EP1137500A1 - Bindemittelsystem zur herstellung von kernen und giessformen auf polyurethanbasis - Google Patents

Bindemittelsystem zur herstellung von kernen und giessformen auf polyurethanbasis

Info

Publication number
EP1137500A1
EP1137500A1 EP99957988A EP99957988A EP1137500A1 EP 1137500 A1 EP1137500 A1 EP 1137500A1 EP 99957988 A EP99957988 A EP 99957988A EP 99957988 A EP99957988 A EP 99957988A EP 1137500 A1 EP1137500 A1 EP 1137500A1
Authority
EP
European Patent Office
Prior art keywords
binder system
phenolic resin
mold
weight
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99957988A
Other languages
English (en)
French (fr)
Other versions
EP1137500B9 (de
EP1137500B1 (de
Inventor
Jean-Claude Roze
Günter Weicker
Diether Koch
Andreas Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashland Suedchemie Kernfest GmbH
Original Assignee
Ashland Suedchemie Kernfest GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashland Suedchemie Kernfest GmbH filed Critical Ashland Suedchemie Kernfest GmbH
Publication of EP1137500A1 publication Critical patent/EP1137500A1/de
Application granted granted Critical
Publication of EP1137500B1 publication Critical patent/EP1137500B1/de
Publication of EP1137500B9 publication Critical patent/EP1137500B9/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2273Polyurethanes; Polyisocyanates

