EP2236686A1 - Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen - Google Patents

Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen Download PDF

Info

Publication number
EP2236686A1
EP2236686A1 EP09157265A EP09157265A EP2236686A1 EP 2236686 A1 EP2236686 A1 EP 2236686A1 EP 09157265 A EP09157265 A EP 09157265A EP 09157265 A EP09157265 A EP 09157265A EP 2236686 A1 EP2236686 A1 EP 2236686A1
Authority
EP
European Patent Office
Prior art keywords
reinforcing
region
elements
reinforcement layer
reinforcing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09157265A
Other languages
German (de)
English (en)
French (fr)
Inventor
Thomas Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FJ Aschwanden AG
Original Assignee
FJ Aschwanden AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FJ Aschwanden AG filed Critical FJ Aschwanden AG
Priority to EP09157265A priority Critical patent/EP2236686A1/de
Priority to AU2010201324A priority patent/AU2010201324A1/en
Priority to JP2010085772A priority patent/JP5417243B2/ja
Priority to US12/753,862 priority patent/US20110083386A1/en
Priority to CN201010156898A priority patent/CN101858125A/zh
Publication of EP2236686A1 publication Critical patent/EP2236686A1/de
Priority to US14/093,584 priority patent/US8752347B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0645Shear reinforcements, e.g. shearheads for floor slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements

Definitions

  • the present invention relates to a reinforcement element for receiving forces of concrete slabs in the region of support elements, in particular columns and support walls, which plate with a first bending reinforcement layer adjacent to the support element and a second bending reinforcement layer facing away from the support element, each formed by substantially and transverse reinforcing bars, between which bending reinforcement layers a number of reinforcing elements are inserted.
  • reinforcing baskets were used as reinforcing elements in the area of the columns in the concrete slabs, which are formed of a plurality of juxtaposed U-shaped reinforcing steel straps which are interconnected by cross bars. These reinforcing cages were then inserted into and connected to the upper and lower bending reinforcement layers of the concrete slab.
  • This reinforcement baskets require a relatively large amount of space, storage and transport to the site is thus complex, also is limited with such reinforcing baskets the burden on the corresponding concrete slabs.
  • reinforcing elements are known, which are formed from reinforcing bars and are equipped with a base bar mounted thereon and connected to the base bar bracket. These reinforcing elements can be individually inserted in the required number in the region to be supported of the plate to be concreted between the upper and lower bending reinforcement layer and connected to these. With these reinforcing elements a good introduction of the forces is achieved in the concrete slab, their handling is still relatively complex, since these reinforcing elements must be prefabricated.
  • the object of the present invention is therefore to provide a reinforcing element for the absorption of forces in concrete slabs in the range of support elements, which can be easily and inexpensively manufactured in addition to the inclusion of large loads and its handling can be done very flexibly.
  • each reinforcing element is formed from a longitudinally stable, flexible longitudinal element whose first end region is guided through the first bending reinforcing layer whose first region adjoining the first end region runs at an acute angle ⁇ against the second bending reinforcing layer, whose second region adjoining the first region is guided through the second bending reinforcement layer and extends in the region of the support element along the surface of the second bending reinforcement layer facing away from the support element and whose second end region is guided against the first bending reinforcement layer by the second bending reinforcement layer.
  • the longitudinally stable flexible longitudinal element, by which the reinforcing elements are formed may, for example, in the form of a roller be led to the construction site, from this role, the reinforcing elements can be unwound and cut to the desired length, this longitudinally stable flexible longitudinal element can then be easily installed between and through the first and second bending reinforcement layer in the required number, which reinforced and concreted Plate can be supported in an optimal way.
  • the longitudinally stable flexible longitudinal element in the form of a strip whose width is a multiple of the thickness, and which can be brought to the desired length.
  • This longitudinal element can be optimally inserted into the bending reinforcement layers.
  • this band can be formed from a plurality of individual strands, which can be arranged side by side and / or one above the other.
  • This band can also be formed from a single strand, which is multi-layered, forming at the end regions loops, superimposed.
  • a plurality of reinforcing elements longitudinal and transversely, substantially parallel to the respective longitudinal and transverse reinforcing bars of the first bending and second Biegebewehrungslage used in the concrete slab, the number of reinforcing elements depends on the male loads and set accordingly can be.
  • a further advantageous embodiment of the invention is that the reinforcing elements are used in multiple layers in the concrete slab. As a result, the use of the reinforcing elements can be adapted very flexibly to the forces to be absorbed.
  • a further advantageous embodiment of the invention consists in that the first and the second end regions and / or the first regions of the reinforcing elements used in multiple layers in the concrete slab are arranged towards or away from each other, whereby an optimal load distribution, depending on the type of application achieved can be.
  • the angle ⁇ is in the range of 20 ° to 50 °, which allows optimum transmission of the forces to be absorbed.
  • a further advantageous embodiment of the invention is that the longitudinally stable flexible longitudinal member is formed of carbon fiber reinforced plastic, whereby the desired physical properties are achieved in an optimal manner.
  • a further advantageous embodiment of the invention consists in that, in the case of center support elements for the concrete slab to be supported, the second end region is guided into the first bending reinforcement layer corresponding to the first end region.
  • the symmetrical arrangement achieves optimum introduction of the forces into the concrete slab.
  • the end regions of the reinforcing elements are each guided at least around a transverse reinforcing bar of the first bending reinforcing layer, while the second region is guided over correspondingly transverse reinforcing bars of the second bending reinforcing layer. This also results in an optimal introduction of the forces on the reinforcing elements on the bending reinforcement layers.
  • a further advantageous embodiment of the invention is that in edge supports for the plate to be supported, the second end portion is guided against the support member to the first bending reinforcement layer.
  • the longitudinal stable flexible longitudinal element forming the reinforcement element is optimally suitable for any use.
  • the end portions of the reinforcing elements in the concrete slabs can be achieved in different ways, the end portions can be looped across a plurality of transverse reinforcing bars of the first bending reinforcing layer, but the end portions of the reinforcing elements can also be equipped with anchoring means serving as anchoring elements, adapted to the respective types of use.
