EP2253398B1 - Verschleißbeständiger Werkstoff - Google Patents

Verschleißbeständiger Werkstoff Download PDF

Info

Publication number
EP2253398B1
EP2253398B1 EP09450242.4A EP09450242A EP2253398B1 EP 2253398 B1 EP2253398 B1 EP 2253398B1 EP 09450242 A EP09450242 A EP 09450242A EP 2253398 B1 EP2253398 B1 EP 2253398B1
Authority
EP
European Patent Office
Prior art keywords
carbon
nitrides
nitrogen
niobium
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09450242.4A
Other languages
English (en)
French (fr)
Other versions
EP2253398A1 (de
Inventor
Werner Theisen
Stephan Huth
Herbert Schweiger
Jochen Perko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH and Co KG
Original Assignee
Boehler Edelstahl GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH and Co KG filed Critical Boehler Edelstahl GmbH and Co KG
Priority to EP11004405A priority Critical patent/EP2374560A1/de
Publication of EP2253398A1 publication Critical patent/EP2253398A1/de
Application granted granted Critical
Publication of EP2253398B1 publication Critical patent/EP2253398B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the invention relates to a method for the production and to a wear-resistant material containing carbon (C), nitrogen (N), oxygen (O), niobium and / or tantalum (Nb / Ta) and metallic elements and impurities as the remainder with a Microstructure consisting of a metal matrix and embedded in these hard phases.
  • metallic materials consist of a tough or tough matrix and distributed in this hard phases, which are usually formed as interstitial compounds.
  • a wear-reducing effect of hard phase deposits is well known, with a higher hard phase content in the matrix as much as possible reducing abrasive removal from the workpiece surface when the support force for the hard particles and the matrix hardness are high.
  • wear-resistant iron base materials e.g. Cold work steels, from a hard, preferably thermally tempered metal matrix with distributed in this, precipitated from the residual melt of the alloy during solidification, carbides.
  • Carbide formation in a ledeburitic solidification of an alloyed melt in a cast billet may also be inhomogeneous due to a low solidification rate in the center thereof and segregation to coarse hard phases
  • it is known, for example from EP 1721 999 A1 apply powder metallurgical manufacturing process.
  • an alloyed liquid melt after flowing out of a nozzle is separated by high-pressure gas jets into small droplets which naturally cool at high speed and thereby precipitate fine hard phase particles upon solidification.
  • hot isostatic pressing (HIP) or by deformation of the powder in a container a production of a largely dense material with a high proportion of uniformly distributed hard phases with a small particle size takes place.
  • HIP hot isostatic pressing
  • alloys which have a high content of carbide formers, in particular monocarbide formers, with a corresponding carbon content and a chromium concentration in the matrix of more than 12.0% by weight.
  • a corrosion and wear resistant tool steel discloses the EP 1721999 , wherein contents of 6.0 to 11.0 vol .-% vanadium are provided in the alloy to form a high hard phase content. In this case, a tendency to form ferrite in the structure by cobalt concentrations of 1.5 to 5.0 % by weight is overcome.
  • Alloys in which no expensive chromium is to be lost by carbide formation discloses the DE 42 31 695 A1 and proposes to alloy a PM tool steel with 1 to 3.5 wt% nitrogen.
  • Nitrogen for hard phase formation becomes an advantageous measure for the production of wear resistant materials in the WO 2007/024 192 A1 proposed.
  • the invention has the object to provide a method for creating a material which has a high resistance to abrasion under abrasion stress.
  • this material in an alloy variant should also be resistant to chemical corrosion.
  • the object of the aforementioned invention is essentially achieved by a method for producing a wear-resistant material, wherein in a first step, a metallic, liquid alloy containing Nioblotantal (NbTa) with a concentration of 3.0 to 18.0 wt .-%, and a content of carbon and / or nitrogen, in which no primary precipitates of carbides and / or nitrides are formed above the atomization temperature or liquidus, is atomized to powder material, after which the powder is subjected to a process for increasing the carbon content and / or the nitrogen content and / or the oxygen content and subsequently subjected to a hot compacting, in particular a hot isostatic pressing, or wherein the pressed body or HIP body is subjected to a hot deformation or a heat treatment.
  • the powder is mixed with elemental carbon and / or treated in a carbon and nitrogen-releasing atmosphere optionally at elevated temperature and subsequently compacted to produce wear-resistant materials .
  • the advantages of the method according to the invention for the production of wear-resistant materials consist essentially in the fact that due to the niobium / tantalum concentration of 3.0 to 18.0 wt .-% and increasing the carbon content to 0.3 to 3.0 wt .-% and the nitrogen content to 0.05 bis 4.0 wt .-% high-hardness niobium and / or tantalum monocarbides, Mononitride or Monokarbonitride be achieved in a homogeneous distribution with a small diameter and such a high abrasion resistance is achieved.
  • the oxygen content of 0.002 to 0.25 in the material acts on the one hand as a formation nucleus for the hard phase with respect to hard particles with specific, small size in a homogeneous distribution in the matrix and on the other hand as a separate hard material former.
  • the hard material particles have a diameter of at most 50 microns, because at larger phases, the risk of breaking them out of the matrix is increased dramatically. Smaller diameters than 0.2 ⁇ m of the hard phases provide only a slight, abrasion-reducing effect.
  • the matrix of the wear-resistant alloy has a martensitic microstructure, then the material itself has an increased abrasion-reducing hardness, minimizing as far as possible the risk of breaking hard phases out of the structure during wear.
  • compositions for a material with high resistance to abrasion with Abrasionsbe carriedung and with high corrosion resistance containing, in wt .-% Carbon (C) 0.5 to 2.5 Nitrogen (N) 0.15 to 0.6 Silicon (Si) 0.2 to 1.5 Manganese (Mn) 0.3 to 2.0 Chrome (Cr) 10.0 to 20.0 Niobium / tantalum (Nb / Ta) 3.0 to 15.0 Molybdenum (Mo) 0.5 to 3.0 Vanadium (V) 0.1 to 1.0 Titanium (Ti) 0.001 to 1.0 Iron (Fe) rest and production-related impurities, with a structure consisting of a metal matrix and embedded in these hard phases, with the proviso that the hard phases are formed as carbides and / or nitrides and / or carbonitrides and / or Oxikarbonitrife and have a diameter of at most 50 microns and at least 0.2 microns, with The proviso that the relationship
  • the concentrations of the alloying metals are coordinated in this material with respect to the carbon activity and the carbide formation kinetics of the respective elements, the contents of the monocarbide formers being decisive for the intended carbon concentration.
  • Nitrogen is limited with a content of 0.6 wt .-% to the top, because in the given case, the hard phases should be designed mainly as carbides. Below 0.15 wt.% Nitrogen, the solidification effect of the matrix is too low, so that the content limits in wt.% Are 0.15 to 0.6 nitrogen.
  • Silicon acts as a deoxidation metal and influences the microstructural transformation of the alloy during the heat treatment.
  • a minimum content of 0.2% by weight of Si is important in terms of effective oxide formation, whereas higher contents than 1.5% by weight adversely affect toughness.
  • a manganese content of 0.3% by weight or more is intended for setting sulfur in the metal, with more than 2.0% by weight of Mn promoting disadvantageous austenite stability.
  • Chromium and molybdenum provide corrosion resistance of the alloy at minimum concentrations of 10.0 and 0.5 wt%, but may also be effective as carbide formers. Higher contents than 20.0% by weight of Cr and 3.0% by weight of Mo disadvantageously lead to a stabilization of ferrite in a heat treatment.
  • Vanadium and titanium should not exceed contents of 1.0 wt .-%, because carbides of these elements to a large extent dissolve Cr or incorporate into the crystal lattice, which can cause depletion of Cr in the edge region of the matrix.
  • the elements niobium and tantalum are elements that form in the alloy from a content of 3.0 wt .-% hard, the wear resistance of the material promoting monocarbides. It is important that these elements Nb / Ta show only a slight tendency to incorporate further elements, in particular chromium, in the carbide or carbonitride formation in the crystal lattice, so that in the vicinity of these hard phases no depletion of the matrix of alloy components, especially of chromium and Molybdenum, and thus no adverse effect on the corrosion resistance of the material is formed.
  • a low wear and a high corrosion resistance of the material is achieved, which contains material in wt .-% Carbon (C) more than 0.3 to 1.0 Nitrogen (N) 1.0 to 4.0 Silicon (Si) 0.2 to 1.5 Manganese (Mn) 0.3 to 1.5 Chrome (Cr) 10.0 to 20.0 Niobium / tantalum (Nb / Ta) 3.0 to 15.0 Molybdenum (Mo) 0.5 to 3.0 Vanadin (V) 0.1 to 1.0 Titanium (Ti) 0.001 to 1.0 Iron (Fe) rest and production-related impurities, with a structure consisting of a metal matrix and embedded in it Hard phases, with the proviso that the hard phases as carbides and / or nitrides and / or carbonitrides and / or Oxikarbonitride are formed and have a maximum diameter of 50 microns and at least 0.2 microns, with the proviso that
  • the high nitrogen content of 1.0 to 4.0 wt .-% at carbon concentrations of 0.3 to 1.0 wt .-% leads to substantially nitrides formed hard phases, whereby the chromium and molybdenum induced passive layer formation and corrosion resistance are promoted.
  • a material produced by a method mentioned above can be provided cheaply and economically, which in wt .-% Carbon (C) 0.5 to 3.0 Nitrogen (N) 0.15 to 0.6 Silicon (Si) 0.2 to 1.5 Manganese (Mn) 0.3 to 2.0 Chrome (Cr) 10.0 to 20.0 Niobium / tantalum (Nb / Ta) 3.0 to 15.0 Molybdenum (Mo) 0.5 to 3.0 Vanadin (V) 0.1 to 1.0 Titanium (Ti) 0.001 to 1.0 Iron (Fe) rest with manufacturing-related impurities, with a structure consisting of a metal matrix and embedded in these hard phases, with the proviso that the hard phases are formed as carbides and / or nitrides and / or carbonitrides and / or Oxikarbonitride and a diameter of at most 50 micro
  • the alloy may have the following composition and ratios of the elements in% by weight with lowered chromium contents Carbon (C) 1.0 to 3.5 Nitrogen (N) 0.05 to 0.4 Silicon (Si) 0.2 to 1.5 Manganese (Mn) 0.3 to 1.0 Chrome (Cr) 2.5 to 6.0 Niobium / tantalum (Nb / Ta) 3.0 to 18.0 Molybdenum (Mo) 2.0 to 10.0 Tungsten (W) 0.1 to 12.0 Vanadin (V) 0.1 to 3.0 Cobalt (Co) 0.1 to 12.0 Iron (Fe) rest with production-related impurities, with a microstructure consisting of a metal matrix and embedded in these hard phases, with the proviso that the hard phases are formed as carbides and / or nitrides and / or carbonitrides and / or Oxkarbonitride
  • the highly wear-resistant tool material which is based on a type of high-speed steel alloy, can be easily tempered to high hardness values and has outstanding toughness despite its high hardness. Particularly pronounced is the wear resistance of the cutting tools formed from this alloy, which Tools thus have a particularly long service life in rough and interrupted cut.
  • the inventive method of the type mentioned is determined such that in a first step, a metallic liquid alloy containing niobium / tantalum (Nb / Ta) with a concentration of 3.0 to 18.0 wt .-%, and a content of carbon and / or Nitrogen, in which no primary precipitates of carbides and / or nitrides are formed above the atomization temperature or liquidus temperature, is atomized to powder material, after which the powder subjected to a process for increasing the carbon content and / or the nitrogen content and / or the oxygen content and then a hot compacting , in particular a hot isostatic pressing, wherein the pressed body or HIP body is alternatively subjected to a hot working and / or a heat treatment.
  • the method according to the invention has the advantage that materials with a high carbide-nitride or carbonitride hard material content can be produced, the hard-material particles having small diameters and homogeneous distribution in the matrix.
  • the matrix elements can by a thermal tempering or by hardening and tempering of the material impart this high strength and prevent stripping or breaking the larger, optimized hard particles as far as possible. As a result, a particularly pronounced wear resistance of the material is achieved.