Definitions

  • the present invention relates to a binder system for the production of cores and casting molds based on polyurethane.
  • the method of core production known as the "cold box process” or "Ashland process" has taken a leading position in the foundry industry.
  • This method uses two-component polyurethane systems to bind the sand.
  • Component 1 consists of the solution of a polyol which contains at least two OH groups per molecule.
  • Component 2 is the solution of a polyisocyanate with at least two NCO groups per molecule.
  • the binder system is cured with the aid of basic catalysts. Liquid bases can be mixed into the binder system prior to shaping to react the two components (US-A-3,676,392). According to US Pat. No. 3,409,579, another possibility is to pass gaseous tertiary amines after the shaping through the molding material / binder system mixture.
  • phenolic resins are used as polyols, which are obtained by condensing phenol with aldehydes, preferably formaldehyde, in the liquid phase at temperatures up to about 130 ° C. in the presence of catalytic amounts of metal ions.
  • US-A-3,485,797 describes the preparation of such phenolic resins in detail.
  • substituted phenols preferably o-cresol and p-nonylphenol
  • EP-B-0 177 871 aliphatic monoalcohols having one to eight carbon atoms can be used as a further reaction component in the preparation of the phenolic resins.
  • the binder systems are said to have increased thermal stability.
  • Mixtures of high-boiling polar solvents (eg esters and ketones) and high-boiling aromatic hydrocarbons are predominantly used as solvents for the phenol component.
  • the polyisocyanates are preferably dissolved in high-boiling aromatic hydrocarbons.
  • the European patent application EP-A-0 T * 1 599 describes formulations in which the use of fatty acid methyl esters completely or at least largely dispenses with aromatic solvents.
  • the fatty acid methyl esters are used either as sole solvents or with the addition of polarity-increasing solvents (phenol component) or aromatic solvents (isocyanate component).
  • binder systems are particularly easy to remove from the molding tools.
  • binder systems formulated in accordance with EP-A-0 771 599 have a serious disadvantage: during casting, they increasingly develop smoke and smoke, so that in many foundries they were not used beyond the experimental stage.
  • a binder system comprising a phenolic resin component and a polyisocyanate component, characterized in that the phenolic resin component comprises an alkoxy-modified phenolic resin, wherein less than 25 mol% of the phenolic hydroxyl groups are etherified by a primary or secondary aliphatic alcohol having 1 to 10 carbon atoms .
  • the invention further relates to molding compositions which comprise aggregates and up to 15% by weight, based on the weight of the aggregates, of a binder system according to the invention.
  • the invention also relates to a method for producing a mold part comprising a. Mixing aggregates with the binder system according to the invention in a binding amount of up to 15% by weight, based on the amount of the aggregates; b. Placing the casting mixture obtained in step (a) into a mold; c. Curing the casting mixture in the mold to obtain a self-supporting shape; and d. then removing the molded casting mixture from step (c) from the mold and further hardening, whereby a hard, solid, hardened casting mold part is obtained.
  • the casting mold part thus obtained can be used according to the invention for casting metal.
  • the alkoxy-modified phenolic resin which has a low viscosity and favorable polarity, is essential to the invention.
  • the alkoxy-modified phenolic resin enables the total amount of solvent required to be reduced both in the phenolic resin component and in the isocyanate component.
  • the use of aromatic hydrocarbons in one or both binder components can be dispensed with.
  • Phenolic resins are produced by condensation of phenols and aldehydes (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A19, page 371 ff, 5th edition, VCH Verlag, Weinheim).
  • substituted phenols and mixtures thereof can also be used in the context of this invention. All conventionally used substituted phenols are suitable.
  • the phenol compounds are unsubstituted either in both ortho positions or in one ortho and in the para position, to enable the polymerization. The remaining ring carbons can be substituted.
  • the choice of the substituent is not particularly limited unless the substituent adversely affects the polymerization of the phenol and the aldehyde.
  • substituted phenols are alkyl-substituted phenols, aryl-substituted phenols, cycloalkyl-substituted phenols, alkenyl-substituted phenols, alkoxy-substituted phenols, aryloxy-substituted phenols and halogen-substituted phenols.
  • the above-mentioned substituents have 1 to 26, preferably 1 to 12, carbon atoms.
  • suitable phenols in addition to the particularly preferred unsubstituted phenols are o-cresol, m-cresol, p-cresol, 3,5-xylene, 3,4-xylene, 3,4,5-trimethylphenol, 3-ethylphenol, 3,5 -Diethylphenol, p-butylphenol, 3,5-dibutylphenol, p-amylphenol, cyclohexylphenol, p-octylphenol, 3,5-dicyclohexylphenol, p-crotylphenol, p-phenylphenol, 3,5-dimethoxyphenol, 3,4,5-trimethoxyphenol , p-ethoxyphenol, p-butoxyphenol, 3-methyl-4-methoxyphenol and p-phenoxyphenol. Phenol itself is particularly preferred.
  • the phenols can also be described by the general formula:
  • A, B and C can be hydrogen, alkyl radicals, alkoxy radicals or halogen.
  • aldehydes which are conventionally used for the production of phenolic resins can be used in the context of the invention. Examples include formaldehyde, acetaldehyde, propionaldehyde, furfuraldehyde and Benzaldehyde.
  • the aldehydes used preferably have the general formula R'CHO, where R "is hydrogen or a hydrocarbon radical having 1-8 carbon atoms. Particular preference is given to formaldehyde either in its aqueous form or as paraformaldehyde.
  • phenolic resins In order to obtain the phenolic resins according to the invention, an at least equivalent number of moles of aldehyde based on the number of moles of the phenolic component should be used.
  • the molar ratio of aldehyde: phenol is preferably at least 1: 1.0, particularly preferably at least 1: 0.58.
  • primary and secondary aliphatic alcohols with an OH group and with 1 to 10 carbon atoms are used.
  • Suitable primary or secondary alcohols include e.g. Methanol, ethanol, n-propanol, iso-propanol, n-butanol and hexanol.
  • alkoxy-modified phenolic resins is described in EP-B-0 177 871. They can be manufactured using either the one-step or two-step process.
  • the phenol component, the aldehyde and the alcohol are reacted in the presence of a suitable catalyst.
  • the two-step process first produces an unmodified resin, which is then treated with alcohol.
  • the ratio of alcohol to phenol affects the properties of the resin as well as the reaction rate.
  • the molar ratio of alcohol to phenol is less than 0.25, so that less than 25 mol% of the phenolic hydroxyl groups are etherified. A molar ratio of 0.18-0.25 is preferred. If the molar ratio of alcohol to phenol is more than 0.25, the moisture resistance drops.
  • Suitable catalysts are salts of divalent ions of Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca and Ba. Zinc acetate is preferably used.
  • the alkoxylation leads to resins with a low viscosity.
  • the resins mainly have ortho-ortho benzyl ether bridges and also have alkoxymethylene groups of the general formula - (CH 2 O) n R in the ortho and para positions to the phenolic OH group.
  • R is the alkyl group of the alcohol and n is a small integer in the range from 1 to 5.
  • Dicarboxylic acid esters have the formula R ⁇ OC-R j -COOR ! where R 1 each independently represents an alkyl group with 1-12 (preferably 1-6) carbon atoms and R 2 is an alkylene group with 1-4 carbon atoms.
  • R 1 each independently represents an alkyl group with 1-12 (preferably 1-6) carbon atoms and R 2 is an alkylene group with 1-4 carbon atoms.
  • Examples are dimethyl esters of carboxylic acids with 4 to 6 carbon atoms, which are available, for example, under the name Dibasic esters from DuPont.
  • Glycol ether esters are compounds of the formula R 3 -O- R 4 -OOCR 5 , where R 3 represents an alkyl group with 1-4 carbon atoms, R 4 is an alkylene group with 2-4 carbon atoms and R 5 is an alkyl group with 1-3 carbon atoms ( eg butyl glycol acetate), preferred are glycol ether acetates.
  • Glycol diesters have the general formula R 5 COO-R 4 -OOCR 5 where R 4 and R 5 are as defined above and the radicals R 5 are each selected independently of one another (for example propylene glycol diacetate), preference being given to glycol diacetates.
  • Glycol diethers can be characterized by the formula R 3 -OR 4 -OR 3 , in which R 3 and R 4 are as defined above and the radicals R 3 are each selected independently of one another (for example dipropylene glycol dimethyl ether). Cyclic ketones, cyclic esters and cyclic carbonates with 4-5 carbon atoms are also suitable (eg propylene carbonate).
  • the alkyl and alkylene groups can each be branched or unbranched.
  • These organic polar solvents are preferably used either as sole solvents for the phenolic resin or in combination with fatty acid esters, the content of the oxygen-rich solvents in the solvent mixture should predominate. The content of oxygen-rich solvents should therefore be more than 50% by weight, preferably more than 55% by weight.
  • the measure to reduce the total content of solvents in the binder system had a positive effect on smoke development. While conventional phenolic resins mostly contain approx. 45% by weight and sometimes up to 55% by weight of solvent in order to achieve a viscosity suitable for processing (up to approx. 400 mPa-s), the solvent content in the solvent can be reduced by using a low-viscosity phenolic resin Phenol component can be limited to at most 40 wt .-%, preferably even to at most 35 wt .-%. The dynamic viscosity is e.g. determined using the Brookfield lathe method.
  • Suitable binder systems have an immediate strength of at least 150 N / cm 2 with a used amount of 0.8 parts by weight of phenolic resin component and isocyanate component based on 100 parts by weight of aggregate such as quartz sand H 32 (see EP-A-0 771 599 or DE-A-4 327 292).
  • fatty acid esters to the solvent of the phenol component leads to particularly good separation properties.
  • Fatty acids are suitable e.g. with 8 to 22 carbons esterified with an aliphatic alcohol.
  • Fatty acids of natural origin e.g. from tall oil, rapeseed oil, sunflower oil, germ oil and coconut oil.
  • individual fatty acids such as e.g. Palmitin fatty acid or myristic fatty acid can be used.
  • Aliphatic monoalcohols with 1 to 12 carbons are suitable for the esterification of the fatty acids. Alcohols with 1 to 10 carbon atoms are preferred, and alcohols with 4 to 10 carbon atoms are particularly preferred. Due to the lower polarity of the fatty acid esters whose alcohol component has 4 to 10 carbon atoms, it is possible to reduce the proportion of fatty acid esters and to reduce smoke formation. A number of fatty acid esters are commercially available.
  • fatty acid esters the alcohol component of which contains 4 to 10 carbon atoms
  • fatty acid esters with longer alcohol components are the butyl esters of oleic acid and tall oil fatty acid and the mixed octyl / decyl ester of tall oil fatty acid
  • aromatic hydrocarbons as solvents of the phenolic component can be avoided. This is due to the balanced polarity of the compounds, which enable the use of oxygen-rich, organic, polar solvents, for example as sole solvents.
  • the amount of solvent required can be limited to less than 35% by weight of the phenolic component. This is made possible by the low viscosity of the resin.
  • aromatic hydrocarbons can also be avoided.
  • the use of the binder system according to the invention with at least 50% by weight of the abovementioned oxygen-rich, polar, organic solvents as a constituent of the solvent of the phenol component also leads to a significantly reduced quality development in comparison to conventional systems with a high proportion of fatty acid esters in the solvent.
  • the second component of the binder system comprises an aliphatic, cycloaliphatic or aromatic polyisocyanate, preferably with 2 to 5 isocyanate groups. Depending on the desired properties, mixtures of organic isocyanates can also be used. Suitable polyisocyanates include aliphatic polyisocyanates such as e.g. Hexamethylene diisocyanate, alicyclic polyisocyanates such as e.g. 4,4'-dicyclohexylmethane diisocyanate and dimethyl derivatives thereof.
  • aromatic polyisocyanates examples include toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, xylylene diisocyanate and methyl derivatives thereof,
  • Polymethylene polyphenyl isocyanates and chlorophenylene-2,4-diisocyanate Preferred polyisocyanates are aromatic polyisocyanates, particularly preferred are polymethylene polyphenyl polyisocyanates such as diphenylmethane diisocyanate
  • 10-500 wt .-% polyisocyanate based on the weight of the phenolic resin is used. 20-300% by weight of polyisocyanate are preferably used.
  • Liquid polyisocyanates can be used in undiluted form, while solid or viscous polyisocyanates are dissolved in organic solvents. Up to 80% by weight of the isocyanant component can consist of solvents.
  • aromatic solvents are naphthalene, alkyl-substituted naphthalenes, alkyl-substituted benzenes and mixtures thereof.
  • Aromatic solvents which consist of mixtures of the abovementioned aromatic solvents and have a boiling point range between 140 ° C. and 230 ° C. are particularly preferred.
  • Preferably no aromatic solvent is used.
  • the polyisocyanate is preferably used in an amount such that the number of isocyanate groups is from 80 to 120% based on the number of free hydroxyl groups in the resin.
  • the binder systems can conventional additives such.
  • Binder systems are preferably offered as two-component systems, the solution of the phenolic resin being one component and the polyisocyanate, optionally in solution, being the other component.
  • the two components are combined and then mixed with sand or a similar aggregate to produce a molding compound.
  • Molding composition contains an effectively binding amount of up to 15% by weight of the binder system according to the invention, based on the weight of the binder system according to the invention
  • Aggregates It is also possible to first mix the components with parts of the sand or aggregate and then combine these two mixtures. Methods to achieve a uniform mixture of the components and the aggregate are known to the person skilled in the art known
  • the mixture can optionally also contain other conventional ingredients, such as iron oxide, ground flax fibers, wooden parts, pitch and refractory flours.
  • the aggregate In order to produce casting mold parts from sand, the aggregate should have a sufficiently large particle size. As a result, the molded part has sufficient porosity and volatile compounds can escape during the casting process. In general, at least 80% by weight and preferably 90% by weight of the aggregate have an average particle size ⁇ 290 ⁇ m. The average particle size of the aggregate should be between 100 and 300 ⁇ m.
  • sand is preferably used as the aggregate material, with at least 70% by weight and preferably more than 80% by weight of the sand being silicon dioxide.
  • Zircon, olevin, aluminosilicate sand and chromite sand are also suitable as aggregate materials.
  • the aggregate material is the main component of mold parts.
  • the proportion of the binder is generally up to 10% by weight, frequently between 0.5 and 7% by weight, based on the weight of the aggregate. 0.6 to 5% by weight of binder, based on the weight of the aggregate, is particularly preferably used.
  • the mold part is hardened so that it retains its outer shape after removal of the mold.
  • Conventional liquid or gaseous hardening systems can be used to harden the binder system according to the invention.
  • a volatile tertiary amine such as triethylamine or dimethylethylamine, as described in US Pat. No. 3,409,579, can be passed through the molded part. It is it is also possible to add a liquid amine to the molding composition for curing. After removal from the mold, the casting mold part is brought into the final state by further hardening in a manner known per se.
  • silanes of the general formula (R'0) 3 Si are added to the molding composition before curing.
  • R ' is a hydrocarbon radical, preferably an alkyl radical with 1-6 carbon atoms
  • R is an alkyl radical, an alkoxy-substituted alkyl radical or an alkylamine-substituted amine radical with alkyl groups which have 1-6 carbon atoms.
  • silanes examples include Dow Corning Z6040 and Union Carbide A-187 ( ⁇ -glycidoxypropyltrimethoxysilane), Union Carbide A-1100 ( ⁇ -aminopropyltriethoxysilane), Union Carbide A-1120 (N-ß- (aminoethyi) - ⁇ -amino- propyltrimethoxysilane) and Union Carbide A-1160 (ureidosilane).
  • additives including wetting agents and additives that extend the use of the sand mixture (English bench life additives), as described in US Pat. No. 4,683,252 or US Pat. No. 4,540,724, can be used.
  • Additional mold release agents such as Fatty acids, fatty alcohols and their derivatives can be used, but are usually not required.
  • the raw materials listed in Table I are placed in a reaction vessel equipped with a reflux condenser, thermometer and stirrer. With stirring, the temperature is increased evenly to 105-115 ° C and held until a refractive index of 1.5590 is reached. The condenser is then switched to distillation and the temperature is raised to 124-126 ° C within one hour. At this temperature, distillation is continued until a refractive index of 1.5940 is reached. A vacuum is then applied and the mixture is distilled to a refractive index of 1,600 under reduced pressure. The yield is approximately 83% in Example 1 and approximately 78% in Example 2.
  • the phenolic resin solution 1A separates into two phases after cooling to room temperature and is therefore not used for further tests.
  • the viscosity of the phenolic resin solutions 1B-1 D is far outside the application-technically favorable range (up to approx. 400 mPa-s)
  • the bending strengths of the test specimens are determined using the GF method.
  • the flexural strength of the test specimens is tested immediately after their manufacture (immediate strength) and after 1, 2 and 24 hours.
  • the binder systems formulated with the conventional phenolic resin have significantly lower initial strengths than the binder systems according to the invention (experiments 4-13). The increase in strength is also significantly slower.
  • GF test bars are stored in the oven at 650 ° C for 1 minute. After removal, the smoke development is observed against a dark background and rated with the marks 10 (very strong) - 1 (hardly noticeable).
  • Table V shows that the smoke development diminishes if the fatty acid esters are reduced in favor of oxygen-rich solvents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mold Materials And Core Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft ein Bindemittelsystem, umfassend eine Phenolharzkomponente und eine Polyisocyanatkomponente, gekennzeichnet dadurch, daß die Phenolharzkomponente ein alkoxy-modifiziertes Phenolharz umfaßt, wobei weniger als 25 mol-% der phenolischen Hydroxygruppen durch einen primären oder sekundären aliphatischen Alkohol mit 1 bis 10 Kohlenstoffatomen verethert sind.