  • the saddle elements are attached to the transverse reinforcing bars, around which the reinforcing elements are deflected, whereby the reinforcing elements are protected in these areas.
  • a further advantageous embodiment of the invention is that the reinforcing elements can be inserted into existing plates in the region of support elements, for which holes in the plate to be reinforced are attachable, through which the respective reinforcing element is inserted, and that the holes are pourable and the end with Anchoring elements are held.
  • existing buildings with the same reinforcing elements can be optimally reinforced.
  • Fig. 1 shows a concrete slab 1, which serves as a ceiling of a building, for example.
  • This concreted plate comprises in a known manner a first bending reinforcement layer 2, which is adjacent to the concrete plate 1 supporting the supporting elements 3, and a second bending reinforcement layer 4, which is inserted on the side facing away from the support elements 3 in the concrete slab 1.
  • the first bending reinforcement layer 2 is formed in a known manner by longitudinal reinforcing bars 5 and transverse reinforcing bars 6, the second bending reinforcing layer 4 also consists in a known manner of longitudinal reinforcing bars 7 and transverse reinforcing bars 8.
  • a reinforcing element 9 according to the invention is used.
  • This reinforcing element 9 is formed from a longitudinally stable, flexible longitudinal element 10, which has a high tensile strength and tensile rigidity, but which is flexible transverse to the longitudinal direction.
  • This longitudinally stable flexible longitudinal element 10 is formed in the illustrated embodiment as a band 11, whose width is a multiple of the thickness.
  • This band consists for example of a carbon fiber reinforced plastic.
  • suitable materials are conceivable, which in particular have a high tensile strength and tensile rigidity.
  • other shapes can be used than those of a band, conceivable would be bundles of thinner longitudinally stable flexible elements having the desired properties.
  • the reinforcement element 9 has a first end region 12, which is guided through the first bending reinforcement layer 2.
  • the first end region 12 wraps around a transverse reinforcing bar 6 of the first bending reinforcing layer 2, the first region 13 leading thereto leads away from this transverse reinforcing bar 6 at an angle ⁇ which is in the range of 20 ° to 50 ° and reaches the second bending reinforcing layer 4
  • the first area 13 wraps around a transverse reinforcing bar 8 of the second bending reinforcing layer and opens into the second area 14.
  • This second area 14 extends substantially across the width of the supporting element 3 above the second bending reinforcing layer 4, is thereafter looped around another transverse reinforcing bar 8 and opens into a second end region 15, which is guided against the first bending reinforcement layer 2.
  • the reinforcing element 9 is guided symmetrically with respect to the support member 3 through the concrete slab 1, such an application is then made when the support member 3 has to support a both sides of this supporting element 3 projecting concrete slab 1.
  • Such a reinforcing element 9 can be used very easily before concreting the plate in the first bending reinforcement layer 2 and the second bending reinforcement layer 4, such a belt 11 can be brought, for example in the form of a wound roll on the site, a piece of this tape is from the role unrolled and cut to the desired length, the reinforcing element inserted into the first bending reinforcement layer 2 and the second bending reinforcement layer 4 can be fixed, the ends of the end regions 12 and 15 can additionally be provided with anchoring means 16, as will be described in detail later.
  • Sattiata 17 which are formed for example of plastic.
  • the concrete After inserting these reinforcing elements 9, the concrete can be introduced.
  • the supporting forces are absorbed by these reinforcing elements in an optimal manner, in particular, these forces are optimally distributed over a large area on the first bending reinforcement layer, these reinforcing elements are practically claimed exclusively on train.
  • Fig. 2 shows a view of the dash-dotted concrete plate 1, the support member 3, through which the concrete slab 1 is supported, inserted into the concrete slab first and second bending reinforcement layer 2 and 4, of which for clarity, only the transverse reinforcing bars 6 and 8 are shown while for clarity, the longitudinal reinforcing bars are omitted.
  • the reinforcing element 9 is inserted into the first bending reinforcement layer 2 and the second bending reinforcement layer 4, wherein this is protected and guided on the reinforcing rods patch saddle 17.
  • Fig. 3 shows a spatial representation of this embodiment.
  • the concrete slab is provided with the first bending reinforcing layer 2 and the second bending reinforcing layer 4 as described above.
  • the first bending reinforcement layer 2 is formed of longitudinal reinforcing bars 5 and transverse reinforcing bars 6
  • the second bending reinforcing layer 4 consists of longitudinal reinforcing bars 7 and transverse reinforcing bars 8.
  • reinforcement elements 9 can be used, depending on loads to be absorbed.
  • Fig. 7 shows an embodiment of how the first end portion 12 of a reinforcing element 9 in the first bending reinforcement layer 2 can be anchored.
  • This first end region 12 can be interlaced around a number of transverse reinforcing bars 6 of the first bending reinforcing layer 2, as shown in FIG Fig. 7 is apparent.
  • the first end region 12 of the reinforcement element 9 is thus held in the first bending reinforcement layer 2.
  • Fig. 8 shows a first end portion 12 of a reinforcing element 9, which is equipped on both sides in a known manner with an adhesive layer 18, which serves as anchoring means 16.
