EP2104580A1 - Kohlenhydrathaltige formstoffmischung - Google Patents

Kohlenhydrathaltige formstoffmischung

Info

Publication number
EP2104580A1
EP2104580A1 EP07819173A EP07819173A EP2104580A1 EP 2104580 A1 EP2104580 A1 EP 2104580A1 EP 07819173 A EP07819173 A EP 07819173A EP 07819173 A EP07819173 A EP 07819173A EP 2104580 A1 EP2104580 A1 EP 2104580A1
Authority
EP
European Patent Office
Prior art keywords
molding material
material mixture
mixture according
casting
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07819173A
Other languages
English (en)
French (fr)
Other versions
EP2104580B1 (de
EP2104580B2 (de
Inventor
Jens Müller
Diether Koch
Marcus Frohn
Jörg KÖRSCHGEN
Stefan Schreckenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASK Chemicals GmbH
Original Assignee
Ashland Suedchemie Kernfest GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38893297&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2104580(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE102006049379A external-priority patent/DE102006049379A1/de
Priority claimed from DE200610061876 external-priority patent/DE102006061876A1/de
Application filed by Ashland Suedchemie Kernfest GmbH filed Critical Ashland Suedchemie Kernfest GmbH
Priority to DE202007019192U priority Critical patent/DE202007019192U1/de
Publication of EP2104580A1 publication Critical patent/EP2104580A1/de
Publication of EP2104580B1 publication Critical patent/EP2104580B1/de
Application granted granted Critical
Publication of EP2104580B2 publication Critical patent/EP2104580B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/26Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of carbohydrates; of distillation residues therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates

Definitions

  • the invention relates to a molding material mixture for the production of casting molds for metal processing, which comprises at least one pourable refractory molding base, a water glass based binder, and a proportion of a particulate metal oxide, which is selected from the group of silica, alumina, titania and zinc oxide, includes. Furthermore, the invention relates to a process for the production of casting molds for metal processing using the molding material mixture as well as a casting mold obtained by the process.
  • Molds for the production of metal bodies are essentially produced in two versions.
  • a first group form the so-called cores or forms. From these, the casting mold is assembled, which essentially represents the negative mold of the casting to be produced.
  • a second group form hollow bodies, so-called feeders, which act as a compensation reservoir. These absorb liquid metal, whereby measures are taken to ensure that the metal remains in the liquid phase longer than the metal that is in the negative mold forming mold. If the metal solidifies in the negative mold, liquid metal can flow out of the compensation reservoir to compensate for the volume contraction that occurs when the metal solidifies.
  • Casting molds are made of a refractory material, such as quartz sand, whose grains are connected after molding of the mold by a suitable binder to ensure sufficient mechanical strength of the mold.
  • a refractory molding material which has been treated with a suitable binder.
  • the refractory molding base material is preferably present in a free-flowing form, so that it can be filled into a suitable mold and compacted there.
  • the binder produces a firm cohesion between the particles of the molding base material, so that the casting mold obtains the required mechanical stability.
  • Molds must meet different requirements. During the casting process itself, they must first of all have sufficient stability and temperature resistance in order to receive the liquid metal in the mold formed from one or more casting molds. After the start of the solidification process, the mechanical stability of the mold is ensured by a solidified metal layer, which forms along the walls of the mold. The material of the casting mold then has to be under the influence of the votes from the metal heat in the manner decompose that it loses its mechanical strength, so "en ⁇ of the ⁇ 'lt ⁇ " related to Albert zwrsch ⁇ various ⁇ Pa ⁇ rt ⁇ i ⁇ ke ⁇ n ⁇ " d " it is " molten material” repealed. This is achieved, for example, by decomposing the binder under heat. After cooling, the solidified casting is shaken, in the - -
  • the material of the molds again decomposes into a fine sand, which can pour out of the cavities of the metal mold.
  • both organic and inorganic binders can be used, the curing of which can be carried out in each case by cold or hot processes.
  • Cold processes are processes which are carried out essentially at room temperature without heating the casting mold.
  • the curing is usually carried out by a chemical reaction, which is triggered for example by the fact that a gas is passed as a catalyst through the mold to be cured.
  • hot processes the molding material mixture is heated to a sufficiently high temperature after molding to expel, for example, the solvent contained in the binder or to initiate a chemical reaction by which the binder is cured, for example, by crosslinking.
  • organic binders are often used for the production of casting molds, in which the curing reaction is accelerated by a gaseous catalyst or cured by reaction with a gaseous hardener. These methods are referred to as "cold-box" methods.
  • the first component consists of the solution of a polyol, usually a phenolic resin.
  • the second component is the solution -in-nes-P ⁇ -lyi-soya-n-tes- ⁇ -So-according to the US 3, 4-0-9> -S-7-9-A the - Reacted two components of the polyurethane binder by a gaseous tertiary amine is passed through the mixture of molding material and binder after shaping.
  • the curing reaction of polyurethane binders is - - -
  • Hot-curing organic processes include the hot-box process based on phenolic or furan resins, the warm box process based on furan resins, and the croning process based on phenolic novolac resins.
  • liquid resins are processed with a latent curing agent which is only effective at elevated temperatures to form a molding material mixture.
  • mold base materials such as quartz, chrome ore, zirconium, etc., are coated at a temperature of about 100 to 160 0 C with a liquid at this temperature phenol novolac resin.
  • Hexamethylenetetramine is added as a reaction partner for the subsequent curing.
  • shaping and curing takes place in heated tools, which are heated to a temperature of up to 300 0 C.
  • Such a system is described for example in GB 782 205, in which an alkali water glass is used as a binder, which can be cured by introduction of CO 2 .
  • DE 199 25 167 describes an exothermic feeder composition which contains an alkali metal silicate as binder.
  • binder systems have been developed which are self-curing at room temperature. Such a system based on phosphoric acid and metal oxides is described, for example, in US Pat. No. 5,582,232.
  • inorganic binder systems are known which are cured at higher temperatures, for example in a hot tool.
  • Such hot-curing binder systems are known, for example, from US Pat. No. 5,474,606, in which a binder system consisting of alkali water glass and aluminum silicate is described.
  • inorganic binders also have disadvantages compared to organic binders.
  • the casting molds made with water glass as a binder have a relatively low strength. This results in particular in the removal of the mold from the tool to problems because the mold can break. Good strength at this time is particularly important for the production of complicated, thin-walled moldings and their safe handling. The reason for the low strength is primarily that the molds still contain residual water from the binder. Longer dwell times in the hot, closed tool only help to a limited degree because the steam does not escape sufficiently - -
  • Molds made with water glass as a binder often show poor disintegration after metal casting.
  • the binder can be vitrified under the influence of the hot metal, so that the mold is very hard and can be removed only with great effort from the casting. Attempts have therefore been made to add organic components to the molding material mixture which burn under the influence of the hot metal and, as a result of pore formation, facilitate disintegration of the casting mold after casting.
  • core and molding sand mixtures which contain sodium silicate as a binder.
  • glucose syrup is added to the mixture.
  • the molding sand mixture processed into a casting mold is set by passing carbon dioxide gas through it.
  • the molding sand mixture contains 1 to 3 wt .-% glucose syrup, 2 to 7 wt .-% of an alkali metal silicate and a sufficient amount of a core or molding sand.
  • forms and nuclei containing glucose syrup have much better disintegration properties than forms and nuclei containing sucrose or pure dextrose.
  • EP 0 150 745 A2 describes a binder mixture for solidifying molding sand, which consists of an alkali metal silicate, preferably sodium silicate, a polyhydric alcohol and further additives, wherein the additives provided are modified carbohydrates, non-hygroscopic starch, a metal oxide and a filler.
  • a non-hygroscopic starch hydrolyzate having a reducing power of 6 to 15% is used, which can be added as a powder.
  • the non-hygroscopic starch and the metal oxide, preferably iron oxide are added in an amount of 0.25 to 1% by weight of the amount of sand. Possibly. may be added to the binder mixture, a lubricant in powder form or as an oil.
  • the binder mixture is preferably cured by the use of CO 2 or a chemical catalyst.
  • GB 847,477 describes a binder composition for the production of casting molds comprising an alkali metal silicate having a modulus SiO 2 / M 2 O of 2.0 to 3.22 and a polyhydroxy compound.
  • the binder is mixed with a refractory base molding material for the production of molds and cured after forming the mold by gassing with carbon dioxide.
  • polyhydroxy compounds for example, mono-, di-, tri- or tetrasaccharides are used, wherein provided no great demands on the purity of this compound "duhgeri" "" '. '""
  • a molding material mixture for the production of molds is described, which in addition to a refractory molding material comprises a binder composition, which - -
  • a suitable salt is, for example, ammonium chloride.
  • the glue is made by partially hydrolyzing starch. For making a mold, the molding mixture is first brought into the desired shape and then heated to a temperature of at least 175 - 180 0 C heated.
  • a molding material mixture for the production of molds which comprises a water-containing binder in addition to a refractory molding material, which in addition to an alkali metal silicate compatible with the alkali metal silicate oxidizing agent and, based on the solution, 9 to 40 wt .-% a readily oxidizable organic material.
  • the oxidizing agent for example, nitrates, chromates, dichromates, permanganates or chlorates of the alkali metals can be used.
  • starch, dextrins, cellulose, hydrocarbons, synthetic polymers, such as polyethers or polystyrene, and hydrocarbons, such as tar can be used as easily oxidisable material.
  • the molding material mixture can be cured by heating or by gassing with carbon dioxide.
  • No. 4,162,238 describes a molding material mixture for the production of casting molds which, in addition to a refractory molding base material, comprises a binder based on an alkali metal silicate, in particular water glass.
  • the binder amorphous silica is added in a proportion corresponding to the solution of the binder 2 to 75%.
  • the amor- "phe” "Si” ri ⁇ z ⁇ ümä "iöxi” d "indicates” a "par” ti ⁇ kelg "r” OLS ⁇ e ' ⁇ in the "V ott' etmaschine to 2 to 500 nm.
  • the binder comprises a modulus SiC> 2 : M 2 O of 3.5 to 10, where M is an alkali metal.
  • Molding material mixture according to the invention are the subject of the dependent claims.
  • casting molds based on inorganic binders can be prepared by the addition of carbohydrates to the molding material mixture, which have high strength both immediately after production and during prolonged storage. Further, after the casting of the metal, a casting having a very high surface quality is obtained, so that after the removal of the casting mold, only a slight finishing of the surface of the casting is required. This is a significant advantage because it can significantly reduce the cost of producing a casting in this way. In the case of casting, compared to other organic additives such as acrylic resins, polystyrene, polyvinyl esters or polyalkyl compounds, significantly less smoke is observed, so that the workload for the employees there can be significantly reduced.
  • organic additives such as acrylic resins, polystyrene, polyvinyl esters or polyalkyl compounds
  • the molding material mixture according to the invention for the production of casting molds for metalworking comprises at least:
  • a refractory molding base a water glass based binder; and a proportion of a particulate metal oxide selected from the group consisting of silica, alumina, titania and zinc oxide.
  • the molding material mixture contains a carbohydrate as further constituent.
  • a refractory molding base material can be used for the production of molds usual materials.
  • the refractory base molding material must have sufficient dimensional stability at the temperatures prevailing during metal casting.
  • suitable refractory molding material is therefore characterized by a high melting point.
  • the melting point of the refractory mold raw material is preferably higher than 700 ° C, preferably higher than 800 0 C, particularly preferably higher than 900 0 C and most preferably higher than 1000 0 C.
  • refractory mold raw materials silica sand or zircon example, are suitable.
  • fibrous refractory mold bases are suitable, such as chamotte fibers.
  • Other suitable refractory mold bases are, for example, olivine, chrome ore sand, vermiculite.
  • Next artificial refractory mold raw materials glass beads, glass granules or known under the name "Cerabeads ®” or “Carboaccucast ®” spherical ceramic mold raw materials can be used as refractory mold raw materials such as aluminum silicate hollow spheres (microspheres called.). These artificial refractory mold bases are synthetically manufactured or, for example, fall as waste in industrial processes. These . spherical ceramic mold base materials contain as minerals, for example mullite, corundum, ß-cristobalite in different proportions. They contain as essential proportions alumina and silica. Typical compositions contain, for example, Al 2 O 3 and SiO 2 in approximately equal proportions.
  • the diameter of the spherical refractory mold bases is preferably less than 1000 microns, especially less than 600 microns.
  • Aluminum silicate microbubbles result from the combustion of fossil fuels or other combustible materials and are separated from the ashes produced during combustion.
  • Hollow microspheres as an artificial refractory base molding material are characterized by a low specific weight. This is due to the structure of these artificial refractory mold bases which comprise gas-filled pores. These pores can be open or closed. Preference is given to using closed-cell artificial refractory molding base materials. When using open-pored artificial refractory mold raw materials, a part of the water glass-based binder is absorbed in the pores and can then develop no binding effect.
  • glass materials are used as artificial molding bases. These are used in particular either as glass beads or as glass granules.
  • Conventional glasses can be used as the glass, with glasses showing a high melting point being preferred. Suitable examples are glass beads and / or glass granules, which is made of glass breakage. Also suitable are borate glasses. The composition of such glasses is exemplified in the table below.
  • ⁇ II alkaline earth metal - e.g. Mg, Ca, Ba
  • M 1 alkali metal, eg Na, K
  • the diameter of the glass beads is preferably 1 to 1000 ⁇ m, preferably 5 to 500 ⁇ m, and particularly preferably 10 to 400 ⁇ m.
  • the refractory base molding material is formed by glass materials.
  • the proportion of the glass material on the refractory molding base material is preferably less than 35 wt .-%, more preferably less than 25 wt .-%, particularly preferably less than 15 wt .-% selected.
  • the fraction of the glass material on the refractory molding base material is preferably greater than 0.5% by weight, preferably greater than 1% by weight, particularly preferably greater than 1.5% by weight. , particularly preferably greater than 2 wt .-% selected.
  • the preferred proportion of the artificial molding base materials is at least about 3 wt .-%, more preferably at least 5 wt .-%, particularly preferably at least 10 wt .-%, preferably at least about 15 wt .-%, particularly preferably at least about 20 Wt .-%, based on the total amount of refractory molding material.
  • the refractory molding base material preferably has a free-flowing state, so that the molding material mixture according to the invention can be processed in conventional core shooting machines.
  • the proportion of artificial refractory mold raw materials is kept low.
  • the proportion of the artificial refractory mold raw materials in the refractory molding base material less than 80 wt .-%, preferably less than 75 wt .-%, more preferably less than 65 wt .-%.
  • the molding material mixture according to the invention comprises a water glass-based binder.
  • Conventional water glasses can be used as the water glass, as they are already used as binders in molding material mixtures. These water glasses contain dissolved sodium or potassium silicates and can be prepared by dissolving glassy potassium and sodium silicates in water.
  • the water glass preferably has a modulus of SiO 2 / M 2 ⁇ in the range of 1.6 to 4.0, in particular 2.0 to 3.5, wherein M is sodium and / or potassium.
  • the water glasses preferably have a solids content in the range of 30 to 60 wt .-%. The solids content refers to the amount of SiO 2 and M 2 O contained in the water glass.
  • the molding material mixture contains a proportion of a particulate metal oxide, which is selected from the group of silica, alumina, titania and zinc oxide.
  • the average primary particle size of the particulate metal oxide may be between 0.10 ⁇ m and 1 ⁇ m.
  • the particle size of the metal oxides is preferably less than 300 ⁇ m, preferably less than 200 ⁇ m, more preferably less than 100 ⁇ m. It is preferably in the range of 5 to 90 .mu.m, more preferably 10 to 80 .mu.m, and most preferably in the range of 15 to 50 microns.
  • the particle size can be determined, for example, by sieve analysis. Particularly preferably, the sieve residue on a sieve with a mesh width of 63 ⁇ m is less than 10% by weight, preferably less than 8% by weight.
  • particulate metal oxide silica is used, in which case synthetically produced amorphous silica is particularly preferred.
  • Precipitated silica is obtained by reaction of an aqueous alkali metal silicate solution with mineral acids. The resulting precipitate is then separated, dried and ground.
  • Fumed silicas are understood to mean silicic acids which are obtained by coagulation from the gas phase at high temperatures. The production of fumed silica, for example, by flame hydrolysis of silicon tetrachloride or - -
  • silica sand with coke or anthracite to silicon monoxide gas followed by oxidation to silica.
  • the pyrogenic silicas produced by the arc furnace process may still contain carbon.
  • Precipitated silica and fumed silica are equally well suited for the molding material mixture according to the invention. These silicas are hereinafter referred to as "synthetic amorphous silica”.
  • the molding material mixture according to the invention contains a carbohydrate. Both mono- or disaccharides and relatively high molecular weight oligosaccharides or polysaccharides can be used.
  • the carbohydrates can be used both as a single compound and as a mixture of different carbohydrates.
  • the purity of the carbohydrates used are not excessive requirements. It is sufficient if the carbohydrates, based on the dry weight, in a purity of more than 80 wt .-%, more preferably more than 90 wt .-%, more preferably more than 95 wt .-%, in each case based on the dry weight.
  • the monosaccharide units of the carbohydrates can be linked as desired.
  • the carbohydrates preferably have a linear structure, for example an ⁇ - or ⁇ -glycosidic 1,4-linkage.
  • the carbohydrates may also be wholly or partially 1, 6-linked, such as.
  • the amylopectin which has up to 6% ⁇ -1, 6 bonds.
  • the amount of carbohydrate is preferably chosen to be relatively low. In itself, the aim is to keep the proportion of organic components in the molding material mixture as low as possible so that the smoke development caused by the thermal decomposition of these organic compounds is suppressed as far as possible. Therefore, relatively small amounts of carbohydrate are added to the molding material mixture, wherein a significant improvement in the strength of the casting molds before casting or a significant improvement in the quality of the surface of the casting can already be observed.
  • the proportion of the carbohydrate, based on the refractory molding material greater than 0.01 wt .-%, preferably greater than 0.02 wt .-%, more preferably greater than 0.05 wt .-% selected.
  • a high proportion of carbohydrate causes no further improvement in the strength of the casting mold or the surface quality of the casting.
  • the amount of carbohydrate, based on the refractory molding base material is preferably less than 5% by weight, preferably less than 2.5% by weight, more preferably less than 0.5% by weight, particularly preferably less than 0, 4 wt .-% selected.
  • low levels of carbohydrates in the range of more than 0.1 wt .-% lead to significant effects.
  • the proportion of carbohydrate in the molding material mixture based on the refractory molding material, preferably in the range of 0.1 to 0.5 wt .-%, preferably 0.2 to 0.4 wt .-%. At levels of more than 0.5% by weight of carbohydrate, no significant improvement in properties is achieved, so amounts of more than 0.5% by weight of carbohydrate are not required per se.
  • the carbohydrate is used in underivatized form.
  • Such carbohydrates can be favorably obtained from natural sources, such as plants, for example, cereals or potatoes.
  • Carbohydrates can be lowered for example by chemical or enzymatic hydrolysis, for example to improve the solubility in water.
  • underivatized carbohydrates which are thus composed only of carbon, oxygen and hydrogen
  • derivatized carbohydrates can be used, in which, for example, a part or all hydroxy groups with e.g. Alkyl groups are etherified.
  • Suitable derivatized carbohydrates are, for example, ethylcellulose or carboxymethylcellulose.
  • oligosaccharides or polysaccharides are glucose or sucrose.
  • an oligosaccharide or polysaccharide is particularly preferred to use an oligosaccharide or polysaccharide as the carbohydrate.
  • the oligosaccharide or polysaccharide have a molecular weight in the range from 1000 to 100,000 g / mol, preferably 2,000 and 30,000 g / mol.
  • the carbohydrate has a molecular weight in the range of 5,000 to 20,000 g / mol, a significant increase in the strength of the mold is observed, so that the mold can be easily removed from the mold during manufacture and transported. Even with prolonged storage, the mold shows a very good strength, so that even for a series production of castings required storage of the molds, even over several days in the event of access of humidity, readily possible.
  • the stability upon exposure to water, such as un- to the casting mold, for example, when applying a sizing ve ⁇ rme ⁇ i ⁇ d ⁇ rch "i ⁇ st,” is ⁇ s ⁇ ⁇ ore good.
  • the polysaccharide is preferably composed of glucose units, these being particularly preferably linked to ⁇ - or ⁇ -glycosidic 1,4.
  • carbohydrate fertilize which contain other monosaccharides besides glucose, such as galactose or fructose to use as an inventive additive.
  • suitable carbohydrates are lactose ( ⁇ - or ⁇ -1, 4-linked disaccharide of galactose and glucose) and sucrose (disaccharide of ⁇ -glucose and ⁇ -fructose).
  • the carbohydrate is particularly preferably selected from the group of cellulose, starch and dextrins and derivatives of these carbohydrates.
  • Suitable derivatives are, for example, derivatives completely or partially etherified with alkyl groups.
  • starches especially the naturally occurring starches, such as potato, corn, rice, peas, banana, horse chestnut or wheat starch can be used.
  • modified starches such as, for example, swelling starch, low-boiling starch, oxidized starch, citrate starch, acetate starch, starch ethers, starch esters or starch phosphates. There is no limit to the choice of strength per se.
  • the starch may, for example, be low-viscosity, medium-viscosity or high-viscosity, cationic or anionic, cold-water-soluble or hot-water-soluble.
  • the dextrin is particularly preferably selected from the group consisting of potato dextrin, corn dextrin, Gelbdextriri, ⁇ white dextrin, "borax, and Cyclödextrin 'maltodextrin.
  • the molding material mixture preferably comprises additionally a phosphorus-containing compound.
  • a phosphorus-containing compound in this case, both organic and inorganic phosphorus compounds can be used per se.
  • the phosphorus in the phosphorus-containing compounds preferably in the oxidation state V is present.
  • the addition of phosphorus-containing compounds the stability of the mold can be further increased. This is particularly important when metal casting, the liquid metal strikes a sloping surface and there because of the high metallostatic pressure exerts a high erosion effect or can lead to deformation in particular thin-walled portions of the mold.
  • the phosphorus-containing compound is preferably present in the form of a phosphate or phosphorus oxide.
  • the phosphate can be present as alkali metal or as alkaline earth metal phosphate, with alkali metal phosphates and especially the sodium salts being particularly preferred. As such, ammonium phosphates or phosphates of other metal ions can also be used.
  • the alkali metal or alkaline earth metal phosphates mentioned as being preferred are readily available and are available inexpensively in amounts which are in themselves arbitrary.
  • Phosphates of polyvalent metal ions, especially trivalent metal ions are not preferred. It has been observed that when using such phosphates of polyvalent metal ions, in particular trivalent metal ions, the processing time of the molding material mixture is shortened.
  • the phosphorus oxide is preferably present in the form of phosphorus pentoxide.
  • Ph ⁇ sph ⁇ rtri- and phosphoric tetroxide can be used.
  • the phosphorus-containing compound in the form of the salts of the fluorophosphoric acids may be added to the molding material mixture.
  • Particularly preferred are in the case of the salts of monofluorophosphoric acid.
  • Especially preferred is the sodium salt.
  • organic phosphates are added to the molding material mixture as the phosphorus-containing compound.
  • alkyl or aryl phosphates Preference is given here to alkyl or aryl phosphates.
  • the alkyl groups preferably comprise 1 to 10 carbon atoms and may be straight-chain or branched.
  • the aryl groups preferably comprise 6 to 18 carbon atoms, wherein the aryl groups may also be substituted by alkyl groups.
  • Particularly preferred are phosphate compounds derived from monomeric or polymeric carbohydrates such as glucose, cellulose or starch.
  • the use of a phosphorus-containing organic component as an additive is advantageous in two respects. On the one hand can be achieved by the phosphorus content, the necessary thermal stability of the mold and on the other hand, the surface quality of the corresponding casting is positively influenced by the organic content.
  • Both orthophosphates and polyphosphates, pyrophosphates or metaphosphates can be used as phosphates.
  • the phosphates can be prepared, for example, by neutralization of the corresponding acids with a corresponding base, for example an alkali metal base, such as NaOH, or optionally also an alkaline earth, limetal base, wherein not necessarily all negative charges of the phosphate ion must be saturated by metal ions. It is possible to use both the metal phosphates and the metal hydrogen phosphates and the metal dihydrogen phosphates, for example Na 3 PO 4 , Na 2 HPO 4 and NaH 2 PO 4 . Likewise, the anhydrous phosphates as well as hydrates of the phosphates can be used.
  • the phosphates can be introduced into the molding material mixture both in crystalline and in amorphous form.
  • Polyphosphates are understood in particular to be linear phosphates which comprise more than one phosphorus atom, the phosphorus atoms being connected in each case via oxygen bridges.
  • Polyphosphates are obtained by condensation of orthophosphate ions with elimination of water, so that a linear chain of PO 4 tetrahedra is attached, which are each connected via corners.
  • Polyphosphates have the general formula (0 (PO 3 ) n ) ⁇ n + 2) where n is the chain length