Description

Bindemittelsystem zur Herstellung von Kernen und Gießformen auf Polyurethanbasis
Die vorliegende Erfindung betrifft ein Bindemittelsystem zur Herstellung von Kernen und Gießformen auf Polyurethanbasis.
Die unter der Bezeichnung "Cold-Box-Verfahren" oder "Ashland-Verfahren" bekannt gewordene Methode der Kernherstellung hat in der Gießereiindustrie eine Spitzenstellung erobert. Zur Bindung des Sandes werden bei diesem Verfahren Zwei-Komponenten-Polyurethan-Systeme eingesetzt. Die Komponente 1 besteht dabei aus der Lösung eines Polyols, das mindestens zwei OH-Gruppen pro Molekül enthält. Die Komponente 2 ist die Lösung eines Polyisocyanats mit mindestens zwei NCO-Gruppen pro Molekül. Die Aushärtung des Bindemittelsystems erfolgt mit Hilfe von basischen Katalysatoren. Flüssige Basen können dem Bindemittelsystem vor der Formgebung zugemischt werden, um die beiden Komponenten zur Reaktion zu bringen (US-A-3, 676,392). Eine weitere Möglichkeit besteht nach US-A- 3,409,579 darin, gasförmige tertiäre Amine nach der Formgebung durch das Formstoff-/Bindemittelsystem-Gemisch zu leiten.
In den beiden genannten Patenten werden Phenolharze als Polyole verwendet, die durch Kondensation von Phenol mit Aldehyden, vorzugsweise Formaldehyd, in flüssiger Phase bei Temperaturen bis ca. 130°C in Gegenwart katalytischer Mengen von Metallionen erhalten werden. In US-A- 3,485,797 wird die Herstellung solcher Phenolharze detailliert beschrieben. Außer unsubstituiertem Phenol können substituierte Phenole, vorzugsweise o- Kresol und p-Nonylphenol, zum Einsatz kommen (z.B. EP-A-183 782). Als weitere Reaktionskomponente können nach EP-B-0 177 871 bei der Herstellung der Phenolharze aliphatische Monoalkohole mit ein bis acht Kohlenstoffatomen eingesetzt werden. Durch die Alkoxylierung sollen die Bindemittelsysteme eine erhöhte thermische Stabilität besitzen. Als Lösungsmittel für die Phenol-Komponente werden überwiegend Gemische aus hochsiedenden polaren Lösungsmitteln (z.B. Ester und Ketone) und hochsiedenden aromatischen Kohlenwasserstoffen eingesetzt. Die Polyisocyanate werden dagegen bevorzugt in hochsiedenden aromatischen Kohlenwasserstoffen gelöst. In der europäischen Patentanmeldung EP-A- 0 T*1 599 werden Formulierungen beschrieben, bei denen durch Verwendung von Fettsäuremethylestern ganz oder zumindest weitgehend auf aromatische Lösungsmittel verzichtet wird. Die Fettsäuremethylester werden dabei entweder als Alleinlösungsmittel oder unter Zusatz von polaritätserhöhenden Lösungsmitteln (Phenol-Komponente) bzw. aromatischen Lösungsmitteln (Isocyanat-Komponente) eingesetzt. Die mit diesen Bindemittelsystemen hergestellten Kerne lassen sich besonders leicht aus den Formwerkzeugen entfernen. In der Praxis zeigen die entsprechend EP-A-0 771 599 formulierten Bindemittelsysteme jedoch einen gravierenden Nachteil: Beim Abguß entwickeln sie vermehrt Qualm und Rauch, so daß sie in vielen Gießereien nicht über das Versuchsstadium hinaus eingesetzt wurden.
Um die immer höheren Umweltstandards und Arbeitsschutzanforderungen zu erfüllen, besteht seit einigen Jahren ein wachsendes Interesse an Bindemittelsystemen, die keine oder nur wenig aromatische Kohlenwasserstoffe enthalten.
Es war daher die Aufgabe der vorliegenden Erfindung, ein aromatenarmes bzw. -freies Bindemittelsystem zu entwickeln. Es ist weiterhin eine Aufgabe der Erfindung, ein Bindemittelsystem zur Verfügung stellen, das beim Abgießen eine geringe Qualmbildung aufweist. Die mit Hilfe dieses Bindemittelsystems hergestellten Formkörper sollen zudem eine gute Biegefestigkeit, vor allem Sofortfestigkeit, aufweisen.
Diese Aufgabe wurde gelöst durch ein Bindemittelsystem umfassend eine Phenolharzkomponente und eine Polyisocyanatkomponente gekennzeichnet dadurch, daß die Phenolharzkomponente ein alkoxy-modifiziertes Phenolharz umfaßt, wobei weniger als 25 mol-% der phenolischen Hydroxygruppen durch einen primären oder sekundären aiiphatischen Alkohol mit 1 bis 10 Kohlenstoffatomen verethert sind.
Weiterhin betrifft die Erfindung Formmassen, die Aggregate und bis zu 15 Gew.-% bezogen auf das Gewicht der Aggregate eines erfindungsgemäßen Bindemittelsystems umfassen.
Die Erfindung betrifft ebenfalls Verfahren zur Herstellung eines Gießformteils umfassend a. Vermischen von Aggregaten mit dem erfindungsgemäßen Bindemittelsystem in einer bindenden Menge von bis zu 15 Gew.-%, bezogen auf die Menge der Aggregate; b. Einbringen des in Schritt (a) erhaltenen Gießgemischs in eine Form; c. Härten des Gießgemischs in der Form, um eine selbsttragende Form zu erhalten; und d. anschließendes Entfernen des geformten Gießgemischs von Schritt (c) aus der Form und weiteres Härten, wodurch man ein hartes, festes, ausgehärtetes Gießformteil erhält.
Das so erhaltene Gießformteil kann erfindungsgemäß zum Gießen von Metall verwendet werden.
Erfindungswesentlich ist die Wahl des alkoxy-modifizierten Phenolharzes, das eine niedrige Viskosität und günstige Polarität aufweist. Erfindungsgemäß ermöglicht das alkoxy-modifizierte Phenolharz, die benötigte Lösungsmittelmenge insgesamt sowohl in der Phenolharzkomponente als auch in der Isocyanatkomponente zu reduzieren. Ferner kann auf die Verwendung von aromatischen Kohlenwasserstoffen in einer oder beiden Bindemittelkomponenten verzichtet werden. Durch die Kombination des alkoxy-modifizierten Phenolharzes mit sauerstoffreichen, polaren, organischen Lösungsmitteln werden bei reduzierter Qualmbildung verbesserte Sofortfestigkeiten erzielt. Der Zusatz von Fettsäureester wirkt sich positiv auf die Trennwirkung und die Feuchtebeständigkeit aus.
Phenolharze werden durch Kondensation von Phenolen und Aldehyden hergestellt (Ullmann's Encyclopedia of Industrial Chemistry, Bd. A19, page 371 ff, 5. Auflage, VCH Verlag, Weinheim). Im Rahmen dieser Erfindung können neben Phenol auch substituierte Phenole und Gemische hiervon eingesetzt werden. Geeignet sind alle herkömmlich verwendeten substituierten Phenole. Die Phenolverbindungen sind entweder in beiden ortho-Positionen oder in einer ortho- und in der para-Position nicht substituiert, um die Polymerisation zu ermöglichen. Die verbleibenden Ringkohlenstoffe können substituiert sein. Die Wahl des Substituenten ist nicht besonders beschränkt sofern der Substituent die Polymerisation des Phenols und des Aldehyds nicht nachteilig beeinflußt. Beispiele substituierter Phenole sind alkyl-substituierte Phenole, aryl-substituierte Phenole, cycloalkyl-substituierte Phenole, alkenyl-substituierte Phenole, alkoxy-substituierte Phenole, aryloxy- substituierte Phenole und halogen-substituierte Phenole.
Die obengenannten Substituenten haben 1 bis 26, bevorzugt 1 bis 12, Kohlenstoffatome. Beispiele geeigneter Phenole neben den besonders bevorzugten nicht substituierten Phenolen sind o-Kresol, m-Kresol, p-Kresol, 3,5-Xylol, 3,4-Xylol, 3,4,5-Trimethylphenol, 3-Ethylphenol, 3,5-Diethylphenol, p-Butylphenol, 3,5-Dibutylphenol, p-Amylphenol, Cyclohexylphenol, p- Octylphenol, 3,5-Dicyclohexylphenol, p-Crotylphenol, p-Phenylphenol, 3,5- Dimethoxyphenol, 3,4,5-Trimethoxyphenol, p-Ethoxyphenol, p-Butoxyphenol, 3-Methyl-4-methoxyphenol und p-Phenoxyphenol. Besonders bevorzugt ist Phenol selbst. Die Phenole können ebenfalls durch die allgemeine Formel beschrieben werden:
wobei A, B und C Wasserstoff, Alkylradikale, Alkoxyradikale oder Halogen sein können.
Alle Aldehyde die herkömmlich zur Herstellung von Phenolharzen verwendet werden, können im Rahmen der Erfindung eingesetzt werden. Beispiele hierfür sind Formaldehyd, Acetaldehyd, Propionaldehyd, Furfuraldehyd und Benzaldehyd. Vorzugsweise haben die eingesetzten Aldehyde die allgemeine Formel R'CHO, wobei R" Wasserstoff oder ein Kohlenwasserstoffradikal mit 1- 8 Kohlenstoffatomen ist. Besonders bevorzugt ist Formaldehyd entweder in seiner wäßrigen Form oder als Paraformaldehyd.
Um die erfindungsgemäßen Phenolharze zu erhalten sollte eine mindestens äquivalente Molanzahl an Aldehyd bezogen auf die Molanzahl der Phenolkomponente eingesetzt werden. Bevorzugt beträgt das Molverhältnis Aldehyd:Phenol mindestens 1 :1 ,0, besonders bevorzugt mindestens 1 :0,58.
Um alkoxy-modifizierte Phenolharze zu erhalten, werden primäre und sekundäre aliphatische Alkohole mit einer OH-Gruppe und mit 1 bis 10 Kohlenstoffatomen eingesetzt. Geeignete primäre oder sekundäre Alkohole umfassen z.B. Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol und Hexanol. Bevorzugt sind Alkohole mit 1 bis 8 Kohlenstoffatomen, insbesondere Methanol und Butanol.
Die Herstellung alkoxy-modifizierter Phenolharze ist in EP-B-0 177 871 beschrieben. Sie können entweder nach dem Ein-Stufen- oder Zwei-Stufen- Verfahren hergestellt werden.
Bei dem Ein-Stufen-Verfahren werden die Phenolkomponente, der Aldehyd und der Alkohol in Gegenwart eines geeigneten Katalysators zur Reaktion gebracht. Bei dem Zwei-Stufen-Verfahren wird zuerst ein nicht-modifiziertes Harz hergestellt, das anschließend mit Alkohol behandelt wird.
