EP2136977B1 - Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen - Google Patents

Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen Download PDF

Info

Publication number
EP2136977B1
EP2136977B1 EP08736186A EP08736186A EP2136977B1 EP 2136977 B1 EP2136977 B1 EP 2136977B1 EP 08736186 A EP08736186 A EP 08736186A EP 08736186 A EP08736186 A EP 08736186A EP 2136977 B1 EP2136977 B1 EP 2136977B1
Authority
EP
European Patent Office
Prior art keywords
formwork
battery
precast concrete
concrete part
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08736186A
Other languages
English (en)
French (fr)
Other versions
EP2136977A1 (de
Inventor
Andreas Reymann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ratec Maschinenentwicklungs- und Verwaltungs-GmbH
Ratec Maschinenentwicklungs und Verwaltungs GmbH
Original Assignee
Ratec Maschinenentwicklungs- und Verwaltungs-GmbH
Ratec Maschinenentwicklungs und Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ratec Maschinenentwicklungs- und Verwaltungs-GmbH, Ratec Maschinenentwicklungs und Verwaltungs GmbH filed Critical Ratec Maschinenentwicklungs- und Verwaltungs-GmbH
Publication of EP2136977A1 publication Critical patent/EP2136977A1/de
Application granted granted Critical
Publication of EP2136977B1 publication Critical patent/EP2136977B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/24Unitary mould structures with a plurality of moulding spaces, e.g. moulds divided into multiple moulding spaces by integratable partitions, mould part structures providing a number of moulding spaces in mutual co-operation
    • B28B7/241Detachable assemblies of mould parts providing only in mutual co-operation a number of complete moulding spaces
    • B28B7/243Detachable assemblies of mould parts providing only in mutual co-operation a number of complete moulding spaces for making plates, panels or similar sheet- or disc-shaped objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/02Moulds with adjustable parts specially for modifying at will the dimensions or form of the moulded article