  • a polyphosphate may comprise up to several hundred PO 4 tetrahedrons
  • polyphosphates with shorter chain lengths are preferred
  • n has values of from 2 to 100, in particular preferably from 5 to 50. It is also possible to use more highly condensed polyphosphates, ie polyphosphates in which the PO 4 tetrahedra are connected to one another via more than two corners and therefore polymerize into two or more. show three dimensions.
  • Metaphosphates are understood to mean cyclic structures composed of PO 4 tetrahedra connected by vertices. Metaphosphates have the general formula ((PCb) n ) n - where n is at least 3. Preferably, n has values of 3 to 10.
  • Both individual phosphates and mixtures of different phosphates and / or phosphorus oxides can be used.
  • the preferred proportion of the phosphorus-containing compound, based on the refractory molding material, is between 0.05 and 1.0 wt .-%. With a proportion of less than 0.05 wt .-%, no significant influence on the dimensional stability of the mold to determine. If the proportion of the phosphate exceeds 1.0% by weight, the hot strength of the casting mold greatly decreases.
  • the proportion of the phosphorus-containing compound is selected to be between 0.10 and 0.5% by weight.
  • the phosphorus-containing compound preferably contains between 0.5 and 90% by weight of phosphorus, calculated as P 2 O 5 .
  • inorganic phosphorus compounds contain preferably 40 to 90% by weight, particularly preferably 50 to 80% by weight of phosphorus, calculated as P 2 O 5 . If organic phosphorus compounds are used, these preferably contain from 0.5 to 30% by weight, particularly preferably from 1 to 20% by weight, of phosphorus, calculated as P 2 O 5 .
  • the phosphorus-containing compound may be added per se in solid or dissolved form of the molding material mixture.
  • the phosphorus-containing compound is preferably added to the molding material mixture as a solid. If the phosphorus-containing compound is added in dissolved form, water is preferred as the solvent.
  • Iron oxide as a possible additive was also considered in the inventors' study of the stability and disintegration of molds. When iron oxide is added to the molding material mixture, an increase in the stability of the casting mold during metal casting is likewise observed. The addition of iron oxide can thus also potentially improve the stability of thin-walled sections of the casting mold. However, the addition of iron oxide does not effect the improvement in the disintegration properties of the casting mold after casting, in particular iron casting, observed during the addition of phosphorus-containing compounds. - A -
  • the molding material mixture according to the invention represents an intensive mixture of at least the constituents mentioned.
  • the particles of the refractory molding material are preferably coated with a layer of the binder.
  • a firm cohesion between the particles of the refractory base molding material can then be achieved.
  • the binder i. the water glass as well as the particulate metal oxide, in particular synthetic amorphous silicon dioxide, and the carbohydrate are contained in the molding material mixture preferably in a proportion of less than 20 wt .-%, particularly preferably in a range of 1 to 15 wt .-%.
  • the proportion of the binder refers to the solids content of the binder. If massive refractory mold bases are used, such as quartz sand, the binder is preferably present in a proportion of less than 10% by weight, preferably less than 8% by weight, more preferably less than 5% by weight. If refractory mold raw materials are used which have a low density, such as the micro hollow balls described above, the proportion of the binder increases accordingly.
  • the particulate metal oxide in particular the synthetic amorphous silica, based on the total weight of the binder, preferably in a proportion of 2 to 80 wt .-%, preferably between 3 and 60 wt .-%, particularly preferably between 4 and 50 wt .-%.
  • the Ve-rzzaitn-is-of-Wa-s-se-rgia-s -te-iiehenfö-rm-i-gem-Metail-oxi-d in particular synthetic amorphous silica, can be varied within wide ranges , This offers the advantage of the initial strength of the casting mold, ie the strength immediately after removal from the hot mold, and the moisture content. keitsbe Permaschine without affecting the ultimate strengths, ie the strengths after cooling of the mold, compared to a water glass binder without amorphous silica significantly affect. This is of great interest especially in light metal casting.
  • the final strength after curing should not be too high to avoid difficulties in binder decay after casting, ie the molding base should be easily removed from mold cavities after casting.
  • the molding material contained in the molding material mixture according to the invention may contain at least a proportion of hollow microspheres in one embodiment of the invention.
  • the diameter of the hollow microspheres is usually in the range of 5 to 500 ⁇ m, preferably in the range of 10 to 350 ⁇ m, and the thickness of the shell is usually in the range of 5 to 15% of the diameter of the microspheres.
  • These microspheres have a very low specific gravity, so that the molds produced using hollow microspheres have a low weight.
  • Particularly advantageous is the insulating effect of the hollow microspheres.
  • the hollow microspheres are therefore used in particular for the production of molds, if they are to have an increased insulating effect.
  • Such casting molds are, for example, the feeders already described in the introduction, which act as a compensation reservoir and contain liquid metal, wherein the metal should be kept in a liquid state until the metal filled into the mold has solidified.
  • Another application of casting molds containing hollow microspheres are, for example, sections of a casting mold which correspond to particularly thin-walled sections of the finished casting mold. Due to the insulating effect of - -
  • Hollow microspheres ensure that the metal in the thin-walled sections does not prematurely solidify and thus clog the paths within the mold.
  • the binder due to the low density of these hollow microspheres, is preferably used in a proportion in the range of preferably less than 20% by weight, particularly preferably in the range from 10 to 18% by weight.
  • the values relate to the solids content of the binder.
  • the micro-spheres preferably have a sufficient temperature stability, so that they do not prematurely soften during metal casting and lose their shape.
  • the hollow microspheres are preferably made of an aluminum silicate. These hollow aluminum silicate microspheres preferably have an aluminum oxide content of more than 20% by weight, but may also have a content of more than 40% by weight. Such hollow microspheres are obtained, for example, from Omega Minerals Germany GmbH, Norderstedt, under the designations Omega- Spheres® SG with an aluminum oxide content of approximately 28-33%, Omega- Spheres® WSG with an aluminum oxide content of approximately 35-39% and E- Spheres ® with an aluminum oxide content of about 43% in the trade. Corresponding products are available from the PQ Corporation (USA) under the name "Extendospheres ®".
  • hollow microspheres are used as the refractory molding base, which are made of glass.
  • the hollow microspheres consist of a borosilicate glass.
  • the borosilicate glass has a proportion of boron, calculated as B 2 O 3 , of more than 3% by weight.
  • the proportion of hollow microspheres is preferably chosen to be less than 20% by weight, based on the molding material mixture.
  • at Use of borosilicate glass microballoons preferably a small proportion is selected. This is preferably less than 5 wt .-%, preferably less than 3 wt .-%, and is more preferably in the range of 0.01 to 2 wt .-%.
  • the molding material mixture according to the invention contains, in a preferred embodiment, at least a proportion of glass granules and / or glass beads as a refractory molding base material.
  • the molding material mixture contains an oxidizable metal and a suitable oxidizing agent.
  • the oxidizable metals preferably form a proportion of 15 to 35 wt .-%.
  • the oxidizing agent is preferably added in a proportion of 20 to 30 wt .-%, based on the molding material mixture.
  • Suitable oxidizable metals are, for example, aluminum or magnesium.
  • Suitable oxidizing agents are, for example, iron oxide or potassium nitrate.
  • the molding material mixture according to the invention contains a proportion of a lubricant, preferably a platelet-shaped lubricant, in particular graphite, MoS 2 , talc and / or pyrophillite.
  • the amount of added platelet-shaped lubricant, in particular graphite, is preferably 0.05 wt .-% to 1 wt .-%, based on the refractory molding material.
  • the molding material mixture according to the invention may also comprise further additives.
  • internal release agents can be added which facilitate the separation of the molds from the mold. Suitable internal release agents are e.g. Calcium stearate, fatty acid esters, waxes, natural resins or special alkyd resins.
  • silanes can also be added to the molding material mixture according to the invention.
  • the molding material mixture according to the invention contains in a preferred embodiment, an organic additive which has a melting point in the range of 40 to 180 0 C, preferably 50 to 175 0 C, that is fixed at room temperature.
  • Organic additives are understood to be compounds whose molecular skeleton is composed predominantly of carbon atoms, that is, for example, organic polymers.
  • the inventors assume that at least some of the organic additives are burnt during the casting process, thereby creating a thin gas cushion between liquid metal and the molding base material forming the wall of the casting mold and thus a reaction between the liquid metal and the molding base material is prevented. Further, the inventors believe that some of the organic additives are lower than the reducing ones of the casting - -
  • Atmosphere forms a thin layer of so-called lustrous carbon, which also prevents a reaction between metal and mold base material.
  • lustrous carbon so-called lustrous carbon
  • the organic additives are preferably used in an amount of 0.01 to 1.5% by weight, more preferably 0.05 to 1.3% by weight, particularly preferably 0.1 to 1.0% by weight, respectively based on the refractory molding material added.
  • the proportion of organic additives is preferably chosen to be less than 0.5% by weight.
  • Suitable organic additives are, for example, phenol-formaldehyde resins, e.g. Novolacs, epoxy resins such as bisphenol A epoxy resins, bisphenol F epoxy resins or epoxidized novolaks, polyols such as polyethylene glycols or polypropylene glycols, polyolefins such as polyethylene or polypropylene, copolymers of olefins such as ethylene or propylene, and other comonomers, such as vinyl acetate, polyamides such as polyamide-6, polyamide-12 or polyamide-6, 6, natural resins such as gum rosin, fatty acids such as stearic acid, fatty acid esters such as cetyl palmitate, fatty acid amides such as ethylenediamine bisstearamide and metal soaps , such as stearates or oleates of monovalent to trivalent metal
  • the molding material mixture according to the invention contains a proportion of at least one silane.
  • Suitable silanes are, for example, aminosilanes, epoxy silanes, mercaptosilanes, hydroxysilanes, methacrylsilanes, ureidosilanes and polysiloxanes.
  • silanes examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -hydroxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) trimethoxysilane, 3-methacryloxypropyltrimethoxysilane and N- ⁇ (aminoethyl) -Y- aminopropyltrimethoxysilane.
  • silane based on the particulate metal oxide
  • the casting molds produced with the molding compound according to the invention in particular cores and molds, surprisingly show good disintegration after casting, in particular during aluminum casting.
  • casting molds can be produced with the molding material mixture according to the invention, which also show a very good disintegration during iron casting, so that the molding material mixture can easily be poured out again from narrow and twisted sections of the casting mold after casting.
  • the use of the molded articles produced from the molding material mixture according to the invention is therefore not limited to light metal casting.
  • the molds are generally suitable for casting metals. Such metals are, for example, non-ferrous metals, such as brass or bronze, and ferrous metals.
  • the invention further relates to a method for the production of molds for metal processing, wherein the molding material mixture according to the invention is used.
  • the method according to the invention comprises the steps:
  • the procedure is generally such that initially the refractory molding base material is introduced and then the binder is added with stirring.
  • the water glass and the particulate metal oxide, in particular the synthetic amorphous silicon dioxide, and the carbohydrate can be added per se in any order.
  • the carbohydrate may be added in dry form, for example in the form of starch powder. But it is also possible to add the carbohydrate in dissolved form. Preference is given to aqueous solutions of the carbohydrate. The use of aqueous solutions is particularly advantageous if, as in the case of glucose syrup, they are already available as a solution due to the production process.
  • the solution of carbohydrate may also be mixed with the water glass prior to addition to the refractory base stock. Preferably, the carbohydrate is added in solid form to the refractory base molding material.
  • the carbohydrate can be introduced into the molding material mixture by enveloping a suitable carrier, for example other additives or the refractory molding material with a solution of the corresponding carbohydrate.
  • a suitable carrier for example other additives or the refractory molding material
  • water or an organic solvent can be used. However, water is preferably used as the solvent.
  • a drying step may be performed after coating. This can be done, for example, in a drying oven or under the action of microwave radiation.
  • the additives described above may be added per se in any form of the molding material mixture. They can be added individually or as a mixture. They can be added in the form of a solid, but also in the form of solutions, pastes or dispersions. If added as a solution, paste or dispersion, water is preferred as the solvent. It is also possible to use the water glass used as a binder as a solvent or dispersion medium for the additives.
  • the binder is provided as a two-component system, wherein a first liquid component contains the water glass and a second solid component contains the particulate metal oxide.
  • the solid component may further comprise, for example, the phosphate and optionally a, preferably platelet, lubricant. If the carbohydrate is added in solid form to the molding material mixture, this can also be added to the solid component.
  • the refractory molding base material is placed in a mixer and then preferably first the solid component (s) of the binder is added and mixed with the refractory molding base material.
  • the mixing time is chosen so that an intimate mixing of refractory base molding material and solid binder component takes place.
  • the mixing time depends on the amount of the molding compound to be produced and on the mixing unit used. Preferably, the mixing time is selected between 1 and 5 minutes.
  • the liquid component of the binder is under preferably further agitating the mixture then added and then the mixture is further mixed until has formed on the grains of the refractory -Formg-rundsto-ffs a- uniform layer of the binder ".
  • the mixing time Depending on the amount of molding material mixture to be produced and on the mixing unit used, the duration for the mixing process is preferred - -
  • a liquid component is understood to mean both a mixture of different liquid components and the totality of all liquid individual components, the latter also being able to be added individually.
  • a solid component is understood as meaning both the mixture of individual or all of the solid components described above and the entirety of all solid individual components, the latter being able to be added to the molding compound jointly or else successively.
  • the liquid component of the binder may also first be added to the refractory base molding material and only then be fed to the solid component of the mixture.
  • first 0.05 to 0.3% of water, based on the weight of the molding material is added to the refractory molding material and only then the solid and liquid components of the binder are added.
  • the molding material mixture is then brought into the desired shape.
  • customary methods are used for the shaping.
  • the molding material mixture can be shot by means of a core shooting machine with the aid of compressed air into the mold.
  • the molding material mixture is then cured by supplying heat in order to evaporate the water contained in the binder. Upon heating, the molding material mixture is deprived of water. Due to the removal of water, condensation reactions between silanol groups are presumably also initiated, so that a cross-linking of the water glass occurs.
  • cold oxidation process for example, by introducing carbon dioxide or by polyvalent metal cations precipitation of poorly soluble compounds and thus solidification of the mold causes.
  • the heating of the molding material mixture can be done for example in the mold. It is possible to fully cure the mold already in the mold. But it is also possible to cure the mold only in its edge region, so that it has sufficient strength to be removed from the mold can.
  • the casting mold can then be completely cured by removing further water. This can be done for example in an oven. The dehydration can for example also be done by the water is evaporated at reduced pressure.
  • the curing of the molds can be accelerated by blowing heated air into the mold.
  • a rapid removal of the water contained in the binder is achieved, whereby the mold is solidified in suitable periods for industrial use.
  • the temperature of the injected air is preferably 100 ° C. to 180 ° C., particularly preferably 120 ° C. to 150 ° C.
  • the flow rate of the heated air is preferably set so that the casting mold is cured in periods suitable for industrial use. The periods depend on the size of the molds produced. It is desirable to cure in less than 5 minutes, preferably less than 2 minutes. For very large molds but longer periods may be erforderlieh.
  • the removal of the water from the molding material mixture can also be carried out in such a way that the heating of the molding material mixture is effected by irradiation of microwaves.
  • the radiation is preferably made after the mold has been removed from the mold.
  • the casting mold must already have sufficient strength. As already explained, this can be achieved, for example, by curing at least one outer shell of the casting mold already in the molding tool.
  • Casting molds that are cold-cured by the introduction of carbon dioxide are therefore not suitable for displaying castings of very complicated geometry and narrow passages with multiple baffles, such as oil passages in internal combustion engines, since the casting mold does not achieve the required stability and the casting mold after Metal casting can only be completely removed from the casting with great effort.
  • DAS water In the thermal curing DAS watermar- largely from the casting 'form when removed and metal cast a significantly lower post-curing of the mold is observed. After the metal casting, the mold shows a much better disintegration than casting molds by introducing - -
  • Carbon dioxide were cured. Thermal curing also makes it possible to produce molds that are suitable for the production of castings with very complex geometry and narrow passages.
  • the flowability of the molding material mixture according to the invention can be improved by the addition of, preferably platelet-shaped, lubricants, in particular graphite and / or M0S 2 and / or talc.
  • talc-like minerals such as pyrophyllite, can improve the flowability of the molding material mixture.
  • the platelet-shaped lubricant, in particular graphite and / or talc can be added separately from the two binder components of the molding material mixture.
  • the platelet-shaped lubricant in particular graphite
  • the particulate metal oxide in particular the synthetic amorphous silicon dioxide
  • the molding material mixture may also comprise other organic additives as already described.
  • the addition of these other organic additives can be done per se at any time during the preparation of the molding material mixture.
  • the addition of the organic additive can be carried out in bulk or in the form of a solution.
  • the amount of organic additives is preferably chosen to be low, in particular preferably less than 0.5% by weight, based on the refractory molding base material.
  • the total amount of organic additives, including the carbohydrate is chosen to be less than 0.5% by weight, based on the refractory base molding material.
  • Water-soluble organic additives can be used in the form of an aqueous solution. If the organic additives are soluble in the binder and are stable in storage over several months in the binder, they can also be dissolved in the binder and so on be added together with this the molding material. Water-insoluble additives may be used in the form of a dispersion or a paste. The dispersions or pastes preferably contain water as the dispersing medium. As such, solutions or pastes of the organic additives can also be prepared in organic solvents. However, if a solvent is used for the addition of the organic additives, water is preferably used.
  • the addition of the organic additives is carried out as a powder or as a short fiber, wherein the average particle size or the fiber length is preferably selected so that it does not exceed the size of the refractory molding base particles.
  • the organic additives can be sieved through a sieve with the mesh size of about 0.3 mm.
  • the particulate metal oxide and the organic additive (s) are preferably not added separately to the molding sand but are premixed.
  • the silanes or siloxanes may also be added to the molding base as a separate component.
  • Substituting the thus pretreated particulate metal oxide is a, it is found compared to the untreated metal oxide increased strengths sowi ⁇ ⁇ e ⁇ e "in ⁇ e" improved "resistance" against "height", "humidity".
  • an organic additive is added to the molding material mixture or the particulate metal oxide, it is expedient to do so before the silanization.
  • the inventive method is in itself suitable for the production of all casting molds customary for metal casting, that is to say, for example, of cores and molds. It is also particularly advantageous to produce casting molds which comprise very thin-walled sections.
  • the inventive method for the production of feeders is.
  • the molds produced from the molding material mixture according to the invention or with the inventive method have a high strength immediately after the production, without the strength of the molds after curing is so high that difficulties after the production of the casting occur during removal of the mold.
  • the casting mold has very good disintegration properties both in light metal casting, in particular aluminum casting, and in iron casting.
  • these molds have a high stability at elevated humidity, i.
  • the casting molds can also be stored without problems for a long time.
  • the mold has a very high stability under mechanical stress, so that even thin-walled portions of the mold can be realized without these being deformed by the metallostatic pressure during the casting process.
  • Another object of the invention is therefore a mold, which was obtained by the inventive method described above.
  • the casting mold according to the invention is generally suitable for metal casting, in particular light metal casting. Particularly advantageous -rgebnrsse "are obtained in the aluminum casting " . - ⁇ - ""
  • Georg Fischer test bars are cuboid test bars measuring 150 mm x 22.36 mm x ?? - 36 mm.
  • the composition of the molding material mixture is given in Table 1.
  • the Georg Fischer test bars were prepared as follows:
  • the components listed in Table 1 were mixed in a laboratory blade mixer (Vogel & Schemann AG, Hagen, DE). For this purpose, initially the quartz sand was introduced and added with stirring the water glass. As a water glass, a sodium water glass was used, which had proportions of potassium. In the tables below, the modulus is therefore given as SiO 2 : M 2 O, where M is the sum of sodium and potassium. After the mixture was stirred for one minute, the amorphous silica and / or the carbohydrate were added, if necessary, with further stirring. The mixture was then stirred for an additional 1 minute;
  • the molding material mixtures were in the stock hopper of an H 2.5 hot box core shooting machine from Röperwerk - transferred foundry Maschinen GmbH, Viersen, DE, whose molding tool had been heated to 200 0 C;
  • the molding material mixtures were introduced into the mold by means of compressed air (5 bar) and remained in the mold for a further 35 seconds;
  • test bars were placed in a Georg Fischer strength testing machine equipped with a 3-point bending device (DISA Industrie AG, Schaffhausen, CH) and the force was measured, which led to the breakage of the test bars.
  • the flexural strengths were measured according to the following scheme:
  • Example 1.1 shows that sufficient hot strengths can not be achieved without the addition of amorphous silica or a carbohydrate.
  • the shelf life of the cores produced with molding material mixture 1.1 shows that with this no reliable core production is possible.
  • the hot strengths can be increased (Example 1.2 and 1.3), so that the cores have sufficient strength to process them directly after the core production.
  • the addition of amorphous silica improves the shelf life of the cores, especially at high relative humidity.
  • carbohydrate compounds, in particular dextrin compounds Example 1.4
  • it shows up in comparison to molding material mixture - -
  • Georg Fischer test bars of the molding material mixtures 1.1 to 1.8 were installed in a sand casting mold such that three of the four longitudinal sides come into contact with the casting metal during the casting process. Casting was done with an aluminum alloy type 226 at a casting temperature of 735 ° C. After cooling the casting mold, the casting was freed from the sand by means of high-frequency hammer blows. The castings were assessed for remaining sand buildup.
  • the cast cut of the mixture 1.1 shows as well as the mixtures 1.2 and 1.3 very strong sand buildup.
  • the carbohydrate-containing molding material mixture (mixture 1.4) has. a positive influence on the quality of the cast surface.
  • the Ausgusschnchnitte mixtures 1.5, 1.6 and 1.7 also have hardly any Sandanhaftept, whereby in these cases, the positive influence of carbohydrates (here in the form of dextrin and ethylcellulose) on the cast surface quality is confirmed. Even the addition of only 0.1% dextrin (mixture 1.8) produces a significant improvement in the surface quality compared to the carbohydrate-free comparison (mixture 1.3).