Das Verhältnis von Alkohol zu Phenol beeinflußt die Eigenschaften des Harzes sowie die Reaktionsgeschwindigkeit. Das Molverhältnis von Alkohol zu Phenol beträgt weniger als 0,25, so daß weniger als 25 mol-% der phenolischen Hydroxygruppen verethert sind. Bevorzugt ist ein Molverhältnis von 0,18-0,25. Beträgt das Molverhältnis von Alkohol zu Phenol mehr als 0,25, dann sinkt die Feuchtebeständigkeit. Geeignete Katalysatoren sind Salze zweiwertiger Ionen von Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca und Ba. Bevorzugt wird Zinkacetat verwendet.
Die Alkoxylierung führt zu Harzen mit einer geringen Viskosität. Die Harze weisen hauptsächlich ortho-ortho Benzyletherbrücken auf und weisen zudem in ortho- und para-Stellung zur phenolischen OH-Gruppe Alkoxymethylengruppen der allgemeinen Formel -(CH2O)nR auf. Hierbei ist R die Alkylgruppe des Alkohols und n eine kleine ganze Zahl im Bereich von 1 bis 5.
Alle Lösungsmittel, die konventionell in Bindemittelsystemen für die Gießereitechnik Verwendung finden, können in den erfindungsgemäßen Systemen eingesetzt werden. Es ist sogar möglich in größeren Anteilen aromatische Kohlenwasserstoffe als Lösungsmittelbestandteil zu verwenden, nur werden damit die eingangs erwähnten möglicherweise umweit- und gesundheitsgefährdenden Lösungsmittel, nicht vermieden. Als Lösungsmittel für die Phenolharzkomponente werden deshalb bevorzugt sauerstoffreiche, polare, organische Lösungsmittel verwendet. Geeignet sind vor allem Dicarbonsäureester, Glykoletherester, Glykoldiester, Glykoldiether, cyclische Ketone, cyclische Ester (Lactone) oder cyclische Carbonate. Bevorzugt werden Dicarbonsäureester, cyclische Ketone und cyclische Carbonate verwendet. Dicarbonsäureester weisen die Formel R^OC-Rj-COOR! auf, wobei R1 jeweils unabhängig voneinander eine Alkylgruppe mit 1-12 (bevorzugt 1-6) Kohlenstoffatomen darstellen und R2 eine Alkylengruppe mit 1-4 Kohienstoffatome ist. Beispiele sind Dimethylester von Carbonsäuren mit 4 bis 6 Kohlenstoffatomen, die z.B. unter der Bezeichnung Dibasic Ester von DuPont erhältlich sind. Glykoletherester sind Verbindungen der Formel R3-O- R4-OOCR5, wobei R3 eine Alkylgruppe mit 1-4 Kohlenstoffatomen darstellt, R4 eine Alkylengruppe mit 2-4 Kohlenstoffatomen ist und R5 eine Alkylgruppe mit 1-3 Kohlenstoffatomen ist (z.B. Butylglykolacetat), bevorzugt sind Glykoletheracetate. Glykoldiester weisen entsprechend die allgemeine Formel R5COO-R4-OOCR5 auf wobei R4 und R5 wie oben definiert sind und die Reste R5 jeweils unabhängig voneinander ausgewählt werden (z.B. Propylenglykoldiacetat), bevorzugt sind Glykoldiacetate. Glykoldiether lassen sich durch die Formel R3-O-R4-O-R3 charakterisieren, in dem R3 und R4 wie oben definiert sind und die Reste R3 jeweils unabhängig voneinander ausgewählt werden (z.B. Dipropylenglykoldimethylether). Cyclische Ketone, cyclische Ester und cyclische Carbonate mit 4-5 Kohlenstoffatome sind ebenfalls geeignet (z.B. Propylencarbonat). Die Alkyl- und Alkylengruppen können jeweils verzweigt oder unverzweigt sein. Diese organischen polaren Lösungsmittel werden bevorzugt entweder als Alleinlösungsmittel für das Phenolharz oder in Kombination mit Fettsäureestern verwendet, wobei der Gehalt an den sauerstoffreichen Lösungsmitteln im Lösungsmittelgemisch überwiegen sollte. Der Gehalt an sauerstoffreichen Lösungsmitteln sollte somit mehr als 50 Gew.-%, vorzugsweise mehr als 55 Gew.-% betragen.
Positiv auf die Qualmentwicklung wirkte sich die Maßnahme aus, den Gesamtgehalt an Lösungsmitteln im Bindemittelsystem zu reduzieren. Während herkömmliche Phenolharze überwiegend ca. 45 Gew.-% und teilweise bis zu 55 Gew.-% Lösungsmittel enthalten, um eine verarbeitungsgerechte Viskosität (bis ca. 400 mPa-s) zu erreichen, kann durch Verwendung eines erfindungsgemäßen niedrigviskosen Phenolharzes der Lösungsmittelanteil in der Phenol-Komponente auf höchstens 40 Gew.-%, bevorzugt sogar auf höchstens 35 Gew.-% begrenzt werden. Die dynamische Viskosität wird z.B. nach dem Brookfield Drehspindel Verfahren bestimmt.
Werden herkömmliche nicht alkoxy-modifizierte Phenolharze eingesetzt, so liegt die Viskosität bei reduziertem Lösungsmittelanteil weit außerhalb des anwendungstechnisch günstigen Bereichs von bis zu ca. 400 mPa-s. Teilweise ist auch die Löslichkeit so schlecht, daß bei Raumtemperatur Phasentrennung beobachtet wird. Gleichzeitig sinken die Sofortfestigkeiten der mit diesen Bindemittelsysterαen hergestellten Kerne auf ein sehr niedriges Niveau. Geeignete Bindemittelsysteme weisen eine Sofortfestigkeit von mindestens 150 N/cm2 bei einer verwendeten Menge von je 0,8 Gewichtsteilen Phenolharzkomponente und Isocyanatkomponente bezogen auf 100 Gewichtsteile Aggregat wie z.B. Quarzsand H 32 auf (s. EP-A-0 771 599 oder DE-A-4 327 292).
Der Zusatz von Fettsäureester zu dem Lösungsmittel der Phenolkomponente führt zu besonders guten Trenneigenschaften. Geeignet sind Fettsäuren z.B. mit 8 bis 22 Kohlenstoffen, die mit einem aliphatischen Alkohol verestert sind. Üblicherweise werden Fettsäuren natürlichen Ursprungs, wie z.B. aus Tallöl, Rapsöl, Sonnenblumenöl, Keimöl und Kokosöl, verwendet. Statt den natürlichen Ölen, die meist Gemische verschiedener Fettsäuren darstellen, können selbstverständlich auch einzelne Fettsäuren wie z.B. Palmitinfettsäure oder Myristinfettsäure eingesetzt werden.
Aliphatische Monoalkohole mit 1 bis 12 Kohlenstoffen eignen sich zur Veresterung der Fettsäuren. Bevorzugt sind Alkohole mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt sind Alkohole mit 4 bis 10 Kohlenstoffatomen. Aufgrund der geringeren Polarität der Fettsäureester deren Alkoholkomponente 4 bis 10 Kohlenstoffatome aufweist ist es möglich, den Fettsäureesteranteil zu verringern, und die Qualmbildung zu vermindern. Eine Reihe von Fettsäureestern sind kommerziell erhältlich.
Überraschenderweise zeigte es sich, daß Fettsäureester, deren Alkoholkomponente 4 bis 10 Kohlenstoffatome enthält, besonders vorteilhaft sind, da sie dem Bindemittelsystem auch dann ausgezeichnete Trenneigenschaften verleihen, wenn ihr Gehalt im Lösungsmittel der Phenolkomponente kleiner als 50 Gew.-% beträgt. Als Beispiele für Fettsäurester mit längeren Alkoholkomponenten seien die Butylester der Ölsäure und der Tallölfettsäure sowie der gemischte Octyl-/Decylester der Tallölfettsäure genannt Durch die Verwendung der erfindungsgemäßen alkoxy-modifizierten Phenolharze lassen sich aromatische Kohlenwasserstoffe als Lösungsmittel der Phenolkomponente vermeiden. Dies ist auf die ausgewogene Polarität der Verbindungen zurückzuführen, die die Verwendung von sauerstoffreichen, organischen, polaren Lösungsmitteln z.B. als Alleinlösungsmittel ermöglichen. Durch die Verwendung der erfindungsgemäßen alkoxy-modifizierten Phenolharze kann die Menge des benötigten Lösungsmittels auf weniger als 35 Gew.-% der Phenolkomponente begrenzt werden. Dies wird durch die geringe Viskosität des Harzes ermöglicht. Die Verwendung von aromatischen Kohlenwasserstoffen kann zudem vermieden werden. Die Verwendung des erfindungsgemäßen Bindemittelsystems mit mindestens 50 Gew.-% der obengenannten sauerstoffreichen, polaren, organischen Lösungsmittel als Bestandteil des Lösungsmittels der Phenolkomponente führt zudem zu einer deutlich verringerten Qualmentwicklung im Vergleich zu herkömmlichen Systemen mit einem hohen Anteil von Fettsäureestern im Lösungsmittel.
Die zweite Komponente des Bindemittelsystems umfaßt ein aliphatisches, cycloaliphatisches oder aromatisches Polyisocyanat, bevorzugt mit 2 bis 5 Isocyanatgruppen. Je nach den gewünschten Eigenschaften können auch Gemische organischer Isocyanate eingesetzt werden. Geeignete Polyisocyanate umfassen aliphatische Polyisocyanate, wie z.B. Hexamethylendiisocyanat, alicyclische Polyisocyanate wie z.B. 4,4'- Dicyclohexylmethandiisocyanat und Dimethylderivate hiervon. Beispiele geeigneter aromatischer Polyisocyanate sind Toluol-2,4-diisocyanat, Toluol- 2,6-diisocyanat, 1 ,5-Naphthalendiisocyanat, Triphenylmethantriisocyanat, Xylylendiisocyanat und Methylderivate hiervon,
Polymethylenpolyphenylisocyanate und Chlorophenylen-2,4-diisocyanat. Bevorzugte Polyisocyanate sind aromatische Polyisocyanate, besonders bevorzugt sind Polymethylenpolyphenylpolyisocyanate wie z.B. Diphenylmethandiisocyanat In allgemeinen wird 10 - 500 Gew.-% Polyisocyanat bezogen auf das Gewicht des Phenolharzes eingesetzt. Vorzugsweise werden 20 - 300 Gew.-% Polyisocyanat eingesetzt. Flüssige Polyisocyanate können in unverdünnter Form eingesetzt werden, während feste oder viskose Polyisocyanate in organischen Lösungsmitteln gelöst werden. Bis zu 80 Gew.-% der Isocyanant- Komponente können aus Lösungsmittel bestehen. Als Lösungsmittel für das Polyisocyanat werden entweder die oben genannten Fettsäureester oder ein Gemisch aus Fettsäureester und bis zu 50 Gew.-% aromatische Lösungsmittel verwendet. Geeignete aromatische Lösungsmittel sind Naphthalin, alkyl- substituierte Naphthaline, alkyl-substituierte Benzole und Gemische hiervon. Besonders bevorzugt sind aromatische Lösungsmittel, die aus Gemischen der oben genannten aromatischen Lösungsmittel bestehen und einen Siedepunktbereich zwischen 140°C und 230°C besitzen. Vorzugsweise wird kein aromatisches Lösungsmittel verwendet. Bevorzugt wird das Polyisocyanat in einer Menge eingesetzt, so daß die Anzahl der Isocyanatgruppen von 80 bis 120 % bezogen auf die Anzahl der freien Hydroxylgruppen des Harzes beträgt.