Definitions

  • the present invention relates to a battery mold for the vertical production of two-dimensional precast concrete elements comprising two opposing outer formwork, of which at least one is movable, and an inner formwork, which is arranged between the outer formworks.
  • battery molds enable a space-saving production of concrete walls.
  • precast concrete parts both of which have facing surfaces of exposed concrete quality.
  • the US 5,520,531 describes a battery mold for the production of precast concrete parts, in which a fixed vertical formwork part is present, to which a second vertical formwork part can be moved up to adjust the thickness of the molded part to be produced.
  • the outer formwork In the known battery molds is in a predetermined outer formwork with a height corresponding to the maximum height of the precast concrete to be manufactured, an inner formwork with two formwork areas which are separated by a formwork panel arranged.
  • the outer formworks can be pivoted about an axis in such a way that the inner formwork can be removed with the finished prefabricated concrete elements.
  • the document DE 20 01 825 A1 shows such a battery mold for the production of large-scale, plate-shaped precast concrete parts, which has a vertically standing formwork part and a horizontally pivotable formwork part.
  • the formwork has a height adjustable Bodenabsteller, so that moldings can be made, the height of which is less than the height of the formwork parts.
  • a disadvantage of such battery molds is that the prefabricated concrete part to be manufactured is constructed from the upper edge of the battery mold.
  • the liquid concrete is poured from above into the battery mold between the inner formwork and filled the outer formwork.
  • self-compacting concrete SVB
  • Normal concrete is filled in layers and compacted.
  • the last layer, which extends to the upper edge of the battery mold, is removed with a mechanical puller, so that an upper end side is created.
  • the height of the concrete part to be manufactured must be measured from the top edge of the external formwork and a variable floor box installed at the appropriate place.
  • scaffolding constructions must be introduced between the inner formwork and the outer formwork, so that the Bodenabsteller is brought to the appropriate position and fixed there.
  • the floor box can be attached to the outer or inner formwork with a magnet.
  • the concrete is again filled to the top.
  • a battery formwork with a height of 3 m or 4 m and when producing a precast concrete element with a height of, for example, 1 m, work must continue in the maximum height of the battery mold.
  • a scaffold On the outside of the battery mold, a scaffold is mounted on which assembly workers monitor the filling of the concrete or manually produce the upper end face.
  • the construction of differently high Bodenabstellern and the structure of scaffolding outside the battery mold are complex. Working at the appropriate height of 3 m or 4 m carries great dangers.
  • Object of the present invention is therefore to propose a battery formwork, with the flat precast concrete elements can be made in a simple manner, the height of which does not correspond to the height of the battery mold.
  • the present object is achieved with the battery mold with the features of claim 1.
  • the object is also achieved by a method having the features according to claim 12.
  • the related subclaims relate to advantageous, not self-evident developments of the invention.
  • the battery mold according to the invention for the vertical production of two-dimensional precast concrete elements comprises two opposing outer formwork, of which at least one is movable.
  • both outer formworks are movable so that the intermediate space between them can be reduced and enlarged.
  • An internal formwork which is part of the battery formwork, can be arranged between the outer formworks. In particular, it is pushed between the outer formworks.
  • the inner formwork has at least two Sabsteller, which represent the measure of the precast concrete to be manufactured. They therefore limit the finished concrete part on the sides.
  • the inner formwork has at least one Bodenabsteller, which is fixed in its position, in particular in its vertical position. The ground stand limits the concrete part to be manufactured downwards.
  • the battery formwork also has a horizontally extending height stop, which is vertically adjustable in its position and determines the distance from the Bodenabsteller the height of the precast concrete to be manufactured.
  • An advantage of the battery formwork according to the invention is that the Bodenabsteller is fixed in its position. It is considered a reference point for production. Only the height stop is adjusted in height. Thus, the precast concrete part is always built from below. Working on the upper edge of the outer formwork, as necessary in formwork of the prior art, is eliminated. This is used in the manufacture of precast concrete with low height near the ground. It is not necessary to attach scaffolding to the battery formwork in order to work at the upper reference point, ie at the upper edge of the battery mold, even with only a few high precast concrete elements.
  • the inner formwork ie in the bottom area, at least one inlet for concrete supply provided.
  • the inlet flowable concrete can be introduced into the battery mold.
  • the concrete is pumped into the battery mold.
  • Such a method is in the EP 1 923 185 described in detail. The content of the EP application is incorporated by reference into the content of the present application.
  • At least one inlet is provided on each of the outer formworks.
  • a plurality of inlets are arranged distributed along the outer formwork. It is also possible to arrange several inlets at different heights. However, this is usually not necessary. If a plurality of inlets are arranged next to each other, then several different parts can be produced within the battery mold, in particular if a sideguard is provided in the battery mold between the inlets and if the height switch is replaced by a plurality of divided short height stands. Only the thickness of the individual parts must always be the same.
  • the height adjustment is arranged on the outer formwork.
  • This has the advantage that it can be fixed and moved with a simple construction.
  • the height stop is moved by machine.
  • a semi-automatic movement is conceivable. For example, it can be set in advance, to which height the elevator is to move. An intervention or an adjustment by hand by the operating personnel during the manufacturing process of a precast concrete part is then not necessary.
  • the operation or the adjustment of the height adjustment can be done programmatically and automatically.
  • the mechanical adjustment of thebetweennabstellers can be realized by a motor or gear operated by servomotors spindles or the like. Particularly preferred is a hydraulic adjustment of thebetweennabstellers in the desired position.
  • the height adjuster In addition to the automatic, preferably automated setting of the height adjuster, it can also be manually changed in its position in a likewise preferred embodiment. It is particularly preferred that it is moved by hand and fixed in position by means of magnets. For this it is necessary that the outer formwork consists of steel, which is usually given is. Alternatively, the height adjustment can be arranged on the inner formwork, since this is also made of metal.
  • the outer formworks are translationally movable. At least one of the outer formworks is moved in each case. Preferably, both outer formworks are moved parallel to each other. This makes it possible to produce any width precast concrete, as always on the same height between the outer formwork and the inner formwork is given.
  • the translational movement is effected by means of a hydraulic drive. Several hydraulic arms can be used to ensure an exact and parallel displacement of the outer formwork. The number of hydraulic arms used is dependent on the dimensions of the outer formwork, in particular the length.
  • a bottom formwork can also be arranged between the two outer formworks and a displacement body or shrink core can be positioned above the bottom formwork.
  • the outer formwork has a formwork panel reinforced by horizontal and vertical reinforcement ribs.
  • the formwork panel can thus be relatively thin and still apply the appropriate forces that are necessary to withstand the delivery pressure when pumping concrete into the battery mold.
  • the shuttering board is bendable perpendicular to its surface normal.
  • the formwork panel is therefore deflected over its entire measurement by a few millimeters or centimeters in the direction of the surface normal. This has advantages, especially when stripping.
  • the finished concrete part will detach from the flexible outer formwork and remain on the inner formwork due to the adhesion forces that have occurred.
  • the precast concrete parts can be fixed or clipped to the inner formwork, to be kept in position for further transport within the manufacturing process or for further processing.
  • the two outer formworks are clamped together during manufacture of the precast concrete part such that the otherwise flexible formwork panel of the outer formwork is rigid in the clamped state perpendicular to the surface normal. This is necessary so that precast concrete parts can be made in a uniform thickness.
  • the bracing of the two outer formwork against each other can be effected for example by hydraulic rams that pull the two outer formations to each other.
  • a battery mold according to the invention which has two opposite outer molds and an inner formwork.
  • the inner formwork has a fixed ground stand and at least two soabsteller.
  • the side shelves which are side panel parts, are placed at the desired lateral position on the inner formwork. The position of each soabsteller or their distance relative to each other depends on the concrete part to be produced.
  • the side shelves are arranged such that they are flush with the bottom shelf, in particular arranged perpendicular to the bottom shelf to produce rectangular concrete elements. Another arrangement of is also conceivable.
  • the thus prepared inner formwork with the positioned soabstellern is disposed between the two outer formworks.
  • the outer formworks are spaced from the inner formwork.
