mold is understood to mean the surfaces through which exhaust gases produced during the casting can leave the casting mold. This outer surface is visible when viewing the mold from the outside and does not come in contact with the liquid metal in contact.
  • an inner surface is understood as meaning, for example, the surface of the mold cavity surrounded by the mold.
  • At least the upper side of the casting mold is at least partially coated with the layer of a material that absorbs pollutants.
  • the side of the mold As the top of the mold, the side of the mold is called, which is located at the top casting.
  • the majority of the gases released leaves the mold above its top. Since in the casting mold according to the invention there is arranged a layer of material that absorbs pollutants, the gas passes through this layer. This pollutants are contained in the gas are absorbed in the absorber layer and thus removes a significant portion of the pollutants from the gas stream.
  • absorbing a pollutant is meant both a binding of the pollutant in the absorber layer and a conversion of the pollutant into innocuous compounds, the innocuous compounds need not necessarily be bound in the absorber layer but also be discharged back into the exhaust stream and leave the mold.
  • absorbing a pollutant is thus generally understood a removal of the pollutant from the gas stream, which leaves the casting mold during casting.
  • pollutants considered are all substances contained in the gas released during casting and which have an environmental or health-damaging effect or which smell strongly.
  • pollutants are considered to be substances for which limit values apply at the workplace.
  • such substances are regarded as pollutants whose MAK is less than 1 g / m 3 , preferably less than 500 mg / m 3 .
  • the layer of contaminant-absorbing material covers the entire top of the mold.
  • the side walls of the mold may also be covered with the layer of contaminant-absorbing material.
  • the mold can be provided by the skilled person according to their shape in appropriate sections with the layer of the pollutant absorbing material. If, for example, box-shaped casting molds are used, it is usually not necessary, on the side surfaces of the casting mold, the layer of the pollutants according to the invention provide absorbent material, since the side surfaces are sealed by the box.
  • the casting mold is initially constructed in the same way as already known casting molds, but at least on a portion of the gas outlet surfaces, ie the outer surface, in particular preferably on the top of the mold additionally a layer of a material absorbing harmful substances is arranged, said absorber layer the top of the mold partially or completely covered.
  • the mold consists in a conventional manner of a granular refractory molding material which is solidified with a binder.
  • the mold may be composed of molds and cores and includes a mold cavity that substantially conforms to the shape of the casting.
  • the binders which can be used per se are all binders customary for the production of such casting molds, it being possible to use both inorganic and organic binders.
  • An exemplary inorganic binder is water glass.
  • polyurethane, furan resin or epoxy-acrylate binders can be used as the organic binder, in which the curing of the binder takes place by addition of a catalyst.
  • organic binders which are cured by other methods, for example by heating.
  • the mold is solidified with one having a furfuryl alcohol-urea resin, a phenol-furfuryl alcohol resin or a phenolic resin.
  • refractory standard refractory materials can be used.
  • Exemplary refractories are quartz sand, zircon sand, Olivine sand, aluminum silicate sand and chrome ore sand or mixtures thereof.
  • the mold may have been pretreated in a conventional manner, for example by covering the surfaces of the mold cavity which come into contact with the liquid metal with a size. In this case, customary sizes can be used.
  • a layer of the pollutant absorbing material is arranged on at least a portion of the gas outlet surface, in particular the top of the mold.
  • the layer may initially show an arbitrary structure.
  • the layer can be constructed homogeneously.
  • the layer is composed of a layer stack, wherein individual layers of the layer stack may also have a different composition.
  • the absorber layer should be gas-permeable, ie porous.
  • the porosity should be so high that the released gases can pass through the absorber layer largely unhindered, so in the mold no overpressure arises, which can lead to gas inclusions in the casting.
  • the gas permeability Gd is preferably greater than 50 and is preferably greater than 100, more preferably greater than 200.
  • the gas permeability Gd indicates how many cm 3 of air at an overpressure of 1 cm water column (WS) in 1 min. pass through a test specimen with a base of 1 cm 2 and 1 cm in height average.
  • the measurement is carried out with a permeability tester type PDU from Georg Fischer AG, Schaffhausen, Switzerland.
  • the absorber layer may be constructed of a granular material loosely applied to the top of the mold. But it is also possible that the absorber layer is bonded, that forms a solid, continuous layer on top of the mold.
  • the absorber layer may comprise a single component which acts as the contaminant absorbing material. However, it is also possible for the layer to comprise a plurality of components, some or all of the components acting as the pollutant absorbing material. In addition to acting as a pollutant absorbing material component, the layer may for example comprise a binder or framework materials, which improve the gas permeability of the absorber layer.
  • the layer of the pollutant-absorbing material preferably has a different composition than the casting mold, so that a clear separation between the casting mold and the layer of the pollutant-absorbing material is detectable.
  • the thickness of the layer of contaminant-absorbing material is dependent on the amount of gas released during casting and on the type and amount of pollutants contained in the released gas. For small molds can even a comparatively thin layer of the material absorbing harmful substances may be sufficient, while in the case of casting molds for very large cast pieces, the thickness of the layer of the material absorbing harmful substances can be significantly higher and can be up to several centimeters.
  • the layer of the pollutant-absorbing material has a thickness of at least 2.5 mm. According to a further embodiment, the layer thickness is at least 0.5 cm. It is usually sufficient to clean the gases released during casting if the thickness of the layer is less than 5 cm. However, it is also possible to use even greater layer thicknesses.
  • the absorption of the pollutants can be done in any way.
  • the pollutants can be physically bound by the material absorbing the pollutants. But it is also possible that the pollutants are bound by means of a chemical reaction of the material absorbing the pollutants, which are for example converted into a non-volatile compound. Finally, it is also possible that the pollutants are decomposed in the pollutant absorbing layer into harmless compounds, such as carbon dioxide or water, which can then be completely or partially released from the layer of the pollutant absorbing material.
  • the layer of the pollutant-absorbing material comprises at least one physical adsorber material which can physically adsorb pollutants.
  • This embodiment is particularly suitable for the removal of relatively non-polar pollutants, such as aromatic hydrocarbons from the released during casting gas.
  • the specific surface area is determined by the BET method according to DIN 66 131.
  • Such physical adsorber materials preferably have a relatively low bulk density, which is preferably selected in the range of 10 to 2000 g / l.
  • a method for determining the bulk density is given in the examples.
  • the physical adsorber material preferably has a iodine absorption capacity of at least 300 mg / g, preferably at least 500 mg / g, more preferably more than 800 mg / g.
  • the uptake capacity of the physical adsorbent material for iodine is determined by the method described in standard ASTM D 1510.
  • the average particle size (D 50 ) of the physical adsorber material is preferably selected to be greater than 100 ⁇ m, preferably greater than 150 ⁇ m. In order to achieve a uniform structure of the layer, it is preferred that the physical adsorber material has a mean grain size (D 50 ) of less than 500 microns.
  • the particle size distribution can be determined, for example, by laser granulometry.
  • the physical adsorbent material is selected from the group consisting of activated carbon, finely divided silica, acidified clays, ashes and celluloses such as linters, viscose rayon, viscose or similar materials.
  • the physical adsorbent material is contained in a proportion of 5 to 50% by weight in the layer of the pollutant absorbing material.
  • the layer of the pollutant-absorbing material contains at least one chemical absorber material which can bind pollutants by a chemical reaction.
  • the nature of the chemical reaction, which results in removal of pollutants from the gas stream released during casting, is not limited in itself.
  • the chemical reaction may, for example, be a neutralization with which an acidic pollutant, for example an acid sulfur compound, is neutralized or converted into a salt and bound by the chemical absorber material. But it is also possible that the chemical reaction is a redox reaction in which a pollutant, for example, oxidized and converted, for example, into harmless compounds.
  • an oxidation agent or a reducing agent may be contained in the layer of the material absorbing the pollutants, or else a catalyst which catalyzes the oxidation or reduction of the pollutant.
  • a catalyst which catalyzes the oxidation or reduction of the pollutant.
  • compounds in the layer of the pollutant absorbing material, which bind the pollutants coordinately. Suitable compounds are, for example, cyclodextrins, which can store harmful compounds.
  • the chemical absorber material is preferably contained in granular form in the layer of the pollutant absorbing material. Since the chemical absorber material changes by the reaction with pollutants, the mean grain size of the chemical absorber material is preferably chosen smaller than the mean grain size of the physical adsorber material. Preferably, the chemical absorber material has an average Grain size (D 50 ) of more than 10 microns, preferably more than 20 microns on. According to one embodiment of the invention, the mean grain size of the chemical absorber material is chosen to be smaller than 100 ⁇ m, preferably smaller than 50 ⁇ m.
  • the chemical absorber material is a basic material.
  • a basic material is understood as meaning a material or a compound which, upon contact with water, leads to an alkaline reaction.
  • the pH of the water upon contact with the basic material increases to more than 8, preferably more than 9.
  • the measurement of the pH can be carried out, for example, with a glass electrode on a sample containing 10 g of the basic material per liter of water contains.
  • This embodiment is suitable for removing acidic pollutants from the gas released during the casting.
  • acidic pollutants arise, for example, when the binder of the mold contains sulfur-containing compounds.
  • sulfur-containing compounds are, for example, sulfonic acids, such as those used in the furan or phenolic resin no-bake process.
  • the basic material is selected from oxides, hydroxides and carbonates of the alkali metals and alkaline earth metals. These basic materials are easy and inexpensive to access and can be processed without much difficulty. Both the carbonates and the bicarbonates can be used. Particular preference is given to using calcium carbonate and / or calcium oxide or calcium hydroxide as the basic material.
  • the at least one chemical absorber material may be present alone in the layer of the pollutant absorbing material or also adjacent to the physical adsorber material. Preferably, a combination of chemical absorber material and physical adsorber material is used.
  • the chemical absorber material is contained in a proportion of 10 to 20 wt .-% in the layer of the pollutant absorbing material.
  • further substances may be contained in the layer of the pollutant-absorbing material.
  • substances are used, as they are commonly used in coatings for metal casting.
  • At least one refractory material which has an average particle size (D 50 ) of at least 50 ⁇ m is contained in the layer of the pollutant-absorbing material.
  • refractory material conventional refractory materials can be used in metal casting.
  • suitable refractory materials are quartz, alumina, aluminum silicates such as pyropyllite, kyanite, andalusite or chamotte, zircon sands, olivine, talc, mica, graphite, coke, feldspar.
  • the refractory material is provided in powder form.
  • the grain size is chosen so that in the absorber layer, a stable structure is formed and that the layer receives a sufficiently high porosity, so that the resulting gases during casting can pass through the layer without the formation of excessive backpressure.
  • the refractory material has an average particle size in the range from 100 to 500 ⁇ m, particularly preferably in the range from 120 to 200 ⁇ m.
  • the proportion of the refractory to the layer of the pollutant absorbing material is preferably selected in the range of 30 to 60% by weight, preferably in the range of 40 to 50% by weight.
  • binders conventional binders can be, such as clays, especially bentonite. However, other binders may also be present, for example silica sol. All binders which are used in sizing can be contained per se. In this case, both inorganic and organic binders can be used.
  • the layer of the pollutant-absorbing material preferably still has a residual moisture.
  • polar pollutants such as amines
  • the gases released during casting are cooled as they pass through the layer of contaminant-absorbing material, so that a portion of the pollutants in the layer is deposited.
  • the layer of the pollutant-absorbing material has a water content in the range of 0 to 60 wt .-%, preferably 5 to 30 wt .-%, particularly preferably 10 to 20 wt .-% to.
  • the water content refers to the composition of the layer of pollutant absorbing material prior to casting.
  • the layer of the pollutant absorbing material comprises a porous support framework.
  • the absorber materials and the other components of the absorber layer are applied.
  • the weight of the porous support framework is not included.
  • any material can be used which provides a sufficiently strong framework for the recordings of the other components of the absorber layer and which provides a sufficiently high porosity that the gas produced during the casting can pass through the layer.
  • a porous carrier framework for example, an open-pore solid foam can be used, or preferably a woven or nonwoven fabric. Suitable materials from which such a fabric or non-woven can be made, for example, mineral wool, glass wool, or mats made of synthetic fibers, such as fibers of perfluorocarbons.
  • the porous carrier framework is preferably arranged in the form of mats on top of the casting mold, wherein the thickness of the mats are preferably selected in the range of 0.5 to 5 cm, preferably in the range of 1 to 4.5 cm.
  • the amount of the absorber material and the other components of the layer of the pollutant absorbing material with which the porous carrier material is coated is preferably selected in the range of 0 to 10 g / cm 3 , preferably 0.01 to 1.0 g / cm 3 , calculated as dry matter and based on the weight of the layer of the pollutant absorbing material, including the porous support framework.
  • the casting mold according to the invention is characterized by an absorber layer, in which pollutants are absorbed or adsorbed, which arise during the casting and exit from the casting mold together with other gaseous and solid components.
  • Another object of the invention is a pollutant-absorbing coating composition, with which such an absorber layer can be produced.
  • a pollutant-absorbing coating composition for the coating of casting molds for casting metal according to the invention contains at least one pollutant absorbing material.
  • the components of such a pollutant-absorbing coating composition in particular the physical adsorber materials and the chemical absorber materials, have been explained in detail in the description of the casting mold according to the invention.
  • the corresponding passages are referred to.
  • the coating composition is similar in composition to a size as it is already used in the production of molds, but additionally containing at least one pollutant-absorbing material.
  • the coating composition preferably comprises a carrier liquid in which the further constituents of the coating composition can be suspended or dissolved.
  • This carrier liquid is suitably selected so that it can be completely evaporated at the conditions customary in metal casting.
  • the carrier liquid should therefore preferably at normal pressure have a boiling point of less than about 130 ° C, preferably less than 110 ° C.
  • the carrier liquid used is preferably water. However, it is also possible to use alcohols as the carrier liquid, for example ethanol or isopropanol, or else mixtures of these carrier liquids.
  • the coating composition is preferably provided in the form of a suspension or a paste.
  • the solids content of the coating composition is therefore preferably selected in the range from 20 to 60% by weight, preferably in the range from 30 to 50% by weight.
  • the coating composition can then be applied to the surface of the casting mold by conventional methods, such as brushing or spraying.
  • the above-described physical adsorber materials are contained in the coating composition, their proportion is preferably selected in the range from 2.5 to 25% by weight, preferably 4 to 15% by weight, based on the ready-to-use coating composition.
  • the above-described chemical absorber materials are contained in the coating composition, their proportion is preferably in the range of 3 chosen to 15 wt .-%, preferably 5 to 10 wt .-%, based on the ready-to-use coating composition.
  • the above-described refractory materials are contained in the coating composition, their proportion is preferably selected in the range from 10 to 30% by weight, preferably from 10 to 20% by weight, based on the ready-to-use coating composition.
  • the viscosity of the coating composition is preferably selected in the range of 1000 to 3000 mPas, particularly preferably 1200 to 2000 mPas.
  • the carrier liquid preferably at least one powdered refractory material is suspended.
  • refractory material the already mentioned refractories can be used.
  • suitable refractory materials are quartz, alumina, aluminum silicates such as pyropyllite, kyanite, andalusite or chamotte, zircon sands, olivine, talc, mica, graphite, coke, feldspar.
  • the refractory material is provided in powder form.
  • the grain size is chosen so that in the absorber layer, a stable structure is formed and that the coating composition can be distributed for example with a spray easily on the gas outlet surfaces, preferably the top of the mold.
  • the refractory material has an average particle size in the range from 50 to 600 .mu.m, particularly preferably in the range from 100 to 500 .mu.m.
  • refractory materials are particularly suitable which have a melting point of more than 1200 ° C.
  • the coating composition comprises as further constituent at least one binder.
  • the binder allows for better fixation the coating on the surface, in particular on the top of the mold.
  • the mechanical stability of the coating is increased by the binder, so that less erosion is observed under mechanical stress or under the action of the gas flowing through the layer.
  • the binders customary binders can be used, such as clays, in particular bentonite.
  • Other exemplary binders are starch, dextrin, peptides, polyvinyl alcohol, polyacrylic acid, polystyrene and / or polyvinyl acetate-polyacrylate dispersions.
  • binder systems are preferably used which can be used in aqueous systems and which do not retract after curing under the action of atmospheric moisture.
  • the coating composition contains silica sol as a binder.
  • the proportion of the binder is preferably selected in the range of 0.1 to 20 wt .-%, particularly preferably 0.5 to 5 Ges .-%, based on the weight of the coating composition.
  • the silica sol is preferably prepared by neutralizing water glass.
  • the resulting amorphous silica preferably has a specific surface area in the range from 10 to 1000 m 2 / g, particularly preferably in the range from 30 to 300 m 2 / g.
  • the coating composition may further comprise at least one adjusting agent.
  • the adjusting agent causes an increase in the viscosity of the coating composition, so that the solid components of the coating material in the suspension do not or only to a small extent decrease.
  • Suitable inorganic adjusting agents are, for example, strong swellable clays.
  • both two-layer silicates and three-layer silicates can be used, such as eg attapulgite, serpentine, kaolins, smectites, such as saponite, montmorillonite, beidellite and nontronite, vermiculite, illite, hectorite and mica.
  • Hectorite also gives the coating composition thixotropic properties, which facilitates the formation of the absorber layer on the casting mold, since the coating composition no longer flows after application.
  • Suitable organic solvents are, for example, swellable polymers, such as carboxymethyl, methyl, ethyl, hydroxyethyl and hydroxypropylcellulose, mucilages, polyvinyl alcohols, polyvinylpyrrolidone, pectin, gelatin, agar agar, polypeptides and alginates.
  • swellable polymers such as carboxymethyl, methyl, ethyl, hydroxyethyl and hydroxypropylcellulose, mucilages, polyvinyl alcohols, polyvinylpyrrolidone, pectin, gelatin, agar agar, polypeptides and alginates.
  • the coating composition may contain further constituents which are customary in sizes, for example preservatives, defoamers, wetting agents and dispersants.
  • cellulose ethers for example, cellulose ethers, alginates, mucilages and / or pectins can be used as suspending agents.
  • suitable wetting and dispersing agents are ionic and nonionic, preferably nonionic surfactants.
  • the proportion of these further constituents in the ready-to-use coating composition is preferably chosen to be less than 1% by weight.
  • the coating composition is provided in a form in which it is applied to a porous support framework. Suitable support materials have already been described above.
  • the coating composition applied to the porous support framework can be provided in such a way that corresponding mats are already provided which already contain the coating composition. These can then according to the dimensions of the gas outlet surfaces of the mold to be covered, for example, the top of the Cutter cut and placed on this mold.
  • the coating composition is preferably provided while still wet.
  • the water content of the coating composition is preferably selected in the range from 5 to 30% by weight, preferably in the range from 10 to 20% by weight, based on the coating composition.
  • Another object of the invention relates to a method for producing a casting mold according to claim 11.
  • a casting mold is produced in a manner known per se from a molding material mixture.
  • a refractory molding material is mixed with a binder and then molded into a casting mold or a portion of a casting mold.
  • refractory molding material As a refractory molding material, all refractory materials that are customary for the production of moldings for the foundry industry can be used per se. Examples of suitable refractory molding materials are quartz sand, zircon sand, olivine sand, aluminum silicate sand and chrome ore sand or mixtures thereof. Preferably, quartz sand is used.
  • the refractory molding material should have a sufficient particle size, so that the molded article produced from the molding material mixture has a sufficiently high porosity to allow escape of volatile compounds during the casting process. Preferably, at least 70 wt .-%, particularly preferably at least 80 wt .-% of the refractory molding material has a particle size ⁇ 290 microns.
  • the average particle size of the refractory molding material should preferably be between 100 and 350 ⁇ m.
  • the particle size can be determined, for example, by sieve analysis.
  • the refractory molding material should be in free-flowing form, so that a binder or a liquid catalyst can be applied well, for example in a mixer to the grains of the refractory molding material.
  • regenerated used sands may be used as the refractory molding material. From the used sand larger aggregates are removed and the used sand is separated into individual grains. After a mechanical or thermal treatment, the old sands are dedusted and can then be reused. Before reuse, the acid balance of the regenerated used sand is preferably tested. In particular, during a thermal regeneration by-products contained in the sand, such as carbonates, can be converted into the corresponding oxides, which then react alkaline. If binders are used which are cured by catalysis by an acid, in this case the acid added as a catalyst can be neutralized by the alkaline components of the regenerated used sand. Likewise, for example, in a mechanical regeneration of a used sand, acid remain in the used sand, which must be considered in the preparation of the binder, as otherwise, for example, the processing time of the molding material mixture can be shortened.
  • the refractory molding material should be dry.
  • the refractory molding material contains less than 1 wt .-% water.
  • the refractory molding material should not be too warm.
  • the refractory molding material should have a temperature in the range of 20 to 35 ° C. Possibly. the refractory molding material can be cooled or heated.
  • binders all binders can be used per se, as are customary for the production of casting molds for metal casting. Both inorganic and organic binders can be used.
  • inorganic binder for example, water glass can be used, which can be cured thermally or by introducing carbon dioxide.
  • organic binders are polyurethane no-bake and cold-box binders, binders based on furan resins or phenolic resins, or also epoxy-acrylate binders.
  • Polyurethanes based on polyurethanes are generally composed of two components, a first component containing a phenolic resin and a second component containing a polyisocyanate. These two components are mixed with the refractory molding material and the molding mixture is brought into a mold by ramming, blowing, shooting or other method, compacted and then cured. Depending on the method in which the catalyst is introduced into the molding material mixture, a distinction is made between the "polyurethane no-bake process" and the "polyurethane cold-box process".
  • a liquid catalyst generally a liquid tertiary amine
  • phenolic resin, polyisocyanate and curing catalyst are mixed with the refractory molding material.
  • the refractory molding material is first coated with a component of the binder, and then the other component is added.
  • the curing catalyst is added to one of the components.
  • the ready-made molding material mixture must have a sufficiently long processing time, so that the molding material mixture can be plastically deformed for a sufficient time and processed into a molding.
  • the polymerization must be correspondingly slow so that not already in the storage tanks or supply lines hardening of the molding material mixture.
  • the curing should not be too slow to achieve a sufficiently high throughput in the production of molds.
  • the processing time can be influenced for example by adding retarders, which slow down the curing of the molding material mixture.
  • a suitable retarder is, for example, phosphorus oxychloride.
  • the molding material mixture is first brought into a mold without catalyst.
  • a gaseous tertiary amine is then passed, which may optionally be mixed with an inert carrier gas.
  • the binder binds very quickly, so that a high throughput in the production of molds is achieved.
  • the binder systems based on polyurethanes contain a polyol component and a polyisocyanate component, in which case known components can be used.
  • the polyisocyanate component of the binder system may comprise an aliphatic, cycloaliphatic or aromatic isocyanate.
  • the polyisocyanate preferably contains at least 2 isocyanate groups, preferably 2 to 5 isocyanate groups per molecule.
  • the isocyanates used can be mixtures of monomers, oligomers and polymers exist and are therefore referred to below as polyisocyanates.
  • the polyisocyanate component per se can be any polyisocyanate which is customary in polyurethane binders for molding mixtures for the foundry industry.
  • Suitable polyisocyanates include aliphatic polyisocyanates, e.g. Hexamethylene diisocyanate, alicyclic polyisocyanates, e.g. 4,4'-dicyclohexylmethane diisocyanate, and dimethyl derivatives thereof.
  • aromatic polyisocyanates examples include toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate and methyl derivatives thereof, diphenylmethane-4,4'-diisocyanate and polymethylene-polyphenyl-polyisocyanate.
  • aromatic polyisocyanates more preferably polymethylene-polyphenyl polyisocyanate, e.g. commercially available mixtures of diphenylmethane-4,4'-diisocyanate, its isomers and higher homologs.
  • the polyisocyanates can be used both in substance and dissolved in an inert or reactive solvent.
  • a reactive solvent is understood to mean a solvent which has a reactive group, so that it is incorporated into the framework of the binder when the binder is set.
  • the polyisocyanates are preferably used in dilute form in order to be able to coat the grains of the refractory molding material better with a thin film of the binder because of the lower viscosity of the solution.
  • the polyisocyanates or their solutions in organic solvents are used in sufficient concentration to accomplish the curing of the polyol component, usually in a range of 10 to 500% by weight based on the weight of the polyol component. From 20 to 300% by weight, based on the same base, are preferably used.
  • Liquid polyisocyanates can be used in undiluted form while solid or viscous polyisocyanates are dissolved in organic solvents. Up to 80 wt .-%, preferably up to 60 wt .-%, particularly preferably up to 40 wt .-% of the isocyanate component may consist of solvents.
  • the polyisocyanate is used in an amount such that the number of isocyanate groups is 80 to 120%, based on the number of free hydroxyl groups of the polyol component.
  • polyol component all polyols used in polyurethane binders can be used per se.
  • the polyol component contains at least 2 hydroxyl groups, which can react with the isocyanate groups of the polyisocyanate component in order to achieve cross-linking of the binder during curing, and thereby better strength of the cured molding.