Neben den bereits erwähnten Bestandteilen können die Bindemittelsysteme konventionelle Zusätze, wie z. B. Silane (US 4,540,724), trocknende Öle (US
4,268,425) oder Komplexbildner (WO 95/03903), beinhalten. Die
Bindemittelsysteme werden bevorzugt als Zwei-Komponenten-Systeme angeboten, wobei die Lösung des Phenolharzes eine Komponente darstellt und das Polyisocyanat, gegebenfalls in Lösung, die andere Komponente ist. Die beiden Komponenten werden vereinigt und anschließend mit Sand oder einem ähnlichen Aggregat gemischt, um eine Formmasse herzustellen. Die
Formmasse enthält eine wirksam bindende Menge von bis zu 15 Gew.-% des erfindungsgemäßen Bindemittelsystems bezogen auf das Gewicht der
Aggregate. Es ist ebenfalls möglich die Komponenten zunächst jeweils mit Teilen des Sandes oder Aggregates zu mischen und anschließend diese beiden Mischungen zu vereinigen. Verfahren um eine gleichmäßige Mischung der Komponenten und des Aggregates zu erzielen sind dem Fachmann bekannt Die Mischung kann zusätzlich gegebenenfalls andere konventionelle Zutaten, wie Eisenoxid, gemahlene Flachsfasern, Holzteile, Pech und refraktäre Mehle, enthalten.
Um Gießformteile aus Sand herzustellen, sollte das Aggregat eine genügend große Partikelgröße aufweisen. Dadurch besitzt das Gießformteil eine ausreichende Porosität und flüchtige Verbindungen können während des Gießvorgangs entweichen. Im allgemeinen weisen mindestens 80 Gew.-% und bevorzugt 90 Gew.-% des Aggregates eine durchschnittliche Partikelgröße < 290 μm auf. Die durchschnittliche Partikelgröße des Aggregates sollte zwischen 100 und 300 μm betragen.
Für Standard-Gießformteile wird bevorzugt Sand als Aggregatmaterial verwendet, wobei zumindest 70 Gew.-% und bevorzugt mehr als 80 Gew.-% des Sandes Siliciumdioxid sind. Zirkon, Olevin, Aluminosilikatsand und Chromitsand eignen sich ebenfalls als Aggregatmaterialien.
Das Aggregatmaterial stellt den Hauptbestandteil bei Gießformteilen. In Gießformteilen aus Sand für Standardanwendungen beträgt der Anteil des Bindemittels im allgemeinen bis zu 10 Gew.-%, häufig zwischen 0,5 und 7 Gew.-%, bezogen auf das Gewicht des Aggregates. Besonders bevorzugt werden 0,6 bis 5 Gew.-% Bindemittel bezogen auf das Gewicht des Aggregates verwendet.
Obwohl das Aggregat vorzugsweise getrocknet eingesetzt wird, können bis zu 0,1 Gew.-% bezogen auf das Gewicht des Aggregates an Feuchtigkeit toleriert werden. Das Gießformteil wird gehärtet, so daß es seine äußere Form nach der Entfernung der Gießform behält. Konventionelle flüssige oder gasförmige Härtungssysteme können zum Härten des erfindungsgemäßen Bindemittelsystems verwendet werden. So kann z.B. ein leicht flüchtiges tertiäres Amin wie z.B. Triethylamin oder Dimethylethylamin, wie in US-A- 3,409,579 beschrieben, durch das Gießformteil geleitet werden. Es ist weiterhin möglich, ein flüssiges Amin der Formmasse zur Härtung zuzusetzen. Nach dem Entfernen aus der Form wird in an sich bekannter Weise das Gießformteil durch weiteres Härten in den Endzustand überführt.
In einer bevorzugten Ausführungsform werden Silane der allgemeinen Formel (R'0)3Si der Formmasse vor dem Aushärten zugesetzt. Dabei ist R' ein Kohlenwasserstoffradikal, bevorzugt ein Alkylradikal mit 1-6 Kohlenstoffatomen, und R ein Alkylradikal, ein alkoxy-substituiertes Alkylradikal oder ein Alkylamin-substituiertes Aminradikal mit Alkylgruppen, die 1-6 Kohlenstoffatome besitzen. Der Zusatz von 0,1 bis 2 Gew.-% bezogen auf das Gewicht des Bindemittelsystems und des Härters verringert die Feuchtigkeitsempfindlichkeit der Systeme. Beispiele von kommerziell erhältlichen Silanen sind Dow Corning Z6040 und Union Carbide A-187 (γ- Glycidoxypropyltrimethoxysilan), Union Carbide A-1100 (γ- Aminopropyltriethoxysilan), Union Carbide A-1120 (N-ß-(Aminoethyi)-γ-amino- propyltrimethoxysilane) und Union Carbide A-1160 (Ureidosilan).
Gegebenenfalls können andere Zusatzstoffe einschließlich Benetzungsmittel und die Verwendung der Sandmischung verlängernde Additive (engl. Benchlife-Additive), wie in US 4,683,252 oder US 4,540,724 beschrieben verwendet werden. Zusätzliche Formtrennmittel wie z.B. Fettsäuren, Fettalkohole und deren Derivate können eingesetzt werden, werden aber in der Regel nicht benötigt.
Die Erfindung wird durch die folgenden Beispiele weiter erläutert. Beispiele
Soweit nicht anders angegeben verstehen sich alle Prozentangaben als Gew.-%.
1. Herstellung der Phenolharze
In einem mit Rückflußkühler, Thermometer und Rührer ausgestatteten Reaktionsgefäß werden die in Tabelle I aufgeführten Rohstoffe vorgelegt. Unter Rühren wird die Temperatur gleichmäßig auf 105 - 115°C erhöht und so lange gehalten, bis ein Brechungsindex von 1 ,5590 erreicht ist. Danach wird der Kühler auf Destillation umgestellt und die Temperatur innerhalb einer Stunde auf 124 - 126°C gebracht. Bei dieser Temperatur wird bis zum Erreichen eines Brechungsindexes von 1 ,5940 weiterdestilliert. Danach wird Vakuum angelegt und bei vermindertem Druck bis zu einem Brechungsindex von 1 ,600 destilliert. Die Ausbeute beträgt ca. 83 % bei Beispiel 1 und ca. 78 % bei Beispiel 2.
Tabelle I
2. Herstellung der Phenolharzlösungen
Mit den nach obiger Vorschrift hergestellten Phenolharzen werden die in Tabelle II aufgeführten Lösungen hergestellt Handelsnamen sind durch (H) gekennzeichnet.
Tabelle II
Tabelle II (Fortsetzung)
a) DBE, Dibasic Ester, Dimethylestergemisch von Dicarbonsäuren mit 4 bis 6 Kohlenstoffatomen (DuPont) b) Forbiol 102, Butylester der Tallölfettsäure (Arizona Chemical)
Die Phenolharzlösung 1A separiert nach dem Abkühlen auf Raumtemperatur in zwei Phasen und wird deshalb nicht zu weiteren Prüfungen herangezogen. Die Viskosität der Phenolharzlösungen 1B-1 D liegt weit außerhalb des anwendungstechnisch günstigen Bereichs (bis ca. 400 mPa-s)
3. Herstellung der Polyisocyanatlösungen
Als Komponente II der Polyurethan-Bindemittelsysteme werden die in Tabelle III aufgeführten Lösungen hergestellt.
Tabelle III
c) Forbiol 152, gemischter Octyl-/Decylester der Tallölfettsäure (Arizona Chemical) d) Solvesso 100, Gemisch aromatischer Kohlenwasserstoffe (Exxon) 4.) Herstellung und Prüfung der Formstoff-/Bindemittelsystem-Gemische
Bei der Herstellung der Formstoff-/Bindemittelsystem-Gemische wird wie folgt vorgegangen:
Zu 100 Gewichtsteilen Quarzsand H 32 (Quarzwerke GmbH, Frechen) werden nacheinander jeweils 0,5 Gewichtsteile einer der in Tabelle II aufgeführten Phenolharziösungen und 0,8 Gewichtsteile einer der in Tabelle III aufgeführten Polyisocyanatlösungen zugegeben und in einem Labormischer intensiv vermischt. Mit diesen Gemischen werden Prüfkörper nach DIN 52401 hergestellt, die durch Begasen mit Triethylamin (10 s bei 4 bar Druck, danach 10 s Spülen mit Luft) ausgehärtet werden.
Die Biegefestigkeiten der Probekörper werden nach der GF-Methode ermittelt. Dabei wird die Biegefestigkeit der Prüfkörper unmittelbar nach ihrer Herstellung (Sofortfestigkeiten) sowie nach 1 , 2 und 24 Std. geprüft.
Die Ergebnisse sind in Tabelle IV aufgeführt.
Tabelle IV
Aus Tabelle III erkennt man:
die mit dem herkömmlichen Phenolharz formulierten Bindemittelsysteme (Versuch 1-3) besitzen wesentlich geringere Anfangsfestigkeiten als die erfindungsgemäßen Bindemittelsysteme (Versuche 4-13). Auch der Festigkeitsanstieg ist deutlich langsamer.
die Festigkeiten, vor allem die Sofortfestigkeiten, aller erfindungsgemäß formulierten Bindemittelsysteme (Versuche 4-13) sind innerhalb der
Genauigkeit der Prüfmethode gleich. Eine Abhängigkeit vom Verhältnis Fettsäureester/polares Lösungsmittel ist nicht erkennbar.
- sowohl der Fettsäurebutylester als auch der Festtsäureoctyl-/decylester sind für die Formulierung der erfindungsgemäßen Bindemittelsysteme gleichermaßen geeignet (Versuche 7 und 12)
- die Kombination mit aromatischen Lösungsmitteln ist ebenso möglich (Versuche 7 und 13)
5. Beobachtung der Quaimentwicklung
GF-Prüfriegel werden 1 Minute lang bei 650°C im Ofen gelagert. Nach der Entnahme wird die Qualmentwicklung gegen einen dunklen Hintergrund beobachtet und mit den Noten 10 (sehr stark) - 1 (kaum wahrnehmbar) bewertet.
Das Ergebnis ist in Tabelle V aufgelistet. Tabelle V
Aus Tabelle V geht hervor, daß die Qualmentwicklung nachläßt, wenn man die Fettsäureester zugunsten von sauerstoffreichen Lösungsmittel reduziert.
Gußversuche mit Kernen, die der Zusammensetzung aus den Versuchen 4 und 7 entsprachen, bestätigten das obige Ergebnis.

