CN111253150B - 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法 - Google Patents

一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法 Download PDF

Info

Publication number
CN111253150B
CN111253150B CN202010139254.7A CN202010139254A CN111253150B CN 111253150 B CN111253150 B CN 111253150B CN 202010139254 A CN202010139254 A CN 202010139254A CN 111253150 B CN111253150 B CN 111253150B
Authority
CN
China
Prior art keywords
ceramic substrate
mullite
blank
base material
composite ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010139254.7A
Other languages
English (en)
Other versions
CN111253150A (zh
Inventor
徐晓虹
楚士军
吴建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010139254.7A priority Critical patent/CN111253150B/zh
Publication of CN111253150A publication Critical patent/CN111253150A/zh
Application granted granted Critical
Publication of CN111253150B publication Critical patent/CN111253150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明提供一种电子封装用莫来石‑刚玉复合陶瓷基片的制备方法,包括如下步骤:步骤1):准备基料,所述基料按质量百分比含5%~15%的高岭土和85%~95%的氧化铝;准备辅料,所述辅料由氧化镁和氧化钼组成,其中氧化镁用量为所述基料质量的0.5%~1.5%,氧化钼用量为所述基料质量的5%~10%;步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;步骤4):将所述坯料压制成陶瓷基片坯体;步骤5):将所述陶瓷基片坯体干燥后,烧成,冷却后得到莫来石‑刚玉复合陶瓷基片。本发明方法制备得到的莫来石‑刚玉复合陶瓷基片力学性能和介电性能显著提高。