  • a vertically extending height stop is placed in the desired vertical position relative to the bottom shelf of the inner formwork.
  • the vertical distance between the bottom shelf of the inner formwork and the height stop corresponds to the height of the concrete part to be manufactured.
  • the height adjustment is arranged on the outer formwork and can be moved here in the desired position.
  • the outer molds are moved towards the inner formwork in such a way that they touch the inner formwork at the 9.abstellern.
  • the depth of the sideguards corresponds to the depth of the heights. This creates a closed cavity, which is bounded by the inner formwork, the outer formwork, the Bodenabsteller, the two Sabstellern and the elevator.
  • the cavity has dimensions and shape of the precast concrete part to be produced.
  • the outer formworks are now fixed in their position. For this purpose, they are preferably braced against each other so that they are rigid.
  • the outer formwork itself does not give way, so that precast concrete parts can be produced, which have the desired contour.
  • a filling system is connected to inlets of the outer formwork.
  • the inlets are arranged in the bottom region of the outer formwork such that they are located above the Bodenabstellers the inner formwork. Arrangement and size of the inlets depend on the contour of the prefabricated concrete part to be produced. As a rule, one single inlet per finished precast element to be produced suffices.
  • a filling connection is preferably arranged, as it is for example in the DE 10 2006 053 552 is described in detail.
  • the battery mold is now filled from below until it is completely filled.
  • the filling is realized by a pressure filling.
  • a pressure filling is realized by a pressure filling.
  • side shelves are used, which have guide openings.
  • the outer formwork has guide pins corresponding to the guide openings, which project into the guide openings when the outer formwork is pushed against the inner formwork.
  • the position of the side shelves is fixed again.
  • the side stop is additionally stabilized, in particular against the pressure exerted by the filled concrete transverse pressure.
  • fixations are achieved after filling the battery mold and the curing of the concrete, with which the two outer formworks are braced.
  • the external formwork in particular its formwork panel, becomes pliable.
  • the outer formwork can move a few millimeters in the direction of its surface normal.
  • the outer formwork is detached from the precast concrete part.
  • the bending behavior of the external formwork supports the detachment of the precast concrete element. This ensures that the precast concrete part only dissolves from the outer formwork, but not from the inner formwork.
  • the outer formwork is moved outwards, so that the outer formwork is completely removed from the precast concrete part.
  • the height adjustment can be moved upwards before further moving away the outer formwork. This ensures that the upper face of the precast concrete part is not damaged when triggered. The triggering process is simplified.
  • the inner formwork between the two outer formwork is moved out.
  • the precast concrete element is positioned on the inner formwork.
  • the precast concrete part is partially attached to the inner formwork, for example by brackets that operate on the principle of a screw clamp.
  • the precast concrete element can now be moved on the internal formwork inside the assembly hall without the risk of the precast concrete element falling from the internal formwork and tipping over.
  • the precast concrete part is then switched off and / or reworked in a further processing step.
  • FIG. 1 shows a perspective view of a battery mold according to the invention 1, the two outer formworks 2 and an inner formwork 3 comprises.
  • the second outer formwork 2 is in FIG. 1 not shown due to the perspective; in FIG. 2 However, both outer shells 2 are clearly visible.
  • the outer formwork 2 is mounted on a substructure designed as a pedestal 4 and can be moved translationally in a spatial direction.
  • the inner formwork 3 is moved perpendicular to the outer formwork 2 and mounted on a roller system 5. So it can be easily pushed between the two outer formworks.
  • the inner formwork 3 comprises a Bodenabsteller 6, which is aligned horizontally.
  • An inner panel 7 extends in the vertical direction and forms a right angle with the Bodenabsteller 6.
  • the inner formwork 3 is constructed mirror-symmetrically, wherein the inner panel 7 forms the mirror axis.
  • On both sides of the inner panel 7 each one precast concrete part can be positioned and manufactured. Thus, the two tops of the inner panel 7 form the shuttering limit for the precast concrete part.
  • a side stop 10 which extends vertically, is arranged in the outer area 9.
  • the soabsteller 10 has guide openings 11 which are arranged at an equidistant distance. However, they can also be positioned at different distances from each other. Guide pins not shown extend into the guide openings 11, so that when the battery mold 1 is assembled, the outer formwork 2 engages with its guide pins in the guide openings 11 and thus stabilizes the side stop 10.
  • the isabsteller 10 is rotatably mounted about an axis of rotation 12, which also extends vertically. As a result, a particularly simple opening of the Soabstellers 10 allows, so that the shuttering of the manufactured precast concrete is simplified.
  • the outer formwork 2 has on its outer side reinforcing ribs 13 which extend horizontally and vertically.
  • the outer formwork 2 has a formwork panel 14, which is directed to the inner formwork 3.
  • the reinforcing ribs 13 are attached.
  • the formwork panel 14 itself is bendable, i. it can be deformed over its entire length by a few millimeters in the direction of the inner formwork.
  • FIG. 2 It can be clearly seen that the bottom shelf 6 of the inner formwork 3 is fixed in its height. He does not change.
  • the Bodenabsteller 6 is the reference point for building and for determining the height of a precast concrete to be manufactured. Each concrete part to be produced is aligned with the Bodenabsteller 6.
  • FIG. 2 shows a special feature with a not completely symmetrical inner formwork 3.
  • the left formwork space 15 has a greater width than the right formwork space 16. This is realized by the two different width soabsteller 10a, 10b. Accordingly, the two height adjustment 17a, 17b must have a different width. Their width is adapted to the width of the soabsteller 10 a, 10 b. In this way, two differently wide precast concrete parts can be produced in a manufacturing process. This makes the manufacturing process particularly economical.
  • the position of the inner formwork 3 in the X direction is determined by the roller system 5. Accordingly, the two outer formworks 2a, 2b must be moved differently depending on the soabsteller 10a, 10b. Since the two outer formworks 2a, 2b can be moved independently, this is not a problem.
  • the height-stop 17a is a machine-operated height stop. It is moved by a hydraulic positioning unit 18 and fixed in its desired position. The position of the vertical elevator 17a in the vertical direction can also be set automatically, in that the position can be stored in a control program. The vertical position of the disclosurenabstellers 17a is calculated from the reference point, ie from the Bodenabsteller 6.
  • the height stops 17a, 17b are each arranged on the outer formwork 2, so that they are moved with the outer formworks 2a, 2b.
  • the height stop 17b on the right outer formwork 2b is a manually adjustable height stop. He is fixed by a magnet by hand on the formwork panel 14 of the outer formwork 2b.
  • FIG. 2 the battery mold 1 is shown in the pushed-together state.
  • the tensioning device 19 is hydraulically driven and comprises a hydraulic ram.
  • the formworks with the pedestal 4 are fixed during the concreting process in such a way that they are held in their position by a preferably likewise hydraulically driven traversing device 20, which is only schematically indicated here.
  • the formwork spaces 15, 16 can be filled through an inlet 21 in each outer formwork 2a, 2b.
  • the inlet 21 is in each case arranged in the lower region of the formwork spaces 15, 16.
  • the flowable concrete is then filled through the inlet, to which a filling connection is preferably attached.
  • Such inlet 21 is shown schematically in FIG Fig. 1 indicated in the outer formwork 2a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen umfassend zwei gegenüber angeordnete Außenschalungen, von denen wenigstens eine bewegbar ist, und eine Innenschalung, die zwischen den Außenschalungen angeordnet wird.
  • Um Betonfertigteile, insbesondere Betonwände, in Einbaulage herzustellen, ist es bekannt, so genannte Batterieschalungen einzusetzen. Batterieschalungen ermöglichen eine Platz sparende Fertigung von Betonwänden. Darüber hinaus ist es eine der wenigen Möglichkeiten, Betonfertigteile zu produzieren, deren beide gegenüberliegende Flächen Sichtbetonqualität aufweisen.
  • Die US 5,520,531 beschreibt eine Batterieschalung zur Herstellung von Betonfertigteilen, bei der ein feststehendes vertikales Schalungsteil vorhanden ist, an das ein zweites vertikales Schalungsteil heranbewegt werden kann, um die Dicke des herzustellenden Formteils einzustellen.
  • Bei den bekannten Batterieschalungen wird in einer vorgegebenen Außenschalung mit einer Höhe, die der maximalen Höhe der zu fertigenden Betonfertigteile entspricht, eine Innenschalung mit zwei Schalungsbereichen, die durch eine Schalungstafel getrennt sind, angeordnet. Die Außenschalungen können in der Regel jeweils um eine Achse derart verschwenkt werden, dass die Innenschalung mit den fertig produzierten Betonfertigteilen entnommen werden kann. Das Dokument DE 20 01 825 A1 zeigt eine solche Batterieschalung zur Herstellung von großflächigen, plattenförmigen Betonfertigteilen, die ein vertikal stehendes Schalungsteil und ein in die Waagerechte verschwenkbares Schalungsteil aufweist. Hierdurch kann nach Fertigen des Formteils eine einfache, vertikale Entnahme stattfinden. Die Schalung weist einen höhenverstellbaren Bodenabsteller auf, so dass auch Formteile gefertigt werden können, deren Höhe geringer ist als die Höhe der Schalungsteile.