  • the polyols used are preferably phenolic resins which are obtained by condensation of phenols with aldehydes, preferably formaldehyde, in the liquid phase at temperatures up to about 180 ° C. in the presence of catalytic amounts of metal.
  • aldehydes preferably formaldehyde
  • the processes for the preparation of such phenolic resins are known per se.
  • the polyol component is preferably used liquid or dissolved in organic solvents in order to allow a homogeneous distribution of the binder on the refractory molding material.
  • the polyol component is preferably used in anhydrous form because the reaction of the isocyanate component with water is an undesirable side reaction.
  • Non-aqueous or anhydrous in this context should have a water content of Polyol component of preferably less than 5 wt .-%, preferably less than 2 wt .-% mean.
  • phenolic resin is meant the reaction product of phenol, phenol derivatives, bisphenols, and higher phenol condensation products with an aldehyde.
  • the composition of the phenolic resin depends on the specific starting materials selected, the ratio of the starting materials and the reaction conditions. For example, play the type of catalyst, the time and the reaction temperature, as well as the presence of solvents and other substances.
  • the phenolic resin is typically present as a mixture of various compounds and can contain addition products, condensation products and unreacted starting compounds, such as phenols, bisphenol and / or aldehyde, in very different ratios.
  • addition product is meant reaction products in which an organic component substitutes at least one hydrogen on a previously unsubstituted phenol or condensation product.
  • condensation product is meant reaction products having two or more phenolic rings.
  • Resoles are mixtures of hydroxymethylphenols which are linked via methylene and methylene ether bridges and can be obtained by reaction of aldehydes and phenols in a molar ratio of 1: ⁇ 1, if appropriate in the presence of a catalyst, for example a basic catalyst. They have a molecular weight M w of - ⁇ 10,000 g / mol.
  • phenol resins which are particularly suitable as polyol component are known by the name "o-o” or “high-ortho” novolaks or benzyl ether resins. These are obtainable by condensation of phenols with aldehydes in weakly acidic medium using suitable catalysts.
  • Suitable catalysts for the preparation of benzylic ether resins are salts of divalent ions of metals such as Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca and Ba. Preferably, zinc acetate is used. The amount used is not critical. Typical amounts of metal catalyst are 0.02 to 0.3 wt .-%, preferably 0.02 to 0.15 wt .-%, based on the total amount of phenol and aldehyde.
  • phenolic resins For the preparation of phenolic resins, all conventionally used phenols are suitable. In addition to unsubstituted phenols, substituted phenols or mixtures thereof can be used. The phenolic compounds are unsubstituted either in both ortho positions or in an ortho and in the para position to allow polymerization. The remaining ring carbon atoms may be substituted.
  • the choice of the substituent is not particularly limited, unless the substituent is the polymerization of the phenol or the aldehyde adversely affected. Examples of substituted phenols are alkyl-substituted phenols, alkoxy-substituted phenols and aryloxy-substituted phenols.
  • the abovementioned substituents have, for example, 1 to 26, preferably 1 to 15, carbon atoms.
  • suitable phenols are o-cresol, m-cresol, p-cresol, 3,5-xylene, 3,4-xylene, 3,4,5-trimethylphenol, 3-ethylphenol, 3,5-diethylphenol, p-butylphenol, 3,5-dibutylphenol, p-amylphenol, cyclohexylphenol, p-octylphenol, p-nonylphenol, 3,5-dicyclohexylphenol, p-crotylphenol, p-phenylphenol, 3,5-dimethoxyphenol and p-phenoxyphenol.
  • phenol itself.
  • higher condensed phenols such as bisphenol A, are suitable.
  • polyhydric phenols having more than one phenolic hydroxyl group are also suitable.
  • Preferred polyhydric phenols have 2 to 4 phenolic hydroxyl groups.
  • suitable polyhydric phenols are pyrocatechol, resorcinol, hydroquinone, pyrogallol, fluoroglycine, 2,5-dimethylresorcinol, 4,5-dimethylresorcinol, 5-methylresorcinol or 5-ethylresorcinol.
  • Mixtures of various mono- and polyhydric and / or substituted and / or condensed phenolic components can also be used for the preparation of the polyol component.
  • phenols of general formula I are phenols of general formula I:
  • A, B and C independently of one another from a hydrogen atom, a branched or unbranched alkyl radical, which may have, for example 1 to 26, preferably 1 to 15 carbon atoms, a branched or unbranched alkoxy radical, for example 1 to 26, preferably having from 1 to 15 carbon atoms, a branched or unbranched alkenoxy radical which may, for example, have 1 to 26, preferably 1 to 15, carbon atoms, an aryl or alkylaryl radical, such as, for example, bisphenyls.
  • a branched or unbranched alkyl radical which may have, for example 1 to 26, preferably 1 to 15 carbon atoms, a branched or unbranched alkoxy radical, for example 1 to 26, preferably having from 1 to 15 carbon atoms, a branched or unbranched alkenoxy radical which may, for example, have 1 to 26, preferably 1 to 15, carbon atoms, an aryl or alkylaryl radical, such as, for example, bispheny
  • Suitable aldehydes for the production of the phenolic resin component are aldehydes of the formula: R-CHO, wherein R is a hydrogen atom or a carbon atom radical having preferably 1 to 8, particularly preferably 1 to 3 carbon atoms.
  • R is a hydrogen atom or a carbon atom radical having preferably 1 to 8, particularly preferably 1 to 3 carbon atoms.
  • Specific examples are formaldehyde, acetaldehyde, propionaldehyde, furfuraldehyde and benzaldehyde. It is particularly preferred to use formaldehyde, either in its aqueous form, as para-formaldehyde or trioxane.
  • an at least equivalent number of moles of aldehyde based on the number of moles of the phenol component, should be used.
  • the molar ratio is preferably Aldehyde to phenol 1: 1.0 to 2.5: 1, more preferably 1.1: 1 to 2.2: 1, particularly preferably 1.2: 1 to 2.0: 1.
  • the production of the phenolic resin component takes place by methods known to the person skilled in the art.
  • the phenol and the aldehyde are reacted under substantially anhydrous conditions in the presence of a divalent metal ion at temperatures of preferably less than 130 ° C.
  • the resulting water is distilled off.
  • a suitable entraining agent may be added, for example toluene or xylene, or the distillation is carried out at reduced pressure.
  • the phenol component is reacted with an aldehyde, preferably benzyl ether resins.
  • the reaction with a primary or secondary aliphatic alcohol to an alkoxy-modified phenolic resin in the one-stage or two-stage process is also possible.
  • the phenol, aldehyde and alcohol are reacted in the presence of a suitable catalyst.
  • an unmodified resin is first prepared, which is subsequently reacted with an alcohol.
  • the alcohol component is preferably used in a molar ratio of alcohol: phenol of less than 0.25 so that less than 25% of the hydroxymethyl groups are etherified.
  • Suitable alcohols are primary and secondary aliphatic alcohols having one hydroxy group and 1 to 10 carbon atoms. Suitable primary and secondary alcohols are, for example, methanol, ethanol, propanol, n-butanol and n-hexanol. Particularly preferred are methanol and n-butanol.
  • the phenolic resin is preferably selected so that crosslinking with the polyisocyanate component is possible.
  • phenolic resins comprising molecules having at least two hydroxyl groups in the molecule are particularly suitable.
  • the phenolic resin component or the isocyanate component of the binder system is preferably used as a solution in an organic solvent or a combination of organic solvents. Solvents may be required to keep the components of the binder in a sufficiently low viscosity state. This is u.a. required to obtain a uniform crosslinking of the refractory molding material and its flowability.
  • solvents for the polyisocyanate or the polyol component of the binder system based on polyurethanes all solvents which are conventionally used in such binder systems for foundry technology can be used per se.
  • Suitable solvents are, for example, oxygen-rich, polar, organic solvents.
  • Particularly suitable are dicarboxylic acid esters, glycol ether esters, glycol diesters, glycol diethers, cyclic ketones, cyclic esters or cyclic carbonates.
  • Dicarboxylic acid esters, cyclic ketones and cyclic carbonates are preferably used.
  • Dicarboxylic acid esters have the formula R a OOC-R b -COOR a , wherein the radicals R a are each independently an alkyl group having 1 to 12, preferably 1 to 6 carbon atoms and R b is an alkylene group, ie a divalent alkyl group, with 1 to 12, preferably 1 to 6 carbon atoms. R b may also include one or more carbon-carbon double bonds. Examples are dimethyl esters of carboxylic acids having 4 to 10 carbon atoms, which are available, for example, under the name "dibasic ester" (DBE) from Invista International S.à.rl, Geneva, CH.
  • DBE dibasic ester
  • Glycol ether esters are compounds of the formula R c -OR d -OOCR e , where R c is an alkyl group having 1 to 4 carbon atoms, R d is an ethylene group, a propylene group or an oligomeric ethylene oxide or propylene oxide and R e is an alkyl group having 1 to 3 carbon atoms.
  • Preference is given to glycol ether acetates, for example butylglycol acetate.
  • Glycol diesters accordingly have the general formula R e COO-R d OOCR e , where R d and R e are as defined above and the radicals R e are each independently selected.
  • Preferred are glycol diacetates such as propylene glycol diacetate.
  • Glycol diethers can be characterized by the formula R c -OR d -OR c , where R c and R d are as defined above and the radicals R c are each independently selected.
  • a suitable glycol diether is, for example, dipropylene glycol dimethyl ether. Cyclic ketones, cyclic esters and cyclic carbonates of 4 to 5 carbon atoms are also suitable.
  • a suitable cyclic carbonate is, for example, propylene carbonate.
  • the alkyl and alkylene groups may each be branched or unbranched.
  • the proportion of the solvent in the binder system is preferably not chosen too high, since the solvent evaporates during the production and application of the molded article produced from the molding compound and thus, for example, can lead to unpleasant odors or leads to smoke during the casting.
  • the proportion of the solvent in the binder system is less than 50 wt .-%, more preferably less than 40 wt .-%, more preferably less than 35 wt .-%, selected.
  • the binder is first mixed with the refractory molding material as described above to form a molding material mixture.
  • a suitable catalyst can also already be added to the molding material mixture.
  • liquid amines are preferably added to the molding material mixture. These amines preferably have a pK b value of 4 to 11.
  • Suitable catalysts are 4-alkylpyridines wherein the alkyl group comprises 1 to 4 carbon atoms, isoquinoline, arylpyridines such as phenylpyridine, pyridine, acryline, 2-methoxypyridine, pyridazine, 3-chloropyridine, quinoline, n-methylimidazole, 4,4'-dipyridine , Phenylpropylpyridine, 1-methylbenzimidazole, 1,4-thiazine, N, N-dimethylbenzylamine, triethylamine, tribenzylamine, N, N-dimethyl-1,3-propanediamine, N, N-dimethylethanolamine and triethanolamine.
  • arylpyridines such as phenylpyridine, pyridine, acryline, 2-methoxypyridine, pyridazine, 3-chloropyridine, quinoline, n-methylimidazole, 4,4'-dipyridine , Phen
  • the catalyst may optionally be diluted with an inert solvent, for example, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, or a fatty acid ester.
  • an inert solvent for example, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, or a fatty acid ester.
  • the amount of catalyst added is selected in the range of 0.1 to 15% by weight, based on the weight of the polyol component.
  • the molding material mixture is then introduced by conventional means into a mold and compacted there.
  • the molding material mixture is then cured to a shaped body.
  • the shaped body should preferably retain its outer shape.
  • a gaseous catalyst is passed through the molded molding material mixture.
  • catalyst the usual catalysts in the field of cold-box process can be used.
  • amines as catalysts, in particular preferably dimethylethylamine, dimethyl-n-propylamine, dimethylisopropylamine, dimethyl-n-butylamine, triethylamine and trimethylamine in their gaseous form or as aerosol.
  • a furan resin or a phenolic resin is used as the binder, wherein the molding material mixture is cured according to the "furan no-bake" method with catalysis by a strong acid.
  • Furan and phenolic resins show very good disintegration properties during casting. Under the action of heat of the liquid metal, the furan or phenolic resin decomposes and the strength of the mold is lost. After casting, therefore, cores, possibly after prior shaking of the casting, pour out very well from cavities.
  • furfuryl alcohol as an essential component.
  • Furfuryl alcohol can react with itself under acid catalysis and form a polymer.
  • furfuryl alcohol can react with itself under acid catalysis and form a polymer.
  • furfuryl alcohol can react with itself under acid catalysis and form a polymer.
  • furfuryl alcohol can react with itself under acid catalysis and form a polymer.
  • furfuryl alcohol can react with itself under acid catalysis and form a polymer.
  • furfuryl alcohol is generally not pure furfuryl alcohol used but added to the furfuryl alcohol further compounds which are polymerized into the resin. Examples of such compounds are aldehydes, such as formaldehyde or furfural, ketones, such as acetone, phenols, urea or polyols, such as sugar alcohols or ethylene glycol.
  • the resins may be added with other components that affect the properties of the resin, such as its elasticity. Melamine can be added, for example, to
  • Furan no-bake binders are most often prepared by first producing furfuryl-containing precondensates from, for example, urea, formaldehyde, and furfuryl alcohol under acidic conditions. The reaction conditions are chosen so that only a slight polymerization of furfuryl alcohol occurs. These precondensates are then diluted with furfuryl alcohol.
  • Resoles can also be used to prepare furan no-bake binders. Resoles are prepared by polymerization of mixtures of phenol and formaldehyde. These resoles are then diluted with furfuryl alcohol.
  • the second component of the furan no-bake binder forms an acid.
  • This acid neutralizes alkaline components, which are contained in the refractory molding material and catalyzed on the other hand, the crosslinking of the reactive furan resin.
  • acids mostly aromatic sulfonic acids and in some special cases also phosphoric acid or sulfuric acid are used.
  • Phosphoric acid is used in concentrated form, i. used at concentrations greater than 75%.
  • Sulfuric acid can be added as a relatively strong acid starter for the curing of furan resins to weaker acids.
  • aromatic sulfonic acids are used as catalysts. Because of their good availability and their high acidity especially toluene sulfonic acid, xylylene sulfonic acid and benzenesulfonic acid are used.
  • Phenolic resins as the second large group of acid-catalyzed curable no-bake binders contain resoles as reactive resin components, ie phenolic resins which have been prepared with an excess of formaldehyde. Phenol resins show a significantly lower reactivity compared to furan resins and require strong sulfonic acids as catalysts. Phenolic resins show a relatively high viscosity, which increases with prolonged storage of the resin. Especially at temperatures below 20 ° C, the viscosity increases sharply, so that the sand must be heated in order to apply the binder evenly on the surface of the grains of sand can.
  • the molding material mixture should be processed as soon as possible, so as not to impair the quality of the molding compound by premature Curing to accept, which can lead to a deterioration in the strength of the molds produced from the molding material mixture.
  • the flowability of the molding material mixture is usually poor. In the production of the mold, the molding material mixture must therefore be carefully compacted in order to achieve a high strength of the mold can.
  • the preparation and processing of the molding material mixture should be carried out at temperatures in the range of 15 to 35 ° C. If the temperature is too low, the molding material mixture is difficult to process because of the high viscosity of the phenol no-bake resin. At temperatures of more than 35 ° C, the processing time is shortened by premature curing of the binder.
  • molding mixtures based on phenol no-bake binders can also be worked up again, in which case mechanical or thermal or combined mechanical / thermal processes can also be used.
  • An acid is then applied to the free-flowing refractory to obtain an acid-coated refractory molding material.
  • the acid is applied by conventional methods on the refractory molding material, for example by the acid is sprayed onto the refractory molding material.
  • the amount of acid is preferably selected in the range of 5 to 45 wt .-%, particularly preferably in the range of 20 to 30 wt .-%, based on the weight of the binder and calculated as the pure acid, ie without taking into account any used solvent. If the acid is not already in liquid form and has a sufficiently low viscosity to be distributed in the form of a thin film on the grains of the refractory molding material, the acid is dissolved in a suitable solvent.
  • Exemplary solvents are water or alcohols or mixtures of water and alcohol. Especially when using however, the solution is prepared as concentrated as possible in order to minimize the amount of water entrained into the binder or the molding material mixture. For uniform distribution of the acid on the grains, the mixture of refractory molding material and acid is well homogenized.
  • An acid-curable binder is then applied to the acid-coated refractory molding material.
  • the amount of the binder is preferably selected in the range of 0.25 to 5 wt .-%, particularly preferably in the range of 1 to 3 wt .-%, based on the refractory molding material and calculated as the resin component.
  • the acid-curable binder it is possible to use, as such, all acid-curable binders, especially those acid-curable binders which are already customary for the production of molding compounds for the foundry industry.
  • the binder may also contain other customary components, for example solvents for adjusting the viscosity or extenders which replace part of the crosslinkable resin.
  • the binder is applied to the acid-coated refractory molding material and distributed by moving the mixture on the grains of the refractory molding material in the form of a thin film.
  • the amounts of binder and acid are chosen so that on the one hand sufficient strength of the casting mold and on the other hand a sufficient processing time of the molding material mixture is achieved.
  • a processing time in the range of 5 to 45 minutes is suitable.
  • the coated with the binder refractory molding material is then formed by conventional methods to a shaped body.
  • the molding material mixture can be introduced into a suitable mold and be condensed there.
  • the resulting molded body is then allowed to cure.
  • furan no-bake binder all furan resins can be used per se, as they are already used in furan no-bake binder systems.
  • the furan resins used in technical furan no-bake binders are usually precondensates or mixtures of furfuryl alcohol with other monomers or precondensates.
  • the precondensates contained in furan no-bake binders are prepared in a manner known per se.
  • furfuryl alcohol is used in combination with urea and / or formaldehyde or urea / formaldehyde precondensates.
  • Formaldehyde can be used both in monomeric form, for example in the form of a formalin solution, as well as in the form of its polymers, such as trioxane or paraformaldehyde.
  • formaldehyde other aldehydes or ketones can be used.
  • Suitable aldehydes are, for example, acetaldehyde, propionaldehyde, butyraldehyde, acrolein, crotonaldehyde, benzaldehyde, salicylaldehyde, cinnamaldehyde, glyoxal and mixtures of these aldehydes.
  • Formaldehyde is preferred, this being preferably used in the form of paraformaldehyde.
  • ketones As ketone component, all ketones can be used which have a sufficiently high reactivity. Exemplary ketones are methyl ethyl ketone, methyl propyl ketone and acetone, with acetone being preferred.
  • the said aldehydes and ketones can be used as a single compound but also in admixture with each other.
  • the molar ratio of aldehyde, in particular formaldehyde, or ketone to furfuryl alcohol can be selected within wide ranges.
  • 0.4 to 4 moles of furfuryl alcohol, preferably 0.5 to 2 moles of furfuryl alcohol, may be used per mole of aldehyde.
  • furfuryl alcohol, formaldehyde and urea can be heated to boiling, for example, after the pH has been adjusted to more than 4.5, water being continuously distilled off from the reaction mixture.
  • the reaction time can be several hours, for example 2 hours. Under these reaction conditions occurs almost no polymerization of furfuryl alcohol. However, the furfuryl alcohol is condensed into a resin together with the formaldehyde and the urea.
  • furfuryl alcohol, formaldehyde and urea are reacted at a pH of well below 4.5, for example at a pH of 2.0, in the heat, wherein the water formed in the condensation are distilled off under reduced pressure can.
  • the reaction product has a relatively high viscosity and is diluted with furfuryl alcohol to produce the binder until the desired viscosity is achieved.
  • phenol can be reacted under alkaline conditions, first with formaldehyde to a resole resin.
  • This resol can then be reacted or mixed with furfuryl alcohol or a furan group-containing resin.
  • furan group-containing resins can be obtained, for example, by the methods described above.
  • higher phenols for example resorcinol, cresols or also bisphenol A.
  • the proportion of phenol or higher phenols in the binder is preferably in the range of up to 45% by weight, preferably up to 20% by weight, especially preferably chosen up to 10 wt .-%.
  • the proportion of phenol or higher phenols can be greater than 2 wt .-%, according to a further embodiment greater than 4 wt .-% can be selected.
  • condensates of aldehydes and ketones which are then mixed with furfuryl alcohol to produce the binder.
  • Such condensates can be prepared by reacting aldehydes and ketones under alkaline conditions.
  • the aldehyde used is preferably formaldehyde, in particular in the form of paraformaldehyde.
  • the ketone used is preferably acetone.
  • the relative molar ratio of aldehyde to ketone is preferably selected in the range of 7: 1 to 1: 1, preferably 1.2: 1 to 3.0: 1.
  • the condensation is preferably carried out under alkaline conditions at pH values in the range of 8 to 11.5, preferably 9 to 11.
  • a suitable base is, for example, sodium carbonate.
  • an improvement in the strength of the casting mold is achieved by a high proportion of furfuryl alcohol.
  • the proportion of furfuryl alcohol in the binder in the range of 30 to 95 wt .-%, preferably 50 to 90 wt .-%, particularly preferably 60 to 85 wt .-% is selected.
  • the proportion of urea and / or formaldehyde on the binder is preferably in the range of 2 to 70 wt .-%, preferably 5 to 45 wt .-%, particularly preferably 15 to 30 wt .-% selected.
  • the proportions include both the unbound portions of these compounds contained in the binder and those bound in the resin.
  • the proportion of these extenders in the binder is therefore preferably less than 25% by weight, preferably less than 15% by weight and more preferably less than 10% by weight. In order to achieve a cost saving without having to put an excessive influence on the strength of the mold, the proportion of extenders is chosen according to an embodiment greater than 5 wt .-%.
  • the furan no-bake binders may further contain water.
  • the proportion of water is preferably chosen as low as possible.
  • the proportion of water in the binder is preferably less than 20% by weight, preferably less than 15% by weight. From an economic point of view, an amount of water of more than 5% by weight in the binder can be tolerated.
  • Resoles are mixtures of hydroxymethylphenols which are linked via methylene and methylene ether bridges and by reaction of aldehydes and phenols in a molar ratio of 1: ⁇ 1, if appropriate in the presence of a catalyst, for example a basic Catalyst, are available. They have a molecular weight M w of ⁇ 10,000 g / mol.
  • phenolic resins For the preparation of the phenolic resins, all conventionally used phenols are suitable, with phenol being particularly preferred.
  • the aldehyde component used is preferably formaldehyde, in particular in the form of paraformaldehyde.
  • Alternative phenols and aldehydes have already been explained in connection with the polyurethane binders. The corresponding passages are referred to.
  • the binders may contain other customary additives, for example silanes as adhesion promoters.
  • Suitable silanes are, for example, aminosilanes, epoxysilanes, mercaptosilanes, hydroxysilanes and ureidosilanes, such as ⁇ -hydroxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) trimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane.
  • silane is added to the binder in a proportion of 0.1 to 3% by weight, preferably 0.1 to 1% by weight.
  • the binders may also contain other conventional components, such as activators or plasticizers.
  • the molding material mixture in addition to the refractory molding material, the binder and optionally the catalyst may contain other conventional ingredients.
  • exemplary further constituents are iron oxide, ground flax fibers, wood flour granules, ground coal or clay.
  • the molding material mixture is then formed by conventional methods into a casting mold or a part of a casting mold and optionally cured.
  • a layer of a substance absorbing harmful substances is applied to the gas outlet surfaces, particularly preferably the top of the casting mold, at least in sections.
  • all conventional methods for applying such coating compositions can be used per se.
  • the coating can be applied with a brush on the top of the mold or be sprayed by means of a suitable device.
  • the coating composition can be poured onto the top of the casting mold and, if necessary, excess coating compound can be drained off.
  • the layer preferably still has a water content in the range from 0 to 60% by weight, preferably 5 to 30% by weight, particularly preferably 10 to 20% by weight.
  • a layer of a porous carrier framework is first applied to the upper side of the casting mold.
  • a carrier framework can be formed, for example, by a solid foam, a woven fabric or a fleece. Suitable materials have already been described above.
  • the thickness of the porous support framework is preferably selected in the range of 0.5 to 5 cm.
  • the porous carrier framework placed on top of the casting mold is then given a coating composition as described above, so that the porous carrier framework is impregnated with the coating composition. Subsequently, the layer can be dried if necessary.
  • porous carrier material may also be first coated with the coating composition and then the coated porous carrier material may be attached at least in sections to gas outlet surfaces of the casting mold.
  • Another object of the invention relates to the use of the above-described mold, which according to the invention comprises an absorber layer, as described above, for metal casting, in particular iron and steel casting.
  • a graduated cylinder cut off at the 1000 ml mark is weighed. Then, the sample to be examined is filled by means of a Pulvertrichters so in a train in the measuring cylinder that forms above the end of the measuring cylinder, a pour cone. The pour cone is removed by means of a ruler, which is led over the opening of the measuring cylinder, and the filled measuring cylinder is weighed again. The difference corresponds to the bulk density.
  • a coating composition was prepared by first charging the water and then adding the clay and digested for 15 minutes using a high shear stirrer. Subsequently, the absorbing components, pigments and dyes were stirred for an additional 15 minutes until a homogeneous mixture was obtained.
  • Table 2 Composition of the coating composition component Proportion (% by weight) calcium carbonate 15.00 Aluminum silicate (coarse) 30.00 activated carbon 5.00 clay mineral 3.00 lime 7.00 defoamers 0.20 biocide 0.20 water 39, 60
  • the side surfaces of the sample body were coated with the coating composition by means of a brush, whereby a layer having a thickness of 2.5 mm was obtained.
  • the top surface of the sample body was ® with a gas-impermeable size (KERATOP V 107G, ASK Chemicals, Hilden DE). The specimen was then dried for a maximum of 30 minutes at room temperature.
  • the sulfur content of the coating composition before and after casting was determined by infrared spectroscopy.
  • the benzene content of the coating material before and after the casting was determined quantitatively and qualitatively by gas chromatography in accordance with DIN EN 14662-2. The values determined are summarized in Table 3.
  • Table 3 Sulfur and benzene content of the coating composition component salary before the casting after the casting Sulfur (wt%) 0.028 2.26 Benzene (mg / kg) 0, 035 0.28
  • the coating composition had a significantly increased content of sulfur and benzene after casting.
  • One cast was produced with an uncoated casting mold (system 1) and a casting with a casting mold, the top of which was coated with a 2.5 mm thick layer of the coating composition prepared as described above (system 2).
  • the exhaust gases produced during casting were captured via a suction hood. From the exhaust gas stream, a defined partial stream was sucked off via a sampling probe and the substances contained in the partial stream were adsorbed on activated carbon in accordance with the method according to DIN EN 14662-2. The qualitative and quantitative analysis of the adsorbed substances (benzene, toluene and xylene) was carried out by gas chromatography.
  • a partial flow was removed from the exhaust gas and sucked with a vacuum device into a PE bag.
  • the concentration of sulfur dioxide was determined by mass spectrometry.
  • Table 5 Pollutant levels in the exhaust gases released during casting Sulfur (wt%) System 1 (not according to the invention) System 1 (according to the invention) Odor units (GE / m 3 ) 34700 27000 Benzene (mg / kg) 24.2 6.2 Toluene (mg / kg) 22.0 10.3 Xylene (mg / kg) 0, 6 ⁇ 0.5 SO 2 (ppm Vol) 24.5 16.9
  • the coating composition By the coating composition, a significant reduction of the odor nuisance and the pollutants in the exhaust gas can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Treating Waste Gases (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