Abstract

Die Erfindung betrifft eine Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, ein Verfahren zur Herstellung von Gießformen, mit dem Verfahren erhaltene Gießformen sowie deren Verwendung. Für die Herstellung der Gießformen wird ein feuerfester Formgrundstoff sowie ein auf Wasserglas basierendes Bindemittel verwendet. Dem Bindemittel ist ein Anteil eines teilchenförmigen Metalloxids zugesetzt, welches ausgewählt ist aus der Gruppe von Siliciumdioxid, Aluminiumoxid, Titanoxid und Zinkoxid, wobei besonders bevorzugt synthetisches amorphes Siliciumdioxid verwendet wird. Die Formstof fmischung enthält als weiteren wesentlichen Bestandteil ein Kohlenhydrat. Durch den Zusatz von Kohlenhydraten kann die mechanische Festigkeit von Gießformen sowie die Oberflächengüte des Gussstücks verbessert werden.

Description

KOHLENHYDRATHALT I GE FORMSTOFFMISCHUNG
BESCHREIBUNG
Die Erfindung betrifft eine Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, welche mindestens einen rieselfähigen feuerfesten Formgrundstoff, ein auf Wasserglas basierendes Bindemittel, sowie einen Anteil eines teilchen- förmigen Metalloxids, welches ausgewählt ist aus der Gruppe von Siliciumdioxid, Aluminiumoxid, Titanoxid und Zinkoxid, umfasst. Weiter betrifft die Erfindung ein Verfahren zur Herstellung von Gießformen für die Metallverarbeitung unter Verwendung der Form- stoffmischung sowie eine mit dem Verfahren erhaltene Gießform.
Gießformen für die Herstellung von Metallkörpern werden im Wesentlichen in zwei Ausführungen hergestellt. Eine erste Gruppe bilden die so genannten Kerne oder Formen. Aus diesen wird die Gießform zusammengesetzt, welche im Wesentlichen die Negativform des herzustellenden Gussstücks darstellt. Eine zweite Gruppe bilden Hohlkörper, sog. Speiser, welche als Ausgleichsreservoir wirken. Diese nehmen flüssiges Metall auf, wobei durch entspre- chende Maßnahmen dafür gesorgt wird, dass das Metall länger in der flüssigen Phase verbleibt, als das Metall, das sich in der die Negativform bildenden Gießform befindet. Erstarrt das Metall in der Negativform, kann flüssiges Metall aus dem Ausgleichsreservoir nachfließen, um die beim Erstarren des Metalls auftretende Volumenkontraktion auszugleichen.
Gießformen bestehen aus einem feuerfesten Material, beispielsweise Quarzsand, dessen Körner nach dem Ausformen der Gießform durch ein geeignetes Bindemittel verbunden werden, um eine ausreichende mechanische Festigkeit der Gießform zu gewährleisten. Für die Herstellung von Gießformen verwendet man also einen feuerfesten Formgrundstoff, welcher mit einem geeigneten Bindemittel behandelt wurde. Der feuerfeste Formgrundstoff liegt bevorzugt in einer rieselfähigen Form vor, so dass er in eine geeignete Hohlform eingefüllt und dort verdichtet werden kann. Durch das Bindemittel wird ein fester Zusammenhalt zwischen den Partikeln des Formgrundstoffs erzeugt, so dass die Gießform die erforderliche mechanische Stabilität erhält.
Gießformen müssen verschiedene Anforderungen erfüllen. Beim Gießvorgang selbst müssen sie zunächst eine ausreichende Stabilität und Temperaturbeständigkeit aufweisen, um das flüssige Metall in die aus einem oder mehreren Gieß (teil) formen gebildete Hohlform aufzunehmen. Nach Beginn des Erstarrungsvorgangs wird die mechanische Stabilität der Gießform durch eine erstarrte Metallschicht gewährleistet, die sich entlang der Wände der Hohlform ausbildet. Das Material der Gießform muss sich nun unter dem Einfluss der vom Metall abgegebenen Hitze in der Weise zersetzen, dass es seine mechanische Festigkeit verliert, also ~der ~Zusammenha"lt~"zwrsch"en~ einzelnen ~Pa~rt~i~keϊn~"d"es "feüeϊrfesΕen Materials aufgehoben wird. Dies wird erreicht, indem sich beispielsweise das Bindemittel unter Hitzeeinwirkung zersetzt. Nach dem Abkühlen wird das erstarrte Gussstück gerüttelt, wobei im - -
Idealfall das Material der Gießformen wieder zu einem feinen Sand zerfällt, der sich aus den Hohlräumen der Metallform ausgießen lässt.
Zur Herstellung der Gießformen können sowohl organische als auch anorganische Bindemittel eingesetzt werden, deren Aushärtung jeweils durch kalte oder heiße Verfahren erfolgen kann. Als kalte Verfahren bezeichnet man dabei Verfahren, welche im Wesentlichen bei Raumtemperatur ohne Erhitzen der Gießform durchgeführt werden. Die Aushärtung erfolgt dabei meist durch eine chemische Reaktion, die beispielsweise dadurch ausgelöst wird, dass ein Gas als Katalysator durch die zu härtende Form geleitet wird. Bei heißen Verfahren wird die Formstoffmischung nach der Formgebung auf eine ausreichend hohe Temperatur erhitzt, um beispielsweise das im Bindemittel enthaltene Lösungsmittel auszutreiben oder um eine chemische Reaktion zu initiieren, durch welche das Bindemittel beispielsweise durch Vernetzen ausgehärtet wird.
Gegenwärtig werden für die Herstellung von Gießformen vielfach solche organischen Bindemittel eingesetzt, bei denen die Härtungsreaktion durch einen gasförmigen Katalysator beschleunigt wird oder die durch Reaktion mit einem gasförmigen Härter ausgehärtet werden. Diese Verfahren werden als "Cold-Box"-Verfahren bezeichnet.
Ein Beispiel für die Herstellung von Gießformen unter Verwendung organischer Bindemittel ist das so genannte Ashland-Cold-Box- Verfahren. Es handelt sich dabei um ein Zweikomponenten-System. Die erste Komponente besteht aus der Lösung eines Polyols, meistens eines Phenolharzes. Die zweite Komponente ist die Lösung -e-i-nes--Pθ-l-y-i-soeya-na-tes-ϊ —So—werden—gemäß -der U-S 3-, 4-0-9>-S-7-9—A d-i-e- beiden Komponenten des Polyurethanbinders zur Reaktion gebracht, indem nach der Formgebung ein gasförmiges tertiäres Amin durch das Gemisch aus Formgrundstoff und Bindemittel geleitet wird. Bei der Aushärtereaktion von Polyurethanbindern handelt es sich - -
um eine Polyaddition, d.h. eine Reaktion ohne Abspaltung von Nebenprodukten, wie z.B. Wasser. Zu den weiteren Vorteilen dieses Cold-Box-Verfahrens gehören gute Produktivität, Maßgenauigkeit der Gießformen sowie gute technische Eigenschaften, wie die Festigkeit der Gießformen, die Verarbeitungszeit des Gemisches aus Formgrundstoff und Bindemittel, usw.
Zu den heißhärtenden organischen Verfahren gehört das Hot-Box- Verfahren auf Basis von Phenol- oder Furanharzen, das Warm-Box- Verfahren auf Basis von Furanharzen und das Croning-Verfahren auf Basis von Phenol-Novolak-Harzen. Beim Hot-Box- sowie beim Warm-Box-Verfahren werden flüssige Harze mit einem latenten, erst bei erhöhter Temperatur wirksamen Härter zu einer Formstoffmischung verarbeitet. Beim Croning-Verfahren werden Formgrundstoffe, wie Quarz, Chromerz-, Zirkonsande, etc. bei einer Temperatur von ca. 100 bis 1600C mit einem bei dieser Temperatur flüssigen Phenol-Novolak-Harz umhüllt. Als Reaktionspartner für die spätere Aushärtung wird Hexamethylentetramin zugegeben. Bei den oben genannten heißhärtenden Technologien findet die Formgebung und Aushärtung in beheizbaren Werkzeugen statt, die auf eine Temperatur von bis zu 3000C aufgeheizt werden.
Unabhängig vom Aushärtemechanismus ist allen organischen Systemen gemeinsam, dass sie sich beim Einfüllen des flüssigen Metalls in die Gießform thermisch zersetzen und dabei Schadstoffe, wie z.B. Benzol, Toluol, Xylole, Phenol, Formaldehyd und höhere, teilweise nicht identifizierte Crackprodukte freisetzen können. Es ist zwar durch verschiedene Maßnahmen gelungen, diese Emissionen zu minimieren, völlig vermeiden lassen sie sich bei organischen Bindemitteln jedoch nicht. Auch bei anorganisch- "organi"s"chren~Hybrid"systemen7""die, ~wie~"di~e~ z.B.* b~e~irrr~Re~s"σl~~""-CC>2- ~ " Verfahren eingesetzten Bindemittel, einen Anteil an organischen Verbindungen enthalten, treten solche unerwünschten Emissionen beim Gießen der Metalle auf. Um die Emission von Zersetzungsprodukten während des Gießvorgangs zu vermeiden, müssen Bindemittel verwendet werden, die auf anorganischen Materialien beruhen bzw. die höchstens einen sehr geringen Anteil an organischen Verbindungen enthalten. Solche Bindemittelsysteme sind bereits seit längerem bekannt. Es sind Bindemittelsysteme entwickelt worden, welche sich durch Einleitung von Gasen aushärten lassen. Ein derartiges System ist beispielsweise in der GB 782 205 beschrieben, in welchem ein Alkaliwasserglas als Bindemittel verwendet wird, das durch Einleitung von CO2 ausgehärtet werden kann. In der DE 199 25 167 wird eine exotherme Speisermasse beschreiben, die ein Alkalisilikat als Bindemittel enthält. Ferner sind Bindemittelsysteme entwickelt worden, welche bei Raumtemperatur selbsthärtend sind. Ein solches, auf Phosphorsäure und Metalloxiden beruhendes System ist z.B. in der US 5,582,232 beschrieben. Schließlich sind noch anorganische Bindemittelsysteme bekannt, die bei höheren Temperaturen ausgehärtet werden, beispielsweise in einem heißen Werkzeug. Solche heißhärtenden Bindemittelsysteme sind beispielsweise aus der US 5,474,606 bekannt, in welcher ein aus Alkaliwasserglas und Aluminiumsilikat bestehendes Bindemittelsystem beschrieben wird.
Anorganische Bindemittel weisen im Vergleich zu organischen Bindemitteln jedoch auch Nachteile auf. Beispielsweise besitzen die mit Wasserglas als Bindemittel hergestellten Gießformen eine relativ geringe Festigkeit. Dies führt insbesondere bei der Entnahme der Gießform aus dem Werkzeug zu Problemen, da die Gießform zerbrechen kann. Gute Festigkeiten zu diesem Zeitpunkt sind besonders wichtig für die Produktion komplizierter, dünnwandiger Formteile und deren sichere Handhabung. Der Grund für die niedrigen Festigkeiten besteht in erster Linie darin, dass die Gießformen noch Restwasser aus dem Bindemittel enthalten. Längere Verweilzeiten im heißen geschlossenen Werkzeug helfen nur bedingt, da der Wasserdampf nicht in ausreichendem Maß entweichen - -
kann. Um eine möglichst vollständige Trocknung der Gießformen zu erreichen, wird in der WO 98/06522 vorgeschlagen, die Formstoffmischung nach dem Ausformen nur solange in einem temperierten Kernkasten zu belassen, dass sich eine formstabile und tragfähige Randschale ausbildet. Nach dem Öffnen des Kernkastens wird die Form entnommen und anschließend unter Einwirkung von Mikrowellen vollständig getrocknet. Die zusätzliche Trocknung ist jedoch aufwändig, verlängert die Produktionszeit der Gießformen und trägt, nicht zuletzt auch durch die Energiekosten, erheblich zur Verteuerung des Herstellungsprozesses bei.
Eine weitere Schwachstelle der bisher bekannten anorganischen Bindemittel ist die geringe Stabilität der damit hergestellten Gießformen gegen hohe Luftfeuchtigkeit. Damit ist eine Lagerung der Formkörper über einen längeren Zeitraum, wie bei organischen Bindemitteln üblich, nicht gesichert möglich.
Mit Wasserglas als Bindemittel hergestellte Gießformen zeigen nach dem Metallguss oft einen schlechten Zerfall. Insbesondere wenn das Wasserglas durch Behandlung mit Kohlendioxid ausgehärtet wurde, kann das Bindemittel unter dem Einfluss des heißen Metalls verglasen, sodass die Gießform sehr hart wird und sich nur noch unter großem Aufwand vom Gussstück entfernen lässt. Man hat daher versucht, der Formstoffmischung organische Komponenten zuzugeben, die unter dem Einfluss des heißen Metalls verbrennen und durch die Porenbildung einen Zerfall der Gießform nach dem Guss erleichtern.
In der DE 2 059 538 werden Kern- und Formsandgemische beschrieben, welche Natriumsilikat als Bindemittel enthalten. Um einen verbesserten Zerfall der Gießform nach dem Metallguss zu erhalten, wird dem Gemisch Glucosesirup zugesetzt. Das zu einer Gießform verarbeitete Formsandgemisch wird durch Durchleiten von Kohlendioxidgas abgebunden. Das Formsandgemisch enthält 1 bis 3 Gew.-% Glucosesirup, 2 bis 7 Gew.-% eines Alkalisilikats und eine genügende Menge eines Kern- oder Formsandes. In den Beispielen wurde festgestellt, dass Formen und Kerne, die Glucose- sirup enthielten, weit bessere Zerfallseigenschaften aufweisen als Formen und Kerne, die Saccharose oder reine Dextrose enthalten.
In der EP 0 150 745 A2 wird ein Bindemittelgemisch zur Verfestigung von Formsand beschrieben, welches aus einem Alkalimetallsilikat, vorzugsweise Natriumsilikat, einem mehrwertigen Alkohol und weiteren Additiven besteht, wobei als Additive modifizierte Kohlenhydrate, nichthygroskopische Stärke, ein Metalloxid und ein Füllstoff vorgesehen sind. Als modifiziertes Kohlenhydrat wird ein nicht hygroskopisches Stärkehydrolisat mit einer Reduktionskraft von 6 bis 15 % verwendet, das als Pulver zugesetzt werden kann. Die nicht hygroskopische Stärke und das Metalloxid, vorzugsweise Eisenoxid, werden in einer Menge von 0,25 bis 1 Gew.-% der Sandmenge zugesetzt. Ggf. kann dem Bindemittelgemisch ein Schmiermittel in Pulverform oder als Öl beigegeben sein. Das Bindemittelgemisch wird bevorzugt durch den Einsatz von CO2 oder eines chemischen Katalysators ausgehärtet.
In der GB 847,477 wird eine Bindemittelzusammensetzung für die Herstellung von Gießformen beschrieben, welche ein Alkalimetallsilikat mit einem Modul Siθ2/M2θ von 2,0 bis 3,22 sowie eine Po- lyhydroxyverbindung umfasst. Das Bindemittel wird zur Herstellung von Gießformen mit einem feuerfesten Formgrundstoff vermischt und nach dem Herstellen der Form durch Begasen mit Kohlendioxid ausgehärtet. Als Polyhydroxyverbindungen werden beispielsweise Mono-, Di-, Tri- oder Tetrasaccharide verwendet, wobei keine hohen Anforderungen an die Reinheit dieser Verbin- "duhgeri ""gestellt "werden'.' " "
In der GB 902,199 wird eine Formstoffmischung für die Herstellung von Gießformen beschrieben, die neben einem feuerfesten Formgrundstoff eine Bindemittelzusammensetzung umfasst, welche - -
eine Mischung aus 100 Teilen eines aus Getreide gewonnenen Leims, 2 bis 20 Teilen Zucker und 2 bis 20 Teile einer Halogensäure bzw. eines Salzes einer Halogensäure umfasst. Ein geeignetes Salz ist beispielsweise Ammoniumchlorid. Der Leim wird hergestellt, indem Stärke teilweise hydrolisiert wird. Zur Herstellung einer Gießform wird die Formstoffmischung zunächst in die gewünschte Form gebracht und dann auf eine Temperatur von zumindest 175 - 180 0C erhitzt.
In der GB 1 240 877 wird eine Formstoffmischung für die Herstellung von Gießformen beschrieben, welche neben einem feuerfesten Formgrundstoff ein wasserhaltiges Bindemittel umfasst, welches neben einem Alkalimetallsilikat ein mit dem Alkalimetallsilikat verträgliches Oxidationsmittel und, bezogen auf die Lösung, 9 bis 40 Gew.-% eines leicht oxidierbaren organischen Materials enthält. Als Oxidationsmittel können beispielsweise Nitrate, Chromate, Dichromate, Permanganate oder Chlorate der Alkalimetalle verwendet werden. Als leicht oxidierbares Material können beispielsweise Stärke, Dextrine, Cellulose, Kohlenwasserstoffe, synthetische Polymere, wie Polyether oder Polystyrol, sowie Kohlenwasserstoffe, wie Teer, verwendet werden. Die Formstoffmischung kann durch Erhitzen oder durch Begasen mit Kohlendioxid ausgehärtet werden.
In der US 4,162,238 wird eine Formstoffmischung für die Herstellung von Gießformen beschrieben, welche neben einem feuerfesten Formgrundstoff ein Bindemittel auf der Basis eines Alkalimetallsilikats, insbesondere Wasserglas umfasst. Dem Bindemittel ist amorphes Siliziumdioxid in einem Anteil zugesetzt, der bezogen auf die Lösung des Bindemittels 2 bis 75 % entspricht. Das amor- "phe""Si"ri~zϊümä"iöxi"d"weist "eine" Par"ti~kelg"r"öß~e'~im Bereich" voTT'etwä 2 bis 500 nm auf. Ferner besitzt das Bindemittel ein Modul SiC>2 : M2O von 3,5 bis 10, wobei M für ein Alkalimetall steht. - -
Wegen des oben diskutierten Problems der beim Gießen auftretenden gesundheitsschädlichen Emissionen ist man bemüht, bei der Herstellung von Gießformen auch bei komplizierten Geometrien die organischen Bindemittel durch anorganische Bindemittel zu ersetzen. Dabei muss jedoch auch bei komplizierten Gussformen eine ausreichende Festigkeit der Gießform auch in dünnwandigen Abschnitten sowohl unmittelbar nach der Herstellung bei der Entnahme aus dem Werkzeug als auch beim Metallguss gewährleistet sein. Die Festigkeit der Gießform sollte sich während der Lagerung nicht wesentlich verschlechtern. Die Gießform muss daher eine ausreichende Stabilität gegen Luftfeuchtigkeit aufweisen. Weiter sollte das Gussstück nach der Herstellung keine übermäßige Nachbearbeitung der Oberfläche erfordern. Die Nachbearbeitung von Gussstücken erfordert einen hohen Aufwand an Zeit, Arbeitskraft und Material, und stellt daher einen wesentlichen Kostenfaktor bei der Herstellung dar. Bereits unmittelbar nach der Entnahme aus der Gießform sollte daher das Gussstück bereits eine hohe Oberflächengüte aufweisen.
Der Erfindung lag daher die Aufgabe zugrunde, eine Formstoffmi- schung zur Herstellung von Gießformen für die Metallverarbeitung zur Verfügung zu stellen, welche mindestens einen feuerfesten Formgrundstoff sowie ein auf Wasserglas basierendes Bindemittelsystem umfasst, wobei die Formstoffmischung einen Anteil eines teilchenförmigen Metalloxids enthält, welches ausgewählt ist aus der Gruppe von Siliciumdioxid, Aluminiumoxid, Titanoxid und Zinkoxid, welche die Herstellung von Gießformen mit komplexer Geometrie ermöglicht und die beispielsweise auch dünnwandige Abschnitte umfassen können, wobei nach dem Metallguss das erhaltene Gussstück bereits eine hohe Oberflächenqualität aufweisen sollte
Diese Aufgabe wird mit einer Formstoffmischung mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der - -
erfindungsgemäßen Formstoffmischung sind Gegenstand der abhängigen Patentansprüche.
Überraschend wurde gefunden, dass durch den Zusatz von Kohlenhydraten zur Formstoffmischung Gießformen auf der Basis anorganischer Bindemittel hergestellt werden können, die eine hohe Festigkeit sowohl unmittelbar nach der Herstellung als auch bei längerer Lagerung aufweisen. Ferner wird nach dem Metallguss ein Gussstück mit sehr hoher Oberflächenqualität erhalten, sodass nach der Entfernung der Gießform nur eine geringe Nachbearbeitung der Oberfläche des Gussstücks erforderlich ist. Dieses ist ein wesentlicher Vorteil, da sich auf diese Weise die Kosten für die Herstellung eines Gussstücks deutlich senken lassen. Beim Guss wird im Vergleich zu anderen organischen Zusätzen, wie Ac- rylharzen, Polystyrol, Polyvinylestern oder Polyalkylverbindun- gen eine deutlich geringere Rauchentwicklung beobachtet, sodass die Belastung am Arbeitsplatz für die dort Beschäftigten wesentlich verringert werden kann.
Die erfindungsgemäße Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung umfasst mindestens:
einen feuerfesten Formgrundstoff; ein auf Wasserglas basierendes Bindemittel; sowie einen Anteil eines teilchenförmigen Metalloxids, welches ausgewählt ist aus der Gruppe von Siliciumdioxid, Aluminiumoxid, Titanoxid und Zinkoxid.
Erfindungsgemäß enthält die Formstoffmischung als weiteren Bestandteil ein Kohlenhydrat.
Als feuerfester Formgrundstoff können für die Herstellung von Gießformen übliche Materialien verwendet werden. Der feuerfeste Formgrundstoff muss bei den beim Metallguss herrschenden Temperaturen eine ausreichende Formbeständigkeit aufweisen. Ein ge- - -
eigneter feuerfester Formgrundstoff zeichnet sich daher durch einen hohen Schmelzpunkt aus. Der Schmelzpunkt des feuerfesten Formgrundstoffs liegt vorzugsweise höher als 700°C, bevorzugt höher als 800 0C, besonders bevorzugt höher als 900 0C und insbesondere bevorzugt höher als 1000 0C. Als feuerfester Formgrundstoffe sind beispielsweise Quarz- oder Zirkonsand geeignet. Weiter sind auch faserförmige feuerfeste Formgrundstoffe geeignet, wie beispielsweise Schamottefasern. Weitere geeignete feuerfeste Formgrundstoffe sind beispielsweise Olivin, Chromerzsand, Vermiculit.