  • Nachteilig bei derartigen Batterieschalungen ist, dass das zu fertigende Betonfertigteil von der Oberkante der Batterieschalung aus aufgebaut wird. Der flüssige Beton wird von oben in die Batterieschalung zwischen der Innenschalung und der Außenschalung eingefüllt. Wird selbstverdichtender Beton (SVB) verwendet, so wird dieser langsam eingefüllt und verdichtet von selbst. Normalbeton wird lagenweise eingefüllt und verdichtet. Die letzte Lage, die bis zum oberen Rand der Batterieschalung reicht, wird mit einem mechanischen Abzieher abgezogen, sodass eine obere Stirnseite entsteht.
  • Werden Betonfertigteile hergestellt, deren Höhe nicht der Höhe der Batterieschalung entspricht, so muss die Höhe des zu fertigenden Betonteils von der Oberkante der Außenschalung abgemessen und an der entsprechenden Stelle ein variabler Bodenabsteller montiert werden. Hierzu müssen Gerüstkonstruktionen zwischen die Innenschalung und die Außenschalung eingebracht werden, sodass der Bodenabsteller auf die entsprechende Position gebracht und dort fixiert wird. Alternativ kann der Bodenabsteller an der Außen- oder Innenschalung mit einem Magneten befestigt werden. Zum Füllen der so verkleinerten Schalung wird der Beton wiederum bis oben eingefüllt. Bei einer Batterieschalung mit einer Höhe von 3 m oder 4 m und bei Herstellung eines Betonfertigteils mit einer Höhe von beispielsweise 1 m muss nach wie vor in der maximalen Höhe der Batterieschalung gearbeitet werden. An der Batterieschalung wird außen ein Gerüst montiert, auf dem Montagearbeiter das Füllen des Betons überwachen bzw. den Abschluss der oberen Stirnseite manuell herstellen. Der Aufbau von unterschiedlich hohen Bodenabstellern sowie der Aufbau von Gerüsten außerhalb der Batterieschalung sind aufwändig. Das Arbeiten in der entsprechenden Höhe von 3 m oder 4 m birgt große Gefahren.
  • Aufgabe der vorliegenden Erfindung ist es deshalb, eine Batterieschalung vorzuschlagen, mit der auch flächige Betonfertigteile auf einfache Weise hergestellt werden können, deren Höhe nicht der Höhe der Batterieschalung entspricht.
  • Die vorliegende Aufgabe wird mit der Batterieschalung mit den Merkmalen des Anspruchs 1 gelöst. Die Aufgabe wird auch durch ein Verfahren mit den Merkmalen gemäß Anspruch 12 gelöst. Die bezogenen Unteransprüche betreffen vorteilhafte, nicht selbstverständliche Weiterbildungen der Erfindung.
  • Die erfindungsgemäße Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen umfasst zwei gegenüber angeordnete Außenschalungen, von denen wenigstens eine bewegbar ist. Bevorzugt sind beide Außenschalungen bewegbar, sodass der zwischen ihnen gelegene Zwischenraum verkleinert und vergrößert werden kann. Eine Innenschalung, die Teil der Batterieschalung ist, kann zwischen den Außenschalungen angeordnet werden. Insbesondere wird sie zwischen die Außenschalungen geschoben. Die Innenschalung hat wenigstens zwei Seitenabsteller, die das Maß für das zu fertigende Betonfertigteil darstellen. Sie begrenzen folglich das fertige Betonteil an den Seiten. Die Innenschalung weist wenigstens einen Bodenabsteller auf, der in seiner Lage, insbesondere in seiner vertikalen Lage, fixiert ist. Der Bodenabsteller begrenzt das zu fertigende Betonteil nach unten. Er gilt als unterer vertikaler Referenzpunkt bei der Herstellung eines Betonfertigteils. Die Batterieschalung weist zudem einen sich horizontal erstreckenden Höhenabsteller auf, der in seiner Position vertikal veränderbar ist und dessen Abstand vom Bodenabsteller die Höhe des zu fertigenden Betonfertigteils bestimmt.
  • Vorteilhaft bei der erfindungsgemäßen Batterieschalung ist, dass der Bodenabsteller in seiner Lage fixiert ist. Er gilt als Referenzpunkt für die Fertigung. Lediglich der Höhenabsteller wird in seiner Höhe verstellt. Damit wird das Betonfertigteil stets von unten aufgebaut. Ein Arbeiten am oberen Rand der Außenschalung, wie bei Schalungen des Stands der Technik notwendig, entfällt. Damit wird bei der Herstellung von Betonfertigteilen mit geringer Höhe in Bodennähe gearbeitet. Es ist nicht notwendig, an der Batterieschalung Gerüste anzubringen, um auch bei nur wenig hohen Betonfertigteilen am oberen Referenzpunkt, also an der Oberkante der Batterieschalung, zu arbeiten.
  • Bevorzugt ist dazu in der Außenschalung oberhalb des Bodenabstellers der Innenschalung, also im Bodenbereich, wenigstens ein Einlass zur Betonzuführung vorgesehen. Durch den Einlass kann fließfähiger Beton in die Batterieschalung eingeführt werden. Vorzugsweise wird der Beton in die Batterieschalung eingepumpt. Ein derartiges Verfahren ist in der EP 1 923 185 ausführlich beschrieben. Der Inhalt der EP-Anmeldung wird durch Referenzierung zum Inhalt der vorliegenden Anmeldung gemacht.
  • Vorzugsweise ist an jeder der Außenschalungen wenigstens ein Einlass vorgesehen. Besonders bevorzugt sind mehrere Einlässe entlang der Außenschalung verteilt angeordnet. Es ist auch möglich, mehrere Einlässe in unterschiedlichen Höhen anzuordnen. Dies ist in der Regel jedoch nicht notwendig. Sind mehrere Einlässe nebeneinander angeordnet, so können innerhalb der Batterieschalung auch mehrere unterschiedliche Teile hergestellt werden, insbesondere dann, wenn zwischen den Einlässen ein Seitenabsteller in der Batterieschalung vorgesehen ist und wenn der Höhenabsteller durch mehrere unterteilte kurze Höhenabsteller ersetzt wird. Lediglich die Dicke der Einzelteile muss stets gleich sein.
  • In einer besonderen Ausführungsform ist der Höhenabsteller an der Außenschalung angeordnet. Dies hat den Vorteil, dass er mit einer einfachen Konstruktion fixiert und bewegt werden kann. Vorzugsweise wird der Höhenabsteller maschinell bewegt. Dabei ist neben einer automatischen Bewegung auch eine semi-automatische Bewegung vorstellbar. Beispielsweise kann im Vorhinein eingestellt werden, auf welche Höhe der Höhenabsteller zu bewegen ist. Ein Eingriff oder eine Justierung von Hand durch das Bedienpersonal während des Herstellungsvorgangs eines Betonfertigteils ist dann nicht notwendig. Der Vorgang bzw. die Einstellung des Höhenabstellers kann programmgesteuert und automatisch erfolgen.
  • Die maschinelle Einstellung des Höhenabstellers kann motorisch durch ein Getriebe oder durch mit Stellmotoren betriebene Spindeln oder ähnliches realisiert sein. Besonders bevorzugt ist eine hydraulische Verstellung des Höhenabstellers in die gewünschte Position.
  • Neben der maschinellen, bevorzugt automatisierten, Einstellung des Höhenabstellers kann dieser auch in einer ebenfalls bevorzugten Ausführungsform manuell in seiner Position verändert werden. Besonders bevorzugt wird er dabei von Hand bewegt und in seiner Position mittels Magneten fixiert. Dazu ist es notwendig, dass die Außenschalung aus Stahl besteht, was in der Regel gegeben ist. Alternativ kann der Höhenabsteller an der Innenschalung angeordnet werden, da diese ebenfalls aus Metall ist.
  • In einer bevorzugten Ausführungsform sind die Außenschalungen translatorisch bewegbar. Wenigstens eine der Außenschalungen wird jeweils bewegt. Bevorzugt werden beide Außenschalungen parallel zueinander bewegt. Damit ist es möglich, beliebig breite Betonfertigteile herzustellen, da stets ein über die Höhe gleicher Abstand zwischen der Außenschalung und der Innenschalung gegeben ist. Besonders bevorzugt wird die translatorische Bewegung mittels eines hydraulischen Antriebs bewirkt. Dabei können mehrere Hydraulikarme eingesetzt werden, um eine exakte und parallele Verschiebung der Außenschalung sicherzustellen. Die Anzahl der verwendeten Hydraulikarme ist dabei abhängig von den Dimensionen der Außenschalung, insbesondere der Länge.
  • Mit einer derartigen Batterieschalung, bei der die Außenschalung translatorisch bewegt wird, kann anstelle der Innenschalung auch zwischen die beiden Außenschalungen eine Bodenschalung angeordnet werden und oberhalb der Bodenschalung ein Verdrängungskörper oder Schrumpfkern positioniert werden. Hierdurch lassen sich mit der erfindungsgemäßen Batterieschalung dann auch einstückige Raummodule mit zwei Wänden und einem Bodenteil herstellen, die eine monolithische Struktur aufweisen.
  • In einer bevorzugten Ausführungsform weist die Außenschalung eine Schalungstafel auf, die durch horizontale und vertikale Verstärkungsrippen verstärkt ist. Die Schalungstafel kann damit relativ dünn sein und dennoch die entsprechenden Kräfte aufbringen, die notwendig sind, um dem Förderdruck beim Einpumpen von Beton in die Batterieschalung standzuhalten. In einer bevorzugten Ausführungsform ist die Schalungstafel jedoch senkrecht zu ihrer Flächennormalen biegeweich. Die Schalungstafel ist also über ihre gesamte Ausmessung um einige Millimeter oder Zentimeter in Richtung der Flächennormalen auslenkbar. Dies hat insbesondere beim Ausschalen Vorteile. Das fertige Betonteil wird sich beim Ausschalen von der biegeweichen Außenschalung lösen und an der Innenschalung durch die aufgetretenen Adhäsionskräfte verbleiben. Die Betonfertigteile können an der Innenschalung fixiert bzw. angeklammert werden, um für den weiteren Transport innerhalb des Herstellungsprozesses bzw. für die Weiterverarbeitung in ihrer Position gehalten zu werden.
  • Besonders bevorzugt werden die beiden Außenschalungen während der Fertigung des Betonfertigteils miteinander derart verspannt, dass die ansonsten biegeweiche Schalungstafel der Außenschalung im verspannten Zustand senkrecht zur Flächennormalen biegesteif ist. Dies ist notwendig, damit Betonfertigteile in einer gleichmäßigen Dicke hergestellt werden können. Das Verspannen der beiden Außenschalungen gegeneinander kann beispielsweise durch Hydraulikstempel bewirkt werden, die die beiden Außenschalungen zueinander ziehen.
  • Bei der vertikalen Fertigung von flächigen Betonfertigteilen wird erfindungsgemäß eine Batterieschalung verwendet, die zwei gegenüberliegende Außenschalungen und eine Innenschalung aufweist. Die Innenschalung hat einen feststehenden Bodenabsteller und wenigstens zwei Seitenabsteller. Die Seitenabsteller, die Seitenschalungsteile darstellen, werden an der gewünschten seitlichen Position an der Innenschalung angeordnet. Die Position der einzelnen Seitenabsteller bzw. ihr Abstand relativ zueinander ist abhängig von dem herzustellenden Betonteil. Die Seitenabsteller sind derart angeordnet, dass sie mit dem Bodenabsteller bündig abschließen, insbesondere senkrecht zum Bodenabsteller angeordnet sind, um rechtwinklige Betonfertigteile herzustellen. Eine andere Anordnung der Seitenabsteller ist jedoch auch denkbar.