Claims

Patentansprüche
1. Bindemittelsystem umfassend eine Phenolharzkomponente und eine Polyisocyanatkomponente gekennzeichnet dadurch, daß die Phenolharzkomponente ein alkoxy-modifiziertes Phenolharz umfaßt, wobei weniger als 25 mol-% der phenolischen Hydroxygruppen durch einen primären oder sekundären aliphatischen Monoalkohol mit 1 bis 10 Kohlenstoffatomen verethert sind.
2. Bindemittelsystem nach Anspruch 1 , wobei die Phenolharzkomponente ein polares, organisches Lösungsmittel umfaßt, wobei das polare, organische Lösungsmittel aus Dicarbonsäureester, Glykoletherester, Glykoldiester, Glykoldiether, cyclische Ketone, cyclische Ester und cyclische Carbonate ausgewählt wird.
3. Bindemittelsystem nach Anspruch 2, wobei die Phenolharzkomponente einen Fettsäureester umfaßt.
4. Bindemittelsystem nach Anspruch 3, wobei der vom Alkohol abgeleitete Rest des Fettsäureesters 1 bis 12 Kohlenstoffatome enthält.
5. Bindemittelsystem nach einem der Ansprüche 1 bis 4, wobei der Lösungsmittelanteil der Phenolharzkomponente höchstens 40 Gew.-% beträgt.
6. Formmasse umfassend Aggregate und eine wirksam bindende Menge von bis zu 15 Gew.-% bezogen auf das Gewicht der Aggregate eines Bindemittelsystems nach einem der Ansprüche 1 bis 5.
. Verfahren zur Herstellung eines Gießformteils umfassend a. Vermischen von Aggregaten mit dem Bindemittelsystem nach einem der Ansprüche 1 bis 5 in einer bindenden Menge von bis zu 15 Gew.- %, bezogen auf die Menge der Aggregate; b. Einbringen des in Schritt (a) erhaltenen Gießgemischs in eine Form; c. Härten des Gießgemischs in der Form um eine selbsttragende Form zu erhalten; und d. anschließendes Entfernen des geformten Gießgemischs von Schritt (c) aus der Form und weiteres Härten, wodurch man ein hartes, festes, ausgehärtetes Gießformteil erhält.
8. Verfahren nach Anspruch 7, bei dem das Gießgemisch gehärtet wird durch Behandeln des Gießgemischs mit einem Amin.
9. Verfahren zum Gießen eines Metalls, umfassend: a. Herstellung eines Gießformteils nach einem der Ansprüche 7 bis 9 b. Gießen von Metall im flüssigem Zustand in oder um diese Form; c. Kühlen und Verfestigen des Metalls; und d. anschließendes Abtrennen des gegossenen Gegenstandes.
EP99957988A 1998-11-04 1999-11-04 Bindemittelsystem zur herstellung von kernen und giessformen auf polyurethanbasis Expired - Lifetime EP1137500B9 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19850833 1998-11-04
DE19850833A DE19850833C2 (de) 1998-11-04 1998-11-04 Bindemittelsystem zur Herstellung von Kernen und Gießformen auf Polyurethanbasis, deren Verwendung und Verfahren zur Herstellung eines Gießformteils auf Polyurethanbasis
PCT/EP1999/008419 WO2000025957A1 (de) 1998-11-04 1999-11-04 Bindemittelsystem zur herstellung von kernen und giessformen auf polyurethanbasis