Weiter können als feuerfeste Formgrundstoffe auch künstliche feuerfeste Formgrundstoffe verwendet werden, wie z.B. Aluminium- silikathohlkugeln (sog. Microspheres) , Glasperlen, Glasgranulat oder unter der Bezeichnung „Cerabeads®" bzw. „Carboaccucast®" bekannte kugelförmige keramische Formgrundstoffe. Diese künstlichen feuerfesten Formgrundstoffe werden synthetisch hergestellt oder fallen beispielsweise als Abfall in industriellen Prozessen an. Diese . kugelförmigen keramischen Formgrundstoffe enthalten als Mineralien beispielsweise Mullit, Korund, ß-Cristobalit in unterschiedlichen Anteilen. Sie enthalten als wesentliche Anteile Aluminiumoxid und Siliciumdioxid. Typische Zusammensetzungen enthalten beispielsweise AI2O3 und SiO2 in etwa gleichen Anteilen. Daneben können noch weitere Bestandteile in Anteilen von < 10 % enthalten sein, wie TiO2, Fe2O3. Der Durchmesser der kugelförmigen feuerfesten Formgrundstoffe beträgt vorzugsweise weniger als 1000 μm, insbesondere weniger als 600 μm. Geeignet sind auch synthetisch hergestellte feuerfeste Formgrundstoffe, wie beispielsweise Mullit (x AI2O3 y SiO2, mit x = 2 bis 3, y = 1 bis 2; ideale Formel: Al2SiO5) . Diese künstlichen Formgrundstoffe" gehen nicht auf einen natürlichen Ursprung zurück und können auch einem besonderen Formgebungsverfahren unterworfen worden sein, wie beispielsweise bei der Herstellung von Aluminiumsili- katmikrohohlkugeln, Glasperlen oder kugelförmigen keramischen Formgrundstoffen. Aluminiumsilikatmikrohohlkugeln entstehen beispielsweise bei der Verbrennung fossiler Brennstoffe oder anderer brennbarer Materialien und werden aus der bei der Verbrennung entstehenden Asche abgetrennt. Mikrohohlkugeln als künstlicher feuerfester Formgrundstoff zeichnen sich durch ein niedriges spezifisches Gewicht aus. Dies geht zurück auf die Struktur dieser künstlichen feuerfesten Formgrundstoffe, welche gasgefüllte Poren umfassen. Diese Poren können offen oder geschlossen sein. Bevorzugt werden geschlossenporige künstliche feuerfeste Formgrundstoffe verwendet. Bei Verwendung offenporiger künstlicher feuerfester Formgrundstoffe wird ein Teil des auf Wasserglas basierenden Bindemittels in den Poren aufgenommen und kann dann keine Bindewirkung mehr entfalten.
Gemäß einer Ausführungsform werden als künstliche Formgrundstoffe Glasmaterialien verwendet. Diese werden insbesondere entweder als Glaskugeln oder als Glasgranulat eingesetzt. Als Glas können übliche Gläser verwendet werden, wobei Gläser, die einen hohen Schmelzpunkt zeigen, bevorzugt sind. Geeignet sind beispielsweise Glasperlen und/oder Glasgranulat, das aus Glasbruch hergestellt wird. Ebenfalls geeignet sind Boratgläser. Die Zusammensetzung derartiger Gläser ist beispielhaft in der nachfolgenden Tabelle angegeben.
- 1 -
Tabelle: Zusammensetzung von Gläsern
ΛII Erdalkalimetall,- z.B. Mg, Ca, Ba
M1 : Alkalimetall, z.B. Na, K
Neben den in der Tabelle aufgeführten Gläsern können jedoch auch andere Gläser verwendet werden, deren Gehalt an den oben genannten Verbindungen außerhalb der genannten Bereiche liegt. Ebenso können auch Spezialgläser verwendet werden, die neben den genannten Oxiden auch andere Elemente bzw. deren Oxide enthalten.
Der Durchmesser der Glaskugeln beträgt vorzugsweise 1 bis 1000 um, bevorzugt 5 bis 500 μm und besonders bevorzugt 10 bis 400 um.
Bevorzugt wird lediglich ein Teil des feuerfesten Formgrundstoffs durch Glasmaterialien gebildet. Der Anteil des Glasmaterials am feuerfesten Formgrundstoff wird bevorzugt geringer als 35 Gew.-%, besonders bevorzugt geringer als 25 Gew.-%, insbesondere bevorzugt geringer als 15 Gew.-% gewählt.
In Gießversuchen mit Aluminium wurde gefunden, dass bei Verwendung künstlicher Formgrundstoffe, vor -allem -bei Giasperl-en, Glasgranulat bzw. Microspheres aus Glas, nach dem Gießen weniger Formsand an der Metalloberfläche haften bleibt als bei Verwendung von reinem Quarzsand. Der Einsatz derartiger künstlicher Formgrundstoffe auf Basis von Glasmaterialien ermöglicht daher - -
die Erzeugung glatter Gussoberflächen, wobei eine aufwändige Nachbehandlung durch Strahlen nicht oder zumindest in erheblich geringerem Ausmaß erforderlich ist.
Um den beschriebenen Effekt der Erzeugung glatter Gussoberflächen zu erhalten, wird der Anteil des Glasmaterials am feuerfesten Formgrundstoff vorzugsweise größer als 0,5 Gew.-%, bevorzugt größer als 1 Gew.-%, besonders bevorzugt größer als 1,5 Gew.-%, insbesondere bevorzugt größer als 2 Gew.-% gewählt.
Es ist nicht notwendig, den gesamten feuerfesten Formgrundstoff aus den künstlichen feuerfesten Formgrundstoffen zu bilden. Der bevorzugte Anteil der künstlichen Formgrundstoffe liegt bei mindestens etwa 3 Gew.-%, besonders bevorzugt mindestens 5 Gew.-%, insbesondere bevorzugt mindestens 10 Gew.-%, vorzugsweise bei mindestens etwa 15 Gew.-%, besonders bevorzugt bei mindestens etwa 20 Gew.-%, bezogen auf die gesamte Menge des feuerfesten Formgrundstoffs. Der feuerfeste Formgrundstoff weist vorzugsweise einen rieselfähigen Zustand auf, so dass die erfindungsgemäße Formstoffmischung in üblichen Kernschießmaschinen verarbeitet werden kann.
Aus Kostengründen wird der Anteil der künstlichen feuerfesten Formgrundstoffe gering gehalten. Bevorzugt beträgt der Anteil der künstlichen feuerfesten Formgrundstoffe am feuerfesten Formgrundstoff weniger als 80 Gew.-%, vorzugsweise weniger als 75 Gew.-%, besonders bevorzugt weniger als 65 Gew.-%.
Als weitere Komponente umfasst die erfindungsgemäße Formstoffmischung ein auf Wasserglas basierendes Bindemittel. Als Wasserglas können dabei übliche Wassergläser verwendet werden,, wie sie bereits bisher als Bindemittel in Formstoffmischungen verwendet werden. Diese Wassergläser enthalten gelöste Natrium- oder Kaliumsilikate und können durch Lösen von glasartigen Kalium- und Natriumsilikaten in Wasser hergestellt werden. Das Wasserglas weist vorzugsweise ein Modul Siθ2/M2θ im Bereich von 1,6 bis 4,0, insbesondere 2,0 bis 3,5, auf, wobei M für Natrium und/oder Kalium steht. Die Wassergläser weisen vorzugsweise einen Feststoffanteil im Bereich von 30 bis 60 Gew.-% auf. Der Feststoff- anteil bezieht sich auf die im Wasserglas enthaltene Menge an SiO2 und M2O.
Weiter enthält die Formstoffmischung einen Anteil eines teil- chenförmigen Metalloxids, das ausgewählt ist aus der Gruppe von Siliciumdioxid, Aluminiumoxid, Titandioxid und Zinkoxid. Die durchschnittliche Primärpartikelgröße des teilchenförmigen Metalloxids kann zwischen 0,10 um und 1 um betragen. Wegen der Agglomeration der Primärpartikel beträgt jedoch die Teilchengröße der Metalloxide vorzugsweise weniger als 300 μm, bevorzugt weniger als 200 um, insbesondere bevorzugt weniger als 100 μm. Sie liegt bevorzugt im Bereich von 5 bis 90 μm, insbesondere bevorzugt 10 bis 80 μm und ganz besonders bevorzugt im Bereich von 15 bis 50 μm. Die Teilchengröße lässt sich beispielsweise durch Siebanalyse bestimmen. Besonders bevorzugt beträgt der Siebrückstand auf einem Sieb mit einer Maschenweite von 63 μm weniger als 10 Gew.-%, vorzugsweise weniger als 8 Gew.-%.
Besonders bevorzugt wird als teilchenförmiges Metalloxid Siliciumdioxid verwendet, wobei hier synthetisch hergestelltes amorphes Siliciumdioxid besonders bevorzugt ist.
Als teilchenförmiges Siliciumdioxid wird vorzugsweise Fällungskieselsäure und/oder pyrogene Kieselsäure verwendet. Fällungskieselsäure wird durch Reaktion einer wässrigen Alkalisilikatlösung mit Mineralsäuren erhalten. Der dabei anfallende Niederschlag wi-r-d anschließend abgetrennt, getrocknet und vermählen. Unter pyrogenen Kieselsäuren werden Kieselsäuren verstanden, die bei hohen Temperaturen durch Koagulation aus der Gasphase gewonnen werden. Die Herstellung pyrogener Kieselsäure kann beispielsweise durch Flammhydrolyse von Siliciumtetrachlorid oder - -
im Lichtbogenofen durch Reduktion von Quarzsand mit Koks oder Anthrazit zu Siliciummonoxidgas mit anschließender Oxidation zu Siliciumdioxid erfolgen. Die nach dem Lichtbogenofen-Verfahren hergestellten pyrogenen Kieselsäuren können noch Kohlenstoff enthalten. Fällungskieselsäure und pyrogene Kieselsäure sind für die erfindungsgemäße Formstoffmischung gleich gut geeignet. Diese Kieselsäuren werden im Weiteren als "synthetisches amorphes Siliciumdioxid" bezeichnet.
Die Erfinder nehmen an, dass das stark alkalische Wasserglas mit den an der Oberfläche des synthetisch hergestellten amorphen Siliciumdioxids angeordneten Silanolgruppen reagieren kann und dass beim Verdampfen des Wassers eine intensive Verbindung zwischen dem Siliciumdioxid und dem dann festen Wasserglas hergestellt wird.
Als wesentliche weitere Komponente enthält die erfindungsgemäße Formstoffmischung ein Kohlenhydrat. Dabei können sowohl Mono- oder Disaccharide als auch höhermolekulare Oligo- bzw. Polysaccharide verwendet werden. Die Kohlenhydrate können sowohl als einzelne Verbindung als auch als Gemisch verschiedener Kohlenhydrate eingesetzt werden. An die Reinheit der eingesetzten Kohlenhydrate werden an sich keine übermäßigen Anforderungen gestellt. Es ist ausreichend, wenn die Kohlenhydrate, bezogen auf das Trockengewicht, in einer Reinheit von mehr als 80 Gew.-%, insbesondere bevorzugt mehr als 90 Gew.-%, insbesondere bevorzugt mehr als 95 Gew.-% vorliegen, jeweils bezogen auf das Trockengewicht. Die Monosaccharideinheiten der Kohlenhydrate können an sich beliebig verknüpft sein. Die Kohlenhydrate weisen bevorzugt eine lineare Struktur auf, beispielsweise eine α- oder ß- gl-ycosidische- 1, 4-Verknüpfung. Die Kohlenhydrate können aber auch ganz oder teilweise 1, 6-verknüpft sein, wie z. B. das Amy- lopectin, das bis zu 6 % α-1, 6-Bindungen aufweist. Die Menge des Kohlenhydrats wird bevorzugt relativ gering gewählt werden. An sich wird angestrebt, den Anteil an organischen Komponenten in der Formstoffmischung möglichst gering zu halten, sodass die durch die thermische Zersetzung dieser organischen Verbindungen verursachte Rauchentwicklung möglichst zurückgedrängt wird. Es werden daher relativ geringe Mengen an Kohlenhydrat zur Formstoffmischung gegeben, wobei bereits eine deutliche Verbesserung der Festigkeit der Gießformen vor dem Guss bzw. eine deutliche Verbesserung der Güte der Oberfläche des Gussstücks beobachtet werden kann. Bevorzugt wird der Anteil des Kohlenhydrats, bezogen auf den feuerfesten Formgrundstoff, größer als 0,01 Gew.-%, vorzugsweise größer als 0,02 Gew.-%, besonders bevorzugt größer als 0,05 Gew.-% gewählt. Ein hoher Anteil an Kohlenhydrat bewirkt keine weitere Verbesserung der Festigkeit der Gießform bzw. der Oberflächengüte des Gussstücks. Bevorzugt wird die Menge des Kohlenhydrats, bezogen auf den feuerfesten Formgrundstoff, kleiner als 5 Gew.-%, vorzugsweise kleiner als 2,5 Gew.-%, besonders bevorzugt kleiner als 0,5 Gew.-%, insbesondere bevorzugt kleiner als 0,4 Gew.-% gewählt. Für eine technische Anwendung führen geringe Anteile an Kohlenhydraten im Bereich von mehr als 0,1 Gew.-% zu deutlichen Effekten. Für die technische Anwendung liegt der Anteil des Kohlenhydrats an der Formstoffmischung, bezogen auf den feuerfesten Formgrundstoff, bevorzugt im Bereich von 0,1 bis 0,5 Gew.-%, bevorzugt 0,2 bis 0,4 Gew.-%. Bei Anteilen von mehr als 0,5 Gew.-% Kohlenhydrat wird keine deutliche Verbesserung der Eigenschaften mehr erreicht, sodass Mengen von mehr als 0,5 Gew.-% Kohlenhydrat an sich nicht erforderlich sind.
Gemäß einer weiteren Ausführungsform der Erfindung wird das Kohlenhydrat in underivatisierter Form eingesetzt. Derartige Kohlenhydrate lassen sich günstig aus natürlichen Quellen, wie Pflanzen, beispielsweise Getreide oder Kartoffeln, gewinnen. Das Molekülgewicht derartiger aus natürlichen Quellen gewonnener - -
Kohlenhydrate lässt sich beispielsweise durch chemische oder enzymatische Hydrolyse erniedrigen, um beispielsweise die Löslichkeit in Wasser zu verbessern. Neben underivatisierten Kohlenhydraten, die also nur aus Kohlenstoff, Sauerstoff und Wasserstoff aufgebaut sind, können jedoch auch derivatisierte Kohlenhydrate eingesetzt werden, bei denen beispielsweise ein Teil oder alle Hydroxygruppen mit z.B. Alkylgruppen verethert sind. Geeignete derivatisierte Kohlenhydrate sind beispielsweise E- thylcellulose oder Carboxymethylcellulose.
An sich können bereits niedermolekulare Kohlenwasserstoffe, wie Mono- oder Disaccharide eingesetzt werden. Beispiele sind Gluco- se oder Saccharose. Die vorteilhaften Effekte werden aber insbesondere bei der Verwendung von Oligo- oder Polysacchariden beobachtet. Besonders bevorzugt wird daher als Kohlenhydrat ein Oligo- oder Polysaccharid eingesetzt.
Hierbei ist bevorzugt, dass das Oligo- oder Polysaccharid eine Molmasse im Bereich von 1.000 bis 100.000 g/mol, vorzugsweise 2.000 und 30.000 g/mol aufweist. Insbesondere wenn das Kohlenhydrat eine Molmasse im Bereich von 5.000 bis 20.000 g/mol aufweist, wird eine deutliche Erhöhung der Festigkeit der Gießform beobachtet, sodass sich die Gießform bei der Herstellung leicht aus der Form entnehmen und transportieren lässt. Auch bei längerer Lagerung zeigt die Gießform eine sehr gute Festigkeit, sodass auch eine für eine Serienproduktion von Gussstücken erforderliche Lagerung der Gießformen, auch über mehrere Tage hinweg bei Zutritt von Luftfeuchtigkeit, ohne weiteres möglich ist. Auch die Beständigkeit bei Einwirkung von Wasser, wie sie beispielsweise beim Auftragen einer Schlichte auf die Gießform un- ve~rme~i~dϊrch"i~st, "ist ~s~ehr~~gut ." ~
Bevorzugt ist das Polysaccharid aus Glucoseeinheiten aufgebaut, wobei diese insbesondere bevorzugt α- oder ß-glycosidisch 1,4 verknüpft sind. Es ist jedoch auch möglich, Kohlenhydratverbin- düngen, die neben Glucose andere Monosaccharide enthalten, wie etwa Galactose oder Fructose, als erfindungsgemäßes Additiv zu verwenden. Beispiele geeigneter Kohlenhydrate sind Lactose (α- oder ß-1, 4-verknüpftes Disaccharid aus Galactose und Glucose) und Saccharose (Disaccharid aus α-Glucose und ß-Fructose) .
Besonders bevorzugt ist das Kohlenhydrat ausgewählt aus der Gruppe von Cellulose, Stärke und Dextrinen sowie Derivaten dieser Kohlenhydrate. Geeignete Derivate sind beispielsweise ganz oder teilweise mit Alkylgruppen veretherte Derivate. Es können aber auch andere Derivatisierungen durchgeführt werden, beispielsweise Veresterungen mit anorganischen oder organischen Säuren.
Eine weitere Optimierung der Stabilität der Gießform sowie der Oberfläche des Gussstücks kann erreicht werden, wenn spezielle Kohlenhydrate und hierbei insbesondere bevorzugt Stärken, Dextrine (Hydrolysatprodukt der Stärken) und deren Derivate als Additiv für die Formstoffmischung verwendet werden. Als Stärken können insbesondere die natürlich vorkommenden Stärken, wie etwa Kartoffel-, Mais-, Reis-, Erbsen, Bananen-, Rosskastanien- oder Weizenstärke verwendet werden. Es ist aber auch möglich, modifizierte Stärken einzusetzen, wie beispielsweise Quellstärke, dünnkochende Stärke, oxidierte Stärke, Citratstärke, Acetatstär- ke, Stärkeether, Stärkeester oder auch Stärkephosphate. Eine Beschränkung in der Auswahl der Stärke besteht an sich nicht. Die Stärke kann beispielsweise niedrigviskos, mittelviskos oder hochviskos sein, kationisch oder anionisch, kaltwasserlöslich oder heißwasserlöslich. Das Dextrin ist insbesondere bevorzugt ausgewählt aus der Gruppe von Kartoffeldextrin, Maisdextrin, Gelbdextriri,~Weißdextrin, "Boraxdextrin, Cyclödextrin und'Malto- dextrin.
Insbesondere bei der Herstellung von Gießformen mit sehr dünnwandigen Abschnitten umfasst die Formstoffmischung bevorzugt zusätzlich eine phosphorhaltige Verbindung. Dabei können an sich sowohl organische als auch anorganische Phosphorverbindungen verwendet werden. Um beim Metallguss keine unerwünschten Nebenreaktionen auszulösen ist ferner bevorzugt, dass der Phosphor in den phosphorhaltigen Verbindungen bevorzugt in der Oxidations- stufe V vorliegt. Durch den Zusatz phosphorhaltiger Verbindungen kann die Stabilität der Gießform weiter gesteigert werden. Dies ist insbesondere dann von großer Bedeutung, wenn beim Metallguss das flüssige Metall auf eine schräge Fläche trifft und dort wegen des hohen metallostatischen Drucks eine hohe Erosionswirkung ausübt bzw. zu Verformungen insbesondere dünnwandiger Abschnitte der Gießform führen kann.
Die phosphorhaltige Verbindung liegt dabei bevorzugt in Form eines Phosphats oder Phosphoroxides vor. Das Phosphat kann dabei als Alkali- bzw. als Erdalkalimetallphosphat vorliegen, wobei Alkalimetallphosphate und hierbei insbesondere die Natriumsalze besonders bevorzugt sind. An sich können auch Ammoniumphosphate oder Phosphate anderer Metallionen verwendet werden. Die als bevorzugt genannten Alkali- bzw. Erdalkalimetallphosphate sind jedoch leicht zugänglich und in an sich beliebigen Mengen kostengünstig verfügbar. Phosphate mehrwertiger Metallionen, insbesondere dreiwertiger Metallionen, sind nicht bevorzugt. Es wurde beobachtet, dass sich bei Verwendung derartiger Phosphate mehrwertiger Metallionen, insbesondere dreiwertiger Metallionen, die Verarbeitungszeit der Formstoffmischung verkürzt.
Wird die phosphorhaltige Verbindung der Formstoffmischung in Form eines Phosphoroxids zugesetzt, liegt das Phosphoroxid bevorzugt in Form von Phosphorpentoxid vor. Es können jedoch auch Phθsphθrtri- und- Phosphortetroxid Verwendung finden.
Gemäß einer weiteren Ausführungsform kann der Formstoffmischung die phosphorhaltige Verbindung in Form der Salze der Fluo- rophosphorsäuren zugesetzt sein. Besonders bevorzugt sind hier- bei die Salze der Monofluorophosphorsäure. Insbesondere bevorzugt ist das Natriumsalz.
Gemäß einer bevorzugten Ausführungsform sind der Formstoffmischung als phosphorhaltige Verbindung organische Phosphate zugesetzt. Bevorzugt sind hierbei Alkyl- oder Arylphosphate. Die Alkylgruppen umfassen dabei bevorzugt 1 bis 10 Kohlenstoffatome und können geradkettig oder verzweigt sein. Die Arylgruppen umfassen bevorzugt 6 bis 18 Kohlenstoffatome, wobei die Arylgruppen auch durch Alkylgruppen substituiert sein können. Besonders bevorzugt sind Phosphatverbindungen, die sich von monomeren oder polymeren Kohlehydraten wie etwa Glucose, Cellulose oder Stärke ableiten. Die Verwendung einer phosphorhaltigen organischen Komponente als Additiv ist in zweierlei Hinsicht vorteilhaft. Zum Einen kann durch den Phosphoranteil die nötige thermische Stabilität der Gießform erzielt werden und zum Anderen wird durch den organischen Anteil die Oberflächenqualität des entsprechenden Gussstückes positiv beeinflusst.
Als Phosphate können sowohl Orthophosphate als auch Polyphospha- te, Pyrophosphate oder Metaphosphate eingesetzt werden. Die Phosphate können beispielsweise durch Neutralisation der entsprechenden Säuren mit einer entsprechenden Base, beispielsweise einer Alkalimetallbase, wie NaOH, oder ggf. auch einer Erdalka- , limetallbase hergestellt werden, wobei nicht notwendigerweise alle negativen Ladungen des Phosphations durch Metallionen abgesättigt sein müssen. Es können sowohl die Metallphosphate als auch die Metallhydrogenphosphate sowie die Metalldihydro- genphosphate eingesetzt werden, wie beispielsweise Na3PO4, Na2HPO4 und NaH2PO4. Ebenso können die wasserfreien Phosphate wie auch- Hydrate der Phosphate eingesetzt werden. Die Phosphate können sowohl in kristalliner als auch in amorpher Form in die Formstoffmischung eingebracht sein. Unter Polyphosphaten werden insbesondere lineare Phosphate verstanden, die mehr als ein Phosphoratom umfassen, wobei die Phosphoratome jeweils über Sauerstoffbrücken verbunden sind. PoIy- phosphate werden durch Kondensation von Orthophosphationen unter Wasserabspaltung erhalten, sodass eine lineare Kette von PO4- Tetraedern erhalten wird, die jeweils über Ecken verbunden sind. Polyphosphate weisen die allgemeine Formel (0 (PO3) n) <n+2)" auf, wobei n der Kettenlänge entspricht. Ein Polyphosphat kann bis zu mehreren hundert PO4-Tetraeder umfassen. Bevorzugt werden jedoch Polyphosphate mit kürzeren Kettenlängen eingesetzt. Bevorzugt weist n Werte von 2 bis 100, insbesondere bevorzugt 5 bis 50 auf. Es können auch höher kondensierte Polyphosphate verwendet werden, d.h. Polyphosphate, in welchen die PO4-Tetraeder über mehr als zwei Ecken miteinander verbunden sind und daher eine Polymerisation in zwei bzw. drei Dimensionen zeigen.
Unter Metaphosphaten werden zyklische Strukturen verstanden, die aus PO4-Tetraedern aufgebaut sind, die jeweils über Ecken verbunden sind. Metaphosphate weisen die allgemeine Formel ( (PCb)n) n~ auf, wobei n mindestens 3 beträgt. Bevorzugt weist n Werte von 3 bis 10 auf.
Es können sowohl einzelne Phosphate verwendet werden als auch Gemische aus verschiedenen Phosphaten und/oder Phosphoroxiden.
Der bevorzugte Anteil der phosphorhaltigen Verbindung, bezogen auf den feuerfesten Formgrundstoff, beträgt zwischen 0,05 und 1,0 Gew.-%. Bei einem Anteil von weniger als 0,05 Gew.-% ist kein deutlicher Einfluss auf die Formbeständigkeit der Gießform festzustellen. Übersteigt der Anteil des Phosphats 1,0 Gew.-%, nimmt die Heißfestigkeit der- Gießform stark ab.- Bevorzugt wird der Anteil der phosphorhaltigen Verbindung zwischen 0,10 und 0,5 Gew.-% gewählt. Die phosphorhaltige Verbindung enthält bevorzugt zwischen 0,5 und 90 Gew.-% Phosphor, berechnet als P2O5. Werden anorganische Phosphorverbindungen verwendet, enthalten diese bevorzugt 40 bis 90 Gew.-%, insbesondere bevorzugt 50 bis 80 Gew.-% Phosphor, berechnet als P2O5. Werden organische Phosphorverbindungen verwendet, enthalten diese bevorzugt 0,5 bis 30 Gew.-%, insbesondere bevorzugt 1 bis 20 Gew.-% Phosphor, berechnet als P2O5.
Die phosphorhaltige Verbindung kann an sich in fester oder gelöster Form der Formstoffmischung zugesetzt sein. Bevorzugt ist die phosphorhaltige Verbindung der Formstoffmischung als Feststoff zugesetzt. Wird die phosphorhaltige Verbindung in gelöster Form zugegeben, ist Wasser als Lösungsmittel bevorzugt.
Als weiterer Vorteil eines Zusatzes phosphorhaltiger Verbindungen zu Formstoffmischungen zur Herstellung von Gießformen wurde gefunden, dass die Formen nach dem Metallguss einen sehr guten Zerfall zeigen. Dies trifft für Metalle zu, die niedrigere Gießtemperaturen benötigen, wie Leichtmetalle, insbesondere Aluminium. Es wurde jedoch auch ein besserer Zerfall der Gießform beim Eisenguss gefunden. Beim Eisenguss wirken höhere Temperaturen von mehr als 12000C auf die Gießform ein, sodass eine erhöhte Gefahr eines Verglasens der Gießform und damit einer Verschlechterung der Zerfallseigenschaften besteht.
Im Rahmen der von den Erfindern durchgeführten Untersuchungen zur Stabilität und zum Zerfall von Gießformen wurde auch Eisenoxid als mögliches Additiv in Betracht gezogen. Bei Zusatz von Eisenoxid zur Formstoffmischung wird ebenfalls eine Steigerung der Stabilität der Gießform beim Metallguss beobachtet. Durch den Zusatz von Eisenoxid lässt sich also potentiell ebenfalls die Stabilität dünnwandiger Abschnitte der Gießform verbessern. -Der Zusatz von Eisenoxid bewirkt jedoch nicht die beim -Zusatz phosphorhaltiger Verbindungen beobachtete Verbesserung der Zerfallseigenschaften der Gießform nach dem Metallguss, insbesondere Eisenguss. - A -
Die erfindungsgemäße Formstoffmischung stellt eine intensive Mischung aus zumindest den genannten Bestandteilen dar. Dabei sind die Teilchen des feuerfesten Formgrundstoffs vorzugsweise mit einer Schicht des Bindemittels überzogen. Durch Verdampfen des im Bindemittel vorhandenen Wassers (ca. 40 - 70 Gew.-%, bezogen auf das Gewicht des Bindemittels) kann dann ein fester Zusammenhalt zwischen den Teilchen des feuerfesten Formgrundstoffs erreicht werden.
Das Bindemittel, d.h. das Wasserglas sowie das teilchenförmige Metalloxid, insbesondere synthetisches amorphes Siliciumdioxid, und das Kohlenhydrat ist in der Formstoffmischung bevorzugt in einem Anteil von weniger als 20 Gew.-%, insbesondere bevorzugt in einem Bereich von 1 bis 15 Gew.-% enthalten. Der Anteil des Bindemittels bezieht sich dabei auf den Feststoffanteil des Bindemittels. Werden massive feuerfeste Formgrundstoffe verwendet, wie beispielsweise Quarzsand, ist das Bindemittel vorzugsweise in einem Anteil von weniger als 10 Gew.-%, bevorzugt weniger als 8 Gew.-%, insbesondere bevorzugt weniger als 5 Gew.-% enthalten. Werden feuerfeste Formgrundstoffe verwendet, welche eine geringe Dichte aufweisen, wie beispielsweise die oben beschriebenen Mik- rohohlkugeln, erhöht sich der Anteil des Bindemittels entsprechend.
Das teilchenförmige Metalloxid, insbesondere das synthetische amorphe Siliciumdioxid, ist, bezogen auf das Gesamtgewicht des Bindemittels, vorzugsweise in einem Anteil von 2 bis 80 Gew.-% enthalten, vorzugsweise zwischen 3 und 60 Gew.-%, insbesondere bevorzugt zwischen 4 und 50 Gew.-%.
Das—Ve-rhäitn-i-s—von-Wa-s-se-rgia-s zu- -te-iiehenfö-rm-i-gem- Metail-oxi-d-, insbesondere synthetischem amorphem Siliciumdioxid, kann innerhalb weiter Bereiche variiert werden. Dies bietet den Vorteil, die Anfangsfestigkeit der Gießform, d.h. die Festigkeit unmittelbar nach Entnahme aus dem heißen Werkzeug, und die Feuchtig- keitsbeständigkeit zu verbessern, ohne die Endfestigkeiten, d.h. die Festigkeiten nach dem Erkalten der Gießform, gegenüber einem Wasserglasbindemittel ohne amorphes Siliciumdioxid wesentlich zu beeinflussen. Dies ist vor allem im Leichtmetallguss von großem Interesse. Auf der einen Seite sind hohe Anfangsfestigkeiten erwünscht, um nach der Herstellung der Gießform diese problemlos transportieren oder mit anderen Gießformen zusammensetzen zu können. Auf der anderen Seite sollte die Endfestigkeit nach dem Aushärten nicht zu hoch sein, um Schwierigkeiten beim Binderzerfall nach dem Abguss zu vermeiden, d.h. der Formgrundstoff sollte nach dem Gießen problemlos aus Hohlräumen der Gussform entfernt werden können.
Der in der erfindungsgemäßen Formstoffmischung enthaltene Formgrundstoff kann in einer Ausführungsform der Erfindung zumindest einen Anteil von Mikrohohlkugeln enthalten. Der Durchmesser der Mikrohohlkugeln liegt normalerweise im Bereich von 5 bis 500 um, vorzugsweise im Bereich von 10 bis 350 um und die Dicke der Schale liegt gewöhnlich im Bereich von 5 bis 15 % des Durchmessers der Mikrokugeln. Diese Mikrokugeln weisen ein sehr geringes spezifisches Gewicht auf, so dass die unter Verwendung von Mikrohohlkugeln hergestellten Gießformen ein niedriges Gewicht aufweisen. Besonders vorteilhaft ist die Isolierwirkung der Mikrohohlkugeln. Die Mikrohohlkugeln werden daher insbesondere dann für die Herstellung von Gießformen verwendet, wenn diese eine erhöhte Isolierwirkung aufweisen sollen. Solche Gießformen sind beispielsweise die bereits in der Einleitung beschriebenen Speiser, welche als Ausgleichsreservoir wirken und flüssiges Metall enthalten, wobei das Metall solange in einem flüssigen Zustand gehalten werden soll, bis das in die Hohlform eingefüllte Metall erstarrt ist. Ein anderes Anwendungsgebiet von Gießformen, welche Mikrohohlkugeln enthalten, sind beispielsweise Abschnitte einer Gießform, welche besonders dünnwandigen Abschnitten der fertigen Gussform entsprechen. Durch die isolierende Wirkung der - -
Mikrohohlkugeln wird sichergestellt, dass das Metall in den dünnwandigen Abschnitten nicht vorzeitig erstarrt und damit die Wege innerhalb der Gießform verstopft.
Werden Mikrohohlkugeln verwendet, wird das Bindemittel, bedingt durch die geringe Dichte dieser Mikrohohlkugeln, vorzugsweise in einem Anteil im Bereich von vorzugsweise weniger als 20 Gew.-%, insbesondere bevorzugt im Bereich von 10 bis 18 Gew.-% verwendet. Die Werte beziehen sich auf den Feststoffanteil des Bindemittels .
Die Mikrohohikugeln weisen bevorzugt eine ausreichende Temperaturstabilität auf, sodass sie beim Metallguss nicht vorzeitig erweichen und ihre Form verlieren. Die Mikrohohlkugeln bestehen vorzugsweise aus einem Aluminiumsilikat. Diese Aluminiumsilikat- mikrohohlkugeln weisen vorzugsweise einen Gehalt an Aluminiumoxid von mehr als 20 Gew.-% auf, können jedoch auch einen Gehalt von mehr als 40 Gew.-% aufweisen. Solche Mikrohohlkugeln werden beispielsweise von der Omega Minerals Germany GmbH, Norderstedt, unter den Bezeichnungen Omega-Spheres® SG mit einem Aluminiumoxidgehalt von ca. 28 - 33 %, Omega-Spheres® WSG mit einem Aluminiumoxidgehalt von ca. 35 - 39 % und E-Spheres® mit einem Aluminiumoxidgehalt von ca. 43 % in den Handel gebracht. Entsprechende Produkte sind bei der PQ Corporation (USA) unter der Bezeichnung „Extendospheres®" erhältlich.
Gemäß einer weiteren Ausführungsform werden Mikrohohlkugeln als feuerfester Formgrundstoff verwendet, welche aus Glas aufgebaut sind.
Gemäß einer bevorzugten Ausführungsform, bestehen die Mikrohohlkugeln aus einem Borsilikatglas. Das Borsilikatglas weist dabei einen Anteil an Bor, berechnet als B2O3, von mehr als 3 Gew.-% auf. Der Anteil der Mikrohohlkugeln wird vorzugsweise kleiner als 20 Gew.-% gewählt, bezogen auf die Formstoffmischung. Bei Verwendung von Borsilikatglas-Mikrohohlkugeln wird bevorzugt ein geringer Anteil gewählt. Dieser beträgt vorzugsweise weniger als 5 Gew.-%, bevorzugt weniger als 3 Gew.-%, und liegt insbesondere bevorzugt im Bereich von 0,01 bis 2 Gew.-%.
Wie bereits erläutert, enthält die erfindungsgemäße Formstoffmi- schung in einer bevorzugten Ausführungsform zumindest einen Anteil an Glasgranulat und/oder Glasperlen als feuerfesten Formgrundstoff.
Es ist auch möglich, die Formstoffmischung als exotherme Formstoffmischung auszubilden, die beispielsweise für die Herstellung exothermer Speiser geeignet ist. Dazu enthält die Formstoffmischung ein oxidierbares Metall und ein geeignetes Oxida- tionsmittel. Bezogen auf die Gesamtmasse der Formstoffmischung bilden die oxidierbaren Metalle bevorzugt einen Anteil von 15 bis 35 Gew.-%. Das Oxidationsmittel wird bevorzugt in einem Anteil von 20 bis 30 Gew.-%, bezogen auf die Formstoffmischung zugesetzt. Geeignete oxidierbare Metalle sind beispielsweise Aluminium oder Magnesium. Geeignete Oxidationsmittel sind beispielsweise Eisenoxid oder Kaliumnitrat.
Bindemittel, welche Wasser enthalten, ergeben im Vergleich zu Bindemitteln auf Basis organischer Lösungsmittel eine schlechtere Fließfähigkeit der Formstoffmischung. Die Fließfähigkeit der Formstoffmischung kann sich durch den Zusatz des teilchenförmi- gen Metalloxids weiter verschlechtern. Dies bedeutet, dass sich Formwerkzeuge mit engen Durchgängen und mehreren Umlenkungen schlechter füllen lassen. Als Folge davon besitzen die Gießformen Abschnitte mit ungenügender Verdichtung, was wiederum beim Abguss .zu Gussfehlern- führen kann. Gemäß- einer vor-teilhaften Ausführungsform enthält die erfindungsgemäße Formstoffmischung einen Anteil eines Schmiermittels, bevorzugt eines plättchenför- migen Schmiermittels, insbesondere Grafit, MoS2, Talkum und/oder Pyrophillit. Überraschend hat sich gezeigt, dass bei einem Zu- - -
satz derartiger Schmiermittel, insbesondere von Grafit, auch komplexe Formen mit dünnwandigen Abschnitten hergestellt werden können, wobei die Gießformen durchgängig eine gleichmäßig hohe Dichte und Festigkeit aufweisen, so dass beim Gießen im Wesentlichen keine Gussfehler beobachtet werden. Die Menge des zugesetzten plättchenförmigen Schmiermittels, insbesondere Grafits, beträgt vorzugsweise 0,05 Gew.-% bis 1 Gew.-%, bezogen auf den feuerfesten Formgrundstoff.
Neben den genannten Bestandteilen kann die erfindungsgemäße Formstoffmischung noch weitere Zusätze umfassen. Beispielsweise können interne Trennmittel zugesetzt werden, welche die Ablösung der Gießformen aus dem Formwerkzeug erleichtern. Geeignete interne Trennmittel sind z.B. Calciumstearat, Fettsäureester, Wachse, Naturharze oder spezielle Alkydharze. Weiter können auch Silane zur erfindungsgemäßen Formstoffmischung gegeben werden.
So enthält die erfindungsgemäße Formstoffmischung in einer bevorzugten Ausführungsform ein organisches Additiv, welches einen Schmelzpunkt im Bereich von 40 bis 180 0C, vorzugsweise 50 bis 175 0C aufweist, also bei Raumtemperatur fest ist. Unter organischen Additiven werden dabei Verbindungen verstanden, deren Molekülgerüst überwiegend aus Kohlenstoffatomen aufgebaut ist, also beispielsweise organische Polymere. Durch die Zugabe der organischen Additive kann die Güte der Oberfläche des Gussstücks weiter verbessert werden. Der Wirkmechanismus der organischen Additive ist nicht geklärt. Ohne an diese Theorie gebunden sein zu wollen nehmen die Erfinder jedoch an, dass zumindest ein Teil der organischen Additive beim Gießvorgang verbrennt und dabei ein dünnes Gaspolster zwischen flüssigem Metall und dem die Wand der Gießform bildenden Formgrundstoff entsteht und so eine Reaktion zwischen flüssigem Metall und Formgrundstoff verhindert wird. Ferner nehmen die Erfinder an, dass ein Teil der organischen Additive unter der beim Gießen herrschenden reduzierenden - -
Atmosphäre eine dünne Schicht von so genanntem Glanzkohlenstoff bildet, der ebenfalls eine Reaktion zwischen Metall und Formgrundstoff verhindert. Als weitere vorteilhafte Wirkung kann durch die Zugabe der organischen Additive eine Steigerung der Festigkeit der Gießform nach dem Aushärten erreicht werden.
Die organischen Additive werden bevorzugt in einer Menge von 0,01 bis 1,5 Gew.-%, insbesondere bevorzugt 0,05 bis 1,3 Gew.-%, besonders bevorzugt 0,1 bis 1,0 Gew.-%, jeweils bezogen auf den feuerfesten Formstoff, zugegeben. Um eine starke Rauchentwicklung während des Metallgusses zu vermeiden, wird der Anteil an organischen Additiven bevorzugt geringer als 0,5 Gew.-% gewählt.
Überraschend wurde gefunden, dass eine Verbesserung der Oberfläche des Gussstücks mit sehr unterschiedlichen organischen Additiven erreicht werden kann. Geeignete organische Additive sind beispielsweise Phenol-Formaldehydharze, wie z.B. Novolake, Epoxidharze, wie beispielsweise Bisphenol-A-Epoxidharze, Bisphenol- F-Epoxidharze oder epoxidierte Novolake, Polyole, wie beispielsweise Polyethylenglykole oder Polypropylenglykole, Polyolefine, wie beispielsweise Polyethylen oder Polypropylen, Copolymere aus Olefinen, wie Ethylen oder Propylen, und weiteren Comonomeren, wie Vinylacetat, Polyamide, wie beispielsweise Polyamid-6, PoIy- amid-12 oder Polyamid-6, 6, natürliche Harze, wie beispielsweise Balsamharz, Fettsäuren, wie beispielsweise Stearinsäure, Fettsäureester, wie beispielsweise Cetylpalmitat, Fettsäureamide, wie beispielsweise Ethylendiaminbisstearamid, sowie Metallseifen, wie beispielsweise Stearate oder Oleate ein- bis dreiwertiger Metalle. Die organischen Additive können sowohl als reiner Stoff enthalten sein, als auch als Gemisch verschiedener organischer Verbindungen.
Gemäß einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Formstoffmischung einen Anteil zumindest eines Silans. Geeignete Silane sind beispielsweise Aminosilane, Epoxy- silane, Mercaptosilane, Hydroxysilane, Methacrylsilane, Ureido- silane und Polysiloxane. Beispiele für geeignete Silane sind γ~ Aminopropyltrimethoxysilan, γ-Hydroxypropyltrimethoxysilan, 3- Ureidopropyltriethoxysilan, γ-Mercaptopropyltrimethoxysilan, γ-Glycidoxypropyltrimethoxysilan, ß- (3, 4-Epoxycyclohexyl) - trimethoxysilan, 3-Methacryloxypropyltrimethoxysilan und N-ß (Aminoethyl) -Y-aminopropyltrimethoxysilan.
Bezogen auf das teilchenförmige Metalloxid werden typischerweise ca. 5 - 50 Gew.-% Silan eingesetzt, vorzugsweise ca. 7 - 45 Gew.-%, besonders bevorzugt ca. 10 - 40 Gew.-%.
Trotz der mit dem erfindungsgemäßen Bindemittel erreichbaren hohen Festigkeiten zeigen die mit der erfindungsgemäßen Form- stoffmischung hergestellten Gießformen, insbesondere Kerne und Formen, nach dem Abguss überraschenderweise einen guten Zerfall, insbesondere beim Aluminiumguss . Wie bereits erläutert, wurde auch gefunden, dass mit der erfindungsgemäßen Formstoffmischung Gießformen hergestellt werden können, die auch beim Eisenguss einen sehr guten Zerfall zeigen, sodass sich die Formstoffmischung nach dem Guss ohne weiteres auch aus engen und verwinkelten Abschnitten der Gießform wieder ausgießen lässt. Die Verwendung der aus der erfindungsgemäßen Formstoffmischung hergestellten Formkörper ist daher nicht auf den Leichtmetallguss beschränkt. Die Gießformen eignen sich generell zum Gießen von Metallen. Solche Metalle sind beispielsweise Buntmetalle, wie Messing oder Bronzen, sowie Eisenmetalle.
Die Erfindung betrifft weiter ein Verfahren zur Herstellung von Gießformen für die Metallverarbeitung, wobei die erfindungsgemäße Formstoffmischung verwendet wird. Das erfindungsgemäße Verfahren umfasst die Schritte:
Herstellen der oben beschriebenen Formstoffmischung; - -
Formen der Formstoffmischung;
Aushärten der geformten Formstoffmischung, indem die Form- stoffmischung erwärmt wird, wobei die ausgehärtete Gießform erhalten wird.
Bei der Herstellung der erfindungsgemäßen Formstoffmischung wird im Allgemeinen so vorgegangen, dass zunächst der feuerfeste Formgrundstoff vorgelegt und dann unter Rühren das Bindemittel zugegeben wird. Dabei kann das Wasserglas sowie das teilchenför- mige Metalloxid, insbesondere das synthetische amorphe Silicium- dioxid, und das Kohlenhydrat an sich in beliebiger Reihenfolge zugegeben werden. Das Kohlenhydrat kann in trockener Form zugegeben werden, beispielsweise in Form von Stärkepulver. Es ist aber auch möglich, das Kohlenhydrat in gelöster Form zuzugeben. Bevorzugt sind dabei wässrige Lösungen des Kohlenhydrats. Die Verwendung wässriger Lösungen ist insbesondere vorteilhaft, wenn diese, wie etwa im Fall von Glucosesirup aufgrund des Herstellungsprozesses bereits als Lösung zur Verfügung stehen. Die Lösung des Kohlenhydrats kann auch vor der Zugabe zum feuerfesten Formgrundstoff mit dem Wasserglas vermischt werden. Bevorzugt wird das Kohlenhydrat in fester Form zum feuerfesten Formgrundstoff gegeben.
Gemäß einer weiteren Ausführungsform kann das Kohlenhydrat in die Formstoffmischung eingebracht werden, indem ein geeigneter Träger, beispielsweise andere Additive oder der feuerfeste Formgrundstoff mit einer Lösung des entsprechenden Kohlenhydrats umhüllt wird. Als Lösungsmittel kann Wasser oder auch ein organisches Lösungsmittel verwendet werden. Bevorzugt wird jedoch Wasser als Lösungsmittel verwendet. Für einen besseren Verbund zwischen Kohlenhydrathülle und Träger und zum Entfernen des Lösungsmittels kann nach dem Beschichten ein Trockenschritt durchgeführt werden. Dies kann z.B. in einem Trockenofen oder unter Einwirkung von Mikrowellenstrahlung erfolgen. - -
Die oben beschriebenen Additive können an sich in jeglicher Form der Formstoffmischung zugesetzt werden. Sie können einzeln oder auch als Mischung zudosiert werden. Sie können in Form eines Feststoffes zugesetzt werden, aber auch in Form von Lösungen, Pasten oder Dispersionen. Erfolgt die Zugabe als Lösung, Paste oder Dispersion, ist Wasser als Lösungsmittel bevorzugt. Ebenfalls ist es möglich, das als Bindemittel eingesetzte Wasserglas als Lösungs- oder Dispergiermedium für die Additive zu nutzen.
Gemäß einer bevorzugten Ausführungsform wird das Bindemittel als Zwei-Komponenten-System bereitgestellt, wobei eine erste flüssige Komponente das Wasserglas enthält und eine zweite feste Komponente das teilchenförmige Metalloxid. Die feste Komponente kann weiterhin beispielsweise das Phosphat sowie ggf. einen, vorzugsweise plättchenförmigen, Schmierstoff umfassen. Wird das Kohlenhydrat in fester Form zur Formstoffmischung gegeben, kann dieses ebenfalls der festen Komponente zugeschlagen werden.
Bei der Herstellung der Formstoffmischung wird der feuerfeste Formgrundstoff in einem Mischer vorgelegt und dann bevorzugt zunächst die feste (n) Komponente (n) des Bindemittels zugegeben und mit dem feuerfesten Formgrundstoff vermischt. Die Mischdauer wird so gewählt, dass eine innige Durchmischung von feuerfestem Formgrundstoff und fester Bindemittelkomponente erfolgt. Die Mischdauer ist abhängig von der Menge der herzustellenden Form- stoffmischung sowie vom verwendeten Mischaggregat. Bevorzugt wird die Mischdauer zwischen 1 und 5 Minuten gewählt. Unter bevorzugt weiterem Bewegen der Mischung wird dann die flüssige Komponente des Bindemittels zugegeben und dann die Mischung solange weiter vermischt, bis sich auf den Körnern des feuerfesten -Formg-rundsto-ffs eine- gleichmäßige Schicht des Bindemittels"ausgebildet hat. Auch hier ist die Mischdauer von der Menge der herzustellenden Formstoffmischung sowie vom verwendeten Mischaggregat abhängig. Bevorzugt wird die Dauer für den Mischvorgang - -
zwischen 1 und 5 Minuten gewählt. Unter einer flüssigen Komponente wird sowohl eine Mischung verschiedener flüssiger Komponenten als auch die Gesamtheit aller flüssiger Einzelkomponenten verstanden, wobei letztere auch einzeln zugegeben werden können. Ebenso wird unter einer festen Komponente sowohl das Gemisch einzelner oder aller der oben beschriebenen festen Komponenten als auch die Gesamtheit aller fester Einzelkomponenten verstanden, wobei letztere gemeinsam oder auch nacheinander zur Form- stoffmischung gegeben werden können.
Gemäß einer anderen Ausführungsform kann auch zunächst die flüssige Komponente des Bindemittels zum feuerfesten Formgrundstoff gegeben werden und erst dann die feste Komponente der Mischung zugeführt werden. Gemäß einer weiteren Ausführungsform wird zunächst 0,05 bis 0,3 % Wasser, bezogen auf das Gewicht des Formgrundstoffes, zum feuerfesten Formgrundstoff gegeben und erst anschließend die festen und flüssige Komponenten des Bindemittels zugegeben. Bei dieser Ausführungsform kann ein überraschender positiver Effekt auf die Verarbeitungszeit der Formstoffmischung erzielt werden. Die Erfinder nehmen an, dass die wasserentziehende Wirkung der festen Komponenten des Bindemittels auf diese Weise reduziert und der Aushärtevorgang dadurch verzögert wird.
Die Formstoffmischung wird anschließend in die gewünschte Form gebracht. Dabei werden für die Formgebung übliche Verfahren verwendet. Beispielsweise kann die Formstoffmischung mittels einer Kernschießmaschine mit Hilfe von Druckluft in das Formwerkzeug geschossen werden. Die Formstoffmischung wird anschließend durch Wärmezufuhr ausgehärtet, um das im Bindemittel enthaltene Wasser zu verdampfen. Beim Erwärmen wird der Formstoffmischung Wasser entzogen. Durch den Wasserentzug werden vermutlich auch Kondensationsreaktionen zwischen Silanolgruppen initiiert, sodass eine Vernetzung des Wasserglases eintritt. Bei im Stand der Technik beschriebenen kalten Aushärtungsverfahren wird beispielsweise durch Einleiten von Kohlendioxid oder durch mehrwertige Metallkationen ein Ausfällen schwerlöslicher Verbindungen und damit eine Verfestigung der Gießform bewirkt.
Das Erwärmen der Formstoffmischung kann beispielsweise im Formwerkzeug erfolgen. Es ist möglich, die Gießform bereits im Formwerkzeug vollständig auszuhärten. Es ist aber auch möglich, die Gießform nur in ihrem Randbereich auszuhärten, so dass sie eine ausreichende Festigkeit aufweist, um aus dem Formwerkzeug entnommen werden zu können. Die Gießform kann dann anschließend vollständig ausgehärtet werden, indem ihr weiteres Wasser entzogen wird. Dies kann beispielsweise in einem Ofen erfolgen. Der Wasserentzug kann beispielsweise auch erfolgen, indem das Wasser bei vermindertem Druck verdampft wird.
Die Aushärtung der Gießformen kann durch Einblasen von erhitzter Luft in das Formwerkzeug beschleunigt werden. Bei dieser Ausführungsform des Verfahrens wird ein rascher Abtransport des im Bindemittel enthaltenen Wassers erreicht, wodurch die Gießform in für eine industrielle Anwendung geeigneten Zeiträumen verfestigt wird. Die Temperatur der eingeblasenen Luft beträgt vorzugsweise 100 0C bis 180 0C, insbesondere bevorzugt 120 0C bis 150 0C. Die Strömungsgeschwindigkeit der erhitzten Luft wird vorzugsweise so eingestellt, dass eine Aushärtung der Gießform in für eine industrielle Anwendung geeigneten Zeiträumen erfolgt. Die Zeiträume hängen von der Größe der hergestellten Gießformen ab. Angestrebt wird eine Aushärtung im Zeitraum von weniger als 5 Minuten, vorzugsweise weniger als 2 Minuten. Bei sehr großen Gießformen können jedoch auch längere Zeiträume erforderlieh sein.
Die Entfernung des Wassers aus der Formstoffmischung kann auch in der Weise erfolgen, dass das Erwärmen der Formstoffmischung durch Einstrahlen von Mikrowellen bewirkt wird. Die Einstrahlung der Mikrowellen wird aber bevorzugt vorgenommen, nachdem die Gießform aus dem Formwerkzeug entnommen wurde. Dazu muss die Gießform jedoch bereits eine ausreichende Festigkeit aufweisen. Wie bereits erläutert, kann dies beispielsweise dadurch bewirkt werden, dass zumindest eine äußere Schale der Gießform bereits im Formwerkzeug ausgehärtet wird.
Durch die thermische Aushärtung der Formstoffmischung unter Wasserentzug wird das Problem einer Nachverfestigung der Gießform während des Metallgusses vermieden. Bei dem im Stand der Technik beschriebenen kalten Aushärteverfahren, bei welchem Kohlendioxid durch die Formstoffmischung geleitet wird, werden aus dem Wasserglas Carbonate ausgefällt. In der ausgehärteten Gießform bleibt jedoch relativ viel Wasser gebunden, welches dann beim Metallguss ausgetrieben wird und zu einer sehr hohen Verfestigung der Gießform führt. Ferner erreichen Gießformen, die durch Einleiten von Kohlendioxid verfestigt wurden, nicht die Stabilität von Gießformen, die thermisch durch Wasserentzug ausgehärtet wurden. Durch die Ausbildung von Carbonaten wird das Gefüge des Bindemittels gestört, weshalb dieses an Festigkeit verliert. Mit kalt ausgehärteten Gießformen auf Wasserglasbasis lassen sich daher dünne Abschnitte einer Gießform, die ggf. auch noch eine komplexe Geometrie aufweisen, nicht herstellen. Gießformen, die kalt durch Einleiten von Kohlendioxid ausgehärtet werden, sind daher nicht zur Darstellung von Gussteilen mit sehr komplizierter Geometrie und engen Durchgängen mit mehreren Umlenkungen, wie Ölkanälen in Verbrennungsmotoren, geeignet, da die Gießform nicht die erforderliche Stabilität erreicht und sich die Gießform nach dem Metallguss nur mit sehr hohem Aufwand vollständig vom Gussstück entfernen lässt. Bei der thermischen Aushärtung wird- das- Wasser weitgehend aus der Gieß'form entfernt und beim Metallguss wird eine deutlich geringere Nachhärtung der Gießform beobachtet. Nach dem Metallguss zeigt die Gießform einen wesentlich besseren Zerfall als Gießformen, die durch Einleiten von - -
Kohlendioxid ausgehärtet wurden. Durch das thermische Aushärten lassen sich auch Gießformen herstellen, die für die Fertigung von Gussstücken mit sehr komplexer Geometrie und engen Durchgängen geeignet sind.
Wie bereits weiter oben erläutert, kann durch den Zusatz von, vorzugsweise plättchenförmigen, Schmiermitteln, insbesondere Grafit und/oder M0S2 und/oder Talkum, die Fließfähigkeit der erfindungsgemäßen Formstoffmischung verbessert werden. Auch talkähnliche Minerale, wie etwa Pyrophyllit, können die Fließfähigkeit der Formstoffmischung verbessern. Bei der Herstellung kann das plättchenförmige Schmiermittel, insbesondere Grafit und/oder Talkum, dabei getrennt von den beiden Binderkomponenten der Formstoffmischung zugesetzt werden. Es ist aber genauso gut möglich, das plättchenförmige Schmiermittel, insbesondere Grafit, mit dem teilchenförmigen Metalloxid, insbesondere dem synthetischen amorphen Siliciumdioxid, vorzumischen und erst dann mit dem Wasserglas und dem feuerfesten Formgrundstoff zu vermengen.
Neben dem Kohlenhydrat kann die Formstoffmischung wie bereits beschrieben auch noch weitere organische Additive umfassen. Die Zugabe dieser weiteren organischen Additive kann an sich zu jedem Zeitpunkt der Herstellung der Formstoffmischung erfolgen. Die Zugabe des organischen Additivs kann dabei in Substanz oder auch in Form einer Lösung erfolgen. Die Menge an organischen Additiven wird jedoch bevorzugt gering gewählt, insbesondere bevorzugt geringer als 0,5 Gew.-% bezogen auf den feuerfesten Formgrundstoff. Bevorzugt wird die Gesamtmenge an organischen Zusätzen, also einschließlich des Kohlenhydrats, geringer als 0,5 Gew.-% gewählt, bezogen auf den feuerfesten Formgrundstoff.
Wasserlösliche organische Additive können in Form einer wässri- gen Lösung eingesetzt werden. Sofern die organischen Additive im Bindemittel löslich und darin unzersetzt über mehrere Monate lagerstabil sind, können sie auch im Bindemittel gelöst und so gemeinsam mit diesem dem Formgrundstoff zugegeben werden. Wasserunlösliche Additive können in Form einer Dispersion oder einer Paste verwendet werden. Die Dispersionen oder Pasten enthalten bevorzugt Wasser als Dispergiermedium. An sich können Lösungen oder Pasten der organischen Additive auch in organischen Lösemitteln hergestellt werden. Wird für die Zugabe der organischen Additive jedoch ein Lösungsmittel verwendet, so wird vorzugsweise Wasser eingesetzt.
Vorzugsweise erfolgt die Zugabe der organischen Additive als Pulver oder als Kurzfaser, wobei die mittlere Teilchengröße bzw. die Faserlänge bevorzugt so gewählt wird, dass sie die Größe der feuerfesten Formgrundstoffpartikel nicht übersteigt. Besonders bevorzugt lassen sich die organischen Additive durch ein Sieb mit der Maschenweite von ca. 0,3 mm sieben. Um die Anzahl der dem feuerfesten Formgrundstoff zugegebenen Komponenten zu reduzieren, werden das teilchenförmige Metalloxid und das bzw. die organischen Additive dem Formsand vorzugsweise nicht getrennt zugesetzt, sondern vorab gemischt.
Enthält die Formstoffmischung Silane oder Siloxane, so erfolgt deren Zugabe üblicherweise in der Form, dass sie vorab in das Bindemittel eingearbeitet werden. Die Silane oder Siloxane können dem Formgrundstoff aber auch als getrennte Komponente zugegeben werden. Besonders vorteilhaft ist es jedoch, das teilchenförmige Metalloxid zu silanisieren, d.h. das Metalloxid mit dem Silan oder Siloxan zu mischen, so dass seine Oberfläche mit einer dünnen Silan- oder Siloxanschicht versehen ist. Setzt man das so vorbehandelte teilchenförmige Metalloxid ein, so findet man gegenüber dem unbehandelten Metalloxid erhöhte Festigkeiten ~sowi~e~~e"in~e"verbesserte" Resistenz"gegen" höhe" "Luftfeuchtigkeit". Setzt man, wie beschrieben, der Formstoffmischung bzw. dem teil- chenförmigen Metalloxid ein organisches Additiv zu, ist es zweckmäßig, dies vor der Silanisierung zu tun. - -
Das erfindungsgemäße Verfahren eignet sich an sich für die Herstellung aller für den Metallguss üblicher Gießformen, also beispielsweise von Kernen und Formen. Besonders vorteilhaft können dabei auch Gießformen hergestellt werden, die sehr dünnwandige Abschnitte umfassen. Insbesondere bei Zusatz von isolierendem feuerfestem Formgrundstoff oder bei Zusatz von exothermen Materialien zur erfindungsgemäßen Formstoffmischung eignet sich das erfindungsgemäße Verfahren zur Herstellung von Speisern.
Die aus der erfindungsgemäßen Formstoffmischung bzw. mit dem erfindungsgemäßen Verfahren hergestellten Gießformen weisen eine hohe Festigkeit unmittelbar nach der Herstellung auf, ohne dass die Festigkeit der Gießformen nach dem Aushärten so hoch ist, dass Schwierigkeiten nach der Herstellung des Gussstücks beim Entfernen der Gießform auftreten. Hier wurde gefunden, dass die Gießform sowohl beim Leichtmetallguss, insbesondere Aluminium- guss, als auch beim Eisenguss sehr gute Zerfallseigenschaften aufweist. Weiterhin weisen diese Gießformen eine hohe Stabilität bei erhöhter Luftfeuchtigkeit auf, d.h. die Gießformen können überraschenderweise auch über längere Zeit hinweg problemlos gelagert werden. Als besonderer Vorteil weist die Gießform eine sehr hohe Stabilität bei mechanischer Belastung auf, sodass auch dünnwandige Abschnitte der Gießform verwirklicht werden können, ohne dass diese durch den metallostatischen Druck beim Gießvorgang deformiert werden. Ein weiterer Gegenstand der Erfindung ist daher eine Gießform, welche nach dem oben beschriebenen erfindungsgemäßen Verfahren erhalten wurde.
Die erfindungsgemäße Gießform eignet sich allgemein für den Metallguss, insbesondere Leichtmetallguss. Besonders vorteilhafte Εrgebnrsse—werden "beim Aluminiumguss" erhalten. - ~ - " "
Die Erfindung wird im Weiteren anhand von Beispielen näher erläutert. - - •
Beispiel 1
Einfluss von synthetisch hergestelltem amorphem Siliciumdioxid und verschiedenen Kohlenhydraten auf die Festigkeit von Formkörpern mit Quarzsand als Formgrundstoff.
1. Herstellung und Prüfung der Formstoffmischung
Für die Prüfung der Formstoffmischung wurden sog. Georg-Fischer- Prüfriegel hergestellt. Unter Georg-Fischer-Prüfriegeln werden quaderförmige Prüfriegel mit den Abmessungen 150 mm x 22,36 mm x ??-36 mm verstanden.
Die Zusammensetzung der Formstoffmischung ist in Tabelle 1 angegeben. Zur Herstellung der Georg-Fischer-Prüfriegel wurde wie folgt vorgegangen:
Die in Tabelle 1 aufgeführten Komponenten wurden in einem Laborflügelmischer (Firma Vogel & Schemmann AG, Hagen, DE) gemischt. Dazu wurde zunächst der Quarzsand vorgelegt und unter Rühren das Wasserglas zugegeben. Als Wasserglas wurde ein Natriumwasserglas verwendet, das Anteile an Kalium aufwies. In den nachfolgenden Tabellen ist das Modul daher mit SiO2 : M2O angegeben, wobei M die Summe aus Natrium und Kalium angibt. Nachdem die Mischung für eine Minute gerührt worden war, wurden ggf. das amorphe Siliciumdioxid und/oder das Kohlenhydrat unter weiterem Rühren zugegeben. Die Mischung wurde anschließend noch für eine weitere Minute gerührt;
Die Formstoffmischungen wurden in den Vorratsbunker einer H 2,5 Hot-Box-Kernschießmaschine der Firma Röperwerk - Gießereimaschinen GmbH, Viersen, DE, überführt, deren Formwerkzeug auf 2000C erwärmt war; Die Formstoffmischungen wurden mittels Druckluft (5 bar) in das Formwerkzeug eingebracht und verblieben für weitere 35 Sekunden im Formwerkzeug;
Zur Beschleunigung der Aushärtung der Mischungen wurde während der letzten 20 Sekunden Heißluft (2 bar, 1200C beim Eintritt in das Werkzeug) durch das Formwerkzeug geleitet;
Das Formwerkzeug wurde geöffnet und die Prüfriegel entnommen.
Zur Bestimmung der Biegefestigkeiten wurden die Prüfriegel in ein Georg-Fischer-Fcstigkeitsprüfgerät, ausgerüstet mir einer 3- Punkt-Biegevorrichtung (DISA Industrie AG, Schaffhausen, CH) eingelegt und die Kraft gemessen, welche zum Bruch der Prüfriegel führte.
Die Biegefestigkeiten wurden nach folgendem Schema gemessen:
- 10 Sekunden nach der Entnahme (Heißfestigkeiten)
- 1 Stunde nach der Entnahme (Kaltfestigkeiten)
- 3 Stunden Lagerung der erkalteten Kerne im Klimaschrank bei 30 0C und 75 % relativer Luftfeuchte.
- -
Tabelle 1 Zusammensetzung der Formstoffmischungen
a) Alkaliwasserglas mit Modul SiO2 IM2O von ca. 2,3 b) Elkem Microsilica 971 (pyrogene Kieselsäure; Herstellung im Lichtbogenofen) c) gelbes Kartoffeldextrin (Fa. Cerestar) , als Feststoff zugesetzt d) Ethylcellulose (Ethocel®, Fa. Dow), als Feststoff zugesetzt e) Kartoffelstärkederivat (Emdex GDH 43, Fa. Emsland-Stärke GmbH) , als Feststoff zugesetzt - 4 -
Tabelle 2 Biegefestigkeiten
Ergebnis
Einfluss des zugesetzten Kohlenhydrats
Beispiel 1.1 zeigt, dass ohne Zusatz von amorphem Siliciumdioxid oder eines Kohlenhydrates keine ausreichenden Heißfestigkeiten erzielt werden können. Auch die Lagerbeständigkeit der mit Formstoffmischung 1.1 hergestellten Kerne zeigt, dass mit dieser keine prozesssichere Serienkernfertigung möglich ist. Durch Zusatz von amorphem Siliciumdioxid lassen sich die Heißfestigkeiten steigern (Beispiel 1.2 und 1.3), so dass die Kerne über eine ausreichende Festigkeit verfügen, um diese nach der Kernherstellung direkt weiterzuverarbeiten. Die Zugabe von amorphem Siliciumdioxid verbessert die Lagerbeständigkeit der Kerne, insbesondere bei hoher relativer Luftfeuchtigkeit. Der Zusatz von Koh- lenhydratverbindungen, insbesondere von Dextrin-Verbindungen (Beispiel 1.4), führt überraschenderweise ähnlich wie im Falle des amorphen Siliciumdioxids zur Verbesserung der Heißfestigkeit. Zusätzlich zeigt sich im Vergleich zu Formstoffmischung - -
1.1 eine verbesserte Lagerbeständigkeit der hergestellten Kerne. Die kombinierte Zugabe von amorphen Siliciumdioxid und Dextrin (Beispiel 1.5) zeigt besonders hohe Sofortfestigkeiten und eine weiterhin optimierte Lagerbeständigkeit. Auch die Endfestigkeiten sind gegenüber den anderen Mischungen deutlich erhöht. Die Verwendung von Ethylcellulose (Beispiel 1.6) oder eines Kartoffelstärkederivates (Beispiel 1.7) in Kombination mit amorphem Siliciumdioxid ermöglicht ebenfalls eine prozesssichere Kernherstellung. Auch eine Zugabe von nur 0,1% Kartoffeldextrin (Mischung 1.8) wirkt sich positiv auf die Sofortfestigeiten und die Lagerbeständigkeit der Kerne aus (im Vergleich zu Mischung 1.3)
Beispiel 2
Einfluss von synthetisch hergestelltem amorphem Siliciumdioxid und verschiedenen Kohlenhydraten auf die Gussoberfläche der mit Formkörpern oben genannter Formstoffmischung (Tabelle 1) hergestellten Gussstücke.
Georg-Fischer-Prüfriegel der Formstoffmischungen 1.1 bis 1.8 wurden in eine Sandgießform derart eingebaut, dass während des Gießprozesses drei der vier Längsseiten mit dem Gießmetall in Verbindung kommen. Gegossen wurde mit einer Aluminiumlegierung Typ 226 bei einer Gießtemperatur von 735°C. Nach Abkühlen der Gießform wurde das Gussstück mittels hochfrequenter Hammerschläge vom Sand befreit. Die Gussteile wurden hinsichtlich der verbleibenden Sandanhaftungen beurteilt.
Der Gussausschnitt der Mischung 1.1 zeigt ebenso wie der Mischungen 1.2 und 1.3 sehr starke Sandanhaftungen. Die kohlenhyd- rathaltige Formstoffmischung (Mischung 1.4) hat . einen positiven Einfluss auf die Gussoberflächenqualität. Die Gussauschnitte der Mischungen 1.5, 1.6 und 1.7 weisen ebenfalls kaum Sandanhaftungen auf, wodurch auch in diesen Fällen der positive Einfluss der Kohlenhydrate (hier in Form von Dextrin und Ethylcellulose) auf die Gussoberflächenqualität bestätigt wird. Selbst die Zugabe von lediglich 0,1% Dextrin (Mischung 1.8) bewirkt gegenüber dem kohlehydratfreien Vergleich (Mischung 1.3) eine deutliche Verbesserung der Oberflächenqualität.