  • Die derart vorbereitete Innenschalung mit den positionierten Seitenabstellern wird zwischen den beiden Außenschalungen angeordnet. Die Außenschalungen sind von der Innenschalung beabstandet. Im nächsten Schritt wird ein sich vertikal erstreckender Höhenabsteller in der gewünschten vertikalen Position relativ zu dem Bodenabsteller der Innenschalung angeordnet. Der vertikale Abstand zwischen dem Bodenabsteller der Innenschalung und dem Höhenabsteller entspricht der Höhe des zu fertigenden Betonteils. Bevorzugt ist der Höhenabsteller an der Außenschalung angeordnet und kann hier in die gewünschte Position bewegt werden.
  • Im nächsten Schritt werden die Außenschalungen derart auf die Innenschalung zu bewegt, dass sie die Innenschalung an den Seitenabstellern berühren. Die Tiefe der Seitenabsteller entspricht der Tiefe der Höhenabsteller. Damit entsteht ein geschlossener Hohlraum, der von der Innenschalung, der Außenschalung, dem Bodenabsteller, den beiden Seitenabstellern sowie dem Höhenabsteller begrenzt wird. Der Hohlraum hat Ausmaße und Form des herzustellenden Betonfertigteils.
  • Die Außenschalungen werden nun in ihrer Position fixiert. Dazu werden sie bevorzugt gegeneinander derart verspannt, dass sie biegesteif sind. Die Außenschalungen selber geben also nicht mehr nach, sodass Betonfertigteile hergestellt werden können, die die gewünschte Kontur aufweisen.
  • In einem weitern Schritt wird ein Befüllsystem an Einlässe der Außenschalung angeschlossen. Die Einlässe sind im Bodenbereich der Außenschalung derart angeordnet, dass sie sich oberhalb des Bodenabstellers der Innenschalung befinden. Anordnung und Größe der Einlässe sind von der Kontur des herzustellenden Betonfertigteils abhängig. In der Regel genügt ein einziger Einlass pro herzustellendes Betonfertigteil. An den Einlass wird bevorzugt ein Füllanschluss angeordnet, wie er beispielsweise in der DE 10 2006 053 552 ausführlich beschrieben ist, verwendet.
  • Die Batterieschalung wird nun von unten befüllt, bis sie vollständig gefüllt ist. Bevorzugt wird die Befüllung durch eine Druckbefüllung realisiert. Ein derartiges Vorgehen ist in der EP 1 923 185 beschrieben. In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens werden Seitenabsteller verwendet, die Führungsöffnungen aufweisen. Die Außenschalung hat zu den Führungsöffnungen korrespondierende Führungsbolzen, die beim Zusammenschieben der Außenschalung an die Innenschalung in die Führungsöffnungen hineinragen. Dadurch wird zum einen die Position der Seitenabsteller nochmals fixiert. Zum anderen wird der Seitenabsteller zusätzlich stabilisiert, insbesondere gegen den von dem eingefüllten Beton ausgeübten Querdruck.
  • In einer weiteren Ausgestaltung des Verfahrens werden nach der Befüllung der Batterieschalung und dem Aushärten des Betons Fixierungen gelöst, mit denen die beiden Außenschalungen verspannt sind. Die Außenschalung, insbesondere ihre Schalungstafel, wird biegeweich. Die Außenschalung kann sich um einige Millimeter in Richtung ihrer Flächennormalen bewegen. Im nächsten Schritt wird die Außenschalung von dem Betonfertigteil gelöst. Durch das biegeweiche Verhalten der Außenschalung wird das Ablösen von dem Betonfertigteil unterstützt. Hierdurch wird sichergestellt, dass sich das Betonfertigteil nur von der Außenschalung löst, nicht aber von der Innenschalung. Anschließend werden die Außenschalungen nach außen bewegt, sodass die Außenschalung vollständig von dem Betonfertigteil entfernt wird. Alternativ und/oder zusätzlich kann der Höhenabsteller schon vor dem weiteren Wegbewegen der Außenschalung nach oben bewegt werden. Hierdurch wird sichergestellt, dass die obere Stirnseite des Betonfertigteils beim Auslösen nicht beschädigt wird. Der Auslösevorgang wird vereinfacht.
  • In einem weiteren Schritt wird die Innenschalung zwischen den beiden Außenschalungen hinaus bewegt. Das Betonfertigteil ist auf der Innenschalung positioniert. Vorzugsweise wird das Betonfertigteil an der Innenschalung teilweise befestigt, beispielsweise durch Klammern, die nach dem Prinzip einer Schraubzwinge funktionieren. Das Betonfertigteil kann nun auf der Innenschalung innerhalb der Montagehalle bewegt werden, ohne dass eine Gefahr besteht, dass das Betonfertigteil von der Innenschalung fällt und kippt.
  • In einem weiteren Schritt wird dann das Betonfertigteil ausgeschalt und/oder in einem Weiterverarbeitungsschritt nachbearbeitet.
  • Die Erfindung wird nachfolgend anhand einer in den Figuren dargestellten bevorzugten Ausführungsform näher erläutert. Die darin dargestellten Besonderheiten können einzeln oder in Kombination verwendet werden, um bevorzugte Ausgestaltungen der Erfindung zu schaffen. Die beschriebene Ausführungsform stellt keine Einschränkung der Allgemeinheit des in den Ansprüchen definierten Gegenstands dar. Es zeigen:
  • Figur 1
    eine perspektivische Darstellung einer Batterieschalung;
    Figur 2
    eine Seitenansicht der Batterieschalung aus Figur 1.
  • Figur 1 zeigt eine perspektivische Ansicht einer erfindungsgemäßen Batterieschalung 1, die zwei Außenschalungen 2 und eine Innenschalung 3 umfasst. Die zweite Außenschalung 2 ist in Figur 1 aufgrund der Perspektive nicht dargestellt; in Figur 2 sind jedoch beide Außenschalungen 2 deutlich erkennbar.
  • Die Außenschalung 2 ist auf einer als Podest 4 ausgebildeten Unterkonstruktion gelagert und kann translatorisch in eine Raumrichtung bewegt werden. Die Innenschalung 3 wird senkrecht zur Außenschalung 2 bewegt und auf einem Rollensystem 5 gelagert. So kann sie auf einfache Weise zwischen die beiden Außenschalungen geschoben werden.
  • Die Innenschalung 3 umfasst einen Bodenabsteller 6, der horizontal ausgerichtet ist. Eine Innentafel 7 erstreckt sich in vertikaler Richtung und bildet mit dem Bodenabsteller 6 einen rechten Winkel. Die Innenschalung 3 ist spiegelsymmetrisch aufgebaut, wobei die Innentafel 7 die Spiegelungsachse bildet. Auf beiden Seiten der Innentafel 7 kann jeweils ein Betonfertigteil positioniert und hergestellt werden. Somit bilden die beiden Oberseiten der Innentafel 7 die Schalungsbegrenzung für das Betonfertigteil.
  • Auf der hier dargestellten Vorderseite 8 der Innentafel ist im Außenbereich 9 ein Seitenabsteller 10 angeordnet, der sich vertikal erstreckt. Der Seitenabsteller 10 weist Führungsöffnungen 11 auf, die in einem äquidistanten Abstand angeordnet sind. Sie können jedoch auch in unterschiedlichen Abständen voneinander positioniert sein. In die Führungsöffnungen 11 hinein erstrecken sich nicht dargestellte Führungsbolzen, sodass bei zusammengebauter Batterieschalung 1 die Außenschalung 2 mit ihren Führungsbolzen in die Führungsöffnungen 11 eingreift und so den Seitenabsteller 10 stabilisiert.
  • Der Seitenabsteller 10 ist drehbar gelagert um eine Rotationsachse 12, die sich ebenfalls vertikal erstreckt. Hierdurch wird ein besonders einfaches Öffnen des Seitenabstellers 10 ermöglicht, sodass die Ausschalung des hergestellten Betonfertigteils vereinfacht wird.
  • Die Außenschalung 2 weist an ihrer Außenseite Verstärkungsrippen 13 auf, die sich horizontal und vertikal erstrecken. Die Außenschalung 2 weist eine Schalungstafel 14 auf, die zur Innenschalung 3 gerichtet ist. An der Schalungstafel 14 sind die Verstärkungsrippen 13 befestigt. Die Schalungstafel 14 selbst ist biegeweich, d.h. sie kann über ihre Gesamtlänge um einige Millimeter in Richtung auf die Innenschalung zu verformt werden.
  • Aus Figur 2 ist deutlich zu erkennen, dass der Bodenabsteller 6 der Innenschalung 3 in seiner Höhe fixiert ist. Er lässt sich nicht verändern. Damit stellt der Bodenabsteller 6 den Referenzpunkt zum Aufbau und zur Bestimmung der Höhe eines zu fertigenden Betonfertigteils dar. Jedes herzustellende Betonteil wird an dem Bodenabsteller 6 ausgerichtet.
  • Figur 2 zeigt eine Besonderheit mit einer nicht vollkommen symmetrischen Innenschalung 3. Der linke Schalungsraum 15 weist eine größere Breite auf als der rechte Schalungsraum 16. Dies wird durch die beiden unterschiedlich breiten Seitenabsteller 10a, 10b realisiert. Dementsprechend müssen auch die beiden Höhenabsteller 17a, 17b eine unterschiedliche Breite aufweisen. Ihre Breite ist an die Breite der Seitenabsteller 10a, 10b angepasst. Auf diese Weise lassen sich in einem Fertigungsvorgang zwei unterschiedlich breite Betonfertigteile herstellen. Dies macht das Fertigungsverfahren besonders wirtschaftlich. Die Position der Innenschalung 3 in X-Richtung ist durch das Rollensystem 5 festgelegt. Entsprechend müssen die beiden Außenschalungen 2a, 2b in Abhängigkeit der Seitenabsteller 10a, 10b unterschiedlich bewegt werden. Da die beiden Außenschalungen 2a, 2b unabhängig voneinander bewegt werden können, ist dies kein Problem.
  • Aus Figur 2 ist deutlich zu erkennen, dass der Höhenabsteller 17a ein maschinell betriebener Höhenabsteller ist. Er wird von einer hydraulischen Positioniereinheit 18 bewegt und in seiner gewünschten Lage fixiert. Die Position des Höhenabstellers 17a in vertikaler Richtung lässt sich auch automatisch einstellen, indem die Position in einem Steuerungsprogramm hinterlegt sein kann. Die Vertikalposition des Höhenabstellers 17a wird vom Referenzpunkt, also vom Bodenabsteller 6 aus berechnet.
  • Die Höhenabsteller 17a, 17b sind jeweils an der Außenschalung 2 angeordnet, sodass sie mit den Außenschalungen 2a, 2b verfahren werden. Der Höhenabsteller 17b an der rechten Außenschalung 2b ist ein manuell zu verstellender Höhenabsteller. Er wird durch einen Magneten von Hand an der Schalungstafel 14 der Außenschalung 2b fixiert.
  • In Figur 2 ist die Batterieschalung 1 in zusammengeschobenem Zustand dargestellt. Um die biegeweiche Schalungstafel 14 der Außenschalungen 2a, 2b zu versteifen, sind die beiden Außenschalungen 2a, 2b durch eine Spannvorrichtung 19 miteinander verspannt. Die Spannvorrichtung 19 ist hydraulisch angetrieben und umfasste einen hydraulischen Stempel. Im unteren Bereich der Außenschalung 2 sind die Schalungen mit dem Podest 4 während des Betoniervorgangs derart fixiert, dass sie durch eine bevorzugt ebenfalls hydraulisch angetriebene Verfahreinrichtung 20, die hier nur schematisch angedeutet ist, in ihrer Position gehalten werden.
  • Nachdem die beiden Außenschalungen 2 parallel in ihre Fertigungsposition, wie in Fig. 2 dargestellt, geschoben wurden, können die Schalungsräume 15, 16 durch einen Einlass 21 in jeder Außenschalung 2a, 2b befüllt werden. Der Einlass 21 ist jeweils im unteren Bereich der Schalungsräume 15, 16 angeordnet. Der fließfähige Beton wird dann durch den Einlass, an dem bevorzugt ein Füllanschluss befestigt ist, befüllt. Ein solcher Einlass 21 ist schematisch in Fig. 1 in der Außenschalung 2a angedeutet.