  • Fig. 9 shows the first end portion 12 of a reinforcing element 9, on which are provided as anchoring means 16 on both sides mounted plates 19 which are held by means of screw 20 at the first end portion 12 of the reinforcing element 9.
  • inventive reinforcing elements can also be used in existing structures.
  • holes 22 can be attached, which extend at an acute angle ⁇ (in the range of 20 ° to 50 °) against the side facing away from the support 23 of the plate and there approximately in the region of the support 23 from the plate 21st escape.
  • in the range of 20 ° to 50 °
  • the Reinforcing element 9 are inserted, on the support 23 facing surface of the plate 21, this reinforcing element 9 can be anchored in a known manner by anchoring means 24.
  • anchoring means 24 it is conceivable that this reinforcing element 9 is biased in a known manner.
  • Fig. 11 On the left side of the Fig. 11 an embodiment is shown in which the reinforcing element 9 on the side facing away from the support 23 of the plate 21 in a recess 27, for. B. a milled slot is inserted, while on the right side of the Fig. 11 an embodiment is shown in which on the support 23 remote from the surface of the plate 21, the reinforcing element rests on this surface.
  • holes 22 and optionally recess 27 of the plate 21 may be poured in a known manner.
  • This configuration provides optimal reinforcement of an existing structure.
  • a plurality of reinforcing elements 9 can also be used in the area of the support 23 in the plate 21; it is also conceivable to attach these reinforcing elements 9 crosswise, according to the illustrations according to FIG 4 to 6 ,
  • Fig. 12 an embodiment is shown, in which two reinforcing elements 9 superposed placed in the concrete slab 1 are used. These two superposed reinforcing elements 9 can be used in parallel, as shown on the right side of Fig. 12 is shown, but they can also be used running away from each other in particular in the first region 13 of the reinforcing elements 9, as shown on the left side of the Fig. 12 is shown. Also, the first end portions 12 need not be aligned in parallel, they can also be arranged running away from each other.
  • reinforcing elements 9 are stacked on top of each other, depending on the forces to be absorbed. It can also be run several layers of reinforcing elements arranged in multiple layers, the choices are virtually arbitrary.
  • reinforcing elements 9 have been described as used in the region of support elements 3 which are arranged in a central region of a concrete slab to be supported. How out Fig. 13 it can be seen, these reinforcing elements 9 can also be used in edge support elements 25, which are to support an edge region of a concrete slab 1. These edge support elements 25 may in this case be individual supports, but it may also be a support wall.
  • the concrete slab 1 is in turn provided with a first bending reinforcement layer 2 and a second bending reinforcement layer 4, which are connected to one another in the edge region via bending reinforcement rods 28.
  • the reinforcing element 9 On the plate extending further from the support element 25, the reinforcing element 9, as has been described above, is inserted into the first bending reinforcement layer 2 and the second bending reinforcement layer 4.
  • the second end region 15 of the reinforcement element 9 is guided by the second bending reinforcement layer 4 against the first bending reinforcement layer 2, in which case this second end region 15 can be placed around an intermediate rod 29 which is inserted between the first bending reinforcement layer 2 and the second bending reinforcement layer 4.
  • the end of the second end region 15 of the reinforcing element 9 can in turn, as previously described, be equipped in a known manner with anchoring means.
  • Fig. 14 shows a possibility of how the concrete plate 1 in the region of an edge support element can be equipped with corresponding reinforcing elements 9.
  • the parallel to the edge of the concrete plate 1 extending reinforcing elements 9 are inserted into the concreted plate 1, as to the Fig. 1 to 12 has been described.
  • the reinforcing elements 9 attached at right angles to the edge of the concrete slab 1 are inserted into the concrete slab 1 in this way this too Fig. 13 has been described.
  • the edge support member 25 is formed as a retaining wall, the reinforcing elements 9 along this retaining wall can be used side by side as such Fig. 13 has been described.
  • Fig. 15 shows a concrete slab in the corner of a Eck galement 26 is arranged.
  • Reinforcement elements 9 can be used in such a way as to reinforce this corner region of the plate 1 to be supported Fig. 13 has been described, in this case, these reinforcing elements 9 can also be attached crosswise.
  • reinforcing elements concrete slabs to be supported can be optimally reinforced in the area of supporting elements.
  • These reinforcing elements can be used very easily, the variety of applications allows, depending on the load case, to use an optimal number of such reinforcing elements, the band-like design allows to use these reinforcing elements in multiple layers, they can also be arranged side by side and crosswise in any way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Reinforcement Elements For Buildings (AREA)
EP09157265A 2009-04-03 2009-04-03 Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen Withdrawn EP2236686A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09157265A EP2236686A1 (de) 2009-04-03 2009-04-03 Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen
AU2010201324A AU2010201324A1 (en) 2009-04-03 2010-04-01 Reinforcement element for absorbing forces of concrete slabs in the area of support elements
JP2010085772A JP5417243B2 (ja) 2009-04-03 2010-04-02 支持部材の領域でコンクリート・スラブの応力を吸収する為の補強部材
US12/753,862 US20110083386A1 (en) 2009-04-03 2010-04-03 Reinforcement element for absorbing forces of concrete slabs in the area of support elements
CN201010156898A CN101858125A (zh) 2009-04-03 2010-04-06 用于在支撑构件的区域吸收混凝土板的力的加固构件
US14/093,584 US8752347B2 (en) 2009-04-03 2013-12-02 Reinforcement element for absorbing forces of concrete slabs in the area of support elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09157265A EP2236686A1 (de) 2009-04-03 2009-04-03 Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen

Publications (1)

Publication Number Publication Date
EP2236686A1 true EP2236686A1 (de) 2010-10-06

Family

ID=40999892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09157265A Withdrawn EP2236686A1 (de) 2009-04-03 2009-04-03 Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen

Country Status (5)

Country Link
US (2) US20110083386A1 (zh)
EP (1) EP2236686A1 (zh)
JP (1) JP5417243B2 (zh)
CN (1) CN101858125A (zh)
AU (1) AU2010201324A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489808A1 (de) * 2011-02-15 2012-08-22 F.J. Aschwanden AG Bewehrungselement für die Aufnahme von Kräften in Betonelementen, die durch Stützelemente abgestützt sind
GB2491339A (en) * 2011-04-15 2012-12-05 Stephen Bell Punching shear reinforcement structure for pre cast concrete planks
US8752347B2 (en) * 2009-04-03 2014-06-17 F.J. Aschwanden Ag Reinforcement element for absorbing forces of concrete slabs in the area of support elements
WO2021087267A1 (en) * 2019-11-01 2021-05-06 Simpson Strong-Tie Company Inc. Concrete member shear transfer bracket

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1143527A (en) * 1912-11-09 1915-06-15 William Pinckney Francis Concrete construction.
FR1112728A (fr) * 1954-07-28 1956-03-19 Perfectionnements aux dalles et planchers continus en béton armé reposant sur supports verticaux, piliers ou colonnes
US3283458A (en) * 1958-02-25 1966-11-08 Gersovitz Benjamin Shear reinforcement in reinforced concrete floor systems
CH526694A (de) * 1970-01-28 1972-08-15 Ingbuero Werner Keller Pilzkopf für Flachdecken
DD236565A1 (de) * 1985-04-25 1986-06-11 Bau Und Montage Kom Ost Betr F Bewehrungselement zur querkraftsicherung von flachdecken im deckenauflagerbereich
GB2300436A (en) * 1995-05-04 1996-11-06 Univ Sheffield Shear reinforcement for reinforced concrete
DE29808491U1 (de) * 1998-05-11 1999-09-23 Dausend Hans Werner Bewehrungselement für Schubbewehrungen
EP1905923A2 (de) * 2006-09-28 2008-04-02 HILTI Aktiengesellschaft Ankerstab und Anordnung zum Verstärken von bestehenden Bauteilen gegen Durchstanzen mit einem solchen Ankerstab