  • Die Erfindung betrifft eine Gießform für den Metallguss, ein Verfahren zur Herstellung einer Gießform und die Verwendung der Gießform.
  • Die meisten Erzeugnisse der Eisen- und Stahlindustrie sowie der Nichteisenmetallindustrie durchlaufen zur ersten Formgebung Gießprozesse. Dabei werden die Schmelzflüssigwerkstoffe, Eisenmetalle bzw. Nichteisenmetalle, in geometrisch bestimmte Gegenstände mit bestimmten Werkstückeigenschaften überführt. Für die Formgebung der Gussstücke müssen zunächst zum Teil sehr komplizierte Gießformen zur Aufnahme der Schmelze hergestellt werden. Gießformen für die Herstellung von Metallkörpern werden aus sogenannten Kerne und Formen zusammengesetzt. Die Gießform stellt im Wesentlichen eine Negativform des herzustellenden Gussstücks dar, wobei Kerne zur Ausbildung von Hohlräumen im Inneren des Gussstücks dienen, während die Formen die äußere Begrenzung abbilden. Dabei werden an die Kerne und Formen unterschiedliche Anforderungen gestellt. Bei Formen steht eine relativ große O-berfläche zur Verfügung, um Gase abzuleiten, die beim Abguss durch die Einwirkung des heißen Metalls entstehen. Bei Kernen steht meist nur eine sehr kleine Fläche zur Verfügung, über welche die Gase abgeleitet werden können. Bei zu starker Gasentwicklung besteht daher die Gefahr, dass Gas aus dem Kern in das flüssige Metall übertritt und dort zur Ausbildung von Gussfehlern führt. Oftmals werden die inneren Hohlräume daher durch Kerne abgebildet, welche durch Cold-Box-Bindemittel verfestigt wurden, also einem Bindemittel auf der Basis von Polyurethanen, während die äußere Kontur des Gussstücks durch kostengünstigere Formen dargestellt wird, wie eine Grünsandform, eine durch ein Furanharz- oder ein Phenolharz gebundene Form oder durch eine Stahlkokille.
  • Gießformen bestehen aus einem feuerfesten Material, beispielsweise Quarzsand, dessen Körner nach dem Ausformen der Gießform durch ein geeignetes Bindemittel verbunden werden, um eine ausreichende mechanische Festigkeit der Gießform zu gewährleisten. Für die Herstellung von Gießformen verwendet man also einen feuerfesten Formstoff, welcher mit einem geeigneten Bindemittel versetzt wird. Die aus Formstoff und Bindemittel erhaltene Formstoffmischung liegt bevorzugt in einer rieselfähigen Form vor, so dass sie in eine geeignete Hohlform eingefüllt und dort verdichtet werden kann. Durch das Bindemittel wird ein fester Zusammenhalt zwischen den Partikeln des Formstoffs erzeugt, so dass die Gießform die erforderliche mechanische Stabilität erhält.
  • Zur Herstellung der Gießformen können sowohl organische als auch anorganische Bindemittel eingesetzt werden, deren Aushärtung durch kalte oder heiße Verfahren erfolgen kann. Als kalte Verfahren bezeichnet man dabei Verfahren, welche im Wesentlichen bei Raumtemperatur ohne Erhitzen der Formstoffmischung durchgeführt werden. Die Aushärtung erfolgt dabei meist durch eine chemische Reaktion, die beispielsweise dadurch ausgelöst werden kann, dass ein gasförmiger Katalysator durch die zu härtende Formstoffmischung geleitet wird, oder indem der Formstoffmischung ein flüssiger Katalysator zugesetzt wird. Bei heißen Verfahren wird die Formstoffmischung nach der Formgebung auf eine ausreichend hohe Temperatur erhitzt, um beispielsweise das im Bindemittel enthaltene Lösungsmittel auszutreiben, oder um eine chemische Reaktion zu initiieren, durch welche das Bindemittel durch Vernetzen ausgehärtet wird.
  • Gegenwärtig werden für die Herstellung von Gießformen vielfach organische Bindemittel, wie z.B. Polyurethan-, Furanharz- oder Epoxy-Acrylatbindemittel eingesetzt, wobei die Aushärtung des Bindemittels durch Zugabe eines Katalysators erfolgt.
  • Die Auswahl des geeigneten Bindemittels richtet sich nach der Form und der Größe des herzustellenden Gussstücks, den Produktionsbedingungen sowie dem Werkstoff, der für den Guss verwendet wird. So werden bei der Herstellung kleiner Gussstücke, die in großen Zahlen hergestellt werden, oft Polyurethan-Bindemittel verwendet, da diese schnelle Taktzeiten und damit auch eine Serienherstellung ermöglichen.
  • Verfahren, bei denen die Aushärtung der Formstoffmischung durch Hitze oder durch nachträgliche Zugabe eines Katalysators erfolgt, haben den Vorteil, dass die Verarbeitung der Formstoffmischung keinen besonderen zeitlichen Restriktionen unterliegt. Die Formstoffmischung lässt sich zunächst in größeren Mengen herstellen, die dann innerhalb eines längeren Zeitraums, meist mehreren Stunden, verarbeitet werden. Die Aushärtung der Formstoffmischung erfolgt erst nach der Formgebung, wobei dabei eine rasche Reaktion angestrebt wird. Die Gießform lässt sich nach dem Aushärten unmittelbar aus dem Formwerkzeug entnehmen, sodass kurze Taktzeiten verwirklicht werden können. Um allerdings eine gute Festigkeit der Gießform zu erhalten, muss die Aushärtung der Formstoffmischung innerhalb der Gießform gleichmäßig verlaufen. Soll die Aushärtung der Formstoffmischung durch nachträgliche Zugabe eines Katalysators erfolgen, wird die Gießform nach der Formgebung mit dem Katalysator begast. Dazu wird der gasförmige Katalysator durch die Gießform geleitet. Die Formstoffmischung härtet nach Kontakt mit dem Katalysator unmittelbar aus und kann daher sehr rasch aus dem Formwerkzeug entnommen werden. Mit zunehmender Größe der Gießform wird es schwieriger, in allen Abschnitten der Gießform eine für die Aushärtung der Formstoffmischung ausreichende Menge an Katalysator bereitzustellen. Die Begasungszeiten verlängern sich, wobei dennoch Abschnitte in der Gießform entstehen können, die nur sehr schlecht oder überhaupt nicht vom gasförmigen Katalysator erreicht werden. Die Menge des Katalysators steigt daher mit zunehmender Größe der Gießform stark an.
  • Ähnliche Schwierigkeiten treten bei heißen Aushärteverfahren auf. Hier muss die Gießform in allen Abschnitten auf eine ausreichend hohe Temperatur erhitzt werden. Mit zunehmender Größe der Gießform verlängern sich zum Einen die Zeiten, für welche die Gießform zum Aushärten auf eine bestimmte Temperatur erhitzt werden muss. Nur dann kann sichergestellt werden, dass die Gießform auch in ihrem Inneren die geforderte Festigkeit aufweist. Zum Anderen wird die Aushärtung mit zunehmender Größe der Gießform auch auf der apparativen Seite sehr aufwändig.
  • Bei der Herstellung von Gießformen für große Gussstücke, beispielsweise Motorblöcke von Schiffsdieseln oder große Maschinenteile, wie Naben von Rotoren für Windkraftwerke, werden daher meist No-Bake-Bindemittel verwendet. Beim No-Bake-Verfahren wird der feuerfeste Formstoff zunächst mit einem Katalysator belegt. Anschließend wird das Bindemittel zugegeben und durch Mischen gleichmäßig auf den bereits mit dem Katalysator beschichteten Körnern des feuerfesten Formstoffs verteilt. Die Formstoffmischung lässt sich dann zu einem Formkörper formen. Da Bindemittel und Katalysator gleichmäßig in der Formstoffmischung verteilt sind, erfolgt auch bei großen Formkörpern die Aushärtung weitgehend gleichmäßig.
  • Beim Abguss soll sich das ausgehärtete Bindemittel unter dem Einfluss der Hitze des flüssigen Metalls und der beim Abguss erzeugten reduzierenden Atmosphäre zersetzen, sodass die Gießform ihre Festigkeit verliert. Die Gießform lässt sich dann leicht vom Gussstück entfernen. Wichtig ist insbesondere, dass die in der Gießform verwendeten Kerne ihre Festigkeit verlieren, sodass sich der Sand, welcher für die Herstellung der Kerne eingesetzt wurde, leicht aus den Hohlräumen der Gießform ausgießen lässt. Durch die Zersetzung des Bindemittels wird eine Reihe von gasförmigen Schadstoffen freigesetzt, die beispielsweise über geeignet ausgelegte Absaugvorrichtungen aufgefangen und entfernt werden müssen. Die schädlichen Substanzen entstehen einerseits durch die Zersetzung des Harzes und andererseits durch die Zersetzung von Komponenten, die dem Bindemittel zur Aushärtung oder zur Modifikation seiner Eigenschaften zugegeben wurden. So zersetzen sich beispielsweise die beim No-Bake-Verfahren als Katalysator eingesetzten aromatischen Sulfonsäuren, insbesondere p-Toluolsulfonsäure, Benzolsulfonsäure und Xylolsulfonsäure, und setzen neben Schwefeldioxid aromatische Schadstoffe, wie Benzol, Toluol oder Xylol (BTX) frei. Ein Teil dieser Zersetzungsprodukte verbleibt auch im gebrauchten Sand und kann während der Wiederaufarbeitung freigesetzt werden.
  • Insbesondere für aromatische Schadstoffe gelten wegen ihrer krebserzeugenden Wirkung sehr niedrige MAK-Werte (MAK = maximale Arbeitsplatzkonzentration). Für Benzol beträgt der MAK Wert nur 3,2 mg/m3, für Toluol und Xylol entsprechend 190 mg/m3 und 440 mg/m3 Dies ist in Gießereien inzwischen zu einem Problem geworden, da die Einhaltung dieser Grenzwerte sehr aufwändige Absauganlagen und Filter erfordert.
  • Die Zusammensetzung des beim Abguss entstehenden Gasgemisches ist sehr komplex und umfasst eine Vielzahl von Verbindungen, die sehr unterschiedliche chemische Eigenschaften aufweisen können. Neben den bereits erwähnten aromatischen Stoffen können beispielsweise auch saure Komponenten, wie Schwefelverbindungen, oder basische Komponenten, wie beispielsweise Amine, in den Abgasen enthalten sein. Neben den gasförmigen Komponenten sind im beim Abguss erzeugten Abgas auch noch Stäube enthalten, die vom freigesetzten Gas mitgerissen werden. Diese Stäube sind meist sehr fein und können daher ebenfalls gesundheitsschädlich sein.
  • Neben ihrer gesundheitsgefährdenden Wirkung stellen die beim Abguss freigesetzten gasförmigen Stoffe auch wegen ihres starken Geruchs ein Problem dar. Der menschliche Geruchssinn ist dabei gegenüber manchen Verbindungen sehr empfindlich, sodass bereits geringe Konzentrationen ausreichen, um einen als unangenehm empfundenen Geruch zu erzeugen. Meist ist es technisch nicht möglich, durch eine Absauganlage die beim Abgießen freigesetzten Abgase vollständig abzufangen, sodass eine Geruchsbelästigung in der entsprechenden Werkshalle unvermeidlich ist.
  • Die CN 86106521 A und die CN 86106485 A offenbaren Schlichten für die Innenflächen einer Gießform unter anderem um das Anhaften von Sand auf der Oberfläche von Gussteilen zu minimieren oder diesen einfacher vom Gussteil entfernbar zu machen. So behandelte Gießformen führen zu Gussteilen mit Gießoberflächen mit geringer Rauigkeit.
  • Die US 1717820 A offenbart Trennmittel in partikulärer Form für die Innenflächen einer Gießform.
  • Die DE 1212250 B betrifft eine Formschlichte für den Stahlguss, die aus in Wasser aufgeschlämmten feinverteilten Kohlenstoff als Hauptbestandteil und einem organischen Bindemittel besteht. Es wird angegeben, dass es mit der Schlichte möglich ist, Rauigkeiten und Unebenheiten der Gussform auszugleichen und somit Gussstücke mit besonders glatter Oberfläche zu erzeugen.
  • Die WO 03/015956 A2 offenbart ein Verfahren zur Reduzierung von Schadstoffemissionen, insbesondere solchen, die in Form von Pyrolyseprodukten aus Metallgusskästen freigegeben werden, mittels einer zugesetzten brennbaren Substanz, die-sofern sie nicht gasförmig ist - bei Erhitzung in gasförmigen Zustand übergeht und beim Austritt aus den Metallgusskästen zusammen mit den Schadstoffen verbrennt. Die zusätzliche brennbare Substanz ist vorzugsweise ein Wachs oder ein Öl.
  • Der Erfindung lag daher die Aufgabe zugrunde, eine Gießform zur Verfügung zu stellen, die beim Abguss eine geringere Menge an störenden gasförmigen Stoffen freisetzt.
  • Diese Aufgabe wird mit einer Gießform mit den Merkmalen des Patentanspruchs 1 und 11 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Patentansprüche.
  • Bei der erfindungsgemäßen Gießform ist auf Gasaustrittsflächen der äußeren Oberfläche der Gießform zumindest abschnittsweise eine Schicht aus einem Schadstoffe absorbierenden Material angeordnet. Die Schicht aus dem Schadstoffe absorbierenden Material wird im Weiteren auch als "Absorberschicht" bezeichnet.
  • Unter Gasaustrittsflächen werden die Flächen der Gießform verstanden, durch welche während des Abgusses gasförmige Komponenten aus der Gießform entweichen können. Die Gasaustrittsfläche kann der gesamten äußeren Oberfläche der Gießform entsprechen. Es ist aber auch möglich, dass nur ein Teil der äußeren Oberfläche der Gießform für die Abgabe gasförmiger Komponenten genutzt wird. So wird beim kastengebundenen Metallguss ein Kasten für den Aufbau der Gießform genutzt, welcher die Unterseite sowie die Seitenflächen der Gießform abdeckt. Diese Flächen stehen dann für eine Abgabe gasförmiger Komponenten nicht oder nur noch sehr eingeschränkt zur Verfügung. In diesem Fall steht im Wesentlichen nur noch die Oberseite der Gießform für eine Abgabe gasförmiger Komponenten zur Verfügung.
  • Unter einer äußeren Oberfläche der Gießform werden die Flächen verstanden, durch welche beim Abguss entstehende Abgase die Gießform verlassen können. Diese äußere Oberfläche ist beim Betrachten der Gießform von außen sichtbar und kommt beim Abguss mit dem flüssigen Metall nicht in Kontakt. Im Gegensatz dazu wird unter einer inneren Oberfläche beispielsweise die Oberfläche des von der Gießform umgebenen Formhohlraums verstanden.
  • Bevorzugt ist zumindest die Oberseite der Gießform zumindest abschnittsweise mit der Schicht aus einem Schadstoffe absorbierenden Material beschichtet. Als Oberseite der Gießform wird die Seite der Gießform bezeichnet, die beim Abguss oben angeordnet ist. Während des Abgusses verlässt der überwiegende Anteil der freigesetzten Gase die Gießform über deren Oberseite. Da bei der erfindungsgemäßen Gießform dort eine Schicht aus einem Schadstoffe absorbierenden Material angeordnet ist, passiert das Gas diese Schicht. Dabei werden Schadstoffe, welche in dem Gas enthalten sind, in der Absorberschicht absorbiert und damit ein erheblicher Teil der Schadstoffe aus dem Gasstrom entfernt. An sich wäre es auch möglich, Abschnitte der Außenfläche der Gießform mit einer gasdichten Beschichtung zu versehen, um beispielsweise die Abgase gezielt aus Seitenflächen der Gießform austreten zu lassen.
  • Unter Absorbieren eines Schadstoffs wird sowohl eine Bindung des Schadstoffs in der Absorberschicht als auch eine Umwandlung des Schadstoffs in unschädliche Verbindungen verstanden, wobei die unschädlichen Verbindungen nicht notwendigerweise in der Absorberschicht gebunden werden müssen sondern auch wieder in den Abgasstrom abgegeben werden und die Gießform verlassen können. Unter Absorbieren eines Schadstoffs wird also allgemein ein Entfernen des Schadstoffs aus dem Gasstrom verstanden, der beim Abguss die Gießform verlässt.
  • Als Schadstoffe werden an sich alle Stoffe angesehen, die im beim Abguss freigesetzten Gas enthalten sind und welche eine umwelt- oder gesundheitsschädliche Wirkung aufweisen oder die stark riechen. Im Besonderen werden als Schadstoffe solche Stoffe angesehen, für welche Grenzwerte für die Belastung am Arbeitsplatz gelten. Insbesondere werden solche Stoffe als Schadstoffe angesehen, deren MAK weniger als 1 g/m3, bevorzugt geringer als 500 mg/m3 beträgt.
  • Bevorzugt bedeckt die Schicht aus dem Schadstoffe absorbierenden Material die gesamte Oberseite der Gießform. An sich können auch die seitlichen Wände der Gießform mit der Schicht aus dem Schadstoffe absorbierenden Material bedeckt sein. Die Gießform kann vom Fachmann entsprechend ihrer Gestalt in geeigneten Abschnitten mit der Schicht aus dem Schadstoffe absorbierenden Material versehen werden. Werden beispielsweise kastengebundene Gießformen verwendet, ist es meist nicht erforderlich, auf den Seitenflächen der Gießform die erfindungsgemäße Schicht aus dem Schadstoffe absorbierenden Material vorzusehen, da die Seitenflächen durch den Kasten abgedichtet sind.
  • Die Gießform ist zunächst in der gleichen Weise aufgebaut, wie bereits bekannte Gießformen, wobei jedoch zumindest auf einem Abschnitt der Gasaustrittsflächen, also der äußeren Oberfläche, insbesondere bevorzugt auf der Oberseite der Gießform zusätzlich eine Schicht aus einem Schadstoffe absorbierenden Material angeordnet ist, wobei diese Absorberschicht die Oberseite der Gießform teilweise oder vollständig bedeckt.
  • Die Gießform besteht in an sich bekannter Weise aus einem körnigen feuerfesten Formstoff, welcher mit einem Bindemittel verfestigt ist. Die Gießform kann aus Formen und Kernen zusammengesetzt sein und umfasst einen Formhohlraum, der im Wesentlichen der Form des Gussstücks entspricht.
  • Als Bindemittel können an sich alle für die Herstellung derartiger Gießformen übliche Bindemittel verwendet werden, wobei sowohl anorganische als auch organische Bindemittel eingesetzt werden können. Ein beispielhaftes anorganisches Bindemittel ist Wasserglas. Als organisches Bindemittel können beispielsweise Polyurethan-, Furanharz- oder Epoxy-Acrylatbindemittel eingesetzt werden, bei denen die Aushärtung des Bindemittels durch Zugabe eines Katalysators erfolgt. Es ist aber auch möglich, organische Bindemittel einzusetzen, die durch andere Verfahren, beispielsweise durch Erwärmen ausgehärtet werden.
  • Besonders bevorzugt ist die Gießform mit einem mit einem Furfurylalkohol-Harnstoff-Harz, einem Phenol-Furfurylalkohol-Harz oder einem Phenolharz verfestigt.
  • Als Feuerfeststoff können übliche Feuerfeststoffe verwendet werden. Beispielhafte Feuerfeststoffe sind Quarzsand, Zirkonsand, Olivinsand, Aluminiumsilikatsand und Chromerzsand bzw. deren Gemische.
  • Die Gießform kann in üblicher Weise vorbehandelt worden sein, indem beispielsweise die Flächen des Formhohlraums, welche mit dem flüssigen Metall in Kontakt gelangen, mit einer Schlichte bedeckt sind. Dabei können übliche Schlichten verwendet werden.
  • Auf zumindest einem Abschnitt der Gasaustrittsfläche, insbesondere der Oberseite der Gießform ist eine Schicht aus dem Schadstoffe absorbierenden Material angeordnet. Die Schicht kann zunächst einen an sich beliebigen Aufbau zeigen. So kann die Schicht homogen aufgebaut sein. Es ist aber auch möglich, dass die Schicht aus einem Schichtstapel aufgebaut ist, wobei einzelne Schichten des Schichtstapels auch eine unterschiedliche Zusammensetzung aufweisen können.
  • Die Absorberschicht sollte gasdurchlässig, also porös sein. Die Porosität sollte so hoch sein, dass die freigesetzten Gase die Absorberschicht weitgehend ungehindert passieren können, also in der Gießform kein Überdruck entsteht, welcher zu Gaseinschlüssen im Gussstück führen kann. Die Gasdurchlässigkeit Gd liegt vorzugsweise bei einem Wert von mehr als 50 und ist bevorzugt größer als 100, besonders bevorzugt größer als 200.
  • Die Gasdurchlässigkeit Gd gibt an, wie viel cm3 Luft bei einem Überdruck von 1 cm Wassersäule (WS) in 1 min. durch einen Prüfkörper mit einer Grundfläche von 1 cm2 und 1 cm Höhe durchschnittlich hindurchgehen. Die Messung erfolgt mit einem Durchlässigkeitsprüfapparat Typ PDU von der Georg Fischer AG, Schaffhausen, Schweiz.
  • Die Gasdurchlässigkeit wird durch folgende Beziehung bestimmt: Gd = Q h F p t
    Figure imgb0001
    wobei gilt:
    • Q : durchströmendes Luftvolumen (2000 cm3)
    • h: Höhe des Prüfkörpers