  • a carburizing and / or an increase in the nitrogen content in adjusting the oxygen content of the pre-alloyed metal powder according to the invention by admixed, elemental carbon and / or by a carbon and / or nitrogen and / or oxygen-releasing atmosphere, in particular at elevated temperature before or at a Hot compaction done.
  • other hard material particles having a size of from 2 to 50 .mu.m can be admixed to the powder material to an extent of up to 25% by volume, which are consequently effective in reducing the wear on the given material.
  • Tab. 1 on page 11 shows the composition of two commercially available, wear-resistant alloys with the designations X190 CrVMo 20 4 1, X90 CrVMo 18 1 1, corrosion-resistant, inventive alloys with the designations A, B, C, and of cutting materials according to the invention with the designations D, E, F.
  • the commercial alloys were produced by the PM method with a deformation of the HIP block ( H schreib- I sostatisch-ge p resst) greater than 6-fold.
  • Powders for the samples designated A, B, C were made from alloys having the following main components in wt%: description Si Mn Cr Not a word V W Nb Co Fe A 12:43 12:42 11.92 2.21 12:08 12:07 9:02 12:08 rest B 12:51 12:44 16:41 2.19 12:09 12:07 9:56 12:05 rest C 12:43 12:42 11.92 2.21 12:05 12:06 9:02 12:08 rest produced by atomizing by means of nitrogen gas.
  • Atomization with nitrogen was further carried out using melts designated D, E, F with the main constituents in% by weight: description Si Mn Cr Not a word V W Nb Co Fe D 0.3 0.4 4.15 2.94 1:52 2.13 3:34 12:12 rest e 12:28 12:35 3.95 2.84 1:47 2.23 3:45 8.21 rest F 12:37 12:33 3:58 4.1 1.84 5:07 10.73 7:07 rest
  • the alloyed metal powder was then placed under nitrogen atmosphere in steel containers and knock compacted, followed by welding of the containers and hot isostatic pressing at a temperature of 1165 ° C.
  • Tab. 1 shows the chemical composition of known materials (X190 CrVMo 20 4 1 and X90 CrMoV 18 1 1) and those of steel samples according to the invention
  • the corrosion behavior of the alloys was determined from current density potential curves on the samples according to ASTM G65 in 1N H 2 SO 4 , 20 ° C, with a quenching of the same from 1100 ° C and 1070 ° C and a tempering at 200 ° C. ,
  • Fig. 1 shows, in the relevant potential range of about -300mV to + 300mV, the comparative alloy X190 CrVMo 20 4 1 essentially the highest passive current density in comparison with the inventively assembled samples A, B, C, which reveals their improved corrosion behavior.
  • Fig. 2 shows the hardness of the differently composite alloys after curing, depending on the tempering temperature after two times Tempering.
  • the respective hardening temperature can be taken from the designation field for the alloys.
  • the materials A and C of the alloy according to the invention on a comparatively low tempering hardness, because their respective carbon content of improved corrosion resistance due to (see Fig.1 ) was chosen low.
  • alloys D, E and F are significantly higher in the range of tempering temperatures between 500 and 600 ° C, which discloses a clear superiority of the same for use of, for example, cutting and forming elements.
  • Fig. 3 shows the wear behavior of the samples made from the alloys, determined according to the VDI progress reports " Nitrogen-alloyed tool steels ", Series 5, No. 188 (1990), p. 129 described pin-disk test with Flint 80 grit. The hardnesses of the samples are above the respective bars in Fig. 3 specified. Both the corrosion resistant alloy B and the alloys E and F according to the invention show superior resistance to wear, indicating a correspondingly favorable choice of carbon and niobium contents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung und auf einen verschleißbeständigen Werkstoff, enthaltend Kohlenstoff (C), Stickstoff (N), Sauerstoff (O), Niob und/oder Tantal (Nb/Ta) sowie metallische Elemente und Verunreinigungen als Rest mit einem Gefüge, bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen.
  • Gemäß dem technischen Ansatz bestehen verschleißresistente, metallische Werkstoffe aus einer zähfesten oder zähharten Matrix und in dieser verteilt Hartphasen, welche zumeist als interstitielle Verbindungen ausgeformt sind.
  • Eine verschleißmindernde Wirkung von Hartphaseneinlagerungen ist allgemein bekannt, wobei ein höherer Hartphasenanteil in der Matrix einen abrasiven Abtrag von der Werkstückoberfläche höchstmöglich vermindert, wenn die Stützkraft für die Hartstoffpartikel und die Matrixhärte hoch sind.
  • Nach dem Stand der Technik bestehen verschleißresistente Eisenbasiswerkstoffe, z.B. Kaltarbeitsstähle, aus einer harten, vorzugsweise thermisch vergüteten Metallmatrix mit in dieser verteilten, aus der Restschmelze der Legierung bei der Erstarrung ausgeschiedenen, Karbiden.
  • Eine Karbidbildung bei einer ledeburitischen Erstarrung einer legierten Schmelze in einem Gussblock kann auch aufgrund einer niedrigen Erstarrungsgeschwindigkeit im Zentrum desselben und durch Seigerung zu groben Hartphasen mit inhomogener Um eine höhere Konzentration von Hartphasen im Werkstoff, insbesondere bei gleichmäßiger Verteilung in diesem, zu erreichen, ist es bekannt, z.B. aus EP 1721 999 A1 pulvermetallurgische Herstellverfahren anzuwenden. Im Wesentlichen wird bei diesen PM-Verfahren eine legierte, flüssige Schmelze nach einem Ausfließen aus einer Düse durch Hochdruck-Gasstrahlen in kleine Tröpfchen zerteilt, welche naturgemäß mit hoher Geschwindigkeit abkühlen und dadurch feine Hartphasenpartikel bei der Erstarrung ausscheiden. Durch ein heißisostatisches Pressen (HIP) oder mittels Verformung des Pulvers in einem Behältnis erfolgt eine Herstellung eines weitgehend dichten Werkstoffes mit hohem Anteil an gleichmäßig verteilten Hartphasen mit geringer Korngröße.
  • Eine Steigerung der Verschleißresistenz mittels Erhöhung des Volumenanteils von Hartphasen in der Matrix eines Werkstoffes und in der Folge einer Erhöhung der Konzentration der die Hartphasen bildenden Elemente hat jedoch verfahrenstechnische und reaktionskinetische Grenzen. Primäre Ausscheidungen im Flüssigmetall können während des Verdüsungsablaufes zu einer Verringerung der Ausströmung derselben aus der Düse oder zu einem totalen Zuwachsen der Durchtrittsöffnung führen und derart die Herstellbarkeit nachteilig beeinflussen. Größere Legierungsüberhitzungen im Vorratsgefäß einer Anlage zur Metallpulverherstellung können auch metallurgische und/oder reaktionskinetische Nachteile haben.
  • Aufgrund des Bedarfs an höchst verschleißresistenten Werkstoffen, welche gegebenenfalls eine überlegene Korrosionsbeständigkeit aufweisen sollen, wurden vielfach Legierungen vorgeschlagen, welche einen hohen Gehalt an Karbidbildnern, insbesondere Monokarbidbildnern, mit entsprechendem Kohlenstoffgehalt und einer Chromkonzentration in der Matrix von über 12.0 Gew.-% haben.
  • In der DE 42 02 339 B4 wird beispielsweise ein korrosionsbeständiger, hochverschleißfester, härtbarer Stahl mit Niobgehalten von 5.0 bis 8.0 Gew.-% Nb vorgeschlagen, welcher ohne Anwendung eines pulvermetallurgischen Verfahrens herstellbar ist.
  • Um auch bei langsamer Abkühlung eines Bauteiles eine verschleißfeste Matrix mit harter, martensitischer Struktur und einem hohen Karbidanteil zu erreichen, ist gemäß DE 10 2005 020 081 A1 ein hoher Gehalt der Elemente Chrom, Molybdän, Vanadin, und vor allem auch Nickel vorgesehen, weil diese Elemente im ZTU-Schaubild die Perlitnase nach rechts verschieben.
  • Einen korrosions-und verschleißbeständigen Werkzeugstahl offenbart die EP 1721999 , wobei zur Bildung eines hohen Hartphasenanteiles Gehalte von 6.0 bis 11.0 vol.-% Vanadin in der Legierung vorgesehen sind. Dabei wird eine Neigung zur Ausbildung von Ferrit im Gefüge durch Kobaltkonzentrationen von 1.5 bis 5.0 Gew.-% überwunden.
  • Legierungen, bei welchen kein teures Chrom durch Karbidbildung verloren gehen soll, offenbart die DE 42 31 695 A1 und schlägt vor, einen PM-Werkzeugstahl mit 1 bis 3.5 Gew.-% Stickstoff zu legieren.
  • Stickstoff zur Hartphasenbildung wird als vorteilhafte Maßnahme für die Herstellung von verschleißbeständigen Werkstoffen in der WO 2007/024 192 A1 vorgeschlagen.
  • Ausgehend vom technischen Bedarf und dem technologischen Stand der Technik setzt sich die Erfindung zum Ziel, ein Verfahren zur Schaffung eines Werkstoffes anzugeben, welcher einen hohen Widerstand gegen Abtrag bei Abrasionsbeanspruchung aufweist. Mit Vorteil soll dieser Werkstoff in einer Legierungsvariante auch gegen chemische Korrosion beständig zusammengesetzt sein.
  • Das Ziel der eingangs genannten Erfindung wird im Wesentlichen durch ein Verfahren zur Herstellung eines verschleißbeständigen Werkstoffes erreicht, wobei in einem ersten Schritt eine metallische, flüssige Legierung enthaltend NioblTantal (NbTa) mit einer Konzentration von 3.0 bis 18.0 Gew.-%, sowie einem Gehalt an Kohlenstoff und/oder Stickstoff, bei welcher keine Primärausscheidungen an Karbiden und/oder Nitriden oberhalb der Verdüsungstemperatur oder Liquidustemperatur gebildet werden, zu Pulvermaterial verdüst wird, wonach das Pulver einem Verfahren zur Erhöhung des Kohlenstoffgehaltes und/oder des Stickstoffgehaltes und/oder des Sauerstoffgehaltes unterworfen und im Folgenden einem Heißkompaktieren, insbesondere einem heißisostatischen Pressen unterworfen wird, oder wobei der Pressling bzw. HIP-Körper einer Warmverformung oder einer Wärmebehandlung unterworfen wird. Verfahrenstechnisch wird zur Herstellung von verschleißfesten Werkstoffen das Pulver mit elementarem Kohlenstoff gemischt und/oder in einer Kohlenstoff und Stickstoff abgebenden Atmosphäre gegebenenfalls bei erhöhter Temperatur behandelt und nachfolgend kompaktiert.
  • Die Vorteile des erfindungsgemäßen Verfahrens zur Herstellung von verschleißfesten Werkstoffen bestehen im Wesentlichen darin, dass infolge der Niob/Tantal-Konzentration von 3.0 bis 18.0 Gew.-% und der Steigerung des Kohlenstoffgehaltes auf 0.3 bis 3.0 Gew.-% sowie des Stickstoffgehaltes auf 0.05 bis 4.0 Gew.-% hochharte Niob und/oder Tantal-Monokarbide, Mononitride oder Monokarbonitride in homogener Verteilung mit geringem Durchmesser erreicht werden und derart ein hoher Abrasionswiderstand erreicht wird.
  • Durch geringere Anteile an Kohlenstoff als 0.3 Gew.-% und Stickstoff als 0.05 Gew.-% kann das Bildungspotential von Verbindungen mit Gehalten von 3.0 bis 18.0 Gew.-% Nb/Ta nicht ausreichend ausgenützt werden, hingegen wirken höhere Gehalte als 3.0 bis 4.0 Gew.-% an Kohlenstoff und Stickstoff gefügeverschlechternd.
  • Der Sauerstoffgehalt von 0.002 bis 0.25 im Werkstoff wirkt einerseits als Bildungskeim für die Hartphase im Hinblick auf Hartstoffteilchen mit bestimmter, geringer Größe in homogener Verteilung in der Matrix und andererseits als eigener Hartstoffbildner.
  • Höhere Sauerstoffgehalte als 0.25 Gew.-% verspröden die Hartphasen, wohingegen geringere Gehalte als 0.002 Gew.-% keine ausgeprägte Keimwirkung haben.
  • Es ist erfindungsgemäß wichtig, dass die Hartstoffteilchen einen Durchmesser von höchstens 50 µm aufweisen, weil bei größeren Phasen die Gefahr des Ausbrechens derselben aus der Matrix sprunghaft erhöht ist. Geringere Durchmesser als 0.2 µm der Hartphasen erbringen nur eine geringe, abrasionsvermindernde Wirkung.
  • Wenn, wie gemäß der Erfindung, die Matrix der verschleißbeständigen Legierung eine martensitische Gefügestruktur aufweist, so hat der Werkstoff selbst eine erhöhte abrasionsmindernde Härte, wobei höchstmöglich eine Gefahr des Ausbrechens von Hartphasen aus dem Gefüge bei Verschleißbeanspruchung minimiert ist.
  • Erfindungsgemäß hat sich für einen Werkstoff mit hohem Widerstand gegen Abtrag bei Abrasionsbeanspruchung und mit hoher Korrosionsbeständigkeit eine Zusammensetzung ergeben, enthaltend in Gew.-%
    Kohlenstoff (C) 0.5 bis 2.5
    Stickstoff (N) 0.15 bis 0.6
    Silicium (Si) 0.2 bis 1.5
    Mangan (Mn) 0.3 bis 2.0
    Chrom (Cr) 10.0 bis 20.0
    Niob/Tantal (Nb/Ta) 3.0 bis 15.0
    Molybdän (Mo) 0.5 bis 3.0
    Vanadium (V) 0.1 bis 1.0
    Titan (Ti) 0.001 bis 1.0
    Eisen (Fe) Rest
    und herstellungsbedingte Verunreinigungen,
    mit einem Gefüge bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen, mit der Maßgabe, dass die Hartphasen als Karbide und/oder Nitride und/oder Karbonitride und/oder Oxikarbonitrife gebildet sind und einen Durchmesser von höchstens 50 µm und mindestens 0.2 µm aufweisen, mit der Maßgabe, dass der Zusammenhang von Kohlenstoffgehalt und der Konzentration von Niob/Tantal sowie Vanadin und Titan einen Wert, gebildet aus % C = 0.3 + % Nb + 2 × % V + % Ti U
    Figure imgb0001