Publications (3)

Publication Number Publication Date
EP1137500A1 true EP1137500A1 (de) 2001-10-04
EP1137500B1 EP1137500B1 (de) 2004-03-24
EP1137500B9 EP1137500B9 (de) 2005-12-14

Family

ID=7886667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99957988A Expired - Lifetime EP1137500B9 (de) 1998-11-04 1999-11-04 Bindemittelsystem zur herstellung von kernen und giessformen auf polyurethanbasis

Country Status (16)

Country Link
EP (1) EP1137500B9 (de)
KR (1) KR100871534B1 (de)
AT (1) ATE262387T1 (de)
AU (1) AU757432B2 (de)
BG (1) BG64942B1 (de)
BR (1) BR9915076A (de)
CA (1) CA2349878C (de)
CZ (1) CZ296809B6 (de)
DE (2) DE19850833C2 (de)
DK (1) DK1137500T3 (de)
ES (1) ES2217841T3 (de)
HU (1) HU223611B1 (de)
NO (1) NO20012166L (de)
PL (1) PL191929B1 (de)
TR (1) TR200101240T2 (de)
WO (1) WO2000025957A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057671A1 (de) * 2004-11-29 2006-06-01 Hüttenes-Albertus Chemische Werke GmbH Niedrigviskose Phenol-Formaldehydharze
DE102008007181A1 (de) 2008-02-01 2009-08-06 Ashland-Südchemie-Kernfest GmbH Verwendung von verzweigten Alkandiolcarbonsäurediestern in Gießereibindemitteln auf Polyurethanbasis
DE102008025311A1 (de) 2008-05-27 2009-12-03 Ashland-Südchemie-Kernfest GmbH Geruchs- und schadstoffadsorbierende Beschichtungsmasse für den kastengebundenen Metallguss
DE102013004663A1 (de) 2013-03-18 2014-09-18 Ask Chemicals Gmbh Epoxyverbindungen und Fettsäureester als Bestandteile von Gießereibindemitteln auf Polyurethanbasis
DE102013004662A1 (de) 2013-03-18 2014-09-18 Ask Chemicals Gmbh Verwendung von Monoestern epoxidierter Fettsäuren in PU-Bindemitteln zur Herstellung von Kernen und Formen für den Metallguss
DE102013004661A1 (de) 2013-03-18 2014-09-18 Ask Chemicals Gmbh Verwendung von Carbonsäuren und Fettaminen in PU-Bindemitteln zur Herstellung von Kernen und Formen für den Metallguss
WO2016008467A1 (de) 2014-07-18 2016-01-21 Ask Chemicals Gmbh Co-katalysatoren für polyurethan-coldbox-bindemittel
US9493602B2 (en) 2010-11-18 2016-11-15 Ask Chemicals Gmbh Polyurethaner-based binder for producing cores and casting molds using isocyanates containing a uretonimine and/or carbodiimide group, a mold material mixture containing said binder, and a method using said binder
DE102006037288B4 (de) 2006-08-09 2019-06-13 Ask Chemicals Gmbh Formstoffmischung enthaltend Cardol und/oder Cardanol in Gießereibindemitteln auf Polyurethanbasis, Verfahren zur Herstellung eines Formkörpers sowie Verwendung desselben
DE102018100694A1 (de) 2018-01-12 2019-07-18 Ask Chemicals Gmbh Formaldehydreduziertes Phenolharzbindemittel
DE102020003562A1 (de) 2020-06-15 2021-12-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau eines ausgehärteten dreidimensionalen Formkörpers, Formkörper, welcher dadurch erhalten werden kann, sowie dessen Verwendung
US11253912B2 (en) 2017-06-08 2022-02-22 Ask Chemicals Gmbh Method for producing three-dimensionally layered shaped bodies
DE102021003265A1 (de) 2021-06-24 2022-12-29 Ask Chemicals Gmbh Beschichteter körniger stoff, verfahren zum beschichten eines körnigen stoffs und verwendung eines bindemittels zum beschichten eines körnigen stoffs
DE102021003264A1 (de) 2021-06-24 2022-12-29 Ask Chemicals Gmbh Zwei-komponenten-polyurethanzusammensetzungen
EP4389789A1 (de) 2022-12-21 2024-06-26 Prefere Resins Holding GmbH Verwendung von hydroxybenzoesäure zur modifizierung von benzyletherharzen

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1955792T3 (pl) 2007-01-22 2019-11-29 Arkema France Sposób wytwarzania kształtowanych rdzeni odlewniczych i odlewania metali
DE102007031376A1 (de) 2007-07-05 2009-01-08 GTP Schäfer Gießtechnische Produkte GmbH Alternatives Cold-Box-Verfahren mit Rohölen
DE102010032734A1 (de) 2010-07-30 2012-02-02 Ashland-Südchemie-Kernfest GmbH Bindemittelsystem auf Polyurethanbasis zur Herstellung von Kernen und Gießformen unter Verwendung cyclischer Formale, Formstoffmischung und Verfahren
DE102010046981A1 (de) 2010-09-30 2012-04-05 Ashland-Südchemie-Kernfest GmbH Bindemittel enthaltend substituierte Benzole und Napthaline zur Herstellung von Kernen und Formen für den Metallguss, Formstoffmischung und Verfahren
DE102014117284A1 (de) 2014-11-25 2016-05-25 Ask Chemicals Gmbh Polyurethan-Bindemittelsystem zur Herstellung von Kernen und Gießformen, Formstoffmischung enthaltend das Bindemittel und ein Verfahren unter Verwendung des Bindemittels
DE102015102952A1 (de) 2015-03-02 2016-09-08 Ask Chemicals Gmbh Verfahren zur Aushärtung von Polyurethan-Bindemitteln in Formstoffmischungen durch Einleiten tertiärer Amine und Lösungsmittel und Kit zur Durchführung des Verfahrens
DE102015107016A1 (de) 2015-05-05 2016-06-23 Ask Chemicals Gmbh Verfahren zur Reduzierung von freiem Formaldehyd in Benzylether-Harzen
WO2017075351A1 (en) 2015-10-30 2017-05-04 Ask Chemicals, L.P. Polyurethane binder containing alcohol solvent
DE102016115947A1 (de) 2016-08-26 2018-03-01 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Formkörpern mit einem Phenolharz-Polyurethan-basiertem Bindersystem
DE102016123621A1 (de) 2016-12-06 2018-06-07 Ask Chemicals Gmbh Polyurethan Bindemittel mit verbesserter Fließfähigkeit
DE102016125702A1 (de) 2016-12-23 2018-06-28 Ask Chemicals Gmbh Komponentenystem zur Herstellung von Kernen und Formen
DE102016125700A1 (de) 2016-12-23 2018-06-28 Ask Chemicals Gmbh Bindemittel auf Basis von Phenolharzen vom Benzylethertyp enthaltend freies Phenol und freie Hydroxybenzylalkohole
DE102020118314A1 (de) 2020-07-10 2022-01-13 Ask Chemicals Gmbh Mittel zur Reduzierung von Sandanhaftungen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546124A (en) * 1984-10-12 1985-10-08 Acme Resin Corporation Polyurethane binder compositions
US4848442A (en) * 1984-10-12 1989-07-18 Acme Resin Corporation Resin binders for foundry sand cores and molds
US4657950A (en) * 1984-10-12 1987-04-14 Acme Resin Corporation Refractory binders
US5101001A (en) * 1989-12-21 1992-03-31 Ashland Oil, Inc. Polyurethane-forming foundry binders and their use
DE4135572A1 (de) * 1991-10-29 1993-05-06 Bayer Ag, 5090 Leverkusen, De Hydrophobe polyurethan-systeme
GB2267524B (en) * 1992-06-04 1995-07-12 Chas Braithwaite Cycle parking fixture
DE4327292C2 (de) * 1993-08-13 1996-04-25 Ashland Suedchemie Kernfest Bindemittel zur Herstellung von Gießereikernen und -formen und ihre Verwendung
AU717143B2 (en) * 1996-07-17 2000-03-16 Ashland Licensing And Intellectual Property Llc Benzylic ether phenolic resole resins, their preparation, and uses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0025957A1 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057671A1 (de) * 2004-11-29 2006-06-01 Hüttenes-Albertus Chemische Werke GmbH Niedrigviskose Phenol-Formaldehydharze
DE102004057671B4 (de) * 2004-11-29 2007-04-26 Hüttenes-Albertus Chemische Werke GmbH Phenol-Formaldehydharze und Verfahren zu deren Herstellung
DE102006037288B4 (de) 2006-08-09 2019-06-13 Ask Chemicals Gmbh Formstoffmischung enthaltend Cardol und/oder Cardanol in Gießereibindemitteln auf Polyurethanbasis, Verfahren zur Herstellung eines Formkörpers sowie Verwendung desselben
DE102008007181A1 (de) 2008-02-01 2009-08-06 Ashland-Südchemie-Kernfest GmbH Verwendung von verzweigten Alkandiolcarbonsäurediestern in Gießereibindemitteln auf Polyurethanbasis
DE102008025311A1 (de) 2008-05-27 2009-12-03 Ashland-Südchemie-Kernfest GmbH Geruchs- und schadstoffadsorbierende Beschichtungsmasse für den kastengebundenen Metallguss
US8215373B2 (en) 2008-05-27 2012-07-10 Ask Chemicals Gmbh Coating composition which adsorbs adourous and harmful substances and is intended for the box casting of metals
US9493602B2 (en) 2010-11-18 2016-11-15 Ask Chemicals Gmbh Polyurethaner-based binder for producing cores and casting molds using isocyanates containing a uretonimine and/or carbodiimide group, a mold material mixture containing said binder, and a method using said binder
WO2014146940A1 (de) 2013-03-18 2014-09-25 Ask Chemicals Gmbh Verwendung von carbonsäuren und fettaminen in pu-bindemitteln zur herstellung von kernen und formen für den metallguss
WO2014146945A1 (de) 2013-03-18 2014-09-25 Ask Chemicals Gmbh EPOXYVERBINDUNGEN UND FETTSÄUREESTER ALS BESTANDTEILE VON GIEßEREIBINDEMITTELN AUF POLYURETHANBASIS
WO2014146942A1 (de) 2013-03-18 2014-09-25 Ask Chemicals Gmbh Verwendung von monoestern epoxidierter fettsäuren in pu-bindemitteln zur herstellung von kernen und formen für den metallguss
DE102013004661A1 (de) 2013-03-18 2014-09-18 Ask Chemicals Gmbh Verwendung von Carbonsäuren und Fettaminen in PU-Bindemitteln zur Herstellung von Kernen und Formen für den Metallguss
DE102013004662A1 (de) 2013-03-18 2014-09-18 Ask Chemicals Gmbh Verwendung von Monoestern epoxidierter Fettsäuren in PU-Bindemitteln zur Herstellung von Kernen und Formen für den Metallguss
DE102013004663A1 (de) 2013-03-18 2014-09-18 Ask Chemicals Gmbh Epoxyverbindungen und Fettsäureester als Bestandteile von Gießereibindemitteln auf Polyurethanbasis
DE102013004663B4 (de) 2013-03-18 2024-05-02 Ask Chemicals Gmbh Bindemittelsystem, Formstoffmischung enthaltend dasselbe, Verfahren zur Herstellung der Formstoffmischung, Verfahren zur Herstellung eines Gießformteils oder Gießkerns, Gießformteil oder Gießkern sowie Verwendung des so erhältlichen Gießformteils oder Gießkerns für den Metallguss
WO2016008467A1 (de) 2014-07-18 2016-01-21 Ask Chemicals Gmbh Co-katalysatoren für polyurethan-coldbox-bindemittel
US11253912B2 (en) 2017-06-08 2022-02-22 Ask Chemicals Gmbh Method for producing three-dimensionally layered shaped bodies
DE102018100694A1 (de) 2018-01-12 2019-07-18 Ask Chemicals Gmbh Formaldehydreduziertes Phenolharzbindemittel
WO2021254953A1 (en) 2020-06-15 2021-12-23 Ask Chemicals Gmbh Method for the layer-by-layer production of a cured three-dimensional shaped body, shaped body obtainable by the method, and use thereof
DE102020003562A1 (de) 2020-06-15 2021-12-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau eines ausgehärteten dreidimensionalen Formkörpers, Formkörper, welcher dadurch erhalten werden kann, sowie dessen Verwendung
DE102021003265A1 (de) 2021-06-24 2022-12-29 Ask Chemicals Gmbh Beschichteter körniger stoff, verfahren zum beschichten eines körnigen stoffs und verwendung eines bindemittels zum beschichten eines körnigen stoffs
DE102021003264A1 (de) 2021-06-24 2022-12-29 Ask Chemicals Gmbh Zwei-komponenten-polyurethanzusammensetzungen
WO2022268943A1 (en) 2021-06-24 2022-12-29 Ask Chemicals Gmbh Coated granular substance, method for coating a granular substance and use of a binder for coating a granular substance
EP4389789A1 (de) 2022-12-21 2024-06-26 Prefere Resins Holding GmbH Verwendung von hydroxybenzoesäure zur modifizierung von benzyletherharzen