Description

一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法
技术领域
本发明属于电子封装用陶瓷材料技术领域,具体涉及一种电子封装用莫来石 -刚玉复合陶瓷基片的制备方法。
背景技术
电子封装用陶瓷基片是一种为电子元器件及其相互联线提供机械承载支撑、气密性保护和促进电气设备散热的底座电子元件。因其绝缘性能好、介电常数较小、高频特性好、热膨胀系数小、热导率高等优点而使其被广泛用于航空、航天和军事工程的产品封装。而氧化铝陶瓷基片因原料来源丰富、价格低廉、机械强度高、硬度高、尺寸精度高等优点被广泛应用于电子工业。
氧化铝陶瓷基片中氧化铝含量增加会提高基片的电绝缘性、热导率和耐冲击性等性能。但氧化铝含量增加会导致基片介电常数的增加,使得高频信号通过基片材料时发生信号延时,降低传输效率。并且氧化铝含量的增加也会导致烧成温度增加和生产成本较高。目前,氧化铝陶瓷基片的研究主要集中在如何降低烧成温度并保证陶瓷基片的电学性能。许多研究学者通过添加不同的烧结助剂来降低烧成温度,或者改善介电性能。
目前,氧化铝陶瓷基片采用的烧结助剂主要是稀土氧化物、盐类以及其他金属氧化物等。中国发明专利《A99微波混合集成电路陶瓷基片及其制备方法》(CN 107739196A)公开了一种以纯度为99.9%以上的超细氧化铝粉体为原料,以氧化钐、氧化钇、氧化镧中的一种或多种为烧结助剂,再添加分散剂、粘合剂、增塑剂等多种助剂,采用流延成型制备陶瓷基片的方法,其介电常数为9.8±0.2,但其烧结温度高达1600℃。中国发明专利《一种电子封装用低成本高强氧化铝陶瓷基片的制备方法》(CN 106810214B)公布了一种以粒径为2.0±0.5μm、铁杂质含量低于20ppm的高纯氧化铝细粉为原料,添加0.5~5.0wt%的D50小于1.0μm且纯度大于99.9%的氧化锆或氮化硅增强剂,以及由SiO2、Cr2O3、TiO2 和碱式碳酸镁构成的烧结助剂,通过流延法制备获得氧化铝陶瓷基片的方法,其介电常数为8.8~9.7,但烧结温度高达1600~1800℃。中国发明专利《一种集成电路陶瓷基片材料及其制备方法》(CN 104710165B)公布了一种以三氧化二铝、莫来石、碳化硅为主要原料,以氧化铍、氧化钙、碳化锆、氧化镁、氮化钽为烧结助剂制备集成电路陶瓷基片的方法,其烧结温度虽低至1100℃,但其介电常数高达12~16。
可见目前所用的烧结助剂很难在降低陶瓷基片烧结温度的同时也能改善基片的介电性能。
发明内容
针对上述技术问题,本发明提供了一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法,该方法制备得到的莫来石-刚玉复合陶瓷基片力学性能和介电性能显著提高。
本发明采用的技术方案为:
一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法,其特征在于,包括如下步骤:
步骤1):准备基料,所述基料按质量百分比含5%~15%的高岭土和85%~95%的氧化铝;准备辅料,所述辅料由氧化镁和氧化钼组成,其中氧化镁用量为所述基料质量的0.5%~1.5%,氧化钼用量为所述基料质量的5%~10%;
步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;
步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;
步骤4):将所述坯料压制成陶瓷基片坯体;
步骤5):将所述陶瓷基片坯体干燥后,烧成,冷却后得到莫来石-刚玉复合陶瓷基片。
进一步,步骤1)中,所述高岭土为煤系高岭土,过250目筛。
再进一步,步骤1)中,按质量百分比,所述高岭土的成分为49.13%的SiO2、35.55%的Al2O3、0.12%的Fe2O3、0.4%的TiO2、0.04%的CaO和14.76% 的烧失量。
进一步,步骤2)中,球磨混合时长为0.5h~1.5h。
进一步,步骤3)中,喷雾法造粒过程中,水的加入量为混合料质量的 6%~10%,得到的颗粒粒径为0.5mm~1.5mm。
进一步,步骤4)中,所述坯料压制过程为,先在12MPa~14MPa压力下预压成型,预压时长为30s~60s;再在170MPa~180MPa压强下等静压成型,保压时长为60s~90s。
进一步,步骤5)中,干燥温度为95℃~100℃,干燥时长为24h。
进一步,步骤5)中,所述烧成的烧成制度为:升温速率为5℃/min;当温度小于1000℃时,在100℃保温30min,之后每隔100℃保温30min;当温度大于等于1000℃且小于最高烧成温度1520℃~1540℃时,在1000℃保温60min,之后每隔100℃保温60min;升温达到最高烧成温度1520℃~1540℃后,保温 2h~3h,之后随炉冷却。
本发明可获得的有益效果有:
1.莫来石-刚玉复合陶瓷基片力学性能和介电性能性能优异。其抗折强度最高可达354.62MPa,断裂韧性可达3.39MPa·m1/2,介电常数低至7.21。氧化钼的加入诱导刚玉晶粒包裹莫来石晶粒,从而使得基片具有良好的力学性能和介电性能。其抗折强度和介电常数均已经超过厚膜集成电路用氧化铝陶瓷基片国家标准(GBT 14619-1993)的要求。