Claims

PATENTANSPRÜCHE
1. Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, mindestens umfassend:
einen feuerfesten Formgrundstoff; ein auf Wasserglas basierendes Bindemittel; einen Anteil eines teilchenförmigen Metalloxids, welches ausgewählt ist aus der Gru^^e von Silicium— dioxid, Aluminiumoxid, Titanoxid und Zinkoxid;
dadurch gekennzeichnet, dass der Formstoffmischung ein Kohlenhydrat zugesetzt ist.
2. Formstoffmischung nach Anspruch 1, dadurch gekennzeichnet, dass der Anteil des Kohlenhydrats, bezogen auf den feuerfesten Formgrundstoff, im Bereich von 0,01 bis 5 Gew.-% gewählt ist, bevorzugt im Bereich von 0,02 bis 2,5 Gew.-%, besonders bevorzugt im Bereich von 0,05 bis 2,5%, insbesondere bevorzugt im Bereich von 0,1 bis 0,4 Gew.-%.
3. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kohlenhydrat ein Oligo- oder Polysaccharid ist.
4. Formstoffmischung nach Anspruch 4, dadurch gekennzeichnet, dass das Oligo- oder Polysaccharid eine Molmasse im Bereich von 1.000 bis 100.000 g/mol, vorzugsweise 2.000 und 30.000 g/mol aufweist.
5. Formstoffmischung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Polysaccharid aus Glucoseeinheiten aufgebaut ist.
6. Formstoffmischung nach einer der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kohlenhydrat ausgewählt ist aus der Gruppe von Cellulose, Stärke und Dextrinen sowie Derivaten dieser Kohlenhydrate.
7. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kohlenhydrat ein underiva- tisiertes Kohlenhydrat ist.
8. Formstoffmischung nach Anspruch 6 dadurch gekennzeichnet, dass das Dextrin ausgewählt ist aus der Gruppe von Kartoffeldextrin, Maisdextrin, Gelbdextrin, Weißdextrin, Boraxdextrin, Cyclodextrin und Maltodextrin.
9. Formstoffmischung nach Anspruch 6 dadurch gekennzeichnet, dass die Stärke ausgewählt ist aus der Gruppe von Kartoffel-, Mais-, Reis-, Erbsen, Bananen-, Rosskastanien oder Weizenstärke.
10. Formstoffmischung nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Formstoffmischung ein Phosphat zugesetzt ist.
11. Formstoffmischung nach Anspruch 10, dass die phosphorhalti- ge Verbindung ein Orthophosphat, Metaphosphat oder PoIy- phosphat ist.
12. Formstoffmischung nach Anspruch 10, dadurch gekennzeichnet, dass das Phosphat ein organisches Phosphat ist, welches vorzugsweise abgeleitet ist aus der Gruppe der Alkyl-, A- ryl-, oder kohlenhydrathaltigen Phosphate.
13. Formstoffmischung nach einem der Ansprüche 10 bis 12 dadurch gekennzeichnet, dass der Anteil der phosphorhaltigen Verbindung, bezogen auf den feuerfesten Formgrundstoff, zwischen 0,05 und 1,0 Gew.-% gewählt ist.
14. Formstoffmischung nach einem der Ansprüche 10 bis 13 dadurch gekennzeichnet, dass die phosphorhaltige Verbindung einen Phosphorgehalt von 0,5 bis 90 Gew.-% aufweist, berechnet als P2O5.
15. Formstoffmischung nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass das teilchenförmige Metalloxid ausgewählt ist aus der Gruppe von Fällungskieselsäure und pyrogener Kieselsäure.
16. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wasserglas ein Modul Siθ2/M2O im Bereich von 1,6 bis 4,0, insbesondere 2,0 bis 3,5 aufweist, wobei M Natriumionen und/oder Kaliumionen bedeutet .
17. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wasserglas einen Feststoffanteil an SiO2 und M2O im Bereich von 30 bis 60 Gew.-% aufweist .
18. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bindemittel in einem Anteil von weniger als 20 Gew.-% in der Formstoffmischung enthalten ist.
19. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das teilchenförmige Metalloxid in einem Anteil von 2 bis 80 Gew.-% bezogen auf das Bindemittel enthalten ist. - -
20. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formgrundstoff zumindest einen Anteil von Mikrohohlkugeln enthält.
21. Formstoffmischung nach Anspruch 20, dadurch gekennzeichnet, dass die Mikrohohlkugeln Aluminiumsilikatmikrohohlkugeln und/ oder Glasmikrohohlkugeln sind.
22. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formgrundstoff zumindest einen Anteil an Glasgranulat, Glasperlen und/oder kugelförmigen keramischen Formkörpern enthält.
23. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formgrundstoff zumindest einen Anteil an Mullit, Chromerzsand und/oder Olivin enthält.
24. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formstoffmischung ein oxi- dierbares Metall und ein Oxidationsmittel zugesetzt ist.
25. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Formstoffmischung einen Anteil eines plättchenförmigen Schmiermittels enthält.
26. Formstoffmischung nach Anspruch 24, dadurch gekennzeichnet, dass das plättchenförmige Schmiermittel ausgewählt ist aus Grafit, Molybdänsulfid, Talkum und/oder Pyrophyllit.
27. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Formstoffmischung einen Anteil zumindest eines bei Raumtemperatur festen organischen Additivs enthält. - -
28. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Formstoffmischung zumindest ein Silan oder Siloxan enthält.
29. Verfahren zur Herstellung von Gießformen für die Metallverarbeitung, mit den Schritten:
Herstellen einer Formstoffmischung nach einem der Ansprüche 1 bis 28;
Formen der Formstoffmischung;
Aushärten der geformten Formstoffmischung, indem die geformte Formstoffmischung erwärmt wird, wobei die ausgehärtete Gießform erhalten wird.
30. Verfahren nach Anspruch 29 dadurch gekennzeichnet, dass die Formstoffmischung auf eine Temperatur im Bereich von 100 bis 300 0C erwärmt wird.
31. Verfahren nach einem der Ansprüche 29 oder 30 dadurch gekennzeichnet, dass zum Aushärten erhitzte Luft in die geformte Formstoffmischung eingeblasen wird.
32. Verfahren nach einem der Ansprüche 29 bis 31, dadurch gekennzeichnet, dass das Erwärmen der Formstoffmischung durch Einwirkung von Mikrowellen bewirkt wird.
33. Verfahren nach einem der Ansprüche 29 bis 32, dadurch gekennzeichnet das die Gießform ein Speiser ist.
34. Gießform, erhalten nach einem Verfahren gemäß einem der Ansprüche 29 -bis- 33.
35. Verwendung der Gießform nach Anspruch 34 für den Metall- guss, insbesondere Leichtmetallguss .
EP07819173.1A 2006-10-19 2007-10-19 Kohlenhydrathaltige formstoffmischung mit ein anteil eines teilchenförmigen metalloxids zum auf wasserglas basierendem bindemittel zugesetz Active EP2104580B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202007019192U DE202007019192U1 (de) 2006-10-19 2007-10-19 Kohlenhydrathaltige Formstoffmischung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006049379A DE102006049379A1 (de) 2006-10-19 2006-10-19 Phosphorhaltige Formstoffmischung zur Herstellung von Giessformen für die Metallverarbeitung
DE200610061876 DE102006061876A1 (de) 2006-12-28 2006-12-28 Kohlenhydrathaltige Formstoffmischung
PCT/EP2007/009108 WO2008046651A1 (de) 2006-10-19 2007-10-19 Kohlenhydrathaltige formstoffmischung

Publications (3)

Publication Number Publication Date
EP2104580A1 true EP2104580A1 (de) 2009-09-30
EP2104580B1 EP2104580B1 (de) 2016-08-03
EP2104580B2 EP2104580B2 (de) 2022-02-23

Family

ID=38893297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07819173.1A Active EP2104580B2 (de) 2006-10-19 2007-10-19 Kohlenhydrathaltige formstoffmischung mit ein anteil eines teilchenförmigen metalloxids zum auf wasserglas basierendem bindemittel zugesetz

Country Status (14)

Country Link
US (1) US20100224756A1 (de)
EP (1) EP2104580B2 (de)
JP (1) JP5170813B2 (de)
KR (1) KR101420891B1 (de)
AU (1) AU2007312540B2 (de)
BR (1) BRPI0718281B1 (de)
CA (1) CA2666760C (de)
DE (1) DE202007019192U1 (de)
EA (1) EA015239B1 (de)
ES (1) ES2593078T5 (de)
HU (1) HUE029506T2 (de)
MX (1) MX2009004130A (de)
PL (1) PL2104580T5 (de)
WO (1) WO2008046651A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114628A1 (de) 2017-06-30 2019-01-03 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Formstoffmischung und eines Formkörpers daraus in der Gießereiindustrie sowie Kit zur Anwendung in diesem Verfahren

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049379A1 (de) 2006-10-19 2008-04-24 Ashland-Südchemie-Kernfest GmbH Phosphorhaltige Formstoffmischung zur Herstellung von Giessformen für die Metallverarbeitung
DE102007051850A1 (de) * 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit
EP2300177B1 (de) * 2008-05-28 2016-01-27 ASK Chemicals GmbH BESCHICHTUNGSMASSEN FÜR GIEßFORMEN UND KERNE ZUR VERMEIDUNG VON NARBIGEN OBERFLÄCHEN
EP2359957A1 (de) * 2010-01-26 2011-08-24 Foseco International Limited Verfahren und Zusammensetzung zur Herstellung von Gussformen und -kernen
EP2660222A4 (de) * 2010-12-30 2017-01-11 Ask Chemicals España, S.A. Antimelierungszusatz zur herstellung von giessformen und kernen
CN102179470B (zh) * 2011-03-29 2013-02-20 龙岩市升伍旗车桥有限公司 易溃散铸造用砂聚合剂及其制备方法
DE102012103705A1 (de) 2012-04-26 2013-10-31 Ask Chemicals Gmbh Verfahren zur Herstellung von Formen und Kernen für den Metallguss sowie nach diesem Verfahren hergestellte Formen und Kerne
DE102012104934A1 (de) 2012-06-06 2013-12-12 Ask Chemicals Gmbh Forstoffmischungen enthaltend Bariumsulfat
DE102012020509A1 (de) 2012-10-19 2014-06-12 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012020510B4 (de) 2012-10-19 2019-02-14 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012020511A1 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
CN104812509A (zh) 2012-11-19 2015-07-29 新东工业株式会社 铸模用砂、砂铸模的造模方法及金属铸造用芯子
DE102012113073A1 (de) 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Aluminiumoxide und/oder Aluminium/Silizium-Mischoxide in partikulärer Form
DE102012113074A1 (de) 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Metalloxide des Aluminiums und Zirkoniums in partikulärer Form
DE102013106276A1 (de) 2013-06-17 2014-12-18 Ask Chemicals Gmbh Lithiumhaltige Formstoffmischungen auf der Basis eines anorganischen Bindemittels zur Herstellung von Formen und Kernen für den Metallguss
US10092947B2 (en) 2013-10-19 2018-10-09 Peak Deutschland Gmbh Method for producing lost cores or molded parts for the production of cast parts
DE102013114581A1 (de) 2013-12-19 2015-06-25 Ask Chemicals Gmbh Verfahren zur Herstellung von Formen und Kernen für den Metallguss unter Verwendung einer Carbonylverbindung sowie nach diesem Verfahren hergestellte Formen und Kerne
KR101527909B1 (ko) * 2014-12-16 2015-06-10 한국생산기술연구원 주조용 무기 바인더 조성물
ITUA20162227A1 (it) * 2016-04-01 2017-10-01 Cavenaghi S P A Sistema legante inorganico per fonderia
CN108393430B (zh) * 2017-02-04 2020-05-08 济南圣泉集团股份有限公司 一种铸造水玻璃用固化剂
DE102017106686A1 (de) 2017-03-28 2018-10-04 Ask Chemicals Gmbh Formstoffmischung enthaltend Additive zur Reduzierung von Gussfehlern
EP3687309B1 (de) * 2017-09-28 2024-02-14 Specialty Operations France Verfahren zur trocknung von polysacchariden
BR112020019759B1 (pt) * 2018-03-30 2023-11-28 Imerys USA, Inc Composições aglutinates, composição de areia verde e método de moldagem de artigo
CN113195194A (zh) * 2018-12-20 2021-07-30 普罗奥尼克股份有限公司 包括糖组分的模塑组合物
DE102019116406A1 (de) 2019-06-17 2020-12-17 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Additivmischung für Formstoffmischungen zur Herstellung wasserglasgebundener Gießereiformen und Gießereikerne
DE102019131241A1 (de) 2019-08-08 2021-02-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechendes Granulat sowie Kit, Vorrichtungen und Verwendungen
CN111253150B (zh) * 2020-03-03 2021-04-16 武汉理工大学 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法
DE102020119013A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechende Form, Kern, Speiserelement oder Formstoffmischung sowie Vorrichtungen und Verwendungen
RU2759346C1 (ru) * 2021-04-13 2021-11-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Связующее для формовочных и стержневых смесей литейного производства
DE102022116209A1 (de) 2022-06-29 2024-01-04 Bayerische Motoren Werke Aktiengesellschaft Einbettmasse, Verfahren zum Herstellen einer Gussform sowie Verfahren zum Herstellen eines Bauteils durch Gießen
CN116196978B (zh) * 2023-03-09 2024-01-30 山东新和成药业有限公司 一种用于制备六甲基茚满醇的催化剂及其制备方法和应用

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB782205A (en) * 1955-03-07 1957-09-04 Foundry Services Ltd Improvements in or relating to sand cores
BE551767A (de) 1955-10-14
US2926098A (en) * 1955-10-14 1960-02-23 Diamond Alkali Co Binder for foundry molds
BE560558A (de) * 1956-09-05
GB902199A (en) 1958-03-20 1962-07-25 Starch Products Ltd Improvements in binders for foundry purposes
US2948627A (en) * 1958-04-24 1960-08-09 Du Pont Molding composition and process for producing same
GB1007272A (en) * 1960-11-21 1965-10-13 Mo Och Domsjoe Ab Improvements in or relating to the production of foundry cores and moulds
GB1078666A (en) * 1964-08-20 1967-08-09 Foseco Int Additives to sand moulds and cores
US3429848A (en) 1966-08-01 1969-02-25 Ashland Oil Inc Foundry binder composition comprising benzylic ether resin,polyisocyanate,and tertiary amine
GB1240877A (en) 1968-07-26 1971-07-28 British Non Ferrous Metals Res Foundry moulding sand compositions
AU2236370A (en) 1969-11-17 1972-05-18 Minerals, Binders, Clays (Proprietary) Limited Improvements in the co2 process for bonding, moulding and core sands in foundries
US4162238A (en) * 1973-07-17 1979-07-24 E. I. Du Pont De Nemours And Company Foundry mold or core compositions and method
JPS52138434A (en) * 1976-05-14 1977-11-18 Toyo Kogyo Co Self harden molding material
DE3403583A1 (de) 1984-02-02 1985-08-08 Seaders, John, Corvallis, Oreg. Bindemittelgemisch zur verfestigung
JPS61126942A (ja) * 1984-11-26 1986-06-14 Chuzo Gijutsu Fukiyuu Kyokai Co↓2ガス法鋳型用粘結剤
IT1207835B (it) * 1987-03-04 1989-06-01 Mi Chi Sa Mineraria Chimica Sa Additivo per terre di formatura a verde.
JPH02220729A (ja) * 1989-02-21 1990-09-03 Mazda Motor Corp 鋳造用鋳型及びその製造方法
US5382289A (en) 1993-09-17 1995-01-17 Ashland Oil, Inc. Inorganic foundry binder systems and their uses
US5474606A (en) * 1994-03-25 1995-12-12 Ashland Inc. Heat curable foundry binder systems
US6139619A (en) 1996-02-29 2000-10-31 Borden Chemical, Inc. Binders for cores and molds
IL127412A0 (en) * 1996-06-25 1999-10-28 Borden Chem Inc Binders for cores and molds
DE19632293C2 (de) 1996-08-09 1999-06-10 Thomas Prof Dr In Steinhaeuser Verfahren zur Herstellung von Kernformlingen für die Gießereitechnik
GB9624340D0 (en) * 1996-11-22 1997-01-08 Foseco Int Sand reclamation
JPH10298610A (ja) * 1997-04-25 1998-11-10 Shimizu Shokuhin Kk 成形金型及びその製造方法
DE19925167A1 (de) 1999-06-01 2000-12-14 Luengen Gmbh & Co Kg As Exotherme Speisermasse
DE29925010U1 (de) * 1999-10-26 2008-09-04 Mincelco Gmbh Wasserglasgebundener Kernformstoff
US6416572B1 (en) * 1999-12-02 2002-07-09 Foseco International Limited Binder compositions for bonding particulate material
US6860319B2 (en) * 2003-06-04 2005-03-01 American Colloid Company Acid activated clay for use in foundry sand
FR2871155B1 (fr) * 2004-06-02 2007-04-27 Roquette Freres Utilisation de polysaccharides particuliers pour l'adjuvantation de matieres minerales
DE102004042535B4 (de) * 2004-09-02 2019-05-29 Ask Chemicals Gmbh Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008046651A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114628A1 (de) 2017-06-30 2019-01-03 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Formstoffmischung und eines Formkörpers daraus in der Gießereiindustrie sowie Kit zur Anwendung in diesem Verfahren
WO2019002452A1 (de) 2017-06-30 2019-01-03 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer formstoffmischung und eines formkörpers daraus in der giessereiindustrie sowie kit zur anwendung in diesem verfahren und anlage zur verwendung bei diesem verfahren

Also Published As

Publication number Publication date
BRPI0718281B1 (pt) 2015-09-15
KR101420891B1 (ko) 2014-07-30
PL2104580T3 (pl) 2017-02-28
EP2104580B1 (de) 2016-08-03
EA200970391A1 (ru) 2010-02-26
EP2104580B2 (de) 2022-02-23
MX2009004130A (es) 2009-06-03
CA2666760A1 (en) 2008-04-24
WO2008046651A1 (de) 2008-04-24
JP5170813B2 (ja) 2013-03-27
AU2007312540A1 (en) 2008-04-24
JP2010506730A (ja) 2010-03-04
HUE029506T2 (en) 2017-02-28
US20100224756A1 (en) 2010-09-09
AU2007312540B2 (en) 2011-09-22
PL2104580T5 (pl) 2023-02-20
KR20090076979A (ko) 2009-07-13
ES2593078T5 (es) 2022-05-31
DE202007019192U1 (de) 2011-02-03
BRPI0718281A2 (pt) 2013-11-19
EA015239B1 (ru) 2011-06-30
ES2593078T3 (es) 2016-12-05
CA2666760C (en) 2014-10-28

Similar Documents

Publication Publication Date Title
EP2104580B1 (de) Kohlenhydrathaltige formstoffmischung mit ein anteil eines teilchenförmigen metalloxids zum auf wasserglas basierendem bindemittel zugesetz
EP2097192B1 (de) Phosphorhaltige formstoffmischung zur herstellung von giessformen für die metallverarbeitung
EP2209572B1 (de) Formstoffmischung mit verbesserter fliessfähigkeit
EP2117749B1 (de) Thermische regenerierung von giessereisand
EP2392424B1 (de) Verfahren zur Herstellung von Giessformen für die Metallverarbeitung, Giessformen hergestellt nach dem Verfahren und deren Verwendung
DE102012020510B4 (de) Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
EP3010669B1 (de) Verfahren zur herstellung von lithiumhaltigen formstoffmischungen auf der basis eines anorganischen bindemittels zur herstellung von formen und kernen für den metallguss
EP2858770B1 (de) Formstoffmischungen enthaltend bariumsulfat sowie verfahren zur herstellung von giessformen / kernen, verfahren zum aluminiumguss und form oder kern somit herstellbar
EP3950168A1 (de) Formstoffmischungen auf der basis anorganischer bindemittel zur herstellung von formen und kernen für den metallguss
DE102012020511A1 (de) Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
EP3060362A2 (de) Formstoffmischungen enthaltend eine oxidische bor-verbindung und verfahren zur herstellung von formen und kernen
DE102018200607A1 (de) Verfahren zur Erzeugung von für die Herstellung von Faserverbundkörpern oder Gussteilen aus Metall oder Kunststoff geeigneten Formen und Kernen, bei dem Verfahren einsetzbare Formgrundstoffe und Binder sowie gemäß dem Verfahren hergestellte Formen und Kerne
DE102006061876A1 (de) Kohlenhydrathaltige Formstoffmischung
EP3986634A1 (de) Geschlichtete giessformen erhältlich aus einer formstoffmischung enthaltend ein anorganisches bindemittel und phosphahaltige verbindungen und oxidische borverbindungen und verfahren zu deren herstellung und deren verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R138

Ref document number: 202007019192

Country of ref document: DE

Free format text: GERMAN DOCUMENT NUMBER IS 502007014991

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASK CHEMICALS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160122

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

INTG Intention to grant announced

Effective date: 20160630

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 817011

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014991

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2593078

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161203

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E029506

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007014991

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: HUETTENES-ALBERTUS CHEMISCHE-WERKE GMBH

Effective date: 20170503

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161019

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161019

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20181022

Year of fee payment: 12

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APAW Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20201014

Year of fee payment: 14

Ref country code: NL

Payment date: 20201020

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20201022

Year of fee payment: 14

Ref country code: HU

Payment date: 20201006

Year of fee payment: 14

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220223

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007014991

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2593078

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20220531

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211101

REG Reference to a national code

Ref country code: SK

Ref legal event code: T5

Ref document number: E 21884

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211020

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221220

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230623

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231016

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 17

Ref country code: FR

Payment date: 20231023

Year of fee payment: 17

Ref country code: CZ

Payment date: 20231009

Year of fee payment: 17

Ref country code: AT

Payment date: 20231019

Year of fee payment: 17