    erfüllt, und die Zahl U größer als 6, jedoch kleiner als 10 ist.
  • Die Konzentrationen der Legierungsmetalle sind in diesem Werkstoff bezüglich der Kohlenstoffaktivität und der Karbidbildungskinetik der jeweiligen Elemente aufeinander abgestimmt, wobei die Gehalte der Monokarbidbildner maßgebend für die vorgesehene Kohlenstoffkonzentration sind. Stickstoff ist mit einem Gehalt von 0.6 Gew.-% nach obenhin begrenzt, weil im gegebenen Fall die Hartphasen hauptsächlich als Karbide ausgebildet sein sollen. Unter 0.15 Gew.-% Stickstoff ist die Verfestigungswirkung der Matrix zu gering, sodass die Gehaltsgrenzen in Gew.-% 0.15 bis 0.6 Stickstoff sind.
  • Silicium wirkt als Desoxidationsmetall und beeinflusst die Gefügeumwandlung der Legierung bei der Wärmebehandlung. Ein Mindestgehalt von 0.2 Gew.-% Si ist im Hinblick auf eine wirksame Oxidbildung wichtig, wo hingegen höhere Gehalte als 1.5 Gew.-% die Zähigkeit nachteilig beeinflussen.
  • Ein Mangangehalt von 0.3 Gew.-% und mehr ist für eine Abbindung von Schwefel im Metall vorgesehen, wobei über 2.0 Gew.-% Mn eine nachteilig wirkende Austenitstabilität fördert.
  • Chrom und Molybdän begründen eine Korrosionsbeständigkeit der Legierung bei Mindestkonzentrationen von 10.0 und 0.5 Gew.-%, können jedoch auch als Karbidbildner wirksam sein. Höhere Gehalte als 20.0 Gew.-% Cr und 3.0 Gew.-% Mo führen in nachteiliger Weise bei einer Wärmebehandlung zu einer Stabilisierung von Ferrit.
  • Vanadin und Titan sollen Gehalte von jeweils 1.0 Gew.-% nicht übersteigen, weil Karbide dieser Elemente im hohen Maße Cr lösen bzw. in das Kristallgitter einbauen, wodurch im Randbereich der Matrix eine Verarmung an Cr entstehen kann.
  • Durch diese örtliche Chromverarmung erfolgt eine Störung der Ausbildung einer stabilen Passivschicht an der Oberfläche, wodurch die Korrosionsbeständigkeit der Legierung verschlechtert ist. In Gew.-% 0.1 Vanadin und 0.001 Titan wirken für eine Bildung von Monokarbidkeimen günstig.
  • Die Elemente Niob und Tantal sind Elemente, die in der Legierung ab einem Gehalt von 3.0 Gew.-% harte, die Verschleißfestigkeit des Werkstoffes fördernde Monokarbide ausformen. Dabei ist es wichtig, dass diese Elemente Nb/Ta nur eine geringe Neigung zeigen, weitere Elemente, insbesondere Chrom, bei der Karbid- oder Karbonitridbildung in das Kristallgitter einzubauen, sodass im Umfeld dieser Hartphasen keine Verarmung der Matrix an Legierungskomponenten, insbesondere an Chrom und Molybdän, und somit kein nachteiliger Einfluss auf die Korrosionsbeständigkeit des Werkstoffes entsteht.
  • Gemäß einer Ausgestaltung der Erfindung werden bei einem nach dem vorgenannten Verfahren hergestellten Werkstoff ein geringer Verschleiß und eine hohe Korrosionsbeständigkeit des Werkstoffes erreicht, welcher Werkstoff in Gew.-% enhält
    Kohlenstoff (C) mehr als 0.3 bis 1.0
    Stickstoff (N) 1.0 bis 4.0
    Silicium (Si) 0.2 bis 1.5
    Mangan (Mn) 0.3 bis 1.5
    Chrom (Cr) 10.0 bis 20.0
    Niob/Tantal (Nb/Ta) 3.0 bis 15.0
    Molybdän (Mo) 0.5 bis 3.0
    Vanadin (V) 0.1 bis 1.0
    Titan (Ti) 0.001 bis 1.0
    Eisen (Fe) Rest
    und herstellungsbedingte Verunreinigungen,
    mit einem Gefüge bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen, mit der Maßgabe, dass die Hartphasen als Karbide und/oder Nitride und/oder Karbonitride und/oder Oxikarbonitride gebildet sind und einen Durchmesser von höchstens 50 µm und mindestens 0.2 µm aufweisen, mit der Maßgabe, dass der Zusammenhang von Stickstoffgehalt und der Konzentration von Niob sowie Vanadin einen Wert, gebildet aus % N = 0.3 + % Nb + 2 × % V + % Ti U 1
    Figure imgb0002