2.节约成本,环境友好。煤系高岭土化学组成复杂,其多种成份在烧结过程中能够起到烧结助剂的作用,煤系高岭土的加入使得样品在较低温度下能达到一个较高的致密度,大大降低烧成温度,节约能源。且煤系高岭土作为采煤过程中产生的固体废弃物,价格低廉,将其应用于陶瓷基片中,大大降低成本。综合考虑,基片成本至少降低1/3。
具体实施方式
本发明为一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法,为了更好地理解本发明,下面以案例对比的方式进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
本发明各实施例采用山西煤系高岭土,其化学组成如下表:
Figure BDA0002398474510000031
去除烧失量后纯度为99.34wt.%,过筛后颗粒粒径为0.05mm~0.06mm。
将上述煤系高岭土粉碎,粉碎料用快速球磨机球磨30min,过250目筛。
实施例1
步骤1):准备基料,所述基料按质量百分比含10%的高岭土和90%的氧化铝;准备辅料,所述辅料由氧化镁和氧化钼组成,其中氧化镁用量为所述基料质量的1%,氧化钼用量为所述基料质量的8%;
步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;球磨混合时长为0.5h,球磨后过250目筛;
步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;喷雾法造粒过程中,水的加入量为混合料质量的6%,得到的颗粒粒径为0.5mm~1.5mm;陈腐时长为24h;
步骤4):将所述坯料压制成陶瓷基片坯体;坯料压制过程为,先在12MPa 压力下预压成型,预压时长为60s;再在180MPa压强下等静压成型,保压时长为60s;坯体尺寸为30mm×3.7mm×3.7mm的条状(用于测抗折强度)和直径为30mm的圆片(用于测介电常数);
步骤5):将所述陶瓷基片坯体置于电热鼓风干燥箱中于95℃下干燥24h,干燥后,置于硅钼高温炉中烧成,冷却后得到莫来石-刚玉复合陶瓷基片;其中,所述烧成的烧成制度为:升温速率为5℃/min;当温度小于1000℃时,在100℃保温30min,之后每隔100℃保温30min;当温度大于等于1000℃且小于最高烧成温度1520~1540℃时,在1000℃保温60min,之后每隔100℃保温60min;升温达到最高烧成温度1540℃后,保温2h,之后随炉冷却。
实施例2
步骤1):准备基料,所述基料按质量百分比含10%的高岭土和90%的氧化铝;准备辅料,所述辅料为氧化镁,其中氧化镁用量为所述基料质量的1%;
步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;球磨混合时长为0.5h,球磨后过250目筛;
步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;喷雾法造粒过程中,水的加入量为混合料质量的6%,得到的颗粒粒径为0.5mm~1.5mm;陈腐时长为24h;
步骤4):将所述坯料压制成陶瓷基片坯体;坯料压制过程为,先在12MPa 压力下预压成型,预压时长为60s;再在180MPa压强下等静压成型,保压时长为60s;坯体尺寸为30mm×3.7mm×3.7mm的条状(用于测抗折强度)和直径为30mm的圆片(用于测介电常数);
步骤5):将所述陶瓷基片坯体置于电热鼓风干燥箱中于95℃下干燥24h,干燥后,置于硅钼高温炉中烧成,冷却后得到莫来石-刚玉复合陶瓷基片;其中,所述烧成的烧成制度为:升温速率为5℃/min;当温度小于1000℃时,在100℃保温30min,之后每隔100℃保温30min;当温度大于等于1000℃且小于最高烧成温度1520~1540℃时,在1000℃保温60min,之后每隔100℃保温60min;升温达到最高烧成温度1540℃后,保温2h,之后随炉冷却。
经测试,实施例1与实施例2所得莫来石-刚玉复合陶瓷基片性能数据如下:
Figure BDA0002398474510000051
可见,氧化钼的加入显著提高了陶瓷基片的力学性能和介电性能。
实施例3
步骤1):准备基料,所述基料按质量百分比含5%的高岭土和95%的氧化铝;准备辅料,所述辅料由氧化镁和氧化钼组成,其中氧化镁用量为所述基料质量的1%,氧化钼用量为所述基料质量的10%;
步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;球磨混合时长为0.5h,球磨后过250目筛;
步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;喷雾法造粒过程中,水的加入量为混合料质量的8%,得到的颗粒粒径为0.5mm~1.5mm;陈腐时长为24h;
步骤4):将所述坯料压制成陶瓷基片坯体;坯料压制过程为,先在13MPa 压力下预压成型,预压时长为45s;再在180MPa压强下等静压成型,保压时长为75s;坯体尺寸为30mm×3.7mm×3.7mm的条状(用于测抗折强度)和直径为30mm的圆片(用于测介电常数);