    • F: Querschnittsfläche des Prüfkörpers (19,63 cm2)
    • p: Druck in WS
    • t: Durchströmzeit für 2000 cm3 Luft in min.
  • Die Absorberschicht kann aus einem körnigen Material aufgebaut sein, das lose auf die Oberseite der Gießform aufgebracht ist. Es ist aber auch möglich, dass die Absorberschicht gebunden ist, also eine feste, durchgehende Schicht auf der Oberseite der Gießform bildet.
  • Die Absorberschicht kann eine einzelne Komponente umfassen, welche als das Schadstoffe absorbierende Material wirkt. Es ist aber auch möglich, dass die Schicht mehrere Komponenten umfasst, wobei ein Teil oder alle Komponenten als das Schadstoffe absorbierende Material wirken. Neben einer als Schadstoffe absorbierendes Material wirkenden Komponente kann die Schicht beispielsweise ein Bindemittel oder Gerüstmaterialien umfassen, welche die Gasdurchlässigkeit der Absorberschicht verbessern.
  • Die Schicht aus dem Schadstoffe absorbierenden Material hat vorzugsweise eine andere Zusammensetzung als die Gießform, sodass eine klare Trennung zwischen der Gießform und der Schicht aus dem Schadstoffe absorbierenden Material feststellbar ist.
  • Die Stärke der Schicht aus dem Schadstoffe absorbierenden Material ist abhängig von der Gasmenge, die beim Abguss freigesetzt wird und von der Art und der Menge der Schadstoffe, die in dem freigesetzten Gas enthalten sind. Bei kleinen Gießformen kann bereits eine vergleichsweise dünne Schicht aus dem Schadstoffe absorbierenden Material ausreichend sein, während bei Gießformen für sehr große Gussstücke die Stärke der Schicht aus dem Schadstoffe absorbierenden Material deutlich höher sein kann und bis zu mehreren Zentimetern betragen kann.
  • Gemäß einer bevorzugten Ausführungsform weist die Schicht aus dem Schadstoffe absorbierenden Material eine Stärke von zumindest 2,5 mm auf. Gemäß einer weiteren Ausführungsform beträgt die Schichtdicke zumindest 0,5 cm. Meist ist es für eine Reinigung der beim Abguss freigesetzten Gase ausreichend, wenn die Dicke der Schicht weniger als 5 cm beträgt. Es ist jedoch auch möglich, noch größere Schichtdicken zu verwenden.
  • Die Absorption der Schadstoffe kann an sich auf beliebige Weise erfolgen. Die Schadstoffe können physikalisch von dem die Schadstoffe absorbierenden Material gebunden werden. Es ist aber auch möglich, dass die Schadstoffe mittels einer chemischen Reaktion von dem die Schadstoffe absorbierenden Material gebunden werden, wobei diese beispielsweise in eine nicht flüchtige Verbindung überführt werden. Schließlich ist es auch möglich, dass die Schadstoffe in der die Schadstoffe absorbierenden Schicht in unschädliche Verbindungen zersetzt werden, beispielsweise Kohlendioxid oder Wasser, welche dann auch von der Schicht aus dem Schadstoffe absorbierenden Material ganz oder teilweise wieder abgegeben werden können.
  • Gemäß einer ersten Ausführungsform ist vorgesehen, dass die Schicht aus dem Schadstoffe absorbierenden Material zumindest ein physikalisches Adsorbermaterial umfasst, welches Schadstoffe physikalisch adsorbieren kann. Diese Ausführungsform eignet sich insbesondere für die Entfernung von relativ unpolaren Schadstoffen, wie beispielsweise aromatischen Kohlenwasserstoffen aus dem beim Abguss freigesetzten Gas.
  • Bevorzugt werden als physikalisches Adsorbermaterial Verbindungen eingesetzt, die eine hohe spezifische Oberfläche aufweisen. Bevorzugt werden Verbindungen eingesetzt, die eine spezifische Oberfläche von mehr als 800 m2/g, bevorzugt mehr als 1000 m2/g, besonders bevorzugt mehr als 1100 m2/g aufweisen. Die spezifische Oberfläche wird nach dem BET-Verfahren gemäß DIN 66 131 bestimmt.
  • Derartige physikalischen Adsorbermaterialien weisen bevorzugt eine relativ geringe Schüttdichte auf, welche bevorzugt im Bereich von 10 bis 2000 g/l gewählt wird. Ein Verfahren zur Bestimmung der Schüttdichte ist bei den Beispielen angegeben.
  • Bevorzugt weist das physikalische Adsorbermaterial eine Aufnahmekapazität für Jod von zumindest 300 mg/g, vorzugsweise zumindest 500 mg/g, besonders bevorzugt mehr als 800 mg/g auf. Die Aufnahmekapazität des physikalischen Adsorbermaterials für Jod wird nach der in der norm ASTM D 1510 beschriebenen Methode bestimmt.
  • Um eine ausreichende Gasdurchlässigkeit der Schicht aus dem Schadstoffe absorbierenden Material zu erreichen, wird die mittlere Korngröße (D50) des physikalischen Adsorbermaterials vorzugsweise größer als 100 µm, bevorzugt größer als 150 µm gewählt. Um einen gleichmäßigen Aufbau der Schicht zu erreichen, ist es bevorzugt, dass das physikalische Adsorbermaterial eine mittlere Korngröße (D50) von weniger als 500 µm aufweist. Die Korngrößenverteilung lässt sich beispielsweise durch Lasergranulometrie bestimmen.
  • Vorzugsweise ist das physikalische Adsorbermaterial ausgewählt aus der Gruppe, die gebildet ist aus Aktivkohle, feindisperser Kieselsäure, sauer aufgeschlossenen Tonen, Aschen und Cellulosen, wie Linters, Zellwolle, Viskose oder ähnliche Materialien. Bevorzugt ist das physikalische Adsorbermaterial in einem Anteil von 5 bis 50 Gew.-% in der Schicht aus dem Schadstoffe absorbierenden Material enthalten.
  • Gemäß einer weiteren Ausführungsform enthält die Schicht aus dem Schadstoffe absorbierenden Material zumindest ein chemisches Absorbermaterial, welches Schadstoffe durch eine chemische Reaktion binden kann. Die Art der chemischen Reaktion, welche zu einer Entfernung von Schadstoffen aus dem beim Abguss freigesetzten Gasstrom führt, unterliegt an sich keinen Beschränkungen. Die chemische Reaktion kann beispielsweise eine Neutralisation sein, mit welcher ein saurer Schadstoff, beispielsweise eine saure Schwefelverbindung, neutralisiert oder in ein Salz überführt und von dem chemischen Absorbermaterial gebunden wird. Es ist aber auch möglich, dass die chemische Reaktion eine Redox-Reaktion ist, bei welcher ein Schadstoff beispielsweise oxidiert und beispielsweise in unschädliche Verbindungen umgewandelt wird. Dazu kann in der Schicht aus dem Schadstoffe absorbierenden Material beispielsweise ein Oxidations- oder ein Reduktionsmittel enthalten sein oder auch ein Katalysator, welcher die Oxidation bzw. Reduktion des Schadstoffes katalysiert. Es ist aber auch möglich, Verbindungen in der Schicht aus dem Schadstoffe absorbierenden Material vorzusehen, welche die Schadstoffe koordinativ binden. Geeignete Verbindungen sind beispielsweise Cyclodextrine, welche schädliche Verbindungen einlagern können.
  • Das chemische Absorbermaterial ist bevorzugt in körniger Form in der Schicht aus dem Schadstoffe absorbierenden Material enthalten. Da sich das chemische Absorbermaterial durch die Reaktion mit Schadstoffen verändert, wird die mittlere Korngröße des chemischen Absorbermaterials bevorzugt kleiner gewählt als die mittlere Korngröße des physikalischen Adsorbermaterials. Vorzugsweise weist das chemische Absorbermaterial eine mittlere Korngröße (D50) von mehr als 10 µm, bevorzugt mehr als 20 µm auf. Gemäß einer Ausführungsform der Erfindung wird die mittlere Korngröße des chemischen Absorbermaterials kleiner als 100 µm, bevorzugt kleiner als 50 µm gewählt.
  • Gemäß einer bevorzugten Ausführungsform ist vorgesehen, dass das chemische Absorbermaterial ein basisches Material ist. Unter einem basischen Material wird ein Material oder eine Verbindung verstanden, die bei Kontakt mit Wasser zu einer alkalischen Reaktion führt. Der pH-Wert des Wassers erhöht sich bei Kontakt mit dem basischen Material auf mehr als 8, bevorzugt mehr als 9. Die Messung des pH-Werts kann beispielsweise mit einer Glaselektrode an einer Probe durchgeführt werden, die 10 g des basischen Materials pro Liter Wasser enthält. Diese Ausführungsform ist geeignet, saure Schadstoffe aus dem beim Abguss freigesetzten Gas zu entfernen. Solche sauren Schadstoffe entstehen beispielsweise, wenn das Bindemittel der Gießform schwefelhaltige Verbindungen enthält. Solche schwefelhaltigen Verbindungen sind beispielsweise Sulfonsäuren, wie sie beim Furan- oder Phenolharz-No-Bake-Verfahren eingesetzt werden.
  • Bevorzugt ist das basische Material ausgewählt aus Oxiden, Hydroxiden und Carbonaten der Alkalimetalle und Erdalkalimetalle. Diese basischen Materialien sind einfach und kostengünstig zugänglich und lassen sich ohne größere Schwierigkeiten verarbeiten. Es können sowohl die Carbonate als auch die Hydrogencarbonate eingesetzt werden. Besonders bevorzugt wird Calciumcarbonat und/oder Calciumoxid bzw. Calciumhydroxid als basisches Material eingesetzt.
  • Das zumindest eine chemische Absorbermaterial kann alleine in der Schicht aus dem Schadstoffe absorbierenden Material vorliegen oder auch neben dem physikalischen Adsorbermaterial. Bevorzugt wird eine Kombination aus chemischem Absorbermaterial und physikalischem Adsorbermaterial eingesetzt.
  • Bevorzugt ist das chemische Absorbermaterial in einem Anteil von 10 bis 20 Gew.-% in der Schicht aus dem Schadstoffe absorbierenden Material enthalten.
  • Neben dem physikalischen bzw. dem chemischen Absorbermaterial können noch weitere Substanzen in der Schicht aus dem Schadstoffe absorbierenden Material enthalten sein. Dabei kommen vorzugsweise Stoffe zum Einsatz, wie sie allgemein in Schlichten für den Metallguss verwendet werden.
  • Gemäß einer Ausführungsform ist in der Schicht aus dem Schadstoffe absorbierenden Material zumindest ein Feuerfeststoff enthalten, welcher eine mittlere Korngröße (D50) von zumindest 50 µm aufweist.
  • Als Feuerfeststoff können im Metallguss übliche Feuerfeststoffe verwendet werden. Beispiele für geeignete Feuerfeststoffe sind Quarz, Aluminiumoxid, Aluminiumsilicate, wie Pyropyllit, Kyanit, Andalusit oder Schamotte, Zirkonsande, Olivin, Talk, Glimmer, Grafit, Koks, Feldspat. Der Feuerfeststoff wird in Pulverform bereitgestellt. Die Korngröße wird dabei so gewählt, dass in der Absorberschicht ein stabiles Gefüge entsteht und dass die Schicht eine ausreichend hohe Porosität erhält, sodass die beim Abguss entstehenden Gase die Schicht ohne Entstehung eines übermäßigen Gegendrucks passieren können. Geeignet weist der Feuerfeststoff eine mittlere Korngröße im Bereich von 100 bis 500 µm, insbesondere bevorzugt im Bereich von 120 bis 200 µm auf.
  • Der Anteil des Feuerfeststoffs an der Schicht aus dem Schadstoffe absorbierenden Material wird vorzugsweise im Bereich von 30 bis 60 Gew.-%, bevorzugt im Bereich von 40 bis 50 Gew.-% gewählt.
  • Daneben kann in der Schicht beispielsweise noch ein Bindemittel enthalten sein. Als Bindemittel können übliche Bindemittel verwendet werden, wie beispielsweise Tone, insbesondere Bentonit. Es können aber auch andere Bindemittel enthalten sein, beispielsweise Kieselsol. Es können an sich alle Bindemittel enthalten sein, die in Schlichten verwendet werden. Dabei können sowohl anorganische als auch organische Bindemittel verwendet werden.
  • Die Schicht aus dem Schadstoffe absorbierenden Material weist vorzugsweise noch eine Restfeuchte auf. Dadurch können beispielsweise polare Schadstoffe, wie Amine, in der Schicht zurückgehalten werden. Ferner werden die beim Abguss freigesetzten Gase abgekühlt, wenn sie die Schicht aus dem Schadstoffe absorbierenden Material passieren, sodass ein Anteil der Schadstoffe in der Schicht niedergeschlagen wird. Vorzugsweise weist die Schicht aus dem Schadstoffe absorbierenden Material einen Wassergehalt im Bereich von 0 bis 60 Gew.-%, bevorzugt 5 bis 30 Gew.-%, besonders bevorzugt 10 bis 20 Gew.-% auf. Der Wassergehalt bezieht sich auf die Zusammensetzung der Schicht aus dem Schadstoffe absorbierenden Material vor dem Abguss.
  • Gemäß einer weiteren Ausführungsform umfasst die Schicht aus dem Schadstoffe absorbierenden Material ein poröses Trägergerüst. Auf das poröse Trägergerüst sind dann die Absorbermaterialien und die weiteren Komponenten der Absorberschicht aufgetragen. Bei der Berechnung der Anteile dieser Komponenten geht das Gewicht des porösen Trägergerüsts nicht ein.
  • Als poröses Trägergerüst kann an sich jedes Material verwendet werden, das ein ausreichend festes Gerüst für die Aufnahmen der weiteren Komponenten der Absorberschicht zur Verfügung stellt und welches eine ausreichend hohe Porosität bietet, dass das beim Abguss entstehende Gas die Schicht passieren kann. Als poröses Trägergerüst kann beispielsweise ein offenporiger fester Schaum verwendet werden oder bevorzugt ein Gewebe oder ein Vlies. Geeignete Materialien, aus welchen ein derartiges Gewebe oder Vlies hergestellt sein kann, ist beispielsweise Mineralwolle, Glaswolle, oder auch Matten aus Kunstfasern, beispielsweise Fasern aus perfluorierten Kohlenwasserstoffen.
  • Das poröse Trägergerüst ist bevorzugt in Form von Matten auf der Oberseite der Gießform angeordnet, wobei die Dicke der Matten vorzugsweise im Bereich von 0,5 bis 5 cm, bevorzugt im Bereich von 1 bis 4,5 cm gewählt werden.
  • Die Menge des Absorbermaterials und der weiteren Komponenten der Schicht aus dem Schadstoffe absorbierenden Material, mit welchen das poröser Trägermaterial belegt ist, wird vorzugsweise im Bereich von 0 bis 10 g/cm3, bevorzugt 0,01 bis 1,0 g/cm3 gewählt, berechnet als Trockensubstanz und bezogen auf das Gewicht der Schicht aus dem Schadstoffe absorbierenden Material, einschließlich des porösen Trägergerüsts.
  • Die erfindungsgemäße Gießform zeichnet sich durch eine Absorberschicht aus, in welche Schadstoffe absorbiert oder adsorbiert werden, die während des Abgusses entstehen und zusammen mit weiteren gasförmigen und festen Komponenten aus der Gießform austreten. Ein weiterer Gegenstand der Erfindung ist eine schadstoffabsorbierende Beschichtungsmasse, mit welcher eine solche Absorberschicht hergestellt werden kann.
  • Eine schadstoffabsorbierende Beschichtungsmasse für die Beschichtung von Gießformen für den Metallguss enthält erfindungsgemäß zumindest ein Schadstoffe absorbierendes Material.
  • Die Komponenten einer derartigen schadstoffabsorbierenden Beschichtungsmasse, insbesondere die physikalischen Adsorbermaterialien und die chemischen Absorbermaterialien, wurden zum Teil schon bei der Beschreibung der erfindungsgemäßen Gießform näher erläutert. Auf die entsprechenden Passagen wird Bezug genommen. Die Beschichtungsmasse ähnelt in ihrer Zusammensetzung an sich einer Schlichte, wie sie bereits bei der Herstellung von Gießformen verwendet wird, wobei jedoch zusätzlich zumindest ein Schadstoffe absorbierendes Material enthalten ist.
  • Die Beschichtungsmasse umfasst bevorzugt eine Trägerflüssigkeit, in welcher die weiteren Bestandteile der Beschichtungsmasse suspendiert bzw. gelöst werden können. Diese Trägerflüssigkeit wird geeignet so ausgewählt, dass sie bei den im Metallguss üblichen Bedingungen vollständig verdampft werden kann. Die Trägerflüssigkeit sollte daher bevorzugt bei Normaldruck einen Siedepunkt von weniger als etwa 130°C, vorzugsweise weniger als 110°C aufweisen. Als Trägerflüssigkeit wird vorzugsweise Wasser verwendet. Es können jedoch auch Alkohole als Trägerflüssigkeit verwendet werden, wie beispielsweise Ethanol oder Isopropanol, oder auch Gemische dieser Trägerflüssigkeiten.
  • Die Beschichtungsmasse wird bevorzugt in Form einer Suspension oder einer Paste bereitgestellt. Der Feststoffgehalt der Beschichtungsmasse wird daher vorzugsweise im Bereich von 20 bis 60 Gew.-%, bevorzugt im Bereich von 30 bis 50 Gew.-% gewählt. Die Beschichtungsmasse lässt sich dann mit üblichen Methoden, wie Streichen oder Sprühen auf die Oberfläche der Gießform auftragen.
  • Sofern gemäß einer bevorzugten Ausführungsform die oben beschriebenen physikalischen Adsorbermaterialien in der Beschichtungsmasse enthalten sind, wird ihr Anteil vorzugsweise im Bereich von 2,5 bis 25 Gew.-%, bevorzugt 4 bis 15 Gew.-% gewählt, bezogen auf die gebrauchsfertige Beschichtungsmasse.
  • Sofern gemäß einer weiteren Ausführungsform die oben beschriebenen chemischen Absorbermaterialien in der Beschichtungsmasse enthalten sind, wird ihr Anteil vorzugsweise im Bereich von 3 bis 15 Gew.-%, bevorzugt 5 bis 10 Gew.-% gewählt, bezogen auf die gebrauchsfertige Beschichtungsmasse.
  • Sofern gemäß einer weiteren Ausführungsform die oben beschriebenen Feuerfeststoffe in der Beschichtungsmasse enthalten sind, wird ihr Anteil vorzugsweise im Bereich von 10 bis 30 Gew.-%, bevorzugt 10 bis 20 Gew.-% gewählt, bezogen auf die gebrauchsfertige Beschichtungsmasse.
  • Um ein Absinken der festen Bestandteile der Beschichtungsmasse zu verhindern und gleichzeitig einen gleichmäßigen Auftrag auf der Gießform erreichen zu können, wird die Viskosität der Beschichtungsmasse vorzugsweise im Bereich von 1000 bis 3000 mPas, insbesondere bevorzugt 1200 bis 2000 mPas gewählt.
  • In der Trägerflüssigkeit ist vorzugsweise zumindest ein pulverförmiger Feuerfeststoff suspendiert. Als Feuerfeststoff können die bereits genannten Feuerfeststoffe verwendet werden. Beispiele für geeignete Feuerfeststoffe sind Quarz, Aluminiumoxid, Aluminiumsilicate, wie Pyropyllit, Kyanit, Andalusit oder Schamotte, Zirkonsande, Olivin, Talk, Glimmer, Grafit, Koks, Feldspat. Der Feuerfeststoff wird in Pulverform bereitgestellt. Die Korngröße wird dabei so gewählt, dass in der Absorberschicht ein stabiles Gefüge entsteht und dass sich die Beschichtungsmasse beispielsweise mit einer Sprühvorrichtung problemlos auf den Gasaustrittsflächen, bevorzugt der Oberseite der Gießform verteilen lässt. Geeignet weist der Feuerfeststoff eine mittlere Korngröße im Bereich von 50 bis 600 µm, insbesondere bevorzugt im Bereich von 100 bis 500 µm auf. Als Feuerfeststoff sind insbesondere Materialien geeignet, welche einen Schmelzpunkt von mehr als 1200 °C aufweisen.
  • Gemäß einer bevorzugten Ausführungsform umfasst die Beschichtungsmasse als weiteren Bestandteil zumindest ein Bindemittel. Das Bindemittel ermöglicht eine bessere Fixierung der Beschichtung auf der Oberfläche, insbesondere auf der Oberseite der Gießform. Außerdem wird durch das Bindemittel die mechanische Stabilität der Beschichtung erhöht, so dass eine geringere Erosion bei mechanischer Belastung oder unter der Einwirkung des die Schicht durchströmenden Gases beobachtet wird. Als Bindemittel können übliche Bindemittel verwendet werden, wie beispielsweise Tone, insbesondere Bentonit. Andere beispielhafte Bindemittel sind Stärke, Dextrin, Peptide, Polyvinylalkohol, Polyacrylsäure, Polystyrol- und/oder Polyvinylacetat-Polyacylatdispersionen. Allgemein werden bevorzugt Bindemittelsysteme verwendet, die sich in wässrigen Systemen einsetzen lassen und die nach dem Aushärten unter Einwirkung von Luftfeuchtigkeit nicht rückerweichen.
  • Gemäß einer weiteren Ausführungsform enthält die Beschichtungsmasse Kieselsol als Bindemittel. Der Anteile des Bindemittels wird dabei bevorzugt im Bereich von 0,1 bis 20 Gew.-%, insbesondere bevorzugt 0,5 bis 5 Ges.-%, bezogen auf das Gewicht der Beschichtungsmasse gewählt. Das Kieselsol wird bevorzugt durch Neutralisieren von Wasserglas hergestellt. Die erhaltene amorphe Kieselsäure weist dabei bevorzugt eine spezifische Oberfläche im Bereich von 10 bis 1000 m2/g, insbesondere bevorzugt im Bereich von 30 bis 300 m2/g auf.