Claims (13)

  1. Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen umfassend
    - zwei gegenüber angeordnete Außenschalungen (2, 2a, 2b), von denen wenigstens eine bewegbar ist,
    - eine Innenschalung (3), die zwischen den Außenschalungen (2, 2a, 2b) angeordnet ist und wenigstens zwei Seitenabsteller (10, 10a, 10b) aufweist, die das zu fertigende Betonteil seitlich begrenzen,
    dadurch gekennzeichnet, dass
    - die Innenschalung (3) einen Bodenabsteller (6) hat, der in seiner Lage fixiert ist und das zu fertigende Betonfertigteil nach unten begrenzt, wobei der Bodenabsteller (6) als unterer vertikaler Referenzpunkt für die Fertigung des Betonteils dient, und
    - die Batterieschalung (1) einen sich horizontal erstreckenden Höhenabsteller (17a, 17b) aufweist, der in seiner Position vertikal veränderbar ist und der das zu fertigende Betonfertigteil nach oben begrenzt.
  2. Batterieschalung nach Anspruch 1, dadurch gekennzeichnet, dass der Höhenabsteller (17a) an der Außenschalung (2, 2a, 2b) angeordnet ist.
  3. Batterieschalung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Höhenabsteller (17a, 17b) maschinell bewegbar ist, bevorzugt automatisch oder semi-automatisch bewegbar ist.
  4. Batterieschalung nach Anspruch 3, dadurch gekennzeichnet, dass der Höhenabsteller (17a, 17b) hydraulisch bewegbar ist.
  5. Batterieschalung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Höhenabsteller (17a, 17b) manuell in seiner Position veränderbar ist.
  6. Batterieschalung nach Anspruch 5, dadurch gekennzeichnet, dass der Höhenabsteller (17a, 17b) mittels Magneten in seiner Position fixiert ist.
  7. Batterieschalung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Außenschalung (2, 2a, 2b) translatorisch bewegt wird, bevorzugt die translatorische Bewegung mittels eines hydraulischen Antriebs bewirkt wird.
  8. Batterieschalung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Außenschalung (2, 2a, 2b) im Bodenbereich oberhalb des Bodenabstellers (6) der Innenschalung (3) wenigstens einen Einlass (21) zur Betonzuführung aufweist, durch den fließfähiger Beton in die Batterieschalung (1) zugeführt wird.
  9. Batterieschalung nach Anspruch 8, dadurch gekennzeichnet, dass mehrere Einlässe (21) entlang der Außenschalung (2, 2a, 2b) verteilt angeordnet sind.
  10. Batterieschalung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Außenschalung (2, 2a, 2b) eine Schalungstafel (14) einschließt, die durch horizontale und vertikale Verstärkungsrippen (13) verstärkt ist und die senkrecht zur Flächennormalen biegeweich ist.
  11. Batterieschalung nach Anspruch 10, dadurch gekennzeichnet, dass die beiden Außenschalungen (2, 2a, 2b) während der Fertigung des Betonfertigteils miteinander derart verspannt sind, dass die Schalungstafel (14) der Außenschalung (2, 2a, 2b) senkrecht zur Flächennormalen biegesteif ist.
  12. Verfahren zur vertikalen Fertigung von flächigen Betonfertigteilen, insbesondere mittels einer Batterieschalung (1) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch die folgenden Schritte:
    - Bereitstellen einer Batterieschalung (1) mit zwei gegenüber angeordneten Außenschalungen (2, 2a, 2b) und einer Innenschalung (3) mit einem Bodenabsteller (6) und wenigstens zwei Seitenabstellern (10, 10a, 10b);
    - Anordnen der Seitenabsteller (10, 10a, 10b) an der Innenschalung (3);
    - Anordnen der Innenschalung (3) zwischen den Außenschalungen (2, 2a, 2b);
    - Positionieren eines Höhenabstellers (17a, 17b) in die gewünschte vertikale Position relativ zu dem Bodenabsteller (6) der Innenschalung (3) derart, dass der vertikale Abstand zwischen dem Bodenabsteller (6) und dem Höhenabsteller (17a, 17b) der Höhe des zu fertigenden Betonfertigteils entspricht;
    - Bewegen der Außenschalungen (2, 2a, 2b) auf die Innenschalung (3) zu, bis sie an der Innenschalung (3) anliegen;
    - Fixieren der Außenschalungen (2, 2a, 2b) in ihrer Position, bevorzugt durch gegenseitiges Verspannen derart, dass die Außenschalungen (2, 2a, 2b) biegesteif sind;
    - Anschließen eines Befüllsystems an Einlässe (21) der Außenschalungen (2, 2a, 2b), die im Bodenbereich oberhalb des Bodenabstellers (6) der Innenschalung (3) angeordnet sind;
    - Befüllen der Batterieschalung (1) von unten, bevorzugt durch Druckbefüllung, bis die Batterieschalung (1) vollständig befüllt ist.
  13. Verfahren nach Anspruch 12, gekennzeichnet durch die folgenden Schritte:
    - Lösen der Fixierung, bevorzugt der Verspannung, der Außenschalung (2, 2a, 2b), wodurch die Außenschalung (2, 2a, 2b) biegeweich wird;
    - Lösen der Außenschalung (2, 2a, 2b) von dem Betonfertigteil;
    - Bewegen der Außenschalung (2, 2a, 2b) nach außen;
    - Entfernen der Innenschalung (3) mit dem Betonfertigteil;
    - Ausschalen und/oder Weiterbearbeiten des Betonfertigteils.
EP08736186A 2007-04-23 2008-04-14 Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen Not-in-force EP2136977B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007019383A DE102007019383B4 (de) 2007-04-23 2007-04-23 Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen
PCT/EP2008/054484 WO2008128916A1 (de) 2007-04-23 2008-04-14 Batterieschalung zur vertikalen fertigung von flächigen betonfertigteilen