步骤5):将所述陶瓷基片坯体置于电热鼓风干燥箱中于95℃下干燥24h,干燥后,置于硅钼高温炉中烧成,冷却后得到莫来石-刚玉复合陶瓷基片;其中,所述烧成的烧成制度为:升温速率为5℃/min;当温度小于1000℃时,在100℃保温30min,之后每隔100℃保温30min;当温度大于等于1000℃且小于最高烧成温度1520~1540℃时,在1000℃保温60min,之后每隔100℃保温60min;升温达到最高烧成温度1540℃后,保温2.5h,之后随炉冷却。
实施例4
步骤1):准备基料,所述基料按质量百分比含5%的高岭土和95%的氧化铝;准备辅料,所述辅料为氧化镁,其中氧化镁用量为所述基料质量的1%;
步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;球磨混合时长为0.5h,球磨后过250目筛;
步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;喷雾法造粒过程中,水的加入量为混合料质量的8%,得到的颗粒粒径为0.5mm~1.5mm;陈腐时长为24h;
步骤4):将所述坯料压制成陶瓷基片坯体;坯料压制过程为,先在13MPa 压力下预压成型,预压时长为45s;再在180MPa压强下等静压成型,保压时长为75;坯体尺寸为30mm×3.7mm×3.7mm的条状(用于测抗折强度)和直径为30mm的圆片(用于测介电常数);
步骤5):将所述陶瓷基片坯体置于电热鼓风干燥箱中于95℃下干燥24h,干燥后,置于硅钼高温炉中烧成,冷却后得到莫来石-刚玉复合陶瓷基片;其中,所述烧成的烧成制度为:升温速率为5℃/min;当温度小于1000℃时,在100℃保温30min,之后每隔100℃保温30min;当温度大于等于1000℃且小于最高烧成温度1520~1540℃时,在1000℃保温60min,之后每隔100℃保温60min;升温达到最高烧成温度1540℃后,保温2.5h,之后随炉冷却。
经测试,实施例3与实施例4所得莫来石-刚玉复合陶瓷基片性能数据如下:
Figure BDA0002398474510000061
可见,氧化钼的加入显著提高了陶瓷基片的力学性能和介电性能。
实施例5
步骤1):准备基料,所述基料按质量百分比含15%的高岭土和85%的氧化铝;准备辅料,所述辅料由氧化镁和氧化钼组成,其中氧化镁用量为所述基料质量的1%,氧化钼用量为所述基料质量的5%;
步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;球磨混合时长为0.5h,球磨后过250目筛;
步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;喷雾法造粒过程中,水的加入量为混合料质量的10%,得到的颗粒粒径为0.5mm~1.5mm;陈腐时长为24h;
步骤4):将所述坯料压制成陶瓷基片坯体;坯料压制过程为,先在14MPa 压力下预压成型,预压时长为30s;再在180MPa压强下等静压成型,保压时长为90s;坯体尺寸为30mm×3.7mm×3.7mm的条状(用于测抗折强度)和直径为30mm的圆片(用于测介电常数);
步骤5):将所述陶瓷基片坯体置于电热鼓风干燥箱中于95℃下干燥24h,干燥后,置于硅钼高温炉中烧成,冷却后得到莫来石-刚玉复合陶瓷基片;其中,所述烧成的烧成制度为:升温速率为5℃/min;当温度小于1000℃时,在100℃保温30min,之后每隔100℃保温30min;当温度大于等于1000℃且小于最高烧成温度1520~1540℃时,在1000℃保温60min,之后每隔100℃保温60min;升温达到最高烧成温度1520℃后,保温3h,之后随炉冷却。
实施例6
步骤1):准备基料,所述基料按质量百分比含15%的高岭土和85%的氧化铝;准备辅料,所述辅料为氧化镁,其中氧化镁用量为所述基料质量的1%;
步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;球磨混合时长为0.5h,球磨后过250目筛;
步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;喷雾法造粒过程中,水的加入量为混合料质量的10%,得到的颗粒粒径为0.5mm~1.5mm;陈腐时长为24h;
步骤4):将所述坯料压制成陶瓷基片坯体;坯料压制过程为,先在14MPa 压力下预压成型,预压时长为30s;再在180MPa压强下等静压成型,保压时长为90s;坯体尺寸为30mm×3.7mm×3.7mm的条状(用于测抗折强度)和直径为30mm的圆片(用于测介电常数);
步骤5):将所述陶瓷基片坯体置于电热鼓风干燥箱中于95℃下干燥24h,干燥后,置于硅钼高温炉中烧成,冷却后得到莫来石-刚玉复合陶瓷基片;其中,所述烧成的烧成制度为:升温速率为5℃/min;当温度小于1000℃时,在100℃保温30min,之后每隔100℃保温30min;当温度大于等于1000℃且小于最高烧成温度1520~1540℃时,在1000℃保温60min,之后每隔100℃保温60min;升温达到最高烧成温度1520℃后,保温3h,之后随炉冷却。
经测试,实施例5与实施例6所得莫来石-刚玉复合陶瓷基片性能数据如下:
Figure BDA0002398474510000081
可见,氧化钼的加入显著提高了陶瓷基片的力学性能和介电性能。