  • Die Beschichtungsmasse kann weiter mindestens ein Stellmittel umfassen. Das Stellmittel bewirkt eine Erhöhung der Viskosität der Beschichtungsmasse, so dass die festen Bestandteile der Beschichtungsmasse in der Suspension nicht bzw. nur in geringem Ausmaß absinken. Zur Erhöhung der Viskosität können sowohl organische als auch anorganische Materialien oder Gemische dieser Materialien eingesetzt werden. Geeignete anorganische Stellmittel sind beispielsweise starke quellfähige Tone. Als hochquellfähiges Schichtsilikat können sowohl Zwei-Schicht-Silikate als auch Drei-Schicht-Silikate verwendet werden, wie z.B. Attapulgit, Serpentine, Kaoline, Smektite, wie Saponit, Montmorillonit, Beidellit und Nontronit, Vermiculit, Illit, Hectorit und Glimmer. Hectorit verleiht der Beschichtungsmasse auch thixotrope Eigenschaften, wodurch die Ausbildung der Absorberschicht auf der Gießform erleichtert wird, da die Beschichtungsmasse nach dem Aufbringen nicht mehr fließt.
  • Als organische Stellmittel kommen beispielsweise quellfähige Polymere in Frage, wie Carboxymethyl-, Methyl-, Ethyl-, Hydroxyethyl- und Hydroxyproylcellulose, Pflanzenschleime, Polyvinylalkohole, Polyvinylpyrrolidon, Pektin, Gelatine, Agar Agar, Polypeptide und Alginaten.
  • Weiter kann die Beschichtungsmasse weitere Bestandteile enthalten, die in Schlichten üblich sind, beispielsweise Konservierungsstoffe, Entschäumer, Netz- und Dispergiermittel.
  • Als Suspensionsmittel können beispielsweise Zelluloseether, Alginate, Pflanzenschleime und/oder Pektine verwendet werden. Beispiele für geeignete Netz- und Dispergiermittel sind ionische und nichtionische, vorzugsweise nichtionische Tenside.
  • Der Anteil dieser weiteren Bestandteile an der gebrauchsfertigen Beschichtungsmasse wird Bevorzugt geringer als 1 Gew.-% gewählt.
  • Gemäß einer bevorzugten Ausführungsform wird die Beschichtungsmasse in einer Form bereitgestellt, in welcher sie auf einem porösen Trägergerüst aufgetragen ist. Geeignete Trägermaterialien wurden bereits weiter oben beschrieben. Die auf das poröse Trägergerüst aufgebrachte Beschichtungsmasse kann in der Weise bereitgestellt werden, dass entsprechende Matten bereitgestellt werden, welche die Beschichtungsmasse bereits enthalten. Diese können dann entsprechend der Maße der zu bedeckenden Gasaustrittsflächen der Gießform, beispielsweise der Oberseite der Gießform zurechtgeschnitten und auf diese aufgelegt werden. Bei dieser Ausführungsform wird die Beschichtungsmasse bevorzugt in noch feuchtem Zustand bereitgestellt. Der Wassergehalt der Beschichtungsmasse wird dabei vorzugsweise im Bereich von 5 bis 30 Gew.-%, bevorzugt im Bereich von 10 bis 20 Gew.-%, bezogen auf die Beschichtungsmasse, gewählt.
  • Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung einer Gießform gemaß Anspruch 11.
  • Beim erfindungsgemäßen Verfahren wird
    • eine Formstoffmischung bereitgestellt, welche zumindest einen feuerfesten Formstoff und zumindest ein Bindemittel umfasst;
    • die Formstoffmischung zu einer Gießform geformt, und
    • die Gasaustrittsflächen der Gießform zumindest abschnittsweise mit einer Schicht aus einem Schadstoffe absorbierenden Material bedeckt.
  • Zunächst wird in an sich bekannter Weise aus einer Formstoffmischung eine Gießform hergestellt. Zur Herstellung der Formstoffmischung wird ein feuerfester Formstoff mit einem Bindemittel vermischt und dann zu einer Gießform oder zu einem Teilstück einer Gießform geformt.
  • Als feuerfester Formstoff können an sich alle feuerfesten Stoffe verwendet werden, die für die Herstellung von Formkörpern für die Gießereiindustrie üblich sind. Beispiele geeigneter feuerfester Formstoffe sind Quarzsand, Zirkonsand, Olivinsand, Aluminiumsilikatsand und Chromerzsand bzw. deren Gemische. Bevorzugt wird Quarzsand verwendet. Der feuerfeste Formstoff sollte eine ausreichende Partikelgröße aufweisen, so dass der aus der Formstoffmischung hergestellte Formkörper eine ausreichend hohe Porosität aufweist, um ein Entweichen flüchtiger Verbindungen während des Gießvorgangs zu ermöglichen. Bevorzugt weisen mindestens 70 Gew.-%, insbesondere bevorzugt mindestens 80 Gew.-% des feuerfesten Formstoffs eine Partikelgröße ≤ 290 µm auf. Die durchschnittliche Partikelgröße des feuerfesten Formstoffs soll vorzugsweise zwischen 100 und 350 µm betragen. Die Partikelgröße lässt sich beispielsweise durch Siebanalyse ermitteln. Der feuerfeste Formstoff soll in rieselfähiger Form vorliegen, sodass sich ein Bindemittel oder ein flüssiger Katalysator beispielsweise in einem Mischer gut auf die Körner des feuerfesten Formstoffs auftragen lässt.
  • Gemäß einer Ausführungsform können als feuerfester Formstoff regenerierte Altsande verwendet werden. Aus dem Altsand werden größere Aggregate entfernt und der Altsand ggf. kornvereinzelt. Nach einer mechanischen bzw. thermischen Behandlung werden die Altsande entstaubt und können dann wiederverwendet werden. Vor der erneuten Verwendung wird bevorzugt die Säurebilanz des regenerierten Altsandes geprüft. Insbesondere während einer thermischen Regenerierung können im Sand enthaltene Nebenprodukte, wie Carbonate, in die entsprechenden Oxide umgewandelt werden, die dann alkalisch reagieren. Werden Bindemittel verwendet, die unter Katalyse durch eine Säure ausgehärtet werden, kann in diesem Fall die als Katalysator zugesetzte Säure durch die alkalischen Komponenten des regenerierten Altsandes neutralisiert werden. Ebenso kann, beispielsweise bei einer mechanischen Regenerierung eines Altsandes, Säure im Altsand verbleiben, welche bei der Herstellung des Bindemittels berücksichtigt werden muss, da sich sonst beispielsweise die Verarbeitungszeit der Formstoffmischung verkürzt werden kann.
  • Der feuerfeste Formstoff sollte trocken sein. Vorzugsweise enthält der feuerfeste Formstoff weniger als 1 Gew.-% Wasser. Um eine vorzeitige Aushärtung des Bindemittels durch die Einwirkung von Wärme zu verhindern, sollte der feuerfeste Formstoff nicht zu warm sein. Bevorzugt sollte der feuerfeste Formstoff eine Temperatur im Bereich von 20 bis 35 °C aufweisen. Ggf. kann der feuerfeste Formstoff gekühlt bzw. erwärmt werden.
  • Als Bindemittel können an sich alle Bindemittel verwendet werden, wie sie für die Herstellung von Gießformen für den Metallguss üblich sind. Es können sowohl anorganische als auch organische Bindemittel verwendet werden. Als anorganisches Bindemittel kann beispielsweise Wasserglas verwendet werden, welches thermisch oder durch Einleiten von Kohlendioxid ausgehärtet werden kann. Beispielhafte organische Bindemittel sind Polyurethan-No-Bake- und Cold-Box-Bindmittel, Bindemittel auf der Basis von Furanharzen oder Phenolharzen, oder auch Epoxy-Acrylatbindemittel.
  • Bindemittel auf der Basis von Polyurethanen sind im Allgemeinen aus zwei Komponenten aufgebaut, wobei eine erste Komponente ein Phenolharz und eine zweite Komponente ein Polyisocyanat enthält. Diese beiden Komponenten werden mit dem feuerfesten Formstoff gemischt und die Formstoffmischung durch Rammen, Blasen, Schießen oder ein anderes Verfahren in eine Form gebracht, verdichtet und anschließend ausgehärtet. Je nach dem Verfahren, mit welchem der Katalysator in die Formstoffmischung eingebracht wird, unterscheidet man zwischen dem "Polyurethan-No-Bake-Verfahren" und dem "Polyurethan-Cold-Box-Verfahren".
  • Beim No-Bake-Verfahren wird ein flüssiger Katalysator, im Allgemeinen ein flüssiges tertiäres Amin, in die Formstoffmischung eingebracht, ehe diese in eine Form gebracht und ausgehärtet wird. Für die Herstellung der Formstoffmischung werden Phenolharz, Polyisocyanat und Aushärtungskatalysator mit dem feuerfesten Formstoff gemischt. Dabei kann beispielsweise in der Weise vorgegangen werden, dass der feuerfeste Formstoff zunächst mit einer Komponente des Bindemittels umhüllt wird, und dann die andere Komponente zugegeben wird. Der Aushärtungskatalysator wird dabei einer der Komponenten zugegeben. Die fertig zubereitete Formstoffmischung muss eine ausreichend lange Verarbeitungszeit aufweisen, sodass die Formstoffmischung ausreichend lange plastisch verformt und zu einem Formkörper verarbeitet werden kann. Die Polymerisation muss dazu entsprechend langsam verlaufen, sodass nicht bereits in den Vorratsbehältern oder Zuführungsleitungen eine Aushärtung der Formstoffmischung erfolgt. Andererseits darf die Aushärtung nicht zu langsam erfolgen, um einen ausreichend hohen Durchsatz bei der Herstellung von Gießformen zu erreichen. Die Verarbeitungszeit kann beispielsweise durch Zugabe von Verzögerern beeinflusst werden, welche die Aushärtung der Formstoffmischung verlangsamen. Ein geeigneter Verzögerer ist beispielsweise Phosphoroxychlorid.
  • Beim Cold-Box-Verfahren wird die Formstoffmischung zunächst ohne Katalysator in eine Form gebracht. Durch die Formstoffmischung wird anschließend ein gasförmiges tertiäres Amin geleitet, welches gegebenenfalls mit einem inerten Trägergas versetzt sein kann. Bei Kontakt mit dem gasförmigen Katalysator bindet das Bindemittel sehr schnell ab, so dass ein hoher Durchsatz bei der Herstellung von Gießformen erzielt wird.
  • Die Bindemittelsysteme auf Basis von Polyurethanen enthalten eine Polyolkomponente sowie eine Polyisocyanatkomponente, wobei hier an sich auf bekannte Komponenten zurückgegriffen werden kann.
  • Die Polyisocyanatkomponente des Bindemittelsystems kann ein aliphatisches, cycloaliphatisches oder aromatisches Isocyanat umfassen. Das Polyisocyanat enthält vorzugsweise mindestens 2 Isocyanatgruppen, vorzugsweise 2 bis 5 Isocyanatgruppen pro Molekül. Je nach den gewünschten Eigenschaften können auch Mischungen von Isocyanaten eingesetzt werden. Die verwendeten Isocyanate können aus Gemischen von Monomeren, Oligomeren und Polymeren bestehen und werden deshalb im Folgenden als Polyisocyanate bezeichnet.
  • Als Polyisocyanatkomponente kann an sich jedes Polyisocyanat eingesetzt werden, das in Polyurethan-Bindemitteln für Formstoffmischungen für die Gießereiindustrie üblich ist. Geeignete Polyisocyanate umfassen aliphatische Polyisocyanate, z.B. Hexamethylendiisocyanat, alicyclische Polyisocyanate, wie z.B. 4,4'-Dicyclohexylmethandiisocyanat, und Dimethylderivate hiervon. Beispiele geeigneter aromatischer Polyisocyanate sind Toluol-2,4-diisocyanat, Toluol-2,6-diisocyanat, 1,5-Naphthalindiisocyanat, Xylylendiisocyanat und Methylderivate hiervon, Diphenylmethan-4,4'-diisocyanat und Polymethylen-Polyphenyl-Polyisocyanat.
  • Obwohl prinzipiell alle herkömmlichen Polyisocyanate mit dem phenolischen Harz unter Bildung einer vernetzten Polymerstruktur reagieren, werden bevorzugt aromatische Polyisocyanate eingesetzt, besonders bevorzugt Polymethylen-Polyphenyl-Polyisocyanat, wie z.B. kommerziell erhältliche Gemische von Diphenyl-methan-4,4'-diisocyanat, seinen Isomeren und höheren Homologen.
  • Die Polyisocyanate können sowohl in Substanz als auch gelöst in einem inerten oder reaktiven Lösungsmittel eingesetzt werden. Unter einem reaktiven Lösungsmittel wird dabei ein Lösungsmittel verstanden, welches eine reaktive Gruppe aufweist, so dass es beim Abbinden des Bindemittels in das Gerüst des Bindemittels eingebaut wird. Bevorzugt werden die Polyisocyanate in verdünnter Form eingesetzt, um wegen der niedrigeren Viskosität der Lösung die Körner des feuerfesten Formstoffs besser mit einem dünnen Film des Bindemittels umhüllen zu können.
  • Die Polyisocyanate oder ihre Lösungen in organischen Lösungsmitteln werden in ausreichender Konzentration eingesetzt, um die Aushärtung der Polyolkomponente zu bewerkstelligen, üblicherweise in einem Bereich von 10 bis 500 Gew.-% bezogen auf das Gewicht der Polyolkomponente. Bevorzugt werden 20 bis 300 Gew.-%, bezogen auf die gleiche Basis, eingesetzt. Flüssige Polyisocyanate können in unverdünnter Form eingesetzt werden, während feste oder viskose Polyisocyanate in organischen Lösungsmitteln gelöst werden. Bis zu 80 Gew.-%, vorzugsweise bis zu 60 Gew.-%, besonders bevorzugt bis zu 40 Gew.-% der Isocyanatkomponente können aus Lösungsmitteln bestehen.
  • Bevorzugt wird das Polyisocyanat in einer Menge eingesetzt, dass die Anzahl der Isocyanatgruppen 80 bis 120 % bezogen auf die Anzahl der freien Hydroxylgruppen der Polyolkomponente beträgt.
  • Als Polyolkomponente können an sich alle in Polyurethanbindemitteln verwendeten Polyole eingesetzt werden. Die Polyolkomponente enthält mindestens 2 Hydroxylgruppen, die mit den Isocyanatgruppen der Polyisocyanatkomponente reagieren können, um eine Vernetzung des Bindemittels beim Aushärten erreichen zu können, und dadurch eine bessere Festigkeit des ausgehärteten Formkörpers.
  • Als Polyole werden vorzugsweise Phenolharze verwendet, die durch Kondensation von Phenolen mit Aldehyden, vorzugsweise Formaldehyd, in flüssiger Phase bei Temperaturen bis zu etwa 180°C in Gegenwart katalytischer Mengen von Metall, erhalten werden. Die Verfahren zur Herstellung derartiger Phenolharze sind an sich bekannt.
  • Die Polyolkomponente wird vorzugsweise flüssig bzw. in organischen Lösungsmitteln gelöst eingesetzt, um eine homogene Verteilung des Bindemittels auf dem feuerfesten Formstoff zu ermöglichen. Die Polyolkomponente wird vorzugsweise in wasserfreier Form eingesetzt, weil die Reaktion der Isocyanatkomponente mit Wasser eine unerwünschte Nebenreaktion ist. Nicht-wässrig oder wasserfrei soll in diesem Zusammenhang einen Wassergehalt der Polyolkomponente von vorzugsweise kleiner als 5 Gew.-%, bevorzugt kleiner als 2 Gew.-%, bedeuten.
  • Unter "Phenolharz" wird das Reaktionsprodukt von Phenol, Phenolderivaten, Bisphenolen sowie höherer Phenol-Kondensationsprodukte mit einem Aldehyd verstanden. Die Zusammensetzung des Phenolharzes ist abhängig von den spezifisch ausgewählten Ausgangsstoffen, dem Verhältnis der Ausgangsstoffe und den Reaktionsbedingungen. So spielen z.B. die Art des Katalysators, die Zeit und die Reaktionstemperatur eine wichtige Rolle, ebenso wie die Anwesenheit von Lösungsmitteln und anderen Stoffen.
  • Das Phenolharz liegt typischerweise als Gemisch verschiedener Verbindungen vor und kann in sehr unterschiedlichen Verhältnissen Additionsprodukte, Kondensationsprodukte und nicht umgesetzte Ausgangsverbindungen, wie Phenole, Bisphenol und/oder Aldehyd enthalten.
  • Als "Additionsprodukt" werden Reaktionsprodukte verstanden, in denen eine organische Komponente wenigstens einen Wasserstoff an einem vorher nicht substituierten Phenol oder einem Kondensationsprodukt substituiert. Unter "Kondensationsprodukt" werden Reaktionsprodukte mit zwei oder mehr Phenolringen verstanden.
  • Als Kondensationsreaktionen von Phenolen mit Aldehyden resultieren Phenolharze, die in Abhängigkeit von den Mengenverhältnissen der Edukte, den Reaktionsbedingungen und den eingesetzten Katalysatoren in zwei Produktklassen, die Novolake und Resole, eingeteilt werden:
    • Novolake sind lösliche, schmelzbare, nicht selbsthärtende und lagerstabile Oligomere mit einem Molekülgewicht im Bereich von ungefähr 500 bis 5.000 g/Mol. Sie fallen bei der Kondensation von Aldehyden und Phenolen im Molverhältnis von 1 : >1 in Gegenwart saurer Katalysatoren an. Novolake sind methylolgruppenfreie Phenolharze, in denen die Phenylkerne über Methylenbrücken verknüpft sind. Sie können nach Zusatz von Härtungsmitteln, wie Formaldehyd spendenden Mitteln, bevorzugt Hexamethylentetramin, bei erhöhter Temperatur unter Vernetzung gehärtet werden.
  • Resole sind Gemische von Hydroxymethylphenolen, die über Methylen- und Methylenetherbrücken verknüpft sind und durch Reaktion von Aldehyden und Phenolen im Molverhältnis von 1 : <1, gegebenenfalls in Gegenwart eines Katalysators, z.B. eines basischen Katalysators, erhältlich sind. Sie weisen ein Molgewicht Mw von -< 10.000 g/mol auf.
  • Die als Polyolkomponente besonders geeigneten Phenolharze sind unter der Bezeichnung "o-o'" oder "high-ortho"-Novolake bzw. Benzyletherharze bekannt. Diese sind durch Kondensation von Phenolen mit Aldehyden in schwach saurem Medium unter Verwendung geeigneter Katalysatoren erhältlich.
  • Zur Herstellung von Benzyletherharzen geeignete Katalysatoren sind Salze zweiwertiger Ionen von Metallen, wie Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca und Ba. Bevorzugt wird Zinkacetat verwendet. Die eingesetzte Menge ist nicht kritisch. Typische Mengen an Metallkatalysator betragen 0,02 bis 0,3 Gew.-%, bevorzugt 0,02 bis 0,15 Gew.-%, bezogen auf die Gesamtmenge an Phenol und Aldehyd.
  • Zur Herstellung der Phenolharze sind alle herkömmlich verwendeten Phenole geeignet. Neben unsubstituierten Phenolen können substituierte Phenole oder Gemische hiervon eingesetzt werden. Die Phenolverbindungen sind entweder in beiden ortho-Positionen oder in einer ortho- und in der para-Position nicht substituiert, um eine Polymerisation zu ermöglichen. Die verbleibenden Ring-Kohlenstoffatome können substituiert sein. Die Wahl des Substituenten ist nicht besonders beschränkt, sofern der Substituent die Polymerisation des Phenols oder des Aldehyds nicht nachteilig beeinflusst. Beispiele substituierter Phenole sind alkylsubstituierte Phenole, alkoxysubstituierte Phenole und aryloxysubstituierte Phenole.
  • Die vorstehend genannten Substituenten haben beispielsweise 1 bis 26, bevorzugt 1 bis 15 Kohlenstoffatome. Beispiele geeigneter Phenole sind o-Kresol, m-Kresol, p-Kresol, 3,5-Xylol, 3,4-Xylol, 3,4,5-Trimethylphenol, 3-Ethylphenol, 3,5-Diethylphenol, p-Butylphenol, 3,5-Dibutylphenol, p-Amylphenol, Cyclohexylphenol, p-Octylphenol, p-Nonylphenol, 3,5-Dicyclohexylphenol, p-Crotylphenol, p-Phenylphenol, 3,5-Dimethoxyphenol und p-Phenoxyphenol.
  • Besonders bevorzugt ist Phenol selbst. Auch höher kondensierte Phenole, wie Bisphenol A, sind geeignet. Darüber hinaus eignen sich auch mehrwertige Phenole, die mehr als eine phenolische Hydroxylgruppe aufweisen. Bevorzugte mehrwertige Phenole weisen 2 bis 4 phenolische Hydroxylgruppen auf. Spezielle Beispiele geeigneter mehrwertiger Phenole sind Brenzkatechin, Resorcin, Hydrochinon, Pyrogallol, Fluoroglycin, 2,5-Dimethylresorcin, 4,5-Dimethylresorcin, 5-Methylresorcin oder 5-Ethylresorcin.
  • Es können auch Gemische aus verschiedenen ein- und mehrwertigen und/oder substituierten und/oder kondensierten Phenolkomponenten für die Herstellung der Polyolkomponente verwendet werden.
  • In einer Ausführungsform werden Phenole der allgemeinen Formel I:
    Figure imgb0002
  • zur Herstellung der Phenolharzkomponente verwendet, wobei A, B und C unabhängig voneinander aus einem Wasserstoffatom, einem verzweigten oder unverzweigten Alkylrest, der beispielsweise 1 bis 26, vorzugsweise 1 bis 15 Kohlenstoffatome aufweisen kann, einem verzweigten oder unverzweigten Alkoxyrest, der beispielsweise 1 bis 26, vorzugsweise 1 bis 15 Kohlenstoffatome aufweisen kann, einem verzweigten oder unverzweigten Alkenoxyrest, der beispielsweise 1 bis 26, vorzugsweise 1 bis 15 Kohlenstoffatome aufweisen kann, einem Aryl- oder Alkylarylrest, wie beispielsweise Bisphenyle, ausgewählt sind.
  • Als Aldehyd zur Herstellung der Phenolharzkomponente eignen sich Aldehyde der Formel:

            R-CHO,

    wobei R ein Wasserstoffatom oder ein Kohlenstoffatomrest mit vorzugsweise 1 bis 8, besonders bevorzugt 1 bis 3 Kohlenstoffatomen ist. Spezielle Beispiele sind Formaldehyd, Acetaldehyd, Propionaldehyd, Furfurylaldehyd und Benzaldehyd. Besonders bevorzugt wird Formaldehyd eingesetzt, entweder in seiner wässrigen Form, als para-Formaldehyd oder Trioxan.
  • Um die Phenolharze zu erhalten, sollte eine mindestens äquivalente Molzahl an Aldehyd, bezogen auf die Molzahl der Phenolkomponente, eingesetzt werden. Bevorzugt beträgt das Molverhältnis Aldehyd zu Phenol 1 : 1,0 bis 2,5 : 1, besonders bevorzugt 1,1 : 1 bis 2,2 : 1, insbesondere bevorzugt 1,2 : 1 bis 2,0 : 1.
  • Die Herstellung der Phenolharzkomponente erfolgt nach dem Fachmann bekannten Verfahren. Dabei wird das Phenol und der Aldehyd unter im Wesentlichen wasserfreien Bedingungen in Gegenwart eines zweiwertigen Metallions bei Temperaturen von vorzugsweise weniger als 130°C umgesetzt. Das entstehende Wasser wird abdestilliert. Dazu kann der Reaktionsmischung ein geeignetes Schleppmittel zugesetzt werden, beispielsweise Toluol oder Xylol, oder die Destillation wird bei reduziertem Druck durchgeführt.
  • Für das Bindemittel der Formstoffmischung wird die Phenolkomponente mit einem Aldehyd, bevorzugt zu Benzyletherharzen, umgesetzt. Die Umsetzung mit einem primären oder sekundären aliphatischen Alkohol zu einem alkoxymodifizierten Phenolharz im Einstufen- oder Zweistufenverfahren ( EP-B-0 177 871 und EP 1 137 500 ) ist ebenfalls möglich. Beim Einstufenverfahren werden das Phenol, der Aldehyd und der Alkohol in Gegenwart eines geeigneten Katalysators zur Reaktion gebracht. Beim Zweistufenverfahren wird zunächst ein nicht modifiziertes Harz hergestellt, das anschließend mit einem Alkohol umgesetzt wird. Bei der Verwendung alkoxymodifizierter Phenolharze besteht bezüglich des Molverhältnisses an sich keine Beschränkung, jedoch wird die Alkoholkomponente bevorzugt in einem Molverhältnis Alkohol : Phenol von weniger als 0,25 eingesetzt, so dass weniger als 25 % der Hydroxymethylgruppen verethert sind. Geeignete Alkohole sind primäre und sekundäre aliphatische Alkohole mit einer Hydroxygruppe und 1 bis 10 Kohlenstoffatomen. Geeignete primäre und sekundäre Alkohole sind beispielsweise Methanol, Ethanol, Propanol, n-Butanol und n-Hexanol. Besonders bevorzugt sind Methanol und n-Butanol.
  • Das Phenolharz wird bevorzugt so gewählt, dass eine Vernetzung mit der Polyisocyanatkomponente möglich ist. Für den Aufbau eines Netzwerkes sind Phenolharze, die Moleküle mit mindestens zwei Hydroxylgruppen im Molekül umfassen, besonders geeignet. Die Phenolharzkomponente bzw. die Isocyanatkomponente des Bindemittelsystems wird bevorzugt als Lösung in einem organischen Lösungsmittel oder einer Kombination von organischen Lösungsmitteln eingesetzt. Lösungsmittel können erforderlich sein, um die Komponenten des Bindemittels in einem ausreichend niedrigviskosen Zustand zu halten. Dieser ist u.a. erforderlich, um eine gleichmäßige Vernetzung des feuerfesten Formstoffes und dessen Rieselfähigkeit zu erhalten.
  • Als Lösungsmittel für die Polyisocyanat- bzw. die Polyolkomponente des Bindemittelsystems auf Basis von Polyurethanen können an sich alle Lösungsmittel eingesetzt werden, die konventionell in derartigen Bindemittelsystemen für die Gießereitechnik Verwendung finden. Als Lösungsmittel eignen sich beispielsweise sauerstoffreiche, polare, organische Lösungsmittel. Geeignet sind vor allem Dicarbonsäureester, Glykoletherester, Glykoldiester, Glykoldiether, cyclische Ketone, cyclische Ester oder cyclische Carbonate. Bevorzugt werden Dicarbonsäureester, cyclische Ketone und cyclische Carbonate verwendet. Dicarbonsäureester weisen die Formel RaOOC-Rb-COORa auf, wobei die Reste Ra jeweils unabhängig voneinander eine Alkylgruppe mit 1 bis 12, bevorzugt 1 bis 6 Kohlenstoffatomen darstellen und Rb eine Alkylengruppe, also eine zweibindige Alkylgruppe, mit 1 bis 12, bevorzugt 1 bis 6 Kohlenstoffatomen ist. Rb kann auch ein oder mehrere Kohlenstoff-Kohlenstoff-Doppelbindungen umfassen. Beispiele sind Dimethylester von Carbonsäuren mit 4 bis 10 Kohlenstoffatomen, die z.B. unter der Bezeichnung "dibasic ester" (DBE) von Invista International S.à.r.l., Genf, CH, erhältlich sind. Glykoletherester sind Verbindungen der Formel Rc-O-Rd-OOCRe, wobei Rc eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, Rd eine Ethylengruppe, eine Propylengruppe oder ein oligomeres Ethylenoxid bzw. Propylenoxid und Re eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen ist. Bevorzugt sind Glykoletheracetate, z.B. Butylglykolacetat. Glykoldiester weisen entsprechend die allgemeine Formel ReCOO-RdOOCRe auf, wobei Rd und Re wie vorstehend definiert sind und die Reste Re jeweils unabhängig voneinander ausgewählt werden. Bevorzugt sind Glykoldiacetate, wie beispielsweise Propylenglykoldiacetat. Glykoldiether lassen sich durch die Formel Rc-O-Rd-O-Rc charakterisieren, wobei Rc und Rd wie vorstehend definiert sind und die Reste Rc jeweils unabhängig voneinander ausgewählt werden. Ein geeigneter Glykoldiether ist beispielsweise Dipropylenglykoldimethylether. Cyclische Ketone, cyclische Ester und cyclische Carbonate mit 4 bis 5 Kohlenstoffatomen sind ebenfalls geeignet. Ein geeignetes cyclisches Carbonat ist beispielsweise Propylencarbonat. Die Alkyl-und Alkylengruppen können jeweils verzweigt oder unverzweigt sein.
  • Der Anteil des Lösungsmittels am Bindemittelsystem wird bevorzugt nicht zu hoch gewählt, da das Lösungsmittel während der Herstellung und Anwendung des aus der Formstoffmischung hergestellten Formkörpers verdampft und damit beispielsweise zu Geruchsbelästigungen führen kann oder beim Abguss zu einer Rauchentwicklung führt. Bevorzugt wird der Anteil des Lösungsmittels am Bindemittelsystem geringer als 50 Gew.-%, besonders bevorzugt kleiner als 40 Gew.-%, insbesondere bevorzugt kleiner als 35 Gew.-%, gewählt.
  • Zur Herstellung des Formkörpers wird zunächst wie oben beschrieben das Bindemittel mit dem feuerfesten Formstoff zu einer Formstoffmischung vermischt. Soll die Herstellung des Formkörpers nach dem PU-No-Bake-Verfahren erfolgen, kann der Formstoffmischung auch bereits ein geeigneter Katalysator zugegeben werden. Bevorzugt werden dazu flüssige Amine zur Formstoffmischung gegeben. Diese Amine weisen bevorzugt einen pKb-Wert von 4 bis 11 auf. Beispiele geeigneter Katalysatoren sind 4-Alkylpyridine, wobei die Alkylgruppe 1 bis 4 Kohlenstoffatome umfasst, Isochinolin, Arylpyridine, wie Phenylpyridin, Pyridin, Acrylin, 2-Methoxypyridin, Pyridazin, 3-Chlorpyridin, Chinolin, n-Methylimidazol, 4,4'-Dipyridin, Phenylpropylpyridin, 1-Methylbenzimidazol, 1,4-Thiazin, N,N-Dimethylbenzylamin, Triethylamin, Tribenzylamin, N,N-Dimethyl-1,3-propandiamin, N,N-Dimethylethanolamin sowie Triethanolamin. Der Katalysator kann gegebenenfalls mit einem inerten Lösungsmittel verdünnt werden, beispielsweise 2,2,4-Trimethyl-1,3-pentandiol-diisobutyrat, oder einem Fettsäureester. Die Menge des zugegebenen Katalysator wird, bezogen auf das Gewicht der Polyolkomponente, im Bereich von 0,1 bis 15 Gew.-% gewählt.
  • Die Formstoffmischung wird dann mit üblichen Mitteln in eine Form eingebracht und dort verdichtet. Die Formstoffmischung wird anschließend zu einem Formkörper ausgehärtet. Bei der Härtung sollte der Formkörper bevorzugt seine äußere Form behalten.
  • Sofern die Aushärtung nach dem PU-Cold-Box-Verfahren erfolgen soll, wird ein gasförmiger Katalysator durch die geformte Formstoffmischung geleitet. Als Katalysator können die üblichen Katalysatoren auf dem Gebiet des Cold-Box-Verfahrens verwendet werden. Besonders bevorzugt werden Amine als Katalysatoren verwendet, insbesondere bevorzugt Dimethylethylamin, Dimethyl-n-propylamin, Dimethylisopropylamin, Dimethyl-n-butylamin, Triethylamin und Trimethylamin in ihrer gasförmigen Form oder als Aerosol.
  • Gemäß einer weiteren bevorzugten Ausführungsform wird als Bindemittel ein Furanharz oder ein Phenolharz eingesetzt, wobei die Formstoffmischung gemäß dem "Furan-No-Bake"-Verfahren unter Katalyse durch eine starke Säure ausgehärtet wird.
  • Furan- und Phenolharze zeigen beim Guss sehr gute Zerfallseigenschaften. Unter der Hitzeeinwirkung des flüssigen Metalls zersetzt sich das Furan- oder Phenolharz und die Festigkeit der Gießform geht verloren. Nach dem Guss lassen sich daher Kerne, ggf. nach vorherigem Rütteln des Gussstücks, sehr gut aus Hohlräumen ausgießen.
  • Die als erste Komponente in "Furan-No-Bake-Bindemitteln" enthaltenen reaktiven Furanharze umfassen als wesentliche Komponente Furfurylalkohol. Furfurylalkohol kann unter saurer Katalyse mit sich selbst reagieren und ein Polymer ausbilden. Für die Herstellung von Furan-No-Bake-Bindemitteln wird im Allgemeinen nicht reiner Furfurylalkohol verwendet sondern dem Furfurylalkohol weitere Verbindungen zugesetzt, die in das Harz einpolymerisiert werden. Beispiele für derartige Verbindungen sind Aldehyde, wie Formaldehyd oder Furfural, Ketone, wie Aceton, Phenole, Harnstoff oder auch Polyole, wie Zuckeralkohole oder Ethylenglykol. Den Harzen können noch weitere Komponenten zugegeben werden, welche die Eigenschaften des Harzes beeinflussen, beispielsweise dessen Elastizität. Melamin kann beispielsweise zugesetzt werden, um freies Formaldehyd zu binden.
  • Furan-No-Bake-Bindemittel werden meist in der Weise dargestellt, indem zuerst furfurylhaltige Vorkondensate aus beispielsweise Harnstoff, Formaldehyd und Furfurylalkohol bei sauren Bedingungen erzeugt werden. Die Reaktionsbedingungen werden dabei so gewählt, dass nur eine geringfügige Polymerisation des Furfurylalkohols eintritt. Diese Vorkondensate werden dann mit Furfurylalkohol verdünnt. Zur Herstellung von Furan-No-Bake-Bindemitteln können auch Resole verwendet werden. Resole werden durch Polymerisation von Gemischen aus Phenol und Formaldehyd hergestellt. Diese Resole werden dann mit Furfurylalkohol verdünnt.
  • Die zweite Komponente der Furan-No-Bake-Bindemittel bildet eine Säure. Diese Säure neutralisiert zum Einen alkalische Komponenten, die im feuerfesten Formstoff enthalten sind und katalysiert zum Anderen die Vernetzung des reaktiven Furanharzes.
  • Als Säuren werden meist aromatische Sulfonsäuren und in einigen speziellen Fällen auch Phosphorsäure oder Schwefelsäure verwendet. Phosphorsäure wird in konzentrierter Form, d.h. bei Konzentrationen von mehr als 75 % verwendet. Sie eignet sich jedoch nur für die katalytische Aushärtung von Furanharzen mit einem relativ hohen Anteil an Harnstoff. Der Stickstoffgehalt derartiger Harze liegt bei mehr als 2,0 Ges.-%. Schwefelsäure kann als relativ starke Säure als Starter für die Aushärtung der Furanharze schwächeren Säuren zugesetzt werden. Beim Abguss entwickelt sich dann jedoch ein für Schwefelverbindungen typischer Geruch. Außerdem besteht die Gefahr, dass vom Gusswerkstoff Schwefel aufgenommen wird und dessen Eigenschaften beeinflusst. Meist werden aromatische Sulfonsäuren als Katalysatoren eingesetzt. Wegen ihrer guten Verfügbarkeit und ihrer hohen Säurestärke werden vor allem Toluolsulfonsäure, Xylyolsulfonsäure sowie Benzolsulfonsäure verwendet.
  • Phenolharze als zweite große Gruppe säurekatalysiert aushärtbarer No-Bake-Bindemittel enthalten als reaktive Harzkomponente Resole, also Phenolharze, die mit einem Überschuss an Formaldehyd hergestellt wurden. Phenolharze zeigen im Vergleich zu Furanharzen eine deutlich geringere Reaktivität und erfordern als Katalysatoren starke Sulfonsäuren. Phenolharze zeigen eine relativ hohe Viskosität, die bei längerem Lagern des Harzes noch zunimmt. Insbesondere bei Temperaturen unterhalb von 20 °C nimmt die Viskosität stark zu, sodass der Sand erwärmt werden muss, um das Bindemittel gleichmäßig auf der Oberfläche der Sandkörner auftragen zu können. Nachdem das Phenol-No-Bake-Bindemittel auf dem feuerfesten Formstoff aufgetragen wurde, sollte die Formstoffmischung möglichst umgehend verarbeitet werden, um keine Verschlechterung der Qualität der Formstoffmischung durch vorzeitige Aushärtung in Kauf nehmen zu müssen, was zu einer Verschlechterung der Festigkeit der aus der Formstoffmischung hergestellten Gießformen führen kann. Bei Verwendung von Phenol-No-Bake-Bindemitteln ist die Fließfähigkeit der Formstoffmischung meist schlecht. Bei der Herstellung der Gießform muss die Formstoffmischung daher sorgfältig verdichtet werden, um eine hohe Festigkeit der Gießform erreichen zu können.
  • Die Herstellung und Verarbeitung der Formstoffmischung sollte bei Temperaturen im Bereich von 15 bis 35 °C erfolgen. Bei zu niedriger Temperatur lässt sich die Formstoffmischung wegen der hohen Viskosität des Phenol-No-Bake-Harzes schlecht verarbeiten. Bei Temperaturen von mehr als 35 °C verkürzt sich die Verarbeitungszeit durch vorzeitige Aushärtung des Bindemittels.
  • Nach dem Abguss lassen sich Formstoffmischungen auf der Basis von Phenol-No-Bake-Bindemitteln ebenfalls wieder aufarbeiten, wobei auch hier mechanische oder thermische bzw. kombinierte mechanisch/thermische Verfahren verwendet werden können.
  • Auf den rieselfähigen Feuerfeststoff wird dann eine Säure aufgebracht, wobei ein säurebeschichteter feuerfester Formstoff erhalten wird. Die Säure wird mit üblichen Verfahren auf den feuerfesten Formstoff aufgebracht, beispielsweise indem die Säure auf den feuerfester Formstoff aufgesprüht wird. Die Menge der Säure wird bevorzugt im Bereich von 5 bis 45 Gew.-%, besonders bevorzugt im Bereich von 20 bis 30 Gew.-% gewählt, bezogen auf das Gewicht des Bindemittels und berechnet als reine Säure, also ohne Berücksichtigung eines ggf. verwendeten Lösungsmittels. Sofern die Säure nicht bereits in flüssiger Form vorliegt und eine ausreichend niedrige Viskosität aufweist, um in Form eines dünnen Films auf den Körnern des feuerfesten Formstoffs verteilt werden zu können, wird die Säure in einem geeigneten Lösungsmittel gelöst. Beispielhafte Lösungsmittel sind Wasser oder Alkohole oder Gemische aus Wasser und Alkohol. Insbesondere bei Verwendung von Wasser wird die Lösung jedoch möglichst konzentriert hergestellt, um die in das Bindemittel bzw. die Formstoffmischung eingeschleppte Wassermenge möglichst gering zu halten. Zur gleichmäßigen Verteilung der Säure auf den Körnern wird das Gemisch aus feuerfestem Formstoff und Säure gut homogenisiert.
  • Auf den mit Säure beschichteten feuerfesten Formstoff wird dann ein durch Säure aushärtbares Bindemittel aufgebracht. Die Menge des Bindemittels wird bevorzugt im Bereich von 0,25 bis 5 Gew.-%, besonders bevorzugt im Bereich von 1 bis 3 Gew.-% gewählt, bezogen auf den feuerfesten Formstoff und berechnet als Harzkomponente. Als durch Säure aushärtbares Bindemittel können an sich alle Bindemittel verwendet werden, die durch Säure aushärtbar sind, insbesondere solche durch Säure aushärtbare Bindemittel, die bereits für die Herstellung von Formstoffmischungen für die Gießereiindustrie üblich sind. Das Bindemittel kann neben einem vernetzbaren Harz auch noch weitere übliche Komponenten enthalten, beispielsweise Lösungsmittel zur Einstellung der Viskosität oder Streckmittel, die einen Teil des vernetzbaren Harzes ersetzen.
  • Das Bindemittel wird auf den mit Säure beschichteten feuerfesten Formstoff aufgegeben und durch Bewegen der Mischung auf den Körnern des feuerfesten Formstoffs in Form eines dünnen Films verteilt.
  • Die Mengen an Bindemittel und Säure werden so gewählt, dass einerseits eine ausreichende Festigkeit der Gießform und andererseits eine ausreichende Verarbeitungszeit der Formstoffmischung erreicht wird. Geeignet ist beispielsweise eine Verarbeitungszeit im Bereich von 5 bis 45 Minuten.
  • Der mit dem Bindemittel beschichtete feuerfeste Formstoff wird dann mit üblichen Verfahren zu einem Formkörper geformt. Dazu kann die Formstoffmischung in eine geeignete Form eingebracht und dort verdichtet werden. Der dabei erhaltene Formkörper wird dann aushärten gelassen.
  • Als Furan-No-Bake-Bindemittel können an sich alle Furanharze verwendet werden, wie sie bereits in Furan-No-Bake Bindemittelsystemen verwendet werden.