    erfüllt ist, und die Zahl U1 größer als 4 und kleiner als 8 ist.
  • Der hohe Stickstoffgehalt von 1.0 bis 4.0 Gew.-% bei Kohlenstoffkonzentrationen von 0.3 bis 1.0 Gew.-% führt zu im Wesentlichen aus Nitriden gebildeten Hartphasen, wobei die durch Chrom und Molybdän bewirkte Passivschichtbildung und die Korrosionsbeständigkeit gefördert werden.
  • Unter Berücksichtigung des Chromgehaltes im Hinblick auf eine Korrosionsbeständigkeit und bei Ausrichtung des Verschleißwiderstandes auf im Wesentlichen Karbide kann gemäß einer weiteren Ausgestaltung der Erfindung ein Werkstoff, hergestellt nach einem vorgenannten Verfahren, günstig und wirtschaftlich bereitstellbar sein, der in Gew.-%
    Kohlenstoff (C) 0.5 bis 3.0
    Stickstoff (N) 0.15 bis 0.6
    Silicium (Si) 0.2 bis 1.5
    Mangan (Mn) 0.3 bis 2.0
    Chrom (Cr) 10.0 bis 20.0
    Niob/Tantal (Nb/Ta) 3.0 bis 15.0
    Molybdän (Mo) 0.5 bis 3.0
    Vanadin (V) 0.1 bis 1.0
    Titan (Ti) 0.001 bis 1.0
    Eisen (Fe) Rest
    mit herstellungsbedingten Verunreinigungen, mit einem Gefüge, bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen, mit der Maßgabe beinhaltet, dass die Hartphasen als Karbide und/oder Nitride und/oder Karbonitride und/oder Oxikarbonitride gebildet sind und einen Durchmesser von höchstens 50 µm und mindestens 0.2 µm aufweisen, mit der Maßgabe beinhaltet, dass der Zusammenhang von Kohlenstoffgehalt und die jeweilige Konzentration von Niob, Vanadin, Titan und Chrom einen Wert, gebildet aus % C = 0.3 + % Nb + 2 × % V + % Ti U 2 + Cr U 3
    Figure imgb0003

    erfüllt, und die Zahl U2 größer als 6 und kleiner als 10
    und die Zahl U3 größer als 9 und kleiner als 17 sind.
  • Werden von einem erfindungsgemäßen Werkstoff neben hoher Verschleißfestigkeit auch eine hohe Warmhärte und dergleichen Zähigkeit gefordert, wie dies für spanabhebende Werkzeuge von besonderer, größter Bedeutung ist, so kann die Legierung bei abgesenkten Chromgehalten folgende Zusammensetzung und Relationen der Elemente in Gew-% aufweisen
    Kohlenstoff (C) 1.0 bis 3.5
    Stickstoff (N) 0.05 bis 0.4
    Silicium (Si) 0.2 bis 1.5
    Mangan (Mn) 0.3 bis 1.0
    Chrom (Cr) 2.5 bis 6.0
    Niob/Tantal (Nb/Ta) 3.0 bis 18.0
    Molybdän (Mo) 2.0 bis 10.0
    Wolfram (W) 0.1 bis 12.0
    Vanadin (V) 0.1 bis 3.0
    Cobalt (Co) 0.1 bis 12.0
    Eisen (Fe) Rest
    mit herstellungsbedingten Verunreinigungen, mit einem Gefüge, bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen, mit der Maßgabe, dass die Hartphasen als Karbide und/oder Nitride und/oder Karbonitride und/oder Oxkarbonitride gebildet sind und einen Durchmesser von höchstens 50 µm und mindestens 0.2 µm aufweisen, mit der Maßgabe, dass der Zusammenhang von Kohlenstoffgehalt und der Konzentration von Niob/Tantal sowie Vanadin und Titan einen Wert, gebildet aus % C = 0.6 + % Nb + 2 × % V + % Ti U 4 + 2 × % Mo + % W U 5
    Figure imgb0004

    erfüllt ist, wobei die Zahlenwerte U4 = 6 bis 10 / U5 = 80 bis 100 sind.
  • Der auf einer Art Schnellstahllegierung basierende, hochverschleißfeste Werkzeugwerkstoff kann auf einfache Weise auf hohe Härtewerte vergütet werden und weist trotz hoher Härte überragende Zähigkeit auf. Besonders ausgeprägt ist die Verschleißfestigkeit der aus dieser Legierung gebildeten Schneidwerkzeuge, welche Werkzeuge dadurch eine besonders hohe Standzeit im groben und unterbrochenen Schnitt haben.
  • Das erfindungsgemäße Verfahren der genannten Art ist derart bestimmt, dass in einem ersten Schritt eine metallische, flüssige Legierung, enthaltend Niob/Tantal (Nb/Ta) mit einer Konzentration von 3.0 bis 18.0 Gew.-%, sowie einem Gehalt an Kohlenstoff und/oder Stickstoff, bei welcher keine Primärausscheidungen an Karbiden und/oder Nitriden oberhalb der Verdüsungstemperatur oder Liquidustemperatur gebildet werden, zu Pulvermaterial verdüst wird, wonach das Pulver einem Verfahren zur Erhöhung des Kohlenstoffgehaltes und/oder des Stickstoffgehaltes und/oder des Sauerstoffgehaltes unterworfen und im Folgenden einem Heißkompaktieren, insbesondere einem Heißisostatischen Pressen unterworfen wird, wobei der Pressling bzw. HIP-Körper alternativ einer Warmverformung und/oder einer Wärmebehandlung unterworfen wird.
  • Weil bei hohen Nb/Ta-Gehalten primäre Karbid- und Nitridausscheidungen gebildet werden können, ist es erfindungsgemäß wesentlich, in einer sonst vollständig zusammengesetzten, flüssigen Vorlegierung die Gehalte an Kohlenstoff und Stickstoff unter der Grenze für eine Ausscheidungsbildung zu halten und dieses Flüssigmetall, insbesondere mittels Stickstoffs, zu Pulvermaterial zu verdüsen. Ein derart erhaltenes, festes Metallpulver wird in der Folge bei erhöhter Temperatur durch geeignete Mittel gezielt aufgekohlt und/oder dessen Stickstoffgehalt und/oder Sauerstoffgehalt bis auf vorgesehene Gehalte erhöht. Ein derart in der Zusammensetzung nach der Erfindung eingestelltes Pulver wird in Behältnissen gemäß dem Stand der Technik eingeschlossen, kann durch Heißisostatisches Pressen (HIPen) oder Verformen bei hoher Temperatur kompaktiert und auf gewünschte Abmessungen gebracht werden.
  • Das erfindungsgemäße Verfahren hat den Vorteil, dass Werkstoffe mit hohem Karbid-Nitrid- oder Karbonitrid-Hartstoffanteil hergestellt werden können, wobei die Hartstoffpartikel geringe Durchmesser und homogene Verteilung in der Matrix haben. Die Matrixelemente können durch eine thermische Vergütung bzw. durch ein Härten und Anlassen des Werkstoffes diesem eine hohe Festigkeit vermitteln und ein Ausschalen oder Ausbrechen der größeren, optimierten Hartstoffteilchen weitestgehend verhindern. Dadurch wird eine besonders ausgeprägte Verschleißbeständigkeit des Werkstoffes erreicht.
  • Eine Aufkohlung und/oder eine Erhöhung des Stickstoffgehaltes bei Einstellung des Sauerstoffgehaltes des vorlegierten Metallpulvers kann gemäß der Erfindung durch beigemischten, elementaren Kohlenstoff und/oder durch eine Kohlenstoff und/oder Stickstoff und/oder Sauerstoff abgebende Atmosphäre, insbesondere bei erhöhter Temperatur vor oder bei einer Heißkompaktierung erfolgen.
  • In einer Ausgestaltung der Erfindung können dem Pulverwerkstoff auch weitere Hartstoffpartikel mit einer Größe von 2 bis 50 µm in einem Ausmaß bis 25 Vol.-% beigemischt werden, welche in der Folge für den gegebenen Werkstoff verschleißsenkend wirksam sind.
  • Anhand von lediglich Ausführungswege darstellenden Beispielen sollen im Vergleich mit bekannten Werkstoffen die Eigenschaften der erfindungsgemäßen Legierung näher dargestellt werden.
  • Tab. 1 auf Seite 11 zeigt die Zusammensetzung von zwei handelsüblichen, verschleißfesten Legierungen mit den Bezeichnungen X190 CrVMo 20 4 1, X90 CrVMo 18 1 1, von korrosionsfesten, erfindungsgemäßen Legierungen mit den Bezeichnungen A, B, C, und von Schneidwerkstoffen nach der Erfindung mit den Bezeichnungen D, E, F.
  • Die handelsüblichen Legierungen waren nach dem PM-Verfahren mit einer Verformung des HIP-Blockes (Heiß-Isostatisch-gepresst) von größer 6-fach hergestellt worden.
  • Pulver für die Proben mit der Bezeichnung A, B, C wurden aus Legierungen mit folgenden Hauptbestandteilen in Gew.-%:
    Bezeichnung Si Mn Cr Mo V W Nb Co Fe
    A 0.43 0.42 11.92 2.21 0.08 0.07 9.02 0.08 Rest
    B 0.51 0.44 16.41 2.19 0.09 0.07 9.56 0.05 Rest
    C 0.43 0.42 11.92 2.21 0.05 0.06 9.02 0.08 Rest
    durch Verdüsen mittels Stickstoffgas hergestellt.
  • Ein Verdüsen mit Stickstoff erfolgte weiters unter Verwendung von Schmelzen mit der Bezeichnung D, E, F mit den Hauptbestandteilen in Gew.-%:
    Bezeichnung Si Mn Cr Mo V W Nb Co Fe
    D 0.3 0.4 4.15 2.94 1.52 2.13 3.34 0.12 Rest
    E 0.28 0.35 3.95 2.84 1.47 2.23 3.45 8.21 Rest
    F 0.37 0.33 3.58 4.1 1.84 5.07 10.73 7.07 Rest
  • Als Aufkohlungsmittel wurden versuchsweise für die Werkstoffe mit den Bezeichnungen A bis C verwendet:
    • CH4 + O
    • Graphit (beigemischt) und Stickstoff + O
    • CH4 + Stickstoff + O, wobei den Metallpulvern ca. 10% NbC mit einer Korngröße von 28µm beigemischt war.
  • Die Metallpulver der weiteren Legierungen D bis F wurden in den Versuchen mit folgenden Aufkohlungs- und Aufstickungsmitteln behandelt:
    • CO + CH4 + IO
    • CO + N + O
    • Graphit + CO + N + O
  • Ein Auflegieren der Legierungspulver mit Kohlenstoff, Stickstoff und Sauerstoff erfolgte bei erhöhter Temperatur.
  • Das auflegierte Metallpulver wurde in der Folge unter Stickstoffatmosphäre in Stahlbehälter eingebracht und klopfverdichtet, wonach ein Verschweißen der Behälter und ein Heiß-Isostatisches-Pressen bei einer Temperatur von 1165°C erfolgte.
  • Nach einem Warmverformen des HIP-Blockes wurden dem Erzeugnis Proben entnommen, analysiert (Tab. 1) und untersucht, wobei wichtige Ergebnisse in Fig. 1 bis Fig. 3 wiedergegeben sind. Tab. 1
    Bezeichnung C N Si Mn Cr Mo V W Nb Co
    X190 CrVMo 20 4 1 1.9 0.2 0.7 0.3 20.0 1.0 4.0 0.6 - -
    X90 CrVMo 18 1 1 0.9 0.01 0.4 0.4 18.0 1.1 1.0 0.06 - -
    A 1.45 0.18 0.42 0.41 11.76 2.18 0.08 0.07 8.9 0.08
    B 2.3 0.19 0.5 0.43 16.05 2.14 0.09 0.07 9.35 0.05
    C 1.45 0.18 0.42 0.41 11.76 2.18 0.05 0.06 8.9 0.08
    D 1.3 0.08 0.3 0.4 4.1 2.9 1.5 2.1 3.3 0.12
    E 1.4 0.07 0.28 0.35 3.9 2.8 1.45 2.2 3.4 8.1
    F 2.45 0.08 0.36 0.32 3.5 4.0 1.8 4.95 10.48 6.9
  • Tab. 1 zeigt die chemische Zusammensetzung von bekannten Werkstoffen (X190 CrVMo 20 4 1 sowie X90 CrMoV 18 1 1) und jene von Stahlproben gemäß der Erfindung
  • Korrosionsverhalten:
  • Das Korrosionsverhalten der Legierungen wurde anhand von Stromdichte-PotentialKurven an den Proben nach ASTM G65 in 1 n H2SO4, 20°C ermittelt, wobei eine Abschreckung derselben von 1100°C bzw. 1070°C und ein Anlassen bei 200°C erfolgten.
  • Wie aus Fig. 1 hervorgeht, weist im relevanten Potentialbereich von etwa -300mV bis +300mV die Vergleichslegierung X190 CrVMo 20 4 1 im Wesentlichen die höchste Passivstromdichte im Vergleich mit den erfindungsgemäß zusammengesetzten Proben A, B, C auf, was deren verbessertes Korrosionsverhalten offenbart.
  • Fig. 2 zeigt die Härte der unterschiedlich zusammengesetzten Legierungen nach einem Härten in Abhängigkeit von der Anlasstemperatur nach zweimaligem Anlassen.
  • Die jeweilige Härtetemperatur ist dem Bezeichnungsfeld für die Legierungen entnehmbar.
  • Im Vergleich mit X190 CrVMo 20 4 1 weisen die Werkstoffe A und C der erfindungsgemäßen Legierung eine vergleichbar niedrige Anlasshärte auf, weil deren jeweiliger Kohlenstoffgehalt einer verbesserten Korrosionsbeständigkeit wegen (siehe Fig.1) niedrig gewählt wurde.
  • Die Werkstoffhärte der Legierungen D, E und F liegen im Bereich von Anlasstemperaturen zwischen 500 und 600°C entscheidend höher, was eine deutliche Überlegenheit derselben für einen Einsatz von beispielsweise Schneid- und Formelementen offenlegt.
  • Fig. 3 zeigt das Verschleißverhalten der aus den Legierungen gefertigten Proben, ermittelt nach dem in VDI Fortschrittberichte "Stickstofflegierte Werkzeugstähle", Reihe 5, Nr. 188 (1990), S. 129 beschriebenen Stift-Scheibe-Test mit Flint 80er Körnung. Die Härten der Proben sind über den jeweiligen Balken in Fig. 3 angegeben. Sowohl die korrosionsbeständige Legierung B als auch die Legierungen E und F gemäß der Erfindung zeigen überragenden Widerstand gegen Verschleiß, was auf eine entsprechend günstige Wahl von Kohlenstoff- und Niobgehalten hinweist.

Claims (7)

  1. Verfahren zur Herstellung eines verschleißbeständigen Werkstoffes, wobei in einem ersten Schritt eine metallische, flüssige Legierung, enthaltend Niob/Tantal (Nb/Ta) mit einer Konzentration von 3.0 bis 18.0 Gew.-%, sowie einem Gehalt an Kohlenstoff und/oder Stickstoff, bei welcher keine Primärausscheidungen an Karbiden und/oder Nitriden oberhalb der Verdüsungstemperatur oder Liquidustemperatur gebildet werden, zu Pulvermaterial verdüst wird, wonach das Pulver einem Verfahren zur Erhöhung des Kohlenstoffgehaltes und/oder des Stickstoffgehaltes und/oder des Sauerstoffgehaltes unterworfen und im Folgenden einem Heißkompaktieren, insbesondere einem heißlsostatischen Pressen unterworfen wird, oder wobei der Pressling bzw. HIP-Körper einer Warmverformung oder einer Wärmebehandlung unterworfen wird.
  2. Verfahren nach Anspruch 1 zur Herstellung von verschleißbeständigen Werkstoffen, wobei das Pulver mit elementarem Kohlenstoff gemischt und/oder in einer Kohlenstoff und Stickstoff abgebenden Atmosphäre gegebenenfalls bei erhöhter Temperatur behandelt und nachfolgend kompaktiert wird.
  3. Verschleißbeständiger Werkstoff mit hoher Korrosionsbeständigkeit, hergestellt mit einem Verfahren nach einem der Ansprüche 1 oder 2, enthaltend in Gew.-%: Kohlenstoff (C) 0.5 bis 2.5 Stickstoff (N) 0.15 bis 0.6 Sauerstoff (O) mehr als 0.002 bis 0.25 Silizium (Si) 0.2 bis 1.5 Mangan (Mn) 0.3 bis 2.0 Chrom (Cr) 10.0 bis 20.0 Niob/Tantal (Nb/Ta) 3.0 bis 15.0 Molybdän (Mo) 0.5 bis 3.0 Vanadin (V) 0.1 bis 1.0 Titan (Ti) 0.001 bis 1.0 Eisen (Fe) Rest
    und herstellungsbedingte Verunreinigungen,
    mit einem Gefüge, bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen, mit der Maßgabe, dass die Hartphasen als Karbide und/oder Nitride und/oder Karbonitride und/oder Oxidkarbonitride gebildet sind und einen Durchmesser von höchstens 50 µm und mindestens 0.2 µm aufweisen,
    mit der Maßgabe, dass der Zusammenhang von Kohlenstoffgehalt und der Konzentration von Niob/Tantal sowie Vanadin und Titan einen Wert, gebildet aus % C = 0.3 + % Nb + 2 × % V + % Ti U
    Figure imgb0005

    erfüllt, wobei die Zahl U größer als 6, jedoch kleiner als 10 ist.
  4. Verschleißbeständiger Werkstoff mit hoher Korrosionsbeständigkeit, hergestellt mit einem Verfahren nach einem der Ansprüche 1 oder 2, enthaltend in Gew.-%: Kohlenstoff (C) mehr als 0.3 bis 1.0 Stickstoff (N) 1.0 bis 4.0 Sauerstoff (O) mehr als 0.002 bis 0.25 Silizium (Si) 0.2 bis 1.5 Mangan (Mn) 0.3 bis 1.5 Chrom (Cr) 10.0 bis 20.0 Niob/Tantal (Nb/Ta) 3.0 bis 15.0 Molybdän (Mo) 0.5 bis 3.0 Vanadin (V) 0.1 bis 1.0 Titan (Ti) 0.001 bis 1.0 Eisen (Fe) Rest
    und herstellungsbedingte Verunreinigungen,
    mit einem Gefüge, bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen, mit der Maßgabe, dass die Hartphasen als Karbide und/oder Nitride und/oder Karbonitride und/oder Oxidkarbonitride gebildet sind und einen Durchmesser von höchstens 50 µm und mindestens 0.2 µm aufweisen,
    mit der Maßgabe, dass der Zusammenhang von Stickstoffgehalt und der Konzentration von Niob sowie Vanadin einen Wert, gebildet aus % N = 0.3 + % Nb + 2 × % V + % Ti U 1
    Figure imgb0006

    erfüllt, wobei die Zahl U1 größer als 4, jedoch kleiner als 8 ist.
  5. Verschleißfester Werkstoff mit hoher Korrosionsbeständigkeit, hergestellt mit einem Verfahren nach einem der Ansprüche 1 oder 2, enthaltend in Gew.-%: Kohlenstoff (C) 0.5 bis 3.0 Stickstoff (N) 0.15 bis 0.6 Sauerstoff (O) mehr als 0.002 bis 0.25 Silizium (Si) 0.2 bis 1.5 Mangan (Mn) 0.3 bis 2.0 Chrom (Cr) 10.0 bis 20.0 Niob/Tantal (Nb/Ta) 3.0 bis 15.0 Molybdän (Mo) 0.5 bis 3.0 Vanadin (V) 0.1 bis 1.0 Titan (Ti) 0.001 bis 1.0 Eisen (Fe) Rest
    mit herstellungsbedingten Verunreinigungen,
    mit einem Gefüge, bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen, mit der Maßgabe, dass die Hartphasen als Karbide und/oder Nitride und/oder Karbonitride und/oder Oxidkarbonitride gebildet sind und einen Durchmesser von höchstens 50 µm und mindestens 0.2 µm aufweisen,
    mit der Maßgabe, dass der Zusammenhang von Kohlenstoffgehalt und der Konzentration von Niob, Vanadin, Titan und Chrom einen Wert, gebildet aus % C = 0.3 + % Nb + 2 × % V + % Ti U 2 + Cr U 3
    Figure imgb0007