Claims (7)

1.一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法,其特征在于,包括如下步骤:
步骤1):准备基料,所述基料按质量百分比含5%~15%的高岭土和85%~95%的氧化铝;准备辅料,所述辅料由氧化镁和氧化钼组成,其中氧化镁用量为所述基料质量的0.5%~1.5%,氧化钼用量为所述基料质量的5%~10%;
步骤2):将步骤1)准备的基料和辅料球磨混合,得到混合料;
步骤3):将所述混合料采用喷雾法造粒,然后陈腐,得到坯料;
步骤4):将所述坯料压制成陶瓷基片坯体;
步骤5):将所述陶瓷基片坯体干燥后,烧成,冷却后得到莫来石-刚玉复合陶瓷基片;
步骤5)中,所述烧成的烧成制度为:升温速率为5℃/min;当温度小于1000℃时,在100℃保温30 min,之后每隔100℃保温30 min;当温度大于等于1000℃且小于最高烧成温度1520℃~1540℃时,在1000℃保温60 min,之后每隔100℃保温60 min;升温达到最高烧成温度1520℃~1540℃后,保温2h~3h,之后随炉冷却。
2.根据权利要求1所述的电子封装用莫来石-刚玉复合陶瓷基片的制备方法,其特征在于,步骤1)中,所述高岭土为煤系高岭土,过250目筛。
3.根据权利要求2所述的电子封装用莫来石-刚玉复合陶瓷基片的制备方法,其特征在于,步骤1)中,按质量百分比,所述高岭土的成分为49.13%的SiO2、35.55%的Al2O3、0.12%的Fe2O3、0.4%的TiO2、0.04%的CaO和14.76%的烧失量。
4.根据权利要求1所述的电子封装用莫来石-刚玉复合陶瓷基片的制备方法,其特征在于,步骤2)中,球磨混合时长为0.5h~1.5h。
5.根据权利要求1所述的电子封装用莫来石-刚玉复合陶瓷基片的制备方法,其特征在于,步骤3)中,喷雾法造粒过程中,水的加入量为混合料质量的6%~10%,得到的颗粒粒径为0.5mm~1.5mm。
6.根据权利要求1所述的电子封装用莫来石-刚玉复合陶瓷基片的制备方法,其特征在于,步骤4)中,所述坯料压制过程为,先在12MPa~14MPa压力下预压成型,预压时长为30s~60s;再在170MPa~180MPa压强下等静压成型,保压时长为60s~90s。
7.根据权利要求1所述的电子封装用莫来石-刚玉复合陶瓷基片的制备方法,其特征在于,步骤5)中,干燥温度为95℃~100℃,干燥时长为24h。
CN202010139254.7A 2020-03-03 2020-03-03 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法 Active CN111253150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010139254.7A CN111253150B (zh) 2020-03-03 2020-03-03 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010139254.7A CN111253150B (zh) 2020-03-03 2020-03-03 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法

Publications (2)

Publication Number Publication Date
CN111253150A CN111253150A (zh) 2020-06-09
CN111253150B true CN111253150B (zh) 2021-04-16

Family

ID=70947557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010139254.7A Active CN111253150B (zh) 2020-03-03 2020-03-03 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法

Country Status (1)