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1035323A (en) * 1909-06-11 1912-08-13 Robert A Cummings Reinforced-concrete slab.
US1008606A (en) * 1909-11-16 1911-11-14 Unit Construction Co Concrete construction.
US992733A (en) * 1909-11-16 1911-05-16 Unit Construction Co Concrete construction.
US1031047A (en) * 1910-04-14 1912-07-02 Unit Construction Co Concrete construction.
US1693941A (en) * 1921-12-09 1928-12-04 Karl R Schuster Building construction
US1554767A (en) * 1924-03-21 1925-09-22 Southern Joseph Heaton Metal reenforcement for concrete
US1812690A (en) * 1926-08-16 1931-06-30 Hurxthal F Frease Arch joist and floor construction
US1804132A (en) * 1928-09-17 1931-05-05 Edward H Tashjian Construction unit
US1794425A (en) * 1930-02-14 1931-03-03 Sorensen Henry Initially-tensioned reenforced concrete structure
US3302360A (en) * 1963-01-09 1967-02-07 Bjerking Sven-Erik Method of reinforcing concrete floors and the like, and a reinforcing element therefor
SE348255B (zh) * 1965-11-12 1972-08-28 S Bierking
US4128980A (en) * 1976-06-11 1978-12-12 Civil & Civic Pty. Limited Reinforced concrete construction
US4211045A (en) * 1977-01-20 1980-07-08 Kajima Kensetsu Kabushiki Kaisha Building structure
ATE72858T1 (de) * 1984-11-08 1992-03-15 Sismo Int Vorgefertigte baueinheiten und gebrauch im hochbau.
JPH0654042B2 (ja) * 1987-10-07 1994-07-20 清水建設株式会社 フラットプレート構造建築物におけるシアヘッド部の剪断補強構造
GB8900565D0 (en) * 1989-01-11 1989-03-08 Kubik Marian L Space frame
US5248122A (en) * 1989-06-22 1993-09-28 Graham Tom S Pre-attached form system for insulated concrete wall panel
US5763043A (en) * 1990-07-05 1998-06-09 Bay Mills Limited Open grid fabric for reinforcing wall systems, wall segment product and methods of making same
US5181359A (en) * 1990-10-22 1993-01-26 Square Grip Limited Shearhead reinforcement
US5235791A (en) * 1992-04-28 1993-08-17 Yaguchi Kenzai Khakko Co., Ltd. Deck plate
AT406064B (de) * 1993-06-02 2000-02-25 Evg Entwicklung Verwert Ges Bauelement
US6293063B2 (en) * 1997-06-30 2001-09-25 David A. Van Doren Cast-in-place hybrid building system
US6263629B1 (en) * 1998-08-04 2001-07-24 Clark Schwebel Tech-Fab Company Structural reinforcement member and method of utilizing the same to reinforce a product
US6178710B1 (en) * 1999-01-13 2001-01-30 Louis R. Colalillo Water permeable slab invention
SE516901C2 (sv) * 1999-04-06 2002-03-19 Erik Danielsson Prefabricerat armerat bärande byggkonstruktionselement, samt förstyvningsplåtelement för en sådan konstruktion
JP2001020431A (ja) * 1999-07-09 2001-01-23 Kajima Corp フラットスラブのせん断補強構造
SE513987C2 (sv) * 1999-07-16 2000-12-04 Jacobsson & Widmark Ab Betongplattkonstruktion samt sätt att bygga en sådan konstruktion
CH692157A9 (de) * 1999-09-27 2002-06-28 Hauser Manfred Dr.-Ing. Räumlich eingestellte Mattenanordnung zur Staffelung, Lagefixierung und Variation der Zuschlagskörnung von zementgebundenen Bauteilen.
DE10002383A1 (de) * 2000-01-20 2001-07-26 Oliver Matthaei Querkraftbeanspruchtes Stahl- oder Spannbetonteil
DE10004640A1 (de) * 2000-02-03 2001-08-09 Haeussler Planung Gmbh Hohlkörper mit Abstandhaltern
US7143554B2 (en) * 2000-08-15 2006-12-05 Sachs Melvin H Composite column and beam framing members for building construction
JP2002129754A (ja) * 2000-10-20 2002-05-09 Toray Ind Inc コンクリート構造物の補強方法
JP3899866B2 (ja) * 2001-08-07 2007-03-28 鹿島建設株式会社 鋼板コンクリート構造の継手構造
US6701683B2 (en) * 2002-03-06 2004-03-09 Oldcastle Precast, Inc. Method and apparatus for a composite concrete panel with transversely oriented carbon fiber reinforcement