Publications (2)

Publication Number Publication Date
EP2136977A1 EP2136977A1 (de) 2009-12-30
EP2136977B1 true EP2136977B1 (de) 2011-06-08

Family

ID=39651049

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08736186A Not-in-force EP2136977B1 (de) 2007-04-23 2008-04-14 Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen

Country Status (8)

Country Link
US (1) US20100164140A1 (de)
EP (1) EP2136977B1 (de)
AT (1) ATE511968T1 (de)
AU (1) AU2008240829B2 (de)
DE (1) DE102007019383B4 (de)
ES (1) ES2367540T3 (de)
RU (1) RU2449888C2 (de)
WO (1) WO2008128916A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013002326A1 (de) * 2013-02-12 2014-08-14 Weckenmann Anlagentechnik Gmbh & Co. Kg Schalungsvorrichtung zur Herstellung von Beton-Fertigteilen
CN104260185B (zh) * 2014-09-22 2017-10-27 北京珠穆朗玛绿色建筑科技有限公司 多功能混凝土预制构件成组立模生产设备及生产线
DE102015209157B4 (de) * 2015-05-19 2017-03-23 B.T. Innovation Gmbh Schalungseinrichtung und Batterieschalung mit dieser Schalungseinrichtung
DE102015113077B4 (de) * 2015-08-07 2021-06-10 Lithonplus Gmbh & Co. Kg Schalform für ein Bauelement und Verfahren zum Ausschalen

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2089149A (en) * 1934-08-17 1937-08-03 Chain Belt Co Plastic concrete induction apparatus for tunnel forms
GB966950A (en) * 1963-01-08 1964-08-19 Entpr S Balency & Schuhl Sa Improvements in or relating to moulds for the production of wall units or sections of reinforced concrete
US3636833A (en) * 1968-09-03 1972-01-25 John Laing Research & Dev Ltd Laying of concrete kerbs haunches and the like
DE2001825A1 (de) * 1970-01-16 1971-07-22 Armin Kleiber Schalung zur Herstellung von grossflaechigen,plattenfoermigen Formteilen und Betriebsverfahren hierzu
US3682575A (en) * 1970-12-10 1972-08-08 Karl Guddal Concrete pump
BE794110A (fr) * 1972-02-02 1973-07-16 Modulbau Ag Procede et installation pour la fabrication de plaques en beton arme
DK157236C (da) * 1987-02-23 1990-04-30 Kvm Industrimaskiner Fremgangsmaaden og anlaeg til formstoebning af betonvarer saasom bloksten i en celledelt stoebeform
US4983077A (en) * 1987-08-26 1991-01-08 Gebhardt & Koenig-Gesteins- Und Tiefbau Gmbh Method and an apparatus for producing fabric-reinforced lining supports or slender supporting structural units
DE4002669A1 (de) * 1990-01-30 1991-08-01 Walbroehl H T Selbstschreitende stuetz- und gleitschaltung zum einbringen einer ortbetonauskleidung
US6086349A (en) 1992-05-26 2000-07-11 Del Monte; Ernest J. Variable wall concrete molding machine
US5470590A (en) * 1994-01-31 1995-11-28 University Of Pittsburgh Reusable die shape for the manufacture of molded cushions
US20060180736A1 (en) * 1998-04-30 2006-08-17 Kandiah & Associates Sdn. Bhd. Pre-cast concrete panels for construction of a building
AU2001267230A1 (en) * 2000-06-21 2002-01-02 Herbert Walter Bentz Concrete wall forming system using fabric
US20050116131A1 (en) * 2001-04-02 2005-06-02 Michael Samuel Support device
US6767000B2 (en) * 2002-06-24 2004-07-27 Poul Heide Manufacturing platform
US7182307B2 (en) * 2003-09-30 2007-02-27 Verti-Crete, Llc System for vertically forming concrete panels
FR2874349A1 (fr) * 2004-08-20 2006-02-24 Jean Paul Martinez Tri-banches automatique
CN101035650B (zh) * 2004-08-24 2010-05-26 Srb建筑技术有限公司 磁性夹具
EP1815087A4 (de) * 2004-11-26 2009-05-13 Lorenzo Nick Di Betonplattenkonstruktionssystem und verfahren zur herstellung von platten
DE102006053552B3 (de) 2006-11-14 2008-02-07 Ratec Maschinenentwicklungs- Und Verwaltungs-Gmbh Füllanschluss für eine Schalung zum Einfüllen von Beton
EP1923185B1 (de) 2006-11-15 2014-08-27 Ratec Maschinenentwicklungs- und Verwaltungs-GmbH Verfahren und Vorrichtung zur Herstellung eines einstückigen Fertigteils aus Beton

Also Published As

Publication number Publication date
ES2367540T3 (es) 2011-11-04
DE102007019383A1 (de) 2008-10-30
WO2008128916A1 (de) 2008-10-30
RU2449888C2 (ru) 2012-05-10
US20100164140A1 (en) 2010-07-01
DE102007019383B4 (de) 2009-01-08
AU2008240829B2 (en) 2011-04-14
EP2136977A1 (de) 2009-12-30
RU2009142941A (ru) 2011-05-27
ATE511968T1 (de) 2011-06-15
AU2008240829A1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
EP2083977B1 (de) Schalungssystem zum betonieren von fertigteilen mit einer aussenschalung und einem schalungskern
EP3147094A2 (de) Schalform für mauerscheibe
WO2019223936A1 (de) Schalungskern für ein schalungssystem zum betonieren eines glockenkörpers
EP2136977B1 (de) Batterieschalung zur vertikalen Fertigung von flächigen Betonfertigteilen
EP2910687B1 (de) Vorrichtung und verfahren zur herstellung eines mehrere tunnelabschnitte aufweisenden tunnels
EP1605101B1 (de) Verfahren und Vorrichtung zur Herstellung einer mehrschichtigen Platte aus Beton
DE1759214B2 (de) Vorrichtung zur serienmaessigen herstellung von einseitig offenen raumzellen aus stahlbeton
EP0761401A2 (de) Form zur Herstellung von Formsteinen
DE10219896C1 (de) Schalungssystem für Betonkörper
EP0896866B1 (de) Verfahren und Vorrichtung zur Herstellung von Formkörpern
WO2019174965A1 (de) Verfahren zum fertigen einer aufzugschachtwand mit einer darin integrierten länglichen wandbefestigungsanordnung
DE19602981C2 (de) Vorrichtung zum Einbauen und Ausbauen von Deckenschalungen
DE2166661A1 (de) Vorrichtung zum herstellen von poren- oder gasbetonbloecken
DE2322139C3 (de) Batterieform und Verfahren zum Herstellen von Betonplatten
EP0667220A1 (de) Form für Betonsteine
DE10016978B4 (de) Vorrichtung zum Herstellen von Raumzellen aus Beton
DE2808644C3 (de) Vorrichtung zum Gießen von Betonbauelementen
DE4209678C2 (de) Schalung für stabförmige Betonfertigteile
DE2416380A1 (de) Schalung zum herstellen grossformatiger betonhohlkoerper, wie raumzellen, garagen o.dgl.
EP0085366A1 (de) Verfahren und Vorrichtung zum Fertigen von Raumzellen aus erstarrendem Baustoff
DE4123685C2 (de) Raumzellenschalung
DE3212499C2 (de)
DE2430941C3 (de) Verfahren und Vorrichtung zur Herstellung von großformatigen Betonbauelementen
DE4447120C2 (de) Schalungsvorrichtung zum Herstellen von Bauelementen aus Stahlbeton oder dergleichen
DE2438663A1 (de) Verfahren und vorrichtung zur herstellung raeumlicher baukoerper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100212

DAX Request for extension of the european patent (deleted)
RTI1 Title (correction)

Free format text: BATTERY MOULD FOR THE VERTICAL PRODUCTION OF FLAT PREFABRICATED CONCRETE PARTS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003794

Country of ref document: DE

Effective date: 20110721

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110908

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2367540

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110909

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111008

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008003794

Country of ref document: DE

Effective date: 20120309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120423

Year of fee payment: 5

Ref country code: GB

Payment date: 20120423

Year of fee payment: 5

BERE Be: lapsed

Owner name: RATEC MASCHINENENTWICKLUNGS- UND VERWALTUNGS-GMBH

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130415

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080414

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170424

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170424

Year of fee payment: 10

Ref country code: CH

Payment date: 20170425

Year of fee payment: 10

Ref country code: DE

Payment date: 20170425

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170503

Year of fee payment: 10

Ref country code: IT

Payment date: 20170420

Year of fee payment: 10

Ref country code: AT

Payment date: 20170420

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008003794

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 511968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180414

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180414

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180415