  • Die in technischen Furan-No-Bake-Bindemitteln eingesetzten Furanharze sind meist Vorkondensate oder Mischungen von Furfurylalkohol mit weiteren Monomeren oder Vorkondensaten. Die in Furan-No-Bake-Bindemitteln enthaltenen Vorkondensate werden in an sich bekannter Weise hergestellt.
  • Gemäß einer bevorzugten Ausführungsform wird Furfurylalkohol in Kombination mit Harnstoff und/oder Formaldehyd bzw. Harnstoff / Formaldehyd-Vorkondensaten eingesetzt. Formaldehyd kann sowohl in monomerer Form eingesetzt werden, beispielsweise in Form einer Formalinlösung, als auch in Form seiner Polymeren, wie Trioxan oder Paraformaldehyd. Neben bzw. an Stelle von Formaldehyd können auch andere Aldehyde oder auch Ketone verwendet werden. Geeignete Aldehyde sind beispielsweise Acetaldehyd, Propionaldehyd, Butyraldehyd, Acrolein, Crotonaldehyd, Benzaldehyd, Salicylaldehyd, Zimtaldehyd, Glyoxal und Gemische dieser Aldehyde. Formaldehyd ist bevorzugt, wobei dieser vorzugsweise in Form von Paraformaldehyd eingesetzt wird.
  • Als Ketonkomponente können alle Ketone eingesetzt werden, die eine ausreichend hohe Reaktivität aufweisen. Beispielhafte Ketone sind Methylethylketon, Methylpropylketon und Aceton, wobei Aceton bevorzugt verwendet wird.
  • Die genannten Aldehyde und Ketone können als einzelne Verbindung aber auch im Gemisch miteinander eingesetzt werden.
  • Das Molverhältnis von Aldehyd, insbesondere Formaldehyd, bzw. Keton zu Furfurylalkohol kann innerhalb weiter Bereiche gewählt werden. Bei der Herstellung der Furanharze können pro Mol Aldehyd vorzugsweise 0,4 bis 4 Mol Furfurylalkohol, bevorzugt 0,5 bis 2 Mol Furfurylalkohol verwendet werden.
  • Zur Herstellung der Vorkondensate können Furfurylalkohol, Formaldehyd und Harnstoff beispielsweise nach Einstellung eines pH-Werts von mehr als 4,5 zum Sieden erhitzt werden, wobei kontinuierlich Wasser aus dem Reaktionsgemisch abdestilliert wird. Die Reaktionszeit kann dabei mehrere Stunden betragen, beispielsweise 2 Stunden. Bei diesen Reaktionsbedingungen tritt nahezu keine Polymerisation des Furfurylalkohols ein. Der Furfurylalkohol wird jedoch zusammen mit dem Formaldehyd und dem Harnstoff in ein Harz einkondensiert.
  • Nach einem alternativen Verfahren werden Furfurylalkohol, Formaldehyd und Harnstoff bei einem pH-Wert von deutlich unterhalb 4,5, beispielsweise bei einem pH-Wert von 2,0, in der Hitze umgesetzt, wobei das bei der Kondensation entstehende Wasser unter reduziertem Druck abdestilliert werden kann. Das Reaktionsprodukt weist eine relativ hohe Viskosität auf und wird zur Herstellung des Bindemittels mit Furfurylalkohol verdünnt, bis die gewünschte Viskosität eingestellt ist.
  • Mischformen dieser Herstellungsverfahren können ebenfalls angewandt werden.
  • Es ist auch möglich, Phenol in das Vorkondensat einzuführen. Dazu kann das Phenol unter alkalischen Bedingungen zunächst mit Formaldehyd zu einem Resolharz umgesetzt werden. Dieses Resol kann dann mit Furfurylalkohol oder einem furangruppenhaltigen Harz umgesetzt oder vermischt werden. Solche furangruppenhaltigen Harze können beispielsweise mit den oben beschriebenen Verfahren erhalten werden. Für die Herstellung des Vorkondensats können auch höhere Phenole eingesetzt werden, beispielsweise Resorcin, Kresole oder auch Bisphenol A. Der Anteil des Phenols bzw. der höheren Phenole am Bindemittel wird vorzugsweise im Bereich von bis zu 45 Gew.-%, bevorzugt bis zu 20 Gew.-%, besonders bevorzugt bis zu 10 Gew.-% gewählt. Gemäß einer Ausführungsform kann der Anteil des Phenols bzw. der höheren Phenole größer als 2 Gew.-%, gemäß einer weiteren Ausführungsform größer als 4 Gew.-% gewählt werden.
  • Weiter ist auch möglich, Kondensate aus Aldehyden und Ketonen zu verwenden, die zur Herstellung des Bindemittels dann mit Furfurylalkohol vermischt werden. Solche Kondensate lassen sich durch Umsetzung von Aldehyden und Ketonen unter alkalischen Bedingungen herstellen. Als Aldehyd wird bevorzugt Formaldehyd, insbesondere in Form von Paraformaldehyd verwendet. Als Keton wird bevorzugt Aceton eingesetzt. Andere Aldehyde bzw. Ketone können jedoch ebenfalls verwendet werden. Das relative Molverhältnis von Aldehyd zu Keton wird vorzugsweise im Bereich von 7 : 1 bis 1 : 1, bevorzugt 1,2 : 1 bis 3,0 : 1 gewählt. Die Kondensation wird vorzugsweise unter alkalischen Bedingungen bei pH-Werten im Bereich von 8 bis 11,5, bevorzugt 9 bis 11 durchgeführt. Eine geeignete Base ist beispielsweise Natriumcarbonat.
  • Die Menge des Furfurylalkohols, welche im Furan-No-Bake-Bindemittel enthalten ist, wird einerseits bestimmt von dem Bestreben, den Anteil aus Kostengründen möglichst gering zu halten. Andererseits wird durch einen hohen Anteil an Furfurylalkohol eine Verbesserung der Festigkeit der Gießform erreicht. Bei sehr hohem Anteil an Furfurylalkohol im Bindemittel werden jedoch sehr spröde Gießformen erhalten, welche sich schlecht verarbeiten lassen. Vorzugsweise wird der Anteil des Furfurylalkohols am Bindemittel im Bereich von 30 bis 95 Gew.-%, bevorzugt 50 bis 90 Gew.-%, besonders bevorzugt 60 bis 85 Gew.-% gewählt. Der Anteil an Harnstoff und/oder Formaldehyd am Bindemittel wird vorzugsweise im Bereich von 2 bis 70 Gew.-%, bevorzugt 5 bis 45 Gew.-%, besonders bevorzugt 15 bis 30 Gew.-% gewählt. Die Anteile umfassen sowohl die im Bindemittel enthaltenen ungebundenen Anteile dieser Verbindungen als auch die Anteile, die im Harz gebunden sind.
  • Den Furanharzen können weitere Zusätze zugesetzt werden, wie Ethylenglycol oder ähnliche aliphatische Polyole, beispielsweise Zuckeralkohole, wie Sorbitol, die als Streckmittel dienen und einen Teil des Furfurylalkohols ersetzen. Ein zu hoher Zusatz derartiger Streckmittel kann im ungünstigen Fall zu einer Verringerung der Festigkeit der Gießform und Absenkung der Reaktivität führen. Der Anteil dieser Streckmittel am Bindemittel wird daher vorzugsweise geringer als 25 Gew.-%, bevorzugt geringer als 15 Gew.-% und besonders bevorzugt geringer als 10 Gew.-% gewählt. Um eine Kostenersparnis zu erreichen ohne dabei einen übermäßigen Einfluss auf die Festigkeit der Gießform in Kauf nehmen zu müssen, wird der Anteil der Streckmittel gemäß einer Ausführungsform größer als 5 Gew.-% gewählt.
  • Die Furan-No-Bake-Bindemittel können weiterhin Wasser enthalten. Da Wasser die Aushärtung der Formstoffmischung jedoch verlangsamt und bei der Aushärtung Wasser als Reaktionsprodukt entsteht, wird der Anteil des Wassers bevorzugt möglichst gering gewählt. Vorzugsweise beträgt der Anteil des Wassers am Bindemittel weniger als 20 Gew.-%, bevorzugt weniger als 15 Gew.-%. Unter wirtschaftlichen Gesichtspunkten kann eine Wassermenge von mehr als 5 Gew.-% im Bindemittel toleriert werden.
  • Als Phenolharze werden im erfindungsgemäßen Verfahren Resole verwendet. Resole sind Gemische von Hydroxymethylphenolen, die über Methylen- und Methylenetherbrücken verknüpft sind und durch Reaktion von Aldehyden und Phenolen im Molverhältnis von 1 : <1, gegebenenfalls in Gegenwart eines Katalysators, z.B. eines basischen Katalysators, erhältlich sind. Sie weisen ein Molgewicht Mw von ≤ 10.000 g/mol auf.
  • Zur Herstellung der Phenolharze sind alle herkömmlich verwendeten Phenole geeignet, wobei Phenol besonders bevorzugt ist. Als Aldehydkomponente wird bevorzugt Formaldehyd eingesetzt, insbesondere in form von Paraformaldehyd. Alternative Phenole und Aldehyde wurden bereits in Zusammenhang mit den Polyurethanbindemitteln erläutert. Auf die entsprechenden Passagen wird Bezug genommen.
  • Die Bindemittel können weitere übliche Zusätze enthalten, beispielsweise Silane als Haftvermittler. Geeignete Silane sind beispielsweise Aminosilane, Epoxysilane, Mercaptosilane, Hydroxysilane und Ureidosilane, wie γ-Hydroxypropyltrimethoxysilan, γ-Aminopropyltrimethoxysilan, 3-Ureidopropyltriethoxysilan, γ-Mercaptopropyltrimethoxysilan, γ-Glycidoxypropyltrimethoxysilan, β-(3,4-Epoxycyclohexyl)trimethoxysilan, N-β-(Aminoethyl)-γ-aminopropyltrimethoxysilan.
  • Sofern ein solches Silan verwendet wird, wird es dem Bindemittel in einem Anteil von 0,1 bis 3 Gew.-%, vorzugsweise 0,1 bis 1 Gew.-% zugegeben.
  • Die Bindemittel können auch noch weitere übliche Komponenten enthalten, wie beispielsweise Aktivatoren oder Weichmacher.
  • Die Formstoffmischung kann neben dem feuerfesten Formstoff, dem Bindemittel und ggf. dem Katalysator noch weitere übliche Bestandteile enthalten. Beispielhafte weitere Bestandteile sind Eisenoxid, gemahlene Flachsfasern, Holzmehlgranulate, gemahlene Kohle oder Ton.
  • Die Formstoffmischung wird dann mit üblichen Verfahren zu einer Gießform oder einem Teil einer Gießform geformt und ggf. ausgehärtet. Nachdem die Gießform ggf. zusammengebaut worden ist und der in der Gießform vorgesehene Formhohlraum ggf. mit einer Schlichte beschichtet worden ist, wird auf die Gasaustrittsflächen, besonders bevorzugt die Oberseite der Gießform zumindest abschnittsweise eine Schicht aus einem Schadstoffe absorbierenden Material aufgebracht. Dabei können an sich alle üblichen Verfahren zum Auftragen derartiger Beschichtungsmassen verwendet werden. Die Beschichtung kann mit einem Pinsel auf die Oberseite der Gießform aufgetragen werden oder auch mittels einer geeigneten Vorrichtung aufgesprüht werden. Ebenso kann die Beschichtungsmasse auf die Oberseite der Gießform aufgegossen und ggf. überschüssige Beschichtungsmasse ablaufen gelassen werden.
  • Die Beschichtungsmasse kann dann ggf. getrocknet werden. Bevorzugt weist die Schicht jedoch noch einen Wassergehalt im Bereich von 0 bis 60 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, besonders bevorzugt 10 bis 20 Gew.-% auf.
  • Gemäß einer bevorzugten Ausführungsform wird auf der Oberseite der Gießform zunächst eine Schicht eines porösen Trägergerüsts aufgebracht. Wie bereits erläutert, kann ein derartiges Trägergerüst beispielsweise von einem festen Schaum, einem Gewebe oder einem Vlies gebildet werden. Geeignete Materialien wurden bereits weiter oben beschrieben. Die Dicke des porösen Trägergerüsts wird bevorzugt im Bereich von 0,5 bis 5 cm gewählt. Auf das auf der Oberseite der Gießform aufgelegte poröse Trägergerüst wird dann eine Beschichtungsmasse gegeben, wie sie oben beschrieben wurde, sodass das poröse Trägergerüst mit der Beschichtungsmasse getränkt ist. Anschließend kann die Schicht ggf. noch getrocknet werden.
  • Alternativ kann das poröse Trägermaterial auch zunächst mit der Beschichtungsmasse beschichtet werden und das beschichtete poröse Trägermaterial dann an Gasaustrittsflächen der Gießform zumindest abschnittsweise angebracht werden.
  • Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der oben beschriebenen Gießform, welche erfindungsgemäß eine Absorberschicht umfasst, wie sie oben beschrieben wurde, für den Metallguss, insbesondere den Eisen- und Stahlguss.
  • Die Erfindung wird im Weiteren anhand von Beispielen näher erläutert.
  • Bestimmung des Schüttgewichts
  • Ein bei der 1000 ml Markierung abgeschnittener Messzylinder wird gewogen. Dann wird die zu untersuchende Probe mittels eines Pulvertrichters so in einem Zug in den Messzylinder eingefüllt, dass sich oberhalb des Abschlusses des Messzylinders ein Schüttkegel ausbildet. Der Schüttkegel wird mit Hilfe eines Lineals, das über die Öffnung des Messzylinders geführt wird, abgestreift und der gefüllte Messzylinder erneut gewogen. Die Differenz entspricht dem Schüttgewicht.
  • Beispiel 1:
  • 100 Gewichtsteile Quarzsand H 32 (Quarzwerke Frechen, DE) wurden in einem Mischer mit 0,4 Gewichtsteilen Härter vermischt. Zur gleichmäßigen Verteilung des Härters wurde die Mischung für eine Minute bewegt. Anschließend wurden 1,0 Gewichtsteile Furanharz zugegeben und die Mischung für eine weitere Minute bewegt. Aus der erhaltenen Formstoffmischung wurde als Probenkörper eine nach oben offene rohrförmige Gießform mit einem Boden hergestellt. Die Gießform wies einen Innendurchmesser von 5 cm, eine Wandstärke von 5 cm und eine Höhe von 30 cm auf. Die Zusammensetzung der untersuchten Formstoffmischung ist in Tabelle 1 zusammengefasst. Tabelle 1: Zusammensetzung der Formstoffmischung
    Formstoffmischung
    Quarzsand H 32 100 GT
    Methansulfonsäure (70%)/ Milchsäure (80%) = 50:50 0,4 GT
    Furfurylalkohol-Harnstoff-Harza 1,0 GT
    a: Askuran EP 3576, Ashland-Südchemie-Kernfest GmbH, Hilden, DE
  • Ferner wurde aus den in Tabelle 2 aufgeführten Komponenten eine Beschichtungsmasse hergestellt, indem zunächst das Wasser vorgelegt und dann der Ton zugegeben und unter Verwendung eines hoch scherenden Rührers während 15 Minuten aufgeschlossen wurde. Anschließend wurde die absorbierenden Komponenten, Pigmente und Farbstoffe während weiterer 15 Minuten eingerührt, bis eine homogene Mischung erhalten wurde. Tabelle 2: Zusammensetzung der Beschichtungsmasse
    Komponente Anteil (Gew.-%
    Calciumcarbonat 15,00
    Aluminiumsilikat (grob) 30,00
    Aktivkohle 5,00
    Tonmineral 3,00
    Kalk 7,00
    Entschäumer 0,20
    Biozid 0,20
    Wasser 39, 60
  • Die Seitenflächen des Probenkörpers wurde mittels eines Pinsels mit der Beschichtungsmasse beschichtet, wobei eine Schicht mit einer Dicke von 2,5 mm erhalten wurde. Die Oberseite des Probenkörpers wurde mit einer gasundurchlässigen Schlichte (Keratop® V 107G, ASK Chemicals, Hilden DE) abgedichtet. Der Probenkörper wurde anschließend noch maximal 30 Minuten bei Raumtemperatur getrocknet.
  • Anschließend wurde in die Probenkörper 4,3 kg flüssiges Eisen eingefüllt (Gießtemperatur 1400 °C). Das Gewichtsverhältnis von Probenkörper und Eisen betrug ca. 1 : 1.
  • Der Schwefelgehalt der Beschichtungsmasse vor und nach dem Abguss wurde mittels Infrarotspektroskopie bestimmt.
  • Der Benzolgehalt der Beschichtungsmasse vor und nach dem Abguss wurde in Anlehnung an DIN EN 14662-2 mittels Gaschromatographie quantitativ und qualitativ bestimmt. Die ermittelten Werte sind in Tabelle 3 zusammengefasst. Tabelle 3: Schwefel- und Benzolgehalt der Beschichtungsmasse
    Komponente Gehalt
    vor dem Abguss nach dem Abguss
    Schwefel (Gew.-%) 0,028 2,26
    Benzol (mg/kg) 0, 035 0,28
  • Die Beschichtungsmasse wies nach dem Abguss einen deutlich erhöhten Gehalt an Schwefel und Benzol auf.
  • Beispiel 2
  • Vergleichbare Messungen wurden auch in einer Eisengießerei unter Praxisbedingungen durchgeführt. Dazu wurde ein Gussstück mit einem Gewicht von ca. 250 kg (Gießtemperatur ca. 1400 °C) hergestellt. Das Gewichtsverhältnis von Formstoffmischung zu Eisen betrug etwa 4 : 1. Die Zusammensetzung der für die Herstellung der Gießform verwendeten Formstoffmischung ist in Tabelle 4 zusammengefasst. Tabelle 4: Zusammensetzung der Formstoffmischung
    Formstoffmischung
    Quarzsand H31 100 GT
    Methansulfonsäure (70%)/ Milchsäure (80%) = 50:50 0,35 GT
    Furfurylalkohol-Harnstoff-Harza 0,80 GT
  • Es wurde jeweils ein Gussstück mit einer unbeschichteten Gießform (System 1) hergestellt und ein Gussstück mit einer Gießform, deren Oberseite mit einer 2,5 mm starken Schicht der wie oben beschrieben hergestellten Beschichtungsmasse beschichtet worden war (System 2).
  • Die beim Abguss entstehenden Abgase wurden über eine Absaughaube abgefangen. Aus dem Abgasstrom wurde über eine Entnahmesonde ein definierter Teilstrom abgesaugt und die im Teilstrom enthaltenen Stoffe in Anlehnung an das Verfahren gemäß DIN EN 14662-2 an Aktivkohle adsorbiert. Die qualitative und quantitative Analyse der adsorbierten Stoffe (Benzol, Toluol und Xylol) erfolgte mittels Gaschromatographie.
  • Für die Bestimmung des Schwefeldioxidgehalts wurde aus dem Abgas ein Teilstrom abgeführt und mit einer Vakuumeinrichtung in einen PE-Beutel abgesaugt. Die Konzentration an Schwefeldioxid wurde mittels Massenspektrometrie bestimmt.
  • Ferner wurden die Gasproben durch geschulte Probanden auf ihre Geruchsintensität untersucht.
  • Die in den Abgasen ermittelten Werte sind in Tabelle 5 zusammengefasst. Tabelle 5: Schadstoffgehalte in den beim Abguss freigesetzten Abgasen
    Schwefel (Gew.-%) System 1 (nicht erfindungsgemäß) System 1 (erfindungsgemäß)
    Geruchseinheiten (GE/m3) 34700 27000
    Benzol (mg/kg) 24,2 6,2
    Toluol (mg/kg) 22,0 10,3
    Xylol (mg/kg) 0, 6 < 0,5
    SO2 (ppm Vol) 24,5 16,9
  • Durch die Beschichtungsmasse kann eine deutliche Reduktion der Geruchsbelästigung sowie der Schadstoffe im Abgas erreicht werden.