DE10222227B4 (de) * 2002-05-16 2006-07-06 Bernhardt, Gerold Betondecke und Verwendung derselben zum Temperieren von Gebäuden, sowie als Geschoßdecke, Gebäudedecke oder als Bodenplatte
US20040074202A1 (en) * 2002-10-22 2004-04-22 Andrew Barmakian Rod-reinforced cushion beam
US8122662B2 (en) * 2002-10-30 2012-02-28 Met-Rock, Llc Low-cost, energy-efficient building panel assemblies comprised of load and non-load bearing substituent panels
AU2002952445A0 (en) * 2002-11-04 2002-11-21 Onesteel Reinforcing Pty Ltd A composite beam
ECSP034697A (es) * 2003-07-18 2004-06-28 Cabezas Pedro Nel Fernando Ospina Sistema constructivo estructural mixto integral
US20060059804A1 (en) * 2004-08-20 2006-03-23 Brown William G Components for use in large-scale concrete slab constructions
EP1790789A1 (en) * 2005-11-28 2007-05-30 Bartoli N.V. Building system, beam element, column and method
US8661754B2 (en) * 2006-06-20 2014-03-04 New Jersey Institute Of Technology System and method of use for composite floor
US8079197B2 (en) * 2007-01-19 2011-12-20 Suarez Sr Felix E Interlocking mesh
KR100771248B1 (ko) * 2007-03-30 2007-10-29 이귀복 건물용 조립 유닛과, 이의 제조 및 사용 방법
KR100797194B1 (ko) * 2007-04-26 2008-01-29 (주)엠씨에스공법 콘크리트 복합 기둥 및 이를 이용한 건축물 시공방법
US8453413B2 (en) * 2007-07-05 2013-06-04 Societe Civile De Brevets Matiere Reinforced construction element
US8505267B2 (en) * 2007-07-13 2013-08-13 Juan Jose Martin Hernandez Holder for being positioned in floating floor slabs and installation system thereof
ITMI20071455A1 (it) * 2007-07-19 2009-01-20 Leone Lucio Travi migliorate per l'armatura del calcestruzzo e metodo per il loro collegamento con pilastri per dare continuita da campata a campata
EP2236686A1 (de) * 2009-04-03 2010-10-06 F.J. Aschwanden AG Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen
EP2239391A1 (en) * 2009-04-06 2010-10-13 Ecole Polytechnique Fédérale de Lausanne Reinforcing element for concrete construction
IES20100101A2 (en) * 2009-04-24 2010-10-27 Maurice O'brien A construction system
IT1393961B1 (it) * 2009-05-05 2012-05-17 Pigazzi Reti S R L Struttura per la realizzazione di gabbie di armatura per travi e metodo di assemblaggio di tale struttura
DE102009056826A1 (de) * 2009-07-31 2011-02-03 Fachhochschule Gießen-Friedberg Stahlbetonbauteil mit Bewehrung aus L-förmigen Blechteilen
DE202009018537U1 (de) * 2009-07-31 2011-12-20 Technische Hochschule Mittelhessen Stahlbetonbauteil mit Bewehrung aus Z-förmigen Blechteilen
EP2439359A1 (de) * 2010-10-06 2012-04-11 F.J. Aschwanden AG Verfahren zum Verstärken von betonierten Platten im Bereich von Stützelementen
US8220219B2 (en) * 2010-12-03 2012-07-17 Martter Richard P Reinforcing assembly, and reinforced concrete structures using such assembly
US8549813B2 (en) * 2010-12-03 2013-10-08 Richard P. Martter Reinforcing assembly and reinforced structure using a reinforcing assembly
DE102011008067A1 (de) * 2011-01-07 2012-07-12 Areva Np Gmbh Schutzsystem für Gebäude- oder Behälterwände
PT2489808E (pt) * 2011-02-15 2013-12-05 F J Aschwanden Ag Elemento de armadura para recepção de forças em elementos de betão apoiados em elementos de apoio
US8640419B2 (en) * 2011-02-18 2014-02-04 Senvex Co., Ltd. Method of constructing prefabricated steel reinforced concrete (PSRC) column using angle steels and PSRC column using angle steels
TWM428973U (en) * 2011-10-28 2012-05-11 Yan-Qing Hong Building structure with stay-in-place mould