    erfüllt, wobei die Zahlenwerte U2 größer als 6, jedoch kleiner als 10 und U3 größer als 9, jedoch kleiner als 17 sind.
  6. Verschleißbeständiger Werkstoff mit hoher Warmhärte und Zähigkeit, insbesondere für spanabhebende Werkzeuge, hergestellt mit einem Verfahren nach einem der Ansprüche 1 oder 2, enthaltend in Gew.-%: Kohlenstoff (C) 1.0 bis 3.5 Stickstoff (N) 0.05 bis 0.4 Sauerstoff (O) mehr als 0.002 bis 0.25 Silizium (Si) 0.2 bis 1.5 Mangan (Mn) 0.3 bis 1.0 Chrom (Cr) 2.5 bis 6.0 Niob/Tantal (Nb/Ta) 3.0 bis 18.0 Molybdän (Mo) 2.0 bis 10.0 Wolfram (W) 0.1 bis 12.0 Vanadin (V) 0.1 bis 3.0 Cobalt (Co) 0.1 bis 12.0 Eisen (Fe) Rest
    mit herstellungsbedingten Verunreinigungen,
    mit einem Gefüge, bestehend aus einer Metallmatrix und in diese eingelagert Hartphasen, mit der Maßgabe, dass die Hartphasen als Karbide und/oder Nitride und/oder Karbonitride und/oder Oxidkarbonitride gebildet sind und einen Durchmesser von höchstens 50 µm und mindestens 0.2 µm aufweisen,
    mit der Maßgabe, dass der Zusammenhang von Kohlenstoffgehalt und der Konzentration von Niob/Tantal sowie Vanadin und Titan einen Wert, gebildet aus % C = 0.6 + % NB + 2 × % V + % Ti U 4 + 2 × % Mo + % W U 5
    Figure imgb0008

    erfüllt, wobei die Zahlenwerte U4 = 6 bis 10 und U5 = 80 bis 100 sind.
  7. Verschleißbeständiger Werkstoff nach einem der Ansprüche 3 bis 6, bei welchem die Matrix eine martensitische Gefügestruktur aufweist.
EP09450242.4A 2009-01-14 2009-12-28 Verschleißbeständiger Werkstoff Active EP2253398B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11004405A EP2374560A1 (de) 2009-01-14 2009-12-28 Verschleißbeständiger Werkstoff

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0005209A AT507215B1 (de) 2009-01-14 2009-01-14 Verschleissbeständiger werkstoff

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP11004405A Division-Into EP2374560A1 (de) 2009-01-14 2009-12-28 Verschleißbeständiger Werkstoff

Publications (2)

Publication Number Publication Date
EP2253398A1 EP2253398A1 (de) 2010-11-24
EP2253398B1 true EP2253398B1 (de) 2015-12-23

Family

ID=41809029

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09450242.4A Active EP2253398B1 (de) 2009-01-14 2009-12-28 Verschleißbeständiger Werkstoff
EP11004405A Withdrawn EP2374560A1 (de) 2009-01-14 2009-12-28 Verschleißbeständiger Werkstoff

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11004405A Withdrawn EP2374560A1 (de) 2009-01-14 2009-12-28 Verschleißbeständiger Werkstoff

Country Status (4)

Country Link
US (1) US8623108B2 (de)
EP (2) EP2253398B1 (de)
AT (1) AT507215B1 (de)
BR (1) BRPI1000065A2 (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2358398A2 (de) 2008-10-24 2011-08-24 Isis Pharmaceuticals, Inc. Oligomere verbindungen und verfahren
DK2521556T3 (en) 2010-01-08 2018-08-13 Ionis Pharmaceuticals Inc MODULATION OF ANGIOPOIETIN-LIKE 3 EXPRESSION
WO2011097644A2 (en) 2010-02-08 2011-08-11 Isis Pharmaceuticals, Inc. Selective reduction of allelic variants
EP2534248B1 (de) 2010-02-08 2018-08-29 Ionis Pharmaceuticals, Inc. Selektive reduktion von allelvarianten
CN103154014B (zh) 2010-04-28 2015-03-25 Isis制药公司 修饰核苷、其类似物以及由它们制备的寡聚化合物
PT2563920T (pt) 2010-04-29 2017-05-26 Ionis Pharmaceuticals Inc Modulação da expressão de transtirretina
CN106434648A (zh) 2010-07-19 2017-02-22 F·C·贝内特 肌强直性营养障碍蛋白激酶(dmpk)表达的调节
WO2012068405A2 (en) 2010-11-17 2012-05-24 Isis Pharmaceuticals, Inc. Modulation of alpha synuclein expression
EP3467109A1 (de) 2011-02-08 2019-04-10 Ionis Pharmaceuticals, Inc. Oligomere verbindungen mit bicyclischen nukleotiden und verwendungen davon
CN107012144A (zh) 2011-04-01 2017-08-04 Ionis制药公司 信号转导及转录激活蛋白3(stat3)表达的调节
US8658783B2 (en) 2011-04-13 2014-02-25 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
SG194671A1 (en) 2011-04-27 2013-12-30 Isis Pharmaceuticals Inc Modulation of apolipoprotein ciii (apociii) expression
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
WO2012170347A1 (en) 2011-06-09 2012-12-13 Isis Pharmaceuticals, Inc. Bicyclic nucleosides and oligomeric compounds prepared therefrom
WO2013022966A1 (en) 2011-08-11 2013-02-14 Isis Pharmaceuticals, Inc. Linkage modified gapped oligomeric compounds and uses thereof
WO2013033230A1 (en) 2011-08-29 2013-03-07 Isis Pharmaceuticals, Inc. Oligomer-conjugate complexes and their use
ES2673721T3 (es) 2011-09-20 2018-06-25 Ionis Pharmaceuticals, Inc. Modulación antisentido de la expresión de GCGR
EP2776564B1 (de) 2011-11-07 2019-10-02 Ionis Pharmaceuticals, Inc. Modulation der tmprss6 expression
WO2013096837A1 (en) 2011-12-22 2013-06-27 Isis Pharmaceuticals, Inc. Methods for modulating metastasis-associated-in-lung-adenocarcinoma-transcript-1(malat-1) expression
AU2012362827B2 (en) 2011-12-30 2016-12-22 Scoperta, Inc. Coating compositions
ES2842938T3 (es) 2012-01-11 2021-07-15 Ionis Pharmaceuticals Inc Composiciones y métodos para la modulación del empalme de IKBKAP
WO2013120003A1 (en) 2012-02-08 2013-08-15 Isis Pharmaceuticals, Inc. Modulation of rna by repeat targeting
WO2013154799A1 (en) 2012-04-09 2013-10-17 Isis Pharmaceuticals, Inc. Tricyclic nucleosides and oligomeric compounds prepared therefrom
US9221864B2 (en) 2012-04-09 2015-12-29 Isis Pharmaceuticals, Inc. Tricyclic nucleic acid analogs
WO2013159108A2 (en) 2012-04-20 2013-10-24 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleotides and uses thereof
DK3461895T3 (da) 2012-06-25 2020-07-20 Ionis Pharmaceuticals Inc Modulation af ube3a-ats-ekspression
US20150297629A1 (en) 2012-07-27 2015-10-22 Isis Pharmaceuticals, Inc. Modulation of renin-angiotensin system (ras) related diseases by angiotensinogen
US20150275208A1 (en) 2012-10-12 2015-10-01 Isis Pharmaceuticals, Inc. Selective antisense compounds and uses thereof
DK2906696T4 (da) 2012-10-15 2023-02-27 Ionis Pharmaceuticals Inc Fremgangsmåder til modulering af c9orf72-ekspression
CN104755621A (zh) 2012-10-31 2015-07-01 埃西斯药品公司 癌症治疗
KR102112892B1 (ko) 2012-11-15 2020-05-19 로슈 이노베이션 센터 코펜하겐 에이/에스 올리고뉴클레오티드 콘쥬게이트
EP2922955B1 (de) 2012-11-26 2019-03-06 Roche Innovation Center Copenhagen A/S Zusammensetzungen und verfahren zur modulation der fgfr3-expression
US9593333B2 (en) 2013-02-14 2017-03-14 Ionis Pharmaceuticals, Inc. Modulation of apolipoprotein C-III (ApoCIII) expression in lipoprotein lipase deficient (LPLD) populations
AT514133B1 (de) * 2013-04-12 2017-06-15 Feistritzer Bernhard Ringförmiges Werkzeug
WO2014205449A2 (en) 2013-06-21 2014-12-24 Isis Pharmaceuticals, Inc. Compounds and methods for modulating apolipoprotein c-iii expression for improving a diabetic profile
ES2770667T3 (es) 2013-06-27 2020-07-02 Roche Innovation Ct Copenhagen As Oligómeros antisentido y conjugados que se dirigen a PCSK9
WO2015002971A2 (en) 2013-07-02 2015-01-08 Isis Pharmaceuticals, Inc. Modulators of growth hormone receptor
KR102219334B1 (ko) * 2013-09-25 2021-02-22 히타치 긴조쿠 가부시키가이샤 원심 주조제 열간 압연용 복합 롤
US20160236183A1 (en) * 2013-10-17 2016-08-18 Petróleo Brasileiro S.A. - Petrobras Catalyst for the production of synthesis gas and process for obtaining it
WO2015164693A1 (en) 2014-04-24 2015-10-29 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising alpha-beta-constrained nucleic acid
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US20160201170A1 (en) * 2015-01-09 2016-07-14 Scoperta, Inc. Molten aluminum resistant alloys
US10105796B2 (en) 2015-09-04 2018-10-23 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
WO2017150738A1 (ja) * 2016-03-04 2017-09-08 日立金属株式会社 ステンレス鋼部材およびその製造方法、ならびに、ステンレス鋼部品およびその製造方法
DE102016122673A1 (de) 2016-11-24 2018-05-24 Saar-Pulvermetall GmbH Eisen-Kohlenstoff-Legierung sowie Verfahren zur Herstellung und Verwendung der Legierung
DE102017202497A1 (de) * 2017-02-16 2018-08-16 Robert Bosch Gmbh Verfahren zum Presssintern von Stahlbauteilen, pressgesintertes Stahlbauteil selbst sowie Verwendung eines speziellen Stahlpulvers als Ausgangsmaterial zur Herstellung desselben
CA3117043A1 (en) 2018-10-26 2020-04-30 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
CN114622122B (zh) * 2022-03-04 2022-11-08 长沙市萨普新材料有限公司 一种高铌铁基超硬材料及其制备方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515540A (en) * 1964-12-16 1970-06-02 Du Pont Mixed cobalt/tungsten carbide powders
US3514271A (en) * 1968-07-23 1970-05-26 Du Pont Iron-,nickel-,and cobalt-bonded nitride cutting tools
US3676161A (en) * 1969-03-03 1972-07-11 Du Pont Refractories bonded with aluminides,nickelides,or titanides
IT1003359B (it) * 1973-03-15 1976-06-10 Goetzewerke Lega rispettivamente miscela di polvere per la produzione di stra ti resistenti all usura mediante saldatura di riporto
JPS5837160A (ja) * 1981-08-27 1983-03-04 Mitsubishi Metal Corp 継目無鋼管製造用熱間傾斜圧延機のガイドシユ−用鋳造合金
CH657380A5 (de) * 1981-09-04 1986-08-29 Mitsubishi Metal Corp Bei erhoehten temperaturen hitzebestaendige, verschleissfeste und zaehe legierung auf nickelbasis.
US4645715A (en) * 1981-09-23 1987-02-24 Energy Conversion Devices, Inc. Coating composition and method
US4662087A (en) 1984-02-21 1987-05-05 Force Distribution, Inc. Hydraulic fit system for footwear
US5981081A (en) * 1984-09-18 1999-11-09 Union Carbide Coatings Service Corporation Transition metal boride coatings
US4774052A (en) * 1984-10-19 1988-09-27 Martin Marietta Corporation Composites having an intermetallic containing matrix
US5015534A (en) * 1984-10-19 1991-05-14 Martin Marietta Corporation Rapidly solidified intermetallic-second phase composites
US4915905A (en) * 1984-10-19 1990-04-10 Martin Marietta Corporation Process for rapid solidification of intermetallic-second phase composites
US5093148A (en) * 1984-10-19 1992-03-03 Martin Marietta Corporation Arc-melting process for forming metallic-second phase composites
US4921531A (en) * 1984-10-19 1990-05-01 Martin Marietta Corporation Process for forming fine ceramic powders
US4836982A (en) * 1984-10-19 1989-06-06 Martin Marietta Corporation Rapid solidification of metal-second phase composites
CH667361GA3 (de) * 1986-02-04 1988-10-14
US4800065A (en) * 1986-12-19 1989-01-24 Martin Marietta Corporation Process for making ceramic-ceramic composites and products thereof
AT393387B (de) * 1989-10-23 1991-10-10 Boehler Gmbh Kaltarbeitsstahl mit hoher druckfestigkeit und verwendung dieses stahles
DE4202339B4 (de) 1991-01-29 2004-12-02 Dörrenberg Edelstahl GmbH Korrosionsbeständiger, hochverschleißfester, härtbarer Stahl
AT399673B (de) * 1992-09-11 1995-06-26 Boehler Edelstahl Verbundwalze und verfahren zu ihrer herstellung
DE4231695C2 (de) 1992-09-22 1994-11-24 Ver Schmiedewerke Gmbh Verwendung eines Stahls für Werkzeuge
GB9404786D0 (en) * 1994-03-11 1994-04-27 Davy Roll Company The Limited Rolling mill rolls
JP3294029B2 (ja) * 1994-11-16 2002-06-17 財団法人電気磁気材料研究所 耐摩耗性高透磁率合金およびその製造法ならびに磁気記録再生ヘッド
US7262240B1 (en) * 1998-12-22 2007-08-28 Kennametal Inc. Process for making wear-resistant coatings
US6649682B1 (en) * 1998-12-22 2003-11-18 Conforma Clad, Inc Process for making wear-resistant coatings
AT410447B (de) * 2001-10-03 2003-04-25 Boehler Edelstahl Warmarbeitsstahlgegenstand
SE524583C2 (sv) * 2002-12-12 2004-08-31 Erasteel Kloster Ab Sammansatt metallprodukt och förfarande för framställning av en sådan
DE102005020081A1 (de) 2005-04-29 2006-11-09 Köppern Entwicklungs-GmbH Pulvermetallurgisch hergestellter, verschleißbeständiger Werkstoff
US20060249230A1 (en) * 2005-05-09 2006-11-09 Crucible Materials Corp. Corrosion and wear resistant alloy
SE528991C2 (sv) 2005-08-24 2007-04-03 Uddeholm Tooling Ab Ställegering och verktyg eller komponenter tillverkat av stållegeringen
US7615123B2 (en) * 2006-09-29 2009-11-10 Crucible Materials Corporation Cold-work tool steel article
AT506790B1 (de) * 2008-11-20 2009-12-15 Boehler Edelstahl Gmbh & Co Kg Warmarbeitsstahl-legierung
AT507597B1 (de) * 2008-12-05 2010-09-15 Boehler Edelstahl Gmbh & Co Kg Stahllegierung für maschinenkomponenten

Also Published As

Publication number Publication date
AT507215B1 (de) 2010-03-15
US8623108B2 (en) 2014-01-07
US20100192476A1 (en) 2010-08-05
BRPI1000065A2 (pt) 2011-03-29
EP2253398A1 (de) 2010-11-24
AT507215A4 (de) 2010-03-15
EP2374560A1 (de) 2011-10-12

Similar Documents

Publication Publication Date Title
EP2253398B1 (de) Verschleißbeständiger Werkstoff
EP3228724B1 (de) Werkzeugstahl, insbesondere warmarbeitsstahl, und stahlgegenstand
EP1882050B1 (de) Pulvermetallurgisch hergestellter, verschleissbeständiger werkstoff
EP1249512B1 (de) Kaltarbeitsstahllegierung zur pulvermetallurgischen Herstellung von Teilen
EP1249511B1 (de) PM-Schnellarbeitsstahl mit hoher Warmfestigkeit
EP3323902B1 (de) Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil
DE202014101693U1 (de) Ringförmiges Werkzeug
EP1300482B1 (de) Warmarbeitsstahlgegenstand
EP1274872B1 (de) Verfahren zur herstellung eines stickstofflegierten, sprühkompaktierten stahls, verfahren zu seiner herstellung
DE1521193C3 (de) Verfahren zur Verhinderung des Herausfallens feuerfester Körner aus der Oberfläche eines gesinterten Verbundmetallgegenstandes
AT506790B1 (de) Warmarbeitsstahl-legierung
EP1647606B1 (de) Hochharte Nickelbasislegierung für verschleissfeste Hochtemperaturwerkzeuge
AT392929B (de) Verfahren zur pulvermetallurgischen herstellung von werkstuecken oder werkzeugen
EP3323903B1 (de) Pulvermetallurgisch hergestellter stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil
EP1471160B1 (de) Kaltarbeitsstahl-Gegenstand
EP0733719A1 (de) Eisenbasislegierung zur Verwendung bei erhöhter Temperatur
CH642109A5 (de) Schnellarbeitsstahl.
EP2233596B1 (de) Kaltarbeitsstahl-Gegenstand
WO2002081764A1 (de) Komplex-borid-cermet-körper, verfahren zu dessen herstellung und verwendung dieses körpers
AT407646B (de) Bauteil aus einem verschleissfesten, schmelzmetallurgisch hergestellten werkstoff
EP3189172B1 (de) Hochfeste, mechanische energie absorbierende und korrosionsbeständige formkörper aus eisenlegierungen und verfahren zu deren herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110513

17Q First examination report despatched

Effective date: 20110808

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150903

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 766319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATWIL AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011952

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160423

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011952

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

26N No opposition filed

Effective date: 20160926

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 8

Ref country code: CH

Payment date: 20161222

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20161222

Year of fee payment: 8

Ref country code: IT

Payment date: 20161220

Year of fee payment: 8

Ref country code: FR

Payment date: 20161221

Year of fee payment: 8

Ref country code: AT

Payment date: 20161219

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KAMINSKI HARMANN PATENTANWAELTE AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 766319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009011952

Country of ref document: DE

Representative=s name: MUELLER, THOMAS, DIPL.-ING., DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 15