Claims (15)

  1. Gießform für den Metallguss, wobei auf Gasaustrittsflächen der äußeren Oberfläche der Gießform zumindest abschnittsweise eine gasdurchlässige Schicht aus einem Schadstoffe absorbierenden Material angeordnet ist, wobei als Schadstoffe Stoffe angesehen werden, die im beim Abguss freigesetzten Gas enthalten sind und welche eine umwelt- oder gesundheitsschädliche Wirkung aufweisen oder die stark riechen.
  2. Gießform nach Anspruch 1, wobei die Schicht aus dem Schadstoffe absorbierenden Material eine Stärke von zumindest 2,5 mm, vorzugsweise zumindest 5 mm, aufweist.
  3. Gießform nach Anspruch 1 oder 2, wobei die Schicht aus dem Schadstoffe absorbierenden Material zumindest ein physikalisches Absorbermaterial umfasst, welches Schadstoffe physikalisch absorbieren kann.
  4. Gießform nach Anspruch 3, wobei das physikalische Absorbermaterial eine spezifische Oberfläche von zumindest 800 m2/g aufweist.
  5. Gießform nach Anspruch 3 oder 4, wobei das physikalische Absorbermaterial ausgewählt ist aus Aktivkohle, Silicagel, sauer aufgeschlossenen Tonen, Aschen, Cellulose, Zellwolle.
  6. Gießform nach einem der vorhergehenden Ansprüche, wobei die Schicht aus dem Schadstoffe absorbierenden Material zumindest ein chemisches Absorbermaterial enthält, welches Schadstoffe durch eine chemische Reaktion binden oder zersetzen kann.
  7. Gießform nach Anspruch 6, wobei das chemische Absorbermaterial ein basisches Material ist.
  8. Gießform nach Anspruch 7, wobei das basische Material ausgewählt ist aus Oxiden, Hydroxiden und Carbonaten der Alkalimetalle und Erdalkalimetalle.
  9. Gießform nach einem der vorhergehenden Ansprüche, wobei die Schicht aus dem Schadstoffe absorbierenden Material zumindest einen Feuerfeststoff enthält, welcher eine mittlere Korngröße von zumindest 100 µm aufweist.
  10. Gießform nach einem der vorhergehenden Ansprüche, wobei die Schicht aus dem Schadstoffe absorbierenden Material ein poröses Trägergerüst umfasst.
  11. Verfahren zur Herstellung einer Gießform nach einem der Ansprüche 1 bis 10, wobei eine Formstoffmischung bereitgestellt wird, welche zumindest einen feuerfesten Formstoff und zumindest ein Bindemittel umfasst; die Formstoffmischung zu einer Gießform geformt wird, und Gasaustrittsflächen der äußeren Oberfläche der Gießform zumindest abschnittsweise mit einer Schicht aus einem Schadstoffe absorbierenden Material bedeckt wird, wobei als Schadstoffe Stoffe angesehen werden, die im beim Abguss freigesetzten Gas enthalten sind und welche eine umwelt- oder gesundheitsschädliche Wirkung aufweisen oder die stark riechen.
  12. Verfahren nach Anspruch 11, wobei die Schicht aus dem Schadstoffe absorbierenden Material bereitgestellt wird, indem auf zumindest Abschnitte der Gasaustrittsffächen der Gießform ein poröses Trägergerüst aufgebracht wird und das poröse Trägergerüst mit einer schadstoffabsorbierenden Beschichtungsmasse für die Beschichtung von Gießformen für den Metallguss, die zumindest ein Schadstoffe absorbierendes Material enthält, beschichtet wird.
  13. Verfahren nach Anspruch 11 oder 12, wobei die Beschichtungsmasse eine Trägerflüssigkeit umfasst und einen Feststoffgehalt von 20 bis 60 Gew.-%, bevorzugt 30 bis 50 Gew.-% aufweist.
  14. Verfahren nach einem der Ansprüche 11 oder 12, wobei das zumindest eine Bindemittel ein organisches Bindemittel ist.
  15. Verwendung einer Gießform nach einem der Ansprüche 1 bis 10 für den Metallguss.
EP09753896.1A 2008-05-27 2009-05-27 Geruchs- und schadstoffadsorbierende beschichtungsmasse für den kastengebundenen metallguss Not-in-force EP2274122B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008025311A DE102008025311A1 (de) 2008-05-27 2008-05-27 Geruchs- und schadstoffadsorbierende Beschichtungsmasse für den kastengebundenen Metallguss
PCT/EP2009/056433 WO2009144241A1 (de) 2008-05-27 2009-05-27 Geruchs- und schadstoffadsorbierende beschichtungsmasse für den kastengebundenen metallguss

Publications (2)

Publication Number Publication Date
EP2274122A1 EP2274122A1 (de) 2011-01-19
EP2274122B1 true EP2274122B1 (de) 2016-07-20

Family

ID=40973218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09753896.1A Not-in-force EP2274122B1 (de) 2008-05-27 2009-05-27 Geruchs- und schadstoffadsorbierende beschichtungsmasse für den kastengebundenen metallguss

Country Status (12)

Country Link
US (1) US8215373B2 (de)
EP (1) EP2274122B1 (de)
JP (1) JP2011521785A (de)
KR (1) KR20110017888A (de)
CN (1) CN102076441B (de)
DE (1) DE102008025311A1 (de)
EA (1) EA019618B1 (de)
ES (1) ES2589730T3 (de)
MX (1) MX2010012993A (de)
UA (1) UA100563C2 (de)
WO (1) WO2009144241A1 (de)
ZA (1) ZA201008062B (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680490B2 (ja) * 2010-06-25 2015-03-04 花王株式会社 鋳物製造用構造体
FR2967364B1 (fr) * 2010-11-15 2013-08-30 C T I F Centre Technique Des Ind De La Fonderie Carapace de moulage a modele perdu et procede de fabrication de cette carapace
PL235731B1 (pl) * 2013-06-17 2020-10-19 Inst Odlewnictwa Kompozycja warstwy ceramicznej do wytwarzania formy odlewniczej i innych wyrobów
CN103394635A (zh) * 2013-08-15 2013-11-20 张传海 一种铸造用涂料的制备方法
KR101409242B1 (ko) * 2013-11-05 2014-06-30 (주)그라프톤코리아 유해물질 및 휘발성 유기화합물을 흡착 분해하는 성능이 코팅된 가구 표면재
DE102014220632A1 (de) 2014-10-10 2016-04-14 Hüttenes-Albertus Chemische Werke GmbH Verwendung einer basischen Zusammensetzung als Infiltrationsmittel für den Formstoff einer Gießform zur Vermeidung von weißen Belägen
GB2538268A (en) * 2015-05-13 2016-11-16 Rolls Royce Plc Shell mould production
CN104889316A (zh) * 2015-06-19 2015-09-09 陈新棠 一种新型铸铁浆水
CN104889317A (zh) * 2015-06-24 2015-09-09 梁胜光 一种铸造砂型用涂料
CN106513568A (zh) * 2016-10-10 2017-03-22 佛山市高明区明城镇新能源新材料产业技术创新中心 一种环保型铸造涂料及其制备方法、使用方法
US10610923B2 (en) * 2017-01-23 2020-04-07 Novis Works, LLC Foundry mix including resorcinol
CN107282869B (zh) * 2017-06-28 2019-05-14 山西科瑞再生资源综合利用有限公司 一种覆膜砂及其制备方法
CN107584069B (zh) * 2017-10-31 2020-03-10 湖北工业大学 一种热固化磷酸盐铸造粘结剂及其制备方法与使用方法
DE102018118291A1 (de) 2018-07-27 2020-01-30 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Schlichtezusammensetzung zur Reduzierung von Formaldehyd-Emissionen
CN109332579B (zh) * 2018-11-28 2019-11-12 南京宁阪特殊合金有限公司 一种用于树脂砂型铸造的高悬浮性涂料及其制备方法
US11738385B2 (en) 2020-03-03 2023-08-29 ASK Chemicals LLC Smoke-suppressing additive for polyurethane-forming binder system
CN112548023B (zh) * 2020-12-08 2022-06-17 四川东树新材料有限公司 一种高溃散铸铝发动机缸体用冷芯盒树脂及其制备方法
CN113209803B (zh) * 2021-05-14 2022-04-19 贝贝家(北京)室内环境科技有限公司 一种反应渗透剂及其制备和使用方法
RU210048U1 (ru) * 2021-12-07 2022-03-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Литейная форма
CN114535394B (zh) * 2022-03-30 2023-05-26 燕山大学 一种管状构件粘弹性颗粒介质内高压成形方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE158258C (de) *
US1717820A (en) * 1925-07-15 1929-06-18 Benjamin F Wallace Compound for use in casting metals
DE1212250B (de) * 1960-06-25 1966-03-10 Union Carbide Corp Formschlichte fuer Stahlguss
GB1415395A (en) * 1973-02-20 1975-11-26 White Sea & Baltic Co Foundry moulds and cores
JPS52123926A (en) * 1976-04-12 1977-10-18 Kubota Ltd Washing
JPS574352A (en) * 1980-06-09 1982-01-09 Mitsubishi Heavy Ind Ltd Method for preventing sulfurization of cast steel casting
US4546124A (en) * 1984-10-12 1985-10-08 Acme Resin Corporation Polyurethane binder compositions
CN1011124B (zh) * 1986-10-03 1991-01-09 刘汉生 快干铸钢涂料
CN1008977B (zh) * 1986-10-03 1990-08-01 刘汉生 水基铸铁涂料
JPH0211243A (ja) * 1988-06-28 1990-01-16 Kawasaki Steel Corp 鋳造用鋳型
JPH05138290A (ja) * 1991-01-14 1993-06-01 Yoshiho Ota 消失性模型鋳型の製作法及び鋳造法
JPH05192738A (ja) * 1992-01-18 1993-08-03 Okamoto:Kk 有機自硬性鋳型を用いた鋳造法
DE4203904C1 (en) * 1992-02-11 1993-04-01 Metallgesellschaft Ag, 6000 Frankfurt, De Ready-to-use size for coating moulds for casting - comprises fire-proof inorganic aluminium oxide particles, additives and fibres, forming agglomerate-free coating
JPH0574624U (ja) * 1992-03-23 1993-10-12 梅田 伸一 脱臭装置
JP3098613B2 (ja) * 1992-04-30 2000-10-16 株式会社岡本 有機自硬性鋳型を用いた鋳造法
JP3101428B2 (ja) * 1992-07-09 2000-10-23 株式会社岡本 生型を用いた鋳造法
DE9307468U1 (de) * 1993-05-17 1994-09-29 Hüttenes-Albertus Chemische Werke GmbH, 40549 Düsseldorf Schlichte zur Herstellung von Formüberzügen
JPH07112238A (ja) 1993-10-14 1995-05-02 Toyota Motor Corp 消失模型鋳造用塗型剤
CN2227534Y (zh) * 1995-08-07 1996-05-22 王建德 非机械性排气铸造装置
JPH0986914A (ja) * 1995-09-28 1997-03-31 Osaka Gas Co Ltd 活性炭およびその製造方法ならびに酸性成分の吸着除去方法
US5769933A (en) * 1996-06-21 1998-06-23 Amcol International Corporation Activated carbon foundry sand additives and method of casting metal for reduced VOC emissions
JPH10165489A (ja) * 1996-12-12 1998-06-23 Toagosei Co Ltd 消臭剤及び消臭性繊維
JPH10277303A (ja) * 1997-02-04 1998-10-20 Imusu:Kk 吸着剤,濾過材および濾過装置
JPH11226327A (ja) * 1998-02-16 1999-08-24 Takashi Furuno 粒状活性炭入り空気清浄および浄水用濾過板
DE19850833C2 (de) 1998-11-04 2001-06-13 Ashland Suedchemie Kernfest Bindemittelsystem zur Herstellung von Kernen und Gießformen auf Polyurethanbasis, deren Verwendung und Verfahren zur Herstellung eines Gießformteils auf Polyurethanbasis
CN2491152Y (zh) * 2001-06-23 2002-05-15 李世斌 浇铸形散热器细砂型芯
DE50201808D1 (de) * 2001-08-14 2005-01-20 Climarotec Ges Fuer Raumklimat Verfahren und metallgusskasten zur schadstoffemissionsreduktion in giessereibetrieben
JP4226375B2 (ja) * 2003-04-11 2009-02-18 花王株式会社 消失模型鋳造法用フィルター
DE10326815A1 (de) * 2003-06-13 2004-12-30 Institut für Neue Materialien Gemeinnützige GmbH Antiadhäsive Hochtemperaturschichten
JP2005288372A (ja) * 2004-04-01 2005-10-20 Toshiba Ceramics Co Ltd 炭酸ガス吸収体
JP4776953B2 (ja) * 2005-03-16 2011-09-21 花王株式会社 鋳物の製造方法
JP4688618B2 (ja) * 2005-09-22 2011-05-25 株式会社木村鋳造所 浸硫防止塗型剤
DE102007031448A1 (de) * 2007-07-05 2009-01-15 Fritz Winter Eisengiesserei Gmbh & Co. Kg Verfahren zum Herstellen von Formteilen für Gießformen, Gießform und Verfahren zum Vergießen einer Metallschmelze

Also Published As

Publication number Publication date
CN102076441B (zh) 2015-11-25
DE102008025311A1 (de) 2009-12-03
WO2009144241A1 (de) 2009-12-03
EA019618B1 (ru) 2014-05-30
ES2589730T3 (es) 2016-11-16
EP2274122A1 (de) 2011-01-19
KR20110017888A (ko) 2011-02-22
US8215373B2 (en) 2012-07-10
JP2011521785A (ja) 2011-07-28
US20110073267A1 (en) 2011-03-31
MX2010012993A (es) 2010-12-20
UA100563C2 (ru) 2013-01-10
CN102076441A (zh) 2011-05-25
ZA201008062B (en) 2011-09-28
EA201071345A1 (ru) 2011-06-30

Similar Documents

Publication Publication Date Title
EP2274122B1 (de) Geruchs- und schadstoffadsorbierende beschichtungsmasse für den kastengebundenen metallguss
EP2296836B1 (de) Methansulfonsäurehaltige katalysatoren für das saürehärtungsverfahren
EP2300177B1 (de) BESCHICHTUNGSMASSEN FÜR GIEßFORMEN UND KERNE ZUR VERMEIDUNG VON NARBIGEN OBERFLÄCHEN
EP3495073B1 (de) Emissionsarmes, kalthärtendes bindemittel für die giessereiindustrie
EP2249982B1 (de) Verwendung von verzweigten alkandiolcarbonsäurediestern in giessereibindemitteln auf polyurethanbasis
EP2640764B1 (de) Bindemittel auf polyurethanbasis zur herstellung von kernen und giessformen unter verwendung von isocyanaten enthaltend eine urethonimin- und/oder carbodiimid-gruppe, eine formstoffmischung enthaltend das bindemittel und ein verfahren unter verwendung des bindemittels
EP2598550B1 (de) Bindemittelsystem auf polyurethanbasis zur herstellung von kernen und giessformen unter verwendung cyclischer formale, formstoffmischung und verfahren
WO2008135247A1 (de) Beschichtungsmassen für giessformen und kerne zur vermeidung von reaktionsgasfehlern
DE102006037288A1 (de) Verwendung von Cashew-Nutshell Derivaten in Gießereibindemitteln aus Polyurethanbasis
EP3169463A1 (de) Co-katalysatoren für polyurethan-coldbox-bindemittel
EP3823774B1 (de) Schlichtezusammensetzung für giessformen für den metallguss deren verwendung sowie mit der schlichtezusammensetzung versehene giessformen
EP3265254B1 (de) Verfahren zur aushärtung von polyurethan-bindemitteln in formstoffmischungen durch einleiten tertiärer amine und lösungsmittel und kit zur durchführung des verfahrens
EP3478428B1 (de) Wässrige alkalische bindemittelzusammensetzung zur aushärtung mit kohlendioxidgas sowie deren verwendung, eine entsprechende formstoffmischung zur herstellung eines giessereiformkörpers, ein entsprechender giessereiformkörper sowie ein verfahren zur herstellung eines giessereiformkörpers
Lemon An improved sand binder for steel castings
WO2023217325A1 (de) Verfahren zum schichtweisen aufbau von baukörpern mit einem bindemittel modifizierter viskosität
DE102014117284A1 (de) Polyurethan-Bindemittelsystem zur Herstellung von Kernen und Gießformen, Formstoffmischung enthaltend das Bindemittel und ein Verfahren unter Verwendung des Bindemittels
DE102019135605A1 (de) Verfahren zum schichtweisen Aufbau von Körpern umfassend feuerfesten Formgrundstoff und Resole, nach diesem Verfahren hergestellte dreidimensionale Körper sowie ein Bindemittel für den 3-dimensionalen Aufbau von Körpern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASK CHEMICALS GMBH

17Q First examination report despatched

Effective date: 20130108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 813616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009012852

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2589730

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161116

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009012852

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

26N No opposition filed

Effective date: 20170421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 813616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200527

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220523

Year of fee payment: 14

Ref country code: ES

Payment date: 20220617

Year of fee payment: 14

Ref country code: DE

Payment date: 20220623

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009012852

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210527