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1143527A (en) * 1912-11-09 1915-06-15 William Pinckney Francis Concrete construction.
FR1112728A (fr) * 1954-07-28 1956-03-19 Perfectionnements aux dalles et planchers continus en béton armé reposant sur supports verticaux, piliers ou colonnes
US3283458A (en) * 1958-02-25 1966-11-08 Gersovitz Benjamin Shear reinforcement in reinforced concrete floor systems
CH526694A (de) * 1970-01-28 1972-08-15 Ingbuero Werner Keller Pilzkopf für Flachdecken
DD236565A1 (de) * 1985-04-25 1986-06-11 Bau Und Montage Kom Ost Betr F Bewehrungselement zur querkraftsicherung von flachdecken im deckenauflagerbereich
GB2300436A (en) * 1995-05-04 1996-11-06 Univ Sheffield Shear reinforcement for reinforced concrete
DE29808491U1 (de) * 1998-05-11 1999-09-23 Dausend Hans Werner Bewehrungselement für Schubbewehrungen
EP1905923A2 (de) * 2006-09-28 2008-04-02 HILTI Aktiengesellschaft Ankerstab und Anordnung zum Verstärken von bestehenden Bauteilen gegen Durchstanzen mit einem solchen Ankerstab

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8752347B2 (en) * 2009-04-03 2014-06-17 F.J. Aschwanden Ag Reinforcement element for absorbing forces of concrete slabs in the area of support elements
EP2489808A1 (de) * 2011-02-15 2012-08-22 F.J. Aschwanden AG Bewehrungselement für die Aufnahme von Kräften in Betonelementen, die durch Stützelemente abgestützt sind
US8516757B2 (en) 2011-02-15 2013-08-27 F.J. Aschwanden Ag Reinforcement element for absorbing forces in concrete elements which are supported by support elements
GB2491339A (en) * 2011-04-15 2012-12-05 Stephen Bell Punching shear reinforcement structure for pre cast concrete planks
WO2021087267A1 (en) * 2019-11-01 2021-05-06 Simpson Strong-Tie Company Inc. Concrete member shear transfer bracket

Also Published As

Publication number Publication date
CN101858125A (zh) 2010-10-13
AU2010201324A1 (en) 2010-10-21
US20140102036A1 (en) 2014-04-17
JP2010242494A (ja) 2010-10-28
US20110083386A1 (en) 2011-04-14
JP5417243B2 (ja) 2014-02-12
US8752347B2 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
EP2912239B1 (de) Armierungselement zur herstellung vorgespannter betonbauteile, betonbauteil und herstellverfahren
AT519067A2 (de) Dehnfugenschalung
EP2236686A1 (de) Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen
EP1248889B1 (de) Deckenverstärkung und verfahren zu ihrer herstellung
EP1669505B1 (de) Stahlverbundträger mit brandgeschütztem Auflager für Deckenelemente
EP2824249A1 (de) Thermisch isolierendes Bauelement
DE202012010850U1 (de) Verbundanker zur Bildung einer Betonplatteneinheit sowie mit diesem Verbundanker ausgestattete Betonplatteneinheit
EP1953303B1 (de) Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Ankerbauteil für ein Wandbauelement
DE202007011315U1 (de) Schalungselement
DE2712808A1 (de) Verankerungsvorrichtung fuer befestigungsorgane in einem betonteil
EP1932978B1 (de) Bewehrungselement für die Aufnahme von Kräften in betonierten Platten im Bereich von Stützelementen
EP2516761B1 (de) Vorrichtung zum verbinden von zwei durch eine fuge getrennte bauteile und zur aufnahme von zwischen den bauteilen auftretenden querkräften
DE1812865C3 (de) Bewehrung fur flächige Betonbauteile
DE69123517T2 (de) Verfahren zur Herstellung einer Stahlblechbetondecke
EP3315678B1 (de) Fertigbauteil zum anschluss einer betonkragplatte an ein bauwerk
DE605704C (de) Verbundbauteil mit einer Betondruckplatte und diese abstuetzenden Formeisenbalken
EP3617415B1 (de) Durchstanzbewehrungselement und bauwerk mit einer platte mit einem durchstanzbewehrungselement
DE102007004573A1 (de) Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Ankerbauteil für ein Wandbauelement
EP0964966B1 (de) Anschlusselement mit einem dämmkörper
DE3120427C2 (de) Bewehrung für die Betondeckung von Stahlbeton- oder Spannbetonteilen
DE102020114611B3 (de) Schalungsanordnung
EP2080841A2 (de) Kragplattenanschlusselement
EP2009183B1 (de) Schalungselement
EP2175079B1 (de) Verfahren zum Bilden einer biegesteifen Eckbewehrung für den Stahlbetonbau, Bewehrungselement sowie biegesteife Eckbewehrung
DE9204183U1 (de) Linienförmiger Abstandhalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101216

17Q First examination report despatched

Effective date: 20110504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180523