Also Published As

Publication number Publication date
HUP0104315A2 (hu) 2002-03-28
AU1550900A (en) 2000-05-22
NO20012166D0 (no) 2001-05-02
NO20012166L (no) 2001-06-11
DE19850833A1 (de) 2000-05-11
BG105554A (en) 2001-12-29
DK1137500T3 (da) 2004-05-10
KR100871534B1 (ko) 2008-12-05
EP1137500B9 (de) 2005-12-14
CZ296809B6 (cs) 2006-06-14
BG64942B1 (bg) 2006-10-31
BR9915076A (pt) 2001-10-23
ATE262387T1 (de) 2004-04-15
CA2349878C (en) 2009-06-09
ES2217841T3 (es) 2004-11-01
DE59908972D1 (de) 2004-04-29
KR20010113634A (ko) 2001-12-28
HUP0104315A3 (en) 2002-05-28
CA2349878A1 (en) 2000-05-11
PL191929B1 (pl) 2006-07-31
TR200101240T2 (tr) 2001-10-22
PL348642A1 (en) 2002-06-03
HU223611B1 (hu) 2004-10-28
CZ20011334A3 (cs) 2002-05-15
EP1137500B1 (de) 2004-03-24
DE19850833C2 (de) 2001-06-13
WO2000025957A1 (de) 2000-05-11
AU757432B2 (en) 2003-02-20

Similar Documents

Publication Publication Date Title
DE19850833C2 (de) Bindemittelsystem zur Herstellung von Kernen und Gießformen auf Polyurethanbasis, deren Verwendung und Verfahren zur Herstellung eines Gießformteils auf Polyurethanbasis
EP2640764B2 (de) Bindemittel auf polyurethanbasis zur herstellung von kernen und giessformen unter verwendung von isocyanaten enthaltend eine urethonimin- und/oder carbodiimid-gruppe, eine formstoffmischung enthaltend das bindemittel und ein verfahren unter verwendung des bindemittels
EP2598550B1 (de) Bindemittelsystem auf polyurethanbasis zur herstellung von kernen und giessformen unter verwendung cyclischer formale, formstoffmischung und verfahren
EP2249982B1 (de) Verwendung von verzweigten alkandiolcarbonsäurediestern in giessereibindemitteln auf polyurethanbasis
EP3558560B1 (de) Bindemittel auf basis von phenolharzen vom benzylethertyp enthaltend freies phenol und freie hydroxybenzylalkohole
DE102015107016A1 (de) Verfahren zur Reduzierung von freiem Formaldehyd in Benzylether-Harzen
EP3737707A1 (de) Formaldehydreduziertes phenolharzbindemittel
EP0713500B1 (de) Massen zum herstellen von giessereikernen und -formen
DE102013004663B4 (de) Bindemittelsystem, Formstoffmischung enthaltend dasselbe, Verfahren zur Herstellung der Formstoffmischung, Verfahren zur Herstellung eines Gießformteils oder Gießkerns, Gießformteil oder Gießkern sowie Verwendung des so erhältlichen Gießformteils oder Gießkerns für den Metallguss
US6772820B2 (en) Polyurethane based binder system for the manufacture of foundry cores and molds
EP3333205B1 (de) Polyurethan bindemittel mit verbesserter fliessfähigkeit
DE102015102952A1 (de) Verfahren zur Aushärtung von Polyurethan-Bindemitteln in Formstoffmischungen durch Einleiten tertiärer Amine und Lösungsmittel und Kit zur Durchführung des Verfahrens
DE19738755A1 (de) Phenolharz und Bindemittel für die Herstellung von Formen und Kernen nach dem Phenolharz-Polyurethan-Verfahren
DE102014117284A1 (de) Polyurethan-Bindemittelsystem zur Herstellung von Kernen und Gießformen, Formstoffmischung enthaltend das Bindemittel und ein Verfahren unter Verwendung des Bindemittels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 20010601;SI PAYMENT 20010601

17Q First examination report despatched

Effective date: 20020726

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RTI1 Title (correction)

Free format text: BINDER SYSTEM FOR PRODUCING POLYURETHANE-BASED CORES AND MOULDS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59908972

Country of ref document: DE

Date of ref document: 20040429

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040712

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2217841

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ASHLAND-SUEDCHEMIE-KERNFEST GMBH

Free format text: ASHLAND-SUEDCHEMIE-KERNFEST GMBH#POSTFACH 440#40721 HILDEN (DE) -TRANSFER TO- ASHLAND-SUEDCHEMIE-KERNFEST GMBH#POSTFACH 440#40721 HILDEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20111123

Year of fee payment: 13

Ref country code: FI

Payment date: 20111121

Year of fee payment: 13

Ref country code: DK

Payment date: 20111124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111122

Year of fee payment: 13

BERE Be: lapsed

Owner name: *ASHLAND-SUDCHEMIE-KERNFEST G.M.B.H.

Effective date: 20121130

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908972

Country of ref document: DE

Owner name: ASK CHEMICALS GMBH, DE

Free format text: FORMER OWNER: ASHLAND-SUEDCHEMIE-KERNFEST GMBH, 40721 HILDEN, DE

Effective date: 20140903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141120

Year of fee payment: 16

Ref country code: GB

Payment date: 20141120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20141119

Year of fee payment: 16

Ref country code: NL

Payment date: 20141120

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 262387

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151104

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161124

Year of fee payment: 18

Ref country code: ES

Payment date: 20161124

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180130

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59908972

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130