Country Link
CN (1) CN111253150B (zh)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125213A (en) * 1978-03-23 1979-09-28 Ngk Spark Plug Co Ceramic sealing material for use in mechanical seal of water pump
US4540621A (en) * 1983-07-29 1985-09-10 Eggerding Carl L Dielectric substrates comprising cordierite and method of forming the same
FR2647105B1 (fr) * 1989-05-22 1991-07-12 Vesuvius France Sa Revetement impermeable pour materiau refractaire, piece revetue de ce materiau et procede de revetement
JP2580439B2 (ja) * 1992-06-26 1997-02-12 京セラ株式会社 高誘電率アルミナ質焼結体およびその製造方法
JPH1143373A (ja) * 1997-07-22 1999-02-16 Toyota Central Res & Dev Lab Inc 複合体の製造方法
US6759740B2 (en) * 2001-03-30 2004-07-06 Kyocera Corporation Composite ceramic board, method of producing the same, optical/electronic-mounted circuit substrate using said board, and mounted board equipped with said circuit substrate
CN1301348C (zh) * 2004-07-02 2007-02-21 北京理工大学 一种制备莫来石单晶纳米带的方法
EA015239B1 (ru) * 2006-10-19 2011-06-30 Ашланд-Зюдхеми-Кернфест Гмбх Формовочная смесь, содержащая углеводы
CN100532319C (zh) * 2007-09-04 2009-08-26 桂林工学院 一种钼刚玉陶瓷材料及低温烧结方法
CN104016668B (zh) * 2014-06-09 2015-12-09 河海大学 一种莫来石陶瓷粉体的制备方法
CN107382286B (zh) * 2017-07-28 2020-06-09 武汉科技大学 一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法
CN108191418A (zh) * 2018-03-02 2018-06-22 合肥铭佑高温技术有限公司 一种玻璃窑用耐腐蚀保温耐火砖
CN108516814B (zh) * 2018-06-14 2020-06-30 哈尔滨工业大学 一种低温制备高强度莫来石陶瓷的方法
CN108751969B (zh) * 2018-06-14 2021-01-19 哈尔滨工业大学 一种耐高温、隔热、透波陶瓷基复合材料及其制备方法

Also Published As

Publication number Publication date
CN111253150A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111620679B (zh) 一种以熔融二氧化硅为硅源制备高纯莫来石材料的方法
Hirao et al. High thermal conductivity silicon nitride ceramics
CN103570370B (zh) 薄带连铸侧封板的热压陶瓷耐火材料及其制备方法
CN101555156A (zh) 一种氮化硼晶须/氮化硅陶瓷复合材料及其制备方法
CN105836717B (zh) 氮化铝电子陶瓷粉末的制备方法
CN111635222B (zh) 一种基于单斜相的低介微波介质陶瓷材料及其制备方法
CN113943159B (zh) 一种碳化硼复合陶瓷的制备方法
CN110981446A (zh) 一种体积稳定型高温台板及制造方法
CN113213894A (zh) 一种高纯氧化铝陶瓷基板及其制备工艺
CN112759402A (zh) 一种高强度黑色氮化铝陶瓷的制备工艺
KR960006248B1 (ko) 질화알루미늄소결체와 그의 제조방법
CN100532319C (zh) 一种钼刚玉陶瓷材料及低温烧结方法
CN111253150B (zh) 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法
CN100509692C (zh) 一种钨刚玉陶瓷材料及低温烧结方法
CN113185268A (zh) 一种氧化铝陶瓷材料的制备方法及氧化铝陶瓷基片
CN108484161B (zh) 一种钛酸铝复合材料及其制备方法
CN111807834A (zh) 一种铸造用钛酸铝陶瓷及其制备方法
CN115536370A (zh) 一种含六铝酸钙的铝镁干式振动料
CN113636852B (zh) 球壳-海绵结构六铝酸钙-镁铝尖晶石复相材料的制备方法
CN115304383A (zh) 一种氮化铝基板及其制备方法与应用
CN110734290A (zh) 一种氮化硅陶瓷材料及其制备方法
CN109650862B (zh) 一种耐高温氮化硼-锶长石陶瓷基复合材料及其制备方法
CN111925205A (zh) 一种低热膨胀系数复相陶瓷及其制备方法
CN113213905A (zh) 一种堇青石基微晶玻璃结合Al2O3-SiO2系统陶瓷材料及其制备方法
CN1298676C (zh) 一种β-赛隆陶瓷粉末的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant