EP1865642A1 - Funkkommunikationseinrichtung und funkkommunikationsverfahren - Google Patents

Funkkommunikationseinrichtung und funkkommunikationsverfahren Download PDF

Info

Publication number
EP1865642A1
EP1865642A1 EP06730053A EP06730053A EP1865642A1 EP 1865642 A1 EP1865642 A1 EP 1865642A1 EP 06730053 A EP06730053 A EP 06730053A EP 06730053 A EP06730053 A EP 06730053A EP 1865642 A1 EP1865642 A1 EP 1865642A1
Authority
EP
European Patent Office
Prior art keywords
antennas
transmission
radio communication
antenna
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06730053A
Other languages
English (en)
French (fr)
Other versions
EP1865642A4 (de
Inventor
Kenichi IP Dpt. NTT DoCoMo Inc. HIGUCHI
Noriyuki IP Dpt. NTT DoCoMo Inc. MAEDA
Mamoru IP Dpt. NTT DoCoMo Inc. SAWAHASHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of EP1865642A1 publication Critical patent/EP1865642A1/de
Publication of EP1865642A4 publication Critical patent/EP1865642A4/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Definitions

  • the present invention relates to a technical field of radio communication, and especially relates to a radio communication apparatus and a radio communication method that are used in a multi-antenna system.
  • multi-antenna systems and multi-antenna transmission methods have been proposed for future mobile communications systems from viewpoints of improvements in speed, quality, etc., of information transmission.
  • data transmission is carried out using two or more antennas for transmission and/or reception, wherein not only frequency and time but also space is effectively utilized.
  • the multi-antenna transmission methods generally include a MIMO (Multiple Input Multiple Output) multiplexing method, a MIMO diversity method, and an adaptive array antenna (AAA: Adaptive Array Antenna) method.
  • the concept of the MIMO diversity method is described with reference to Fig. 1B.
  • the MIMO diversity method is a technique for improving reliability on the reception side by transmitting two or more streams of the same contents in parallel from two or more transmission antennas.
  • Fig. 1B when transmitting symbols A and B, one antenna transmits in a sequence of B and A, and another antenna transmits in a sequence of A* and -B*.
  • "-" is a negative sign
  • "*" represents a complex conjugate.
  • STBC space-time block coding
  • the concept of the adaptive array antenna method is described with reference to Fig. 1C.
  • the adaptive array antenna method two or more antennas are used, and the same number of copies of the same symbol sequence is produced for transmission, wherein each copy is multiplied by a corresponding transmission weight.
  • a directional beam that has a main lobe directed to a communication partner is formed, and the communication quality on the receiving side can be raised.
  • Fig. 5A shows simulation results.
  • the simulation of the MIMO multiplexing method and the MIMO diversity method was conducted under conditions that a base station used two transmission antennas, data transmission was carried out at 90 Mbps, and a bandwidth of 100 MHz was used. Further, it was assumed that the number L of multipaths was 6, the maximum Doppler frequency fD was 20 Hz, and a delay distribution ⁇ was 0.26 ⁇ s.
  • the horizontal axis of Fig. 5A represents average received power E b /N 0 per antenna of a mobile station. Therefore, a small value on the horizontal axis represents a situation wherein received power was small, which can be related to an area that was distant from a base station. On the contrary, a great value on the horizontal axis represents a situation wherein the received power was great, which can be related to an area near the base station.
  • the vertical axis of Fig. 5A represents the throughput (Mbps) that was attained at a point where the power as shown in the horizontal axis was measured. According to the present simulation, since the base station transmitted at 90 Mbps, the maximum throughput that could be attained was 90 Mbps.
  • Fig. 5B shows simulation results of the same case as Fig. 5A except that the transmission rate of the base station was different.
  • the case of 290 Mbps and the case of 380 Mbps were compared as the transmission rates of the base station.
  • a 16QAM system was used, and the encoding rate was made into 1/2; and for the MIMO diversity method, a 64QAM system was used, and the encoding rate was made into 2/3.
  • the objective of the present invention is to provide a radio communication apparatus and a radio communication method, whereby the throughput of the data transmission is improved in a multi-antenna system.
  • the throughput of the data transmission in a multi-antenna system can be raised.
  • the data modulating unit 304 is for modulating the data sequences. Modulation methods include BPSK, QPSK, 16QAM, and 64QAM. A modulation method is selected by the transmission method control unit 316.
  • each antenna outputs a different symbol; however, if the contents included in 2TTI are compared, only the information about the symbols A and B are contained.
  • Such space-time coding or linear processing is performed by the space-time coding unit 317.
  • the combining units 314-1 and 2 combine a control signal and the signal transmitted from the transmission antenna, if needed. Combining may be performed by one or more of time multiplexing, frequency multiplexing, and code multiplexing.
  • the transmission method control unit 316 is for determining a transmission method based on the number N TX of the transmission antennas, the number N RX of the receiving antennas, reception SIR, and a fading correlation value. Contents that are determined include the modulation method and the encoding rate that are to be used for transmission. Further, the contents that are determined include a transmission method that is to be used by the transmitter 300; namely, the adaptive array antenna method, the MIMO diversity method, or the MIMO multiplexing method.
  • Reception SIR is an example of the received signal quality measured by the communication partner (typically a mobile station). Not only SIR, but other suitable channel state information (CQI: Channel Quality Indicator) may be used.
  • the storage unit 318 is for storing a MCS table. That is, according to this embodiment, adaptive modulation and coding (AMC) is adopted, and a modulation method and an encoding rate are adjusted one by one. A general description about AMC is presented below with reference to Figs. 7, and 8.
  • the MCS table according to this embodiment includes not only combinations of reception SIR, modulation method, and encoding rate, but also corresponding relationships between each combination and a fading correlation value. At least three MCS tables are prepared according to this embodiment.
  • the MCS tables are related to the transmission methods, namely, the beam forming method, the MIMO diversity method, and the MIMO multiplexing method.
  • ENC is an encoding unit for encoding by, for example, a turbo code and a convolutional code.
  • the transmitter includes a CRC unit into which PD is input, ENC that is connected to the CRC unit, RM connected to ENC, S/P connected to RM, and MOD into which a signal that is serial/parallel converted by S/P is input for each antenna.
  • the AMC process can be performed based on a level difference, for example, a difference of received power between the antennas in an actual implementation so that a good data channel characteristic is acquired. Further, when a coding unit goes beyond an antenna, a good data channel characteristic is acquired by performing rate control for each antenna only in the modulation as described above. When transmitting channel coded data from two or more antennas by frequency blocks, a better characteristic can be obtained by changing the modulation method, rather than changing the encoding rate.
  • the HARQ process is commonly performed for the antennas, and a good data channel characteristic is acquired by the diversity.
  • the transmitter may be configured as shown in Fig. 9C (Configuration C) such that the adaptive modulation/demodulation process may be independently performed for each antenna (this is called antenna independent AMC), and antenna common HARQ may be performed.
  • the AMC process can be performed based on the level difference between the antennas, for example, the difference of received power; accordingly, a good data channel characteristic is obtained. Further, since the rate control for each antenna is performed only by modulation in this way, a good data channel characteristic is acquired when a coding unit goes beyond an antenna.
  • a better characteristic is obtained by changing the modulation method rather than by changing the encoding rate.
  • the receiving unit 1008 for beam forming includes a maximum ratio combining unit 1011, and a data demodulating unit 1013.
  • the maximum ratio combining unit 1011 combines signals received with the antennas so that the gain may be maximized.
  • maximum ratio combining is used in this embodiment, other combining methods commonly known in the technical field may be used. For example, a signal from an antenna that is better is selected, and the other signal may be discarded.
  • the data demodulating unit 1013 demodulates the data according to the determined modulation method and the determined encoding rate, and outputs the demodulated data.
  • the channel decoding unit 1014 outputs the demodulated data after performing error correction.
  • control bits required of the MIMO transmission there are AMC bits, HARQ bits, a bit for scheduling, and CQI for MIMO.
  • the control information transmitting unit 320 compares an average CQI of the group 1 with an average CQI of the group 2, and reports the CQI of the two antennas of a group that has the greater average CQI.
  • the control information transmitting unit 320 controls such that information for all the antennas may be transmitted within one frame as shown in Fig. 19A. Further, the control information transmitting unit 320 may be configured such that the information for all the antennas may be transmitted within one slot. In this way, increase of control delay can be prevented when transmitting the control information with two or more antennas.
  • control information transmitting unit 320 may be configured to transmit different information for antennas in each frame in sequence as shown in Fig. 19B. Further, the control information transmitting unit 320 may be configured to transmit different information for antennas in sequence in each slot. In this way, the same control channel configuration as the case where transmission is carried out with one antenna can be used. That is, it becomes unnecessary to change the control channel configuration for terminals that have different numbers of antennas. Further, the number of control bits can be made small.
  • Fig. 20 shows the outline of the method performed by the multi-antenna system according to the embodiment of the present invention.
  • the transmitter is a base station and the receiver is a mobile station is described, this is for convenience of description, and the present invention is not limited to such formation.
  • the number N RX of receiving antennas is reported to the transmitter from the receiver.
  • the number N RX of the receiving antennas does not have to be frequently transmitted to the transmitter, but is just once reported during communications. For example, it may be once reported at the time of establishing a radio link for the receiver.
  • the transmitter can obtain a suitable number of antennas for transmission by knowing the received number N RX of the receiving antennas, and the number N TX of the transmission antennas of the transmitter.
  • Fig. 22 schematically shows when changing the multi-antenna transmission method depending on the magnitude of the fading correlation value.
  • the fading correlation value is small (near 0)
  • the radio propagation paths of the transmission antennas are mutually dissimilar; accordingly, one of the MIMO diversity and the MIMO multiplexing method is used.
  • the fading correlation value is great (near 1)
  • the radio propagation paths of the transmission antenna are mutually similar; accordingly, the adaptive array antenna method is used.
  • Whether the radio propagation paths of the transmission antenna are similar is relatively determined based on not only antenna spacing but also a distance between the transmitter and the receiver and other environmental parameters.
  • the transmitter selects the MIMO multiplexing method, which is the transmission method that gives the greatest bit rate, and the modulation method and the encoding rate (QPSK, 1/2) corresponding to MCS2 are selected.
  • the MIMO multiplexing method is adopted from a viewpoint of raising reliability.
  • the transmission method control unit 316 may divide the assigned frequency band into two or more frequency blocks, and the frequency blocks may be assigned to two or more users in units of a frequency block.
  • the receiver performs a signal separating method based on the first received signal R 1 , and estimates a group of symbols transmitted from the four transmission antennas. Consequently, it is estimated that S1, -S2*, S3, and -S4* are first transmitted from the four transmission antennas. Further, the receiver performs the signal separating method based on the second received signal R 2 , and estimates a group of symbols transmitted from the four transmission antennas. Consequently, it is estimated that S 2 , S 1 *, S 4 , and S 3 * are next transmitted from the four transmission antennas. Contents of the two groups of the symbols are essentially the same (only the sign is different, or otherwise, it is a complex conjugate). Accordingly, the receiver can accurately estimate the four symbols S 1 , S 2 , S 3 , and S 4 .
  • the signal transmitted from each transmitter can be detected from the received signal. For example, as shown in Fig. 27A, points of a transmitted signal X and a transmitted signal Y are determined by a receiving signal Z.
  • the determining unit 412 is connected to the data modulating units 404 and the phase rotation table 410.
  • the phase rotation table 410 is connected to the phase rotating units 406.
  • Feedback information from the mobile station is provided to the determining unit 412.
  • the mobile station transmits information that shows CQI and the number of antennas as the feedback information.
  • the determining unit 412 determines a transmission antenna MCS of each antenna, and provides a number that identifies the determined MCS to the data modulating units 404 and the phase rotation table 410.
  • the RF circuit calibrating unit 414 provides calibration factors of the antennas (subcarriers) to the corresponding RF calibrating units 402.
  • the RF calibrating units 402 perform calibration according to the corresponding calibration factors.
  • a received signal is processed by the RF unit 502, and is provided to the signal separating unit 504, the channel estimating unit 508, and the downlink control channel demodulating unit 510.
  • the channel estimating unit 508 performs channel estimation using a pilot symbol, and a channel estimation value is provided to the transmission phase compensating unit 506 and the downlink control channel demodulating unit 510.
  • the signal separating unit 504 separates the received signal that has been processed by the RF unit based on the channel estimation value, which has been compensated for the phase angle, the number of transmission antennas, and data modulation information, and provides the separated signal to the channel decoding unit 514.
  • the parallel/serial converter 516 performs parallel-to-serial conversion of the provided signals. Consequently, an information-bit series is obtained.
  • a transmission signal point of the downlink pilot symbol is fixed, independent of the transmission phase control value of the data symbol. This is because the downlink pilot symbol is used for purposes such as cell detection of other users, and channel state estimation, in addition to demodulation of the user data.
  • the receiving apparatus 500 fading fluctuation between the transmission antennas and the receiving antenna is estimated based on the received signal points of the pilot symbol.
  • demodulating is carried out by performing the same receiving process as performed when there is no phase rotation of the data modulation of each antenna of the transmitting apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
EP06730053.3A 2005-03-31 2006-03-27 Funkkommunikationseinrichtung und funkkommunikationsverfahren Withdrawn EP1865642A4 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005105494 2005-03-31
JP2005174393 2005-06-14
JP2005241904A JP4884722B2 (ja) 2005-03-31 2005-08-23 無線通信装置及び無線通信方法
PCT/JP2006/306105 WO2006106613A1 (ja) 2005-03-31 2006-03-27 無線通信装置及び無線通信方法

Publications (2)

Publication Number Publication Date
EP1865642A1 true EP1865642A1 (de) 2007-12-12
EP1865642A4 EP1865642A4 (de) 2016-01-06

Family

ID=37073179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06730053.3A Withdrawn EP1865642A4 (de) 2005-03-31 2006-03-27 Funkkommunikationseinrichtung und funkkommunikationsverfahren

Country Status (8)

Country Link
US (1) US8416872B2 (de)
EP (1) EP1865642A4 (de)
JP (1) JP4884722B2 (de)
KR (1) KR101270986B1 (de)
CN (2) CN101171781B (de)
BR (1) BRPI0609537A2 (de)
TW (2) TW200943773A (de)
WO (1) WO2006106613A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124350A1 (de) * 2007-03-20 2009-11-25 NTT DoCoMo, Inc. Basisstationsvorrichtung und verfahren in einem mobilkommunikationssystem
WO2009142964A1 (en) * 2008-05-21 2009-11-26 Qualcomm Incorporated Methods and systems for hybrid mimo schemes in ofdm/a systems
WO2010032122A1 (en) * 2008-09-18 2010-03-25 Telefonaktiebolaget L M Ericsson (Publ) Spatial multiplexing communication system with enhanced codeword mapping with flexible rate selection on each spatial layer and with single harq process
WO2010059780A2 (en) * 2008-11-19 2010-05-27 Harris Corporation Code division multiple access based contingency transmission
US20110007834A1 (en) * 2008-03-12 2011-01-13 Panasonic Corporation Wireless communication apparatus, wireless communication system, and wireless communication method
US8422581B2 (en) 2007-01-19 2013-04-16 Panasonic Corporation Multi-antenna transmission device, multi-antenna reception device, multi-antenna transmission method, multi-antenna reception method, terminal device, and base station device
US8588352B2 (en) 2009-05-18 2013-11-19 Fujitsu Limited Wireless device
US8687601B2 (en) 2009-06-24 2014-04-01 Blackberry Limited Methods and apparatus to perform antenna management
US20140269581A1 (en) * 2008-05-09 2014-09-18 Apple Inc. System and Method for Supporting Antenna Beamforing in a Cellular Network
WO2014151933A2 (en) 2013-03-14 2014-09-25 Tarana Wireless, Inc. Precision array processing using semi-coherent transceivers
WO2016120391A1 (en) * 2015-01-29 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods to signal current mimo rx antenna configuration status
US9673883B2 (en) 2009-10-28 2017-06-06 Huawei Technologies Co., Ltd. Method and apparatus for implementing channel measurement
EP3160062A4 (de) * 2014-06-19 2017-07-05 ZTE Corporation Vorrichtung und system zur erkennung und demodulation optischer signale
US11025394B1 (en) 2012-04-12 2021-06-01 Tarana Wireless, Inc. System architecture for optimizing the capacity of adaptive array systems
US11115111B1 (en) 2014-03-14 2021-09-07 Tarana Wireless, Inc. System architecture and method for high mobility networking including air based nodes and computing devices
US11831372B2 (en) 2012-04-12 2023-11-28 Tarana Wireless, Inc. Non-line of sight wireless communication system and method

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776292B2 (ja) * 2005-07-14 2011-09-21 パナソニック株式会社 通信装置及び通信方法
JP2007124207A (ja) * 2005-10-27 2007-05-17 Kyocera Corp 無線通信方法、無線通信システム及び無線通信装置
JP2008017096A (ja) * 2006-07-05 2008-01-24 Fujitsu Ltd 複数アンテナによる送信/受信を行う通信システム、その送信装置及び受信装置
EP2050214B1 (de) * 2006-08-09 2014-11-26 Lg Electronics Inc. Verfahren zur schätzung des rauschabstands und zur einstellung der rückmeldeinformationsübertragung
JP4902663B2 (ja) 2006-10-24 2012-03-21 三菱電機株式会社 送信装置、受信装置、通信装置および通信システム
KR101268653B1 (ko) 2006-10-27 2013-05-29 후지쯔 가부시끼가이샤 무선 통신 시스템에서의 전송 제어 방법, 송신 장치 및 수신 장치
TR201907743T4 (tr) 2006-10-31 2019-06-21 Ericsson Telefon Ab L M Telekomünikasyon sistemi ve böyle bir sistemde hata kontrolü.
US8031795B2 (en) * 2006-12-12 2011-10-04 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Pre-processing systems and methods for MIMO antenna systems
US7894382B2 (en) * 2006-12-29 2011-02-22 Intel Corporation Wireless communications mode switching apparatus and methods
WO2008088066A1 (ja) * 2007-01-19 2008-07-24 Panasonic Corporation マルチアンテナ送信装置、マルチアンテナ受信装置、マルチアンテナ送信方法、マルチアンテナ受信方法、端末装置及び基地局装置
KR100957854B1 (ko) 2007-01-30 2010-05-14 고려대학교 산학협력단 통신 시스템에서 신호 송수신 방법 및 장치
JP4858199B2 (ja) * 2007-02-02 2012-01-18 住友電気工業株式会社 無線通信の受信装置及び受信方法
KR101071690B1 (ko) * 2007-02-05 2011-10-11 삼성전자주식회사 다중 안테나 시스템에서 전송 방식 선택 장치 및 방법
US7797013B2 (en) * 2007-02-28 2010-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Radio communications using scheduled power amplifier backoff
ES2361200T3 (es) 2007-03-21 2011-06-14 Alcatel Lucent Método para determinar técnicas de transmisión mimo, estación de base y terminal móvil.
WO2008120925A1 (en) 2007-03-29 2008-10-09 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
KR100895576B1 (ko) 2007-05-11 2009-04-29 주식회사 팬택 다중입력 다중출력 무선 랜 환경에서 안테나를 선택하여데이터를 전송하는 방법
JP5126224B2 (ja) * 2007-05-16 2013-01-23 富士通株式会社 無線通信装置および無線通信方法
WO2008156293A2 (en) 2007-06-19 2008-12-24 Lg Electronics Inc. Method of transmitting sounding reference signal
CN101340221A (zh) * 2007-07-03 2009-01-07 华为技术有限公司 多输入多输出的实现方法、装置及设备
JP4871801B2 (ja) 2007-07-09 2012-02-08 キヤノン株式会社 通信装置、通信方法、当該通信方法をコンピュータに実行させるためのコンピュータプログラム
JP2009038447A (ja) * 2007-07-31 2009-02-19 Nec Corp 無線通信システム、装置、方法、及びプログラム
EP3203664B1 (de) 2007-08-13 2019-03-06 Godo Kaisha IP Bridge 1 Funkübertragungsvorrichtung und funkübertragungsverfahren
CN101669304B (zh) 2007-08-14 2013-08-28 Lg电子株式会社 用于获取用于phich的资源范围信息的方法和接收pdcch的方法
KR101397039B1 (ko) 2007-08-14 2014-05-20 엘지전자 주식회사 전송 다이버시티를 사용하는 다중안테나 시스템에서 채널예측 오류의 영향을 감소시키기 위한 cdm 방식 신호전송 방법
KR101430267B1 (ko) 2007-08-14 2014-08-18 엘지전자 주식회사 무선통신시스템에서의 데이터 전송방법
KR101405974B1 (ko) 2007-08-16 2014-06-27 엘지전자 주식회사 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
KR101507785B1 (ko) 2007-08-16 2015-04-03 엘지전자 주식회사 다중 입출력 시스템에서, 채널품질정보를 송신하는 방법
CN101485103A (zh) * 2007-08-31 2009-07-15 富士通株式会社 无线通信系统和无线通信方法
KR101531503B1 (ko) * 2007-09-10 2015-06-26 엘지전자 주식회사 다중 harq를 이용한 신호 전송 방법
US20090093222A1 (en) * 2007-10-03 2009-04-09 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
US8553624B2 (en) * 2007-10-10 2013-10-08 Samsung Electronics Co., Ltd. Asynchronous hybrid ARQ process indication in a MIMO wireless communication system
US9445167B2 (en) * 2007-12-29 2016-09-13 Alcatel Lucent Persistent scheduling method and apparatus based on semi-grouping and statistically multiplexing
WO2009087743A1 (ja) 2008-01-04 2009-07-16 Panasonic Corporation 無線送信装置及び無線送信方法
US8892161B2 (en) * 2008-01-18 2014-11-18 Huawei Technologies Co., Inc. Radio communication system and method using spatial diversity and spatial multiplexing modes
JP5194844B2 (ja) 2008-01-31 2013-05-08 富士通株式会社 無線通信装置及び通信方法
US8306473B2 (en) 2008-02-15 2012-11-06 Qualcomm Incorporated Methods and apparatus for using multiple antennas having different polarization
US8478263B1 (en) * 2008-04-09 2013-07-02 Clearwire Ip Holdings Llc System and method for determining wireless chipset performance
US8498243B2 (en) * 2008-06-11 2013-07-30 Qualcomm Incorporated Apparatus and method for channel error control of non-exclusive multiplexing for control channels
JPWO2009157184A1 (ja) * 2008-06-24 2011-12-08 パナソニック株式会社 Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法
WO2009157518A1 (ja) 2008-06-27 2009-12-30 京セラ株式会社 無線基地局および無線通信方法
JP5251304B2 (ja) * 2008-07-04 2013-07-31 日本電気株式会社 通信システム、無線通信装置、及び通信方法
JP5042156B2 (ja) * 2008-07-30 2012-10-03 株式会社日立製作所 無線通信システム、無線通信装置及び無線通信方法
US8654752B2 (en) 2008-08-05 2014-02-18 Panasonic Corporation Radio communication device and radio communication method
CN101645729A (zh) * 2008-08-08 2010-02-10 夏普株式会社 下行蜂窝系统的多天线多基站合作方法及基站
JP5216504B2 (ja) * 2008-09-29 2013-06-19 京セラ株式会社 無線通信システム、送信装置、受信装置、および無線通信方法
JP5388529B2 (ja) 2008-09-30 2014-01-15 株式会社日立国際電気 無線通信装置
JP5139222B2 (ja) * 2008-09-30 2013-02-06 株式会社日立国際電気 無線通信装置
CN101729119B (zh) * 2008-10-15 2014-06-11 中兴通讯股份有限公司 一种下行多输入多输出模式自适应切换的方法和系统
WO2010056079A2 (ko) * 2008-11-14 2010-05-20 엘지전자주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
JP5149130B2 (ja) * 2008-11-20 2013-02-20 日本放送協会 Mimo送信装置、受信装置およびシステム
JP4942846B2 (ja) * 2008-11-28 2012-05-30 三菱電機株式会社 データ送信装置、データ受信装置及び無線通信システム
JP5370476B2 (ja) * 2009-03-26 2013-12-18 富士通株式会社 マルチアンテナ通信装置及びマルチアンテナ通信方法
WO2010116880A1 (ja) * 2009-04-10 2010-10-14 日本電気株式会社 無線通信システム、基地局、端末、無線通信方法及びプログラム
JP5344978B2 (ja) 2009-04-22 2013-11-20 パナソニック株式会社 指向性パターン決定方法
JP2011023942A (ja) * 2009-07-15 2011-02-03 Ntt Docomo Inc 無線基地局装置及び変調・符号化方式選択方法
US20120120864A1 (en) * 2009-07-29 2012-05-17 Kyocera Corporation Wireless base station
US8798662B2 (en) * 2009-08-05 2014-08-05 Blackberry Limited Transmission control for a specific absorption rate compliant communication device
JP5149257B2 (ja) * 2009-10-02 2013-02-20 シャープ株式会社 無線通信システム、通信装置および無線通信方法
US9059749B2 (en) 2009-10-02 2015-06-16 Sharp Kabushiki Kaisha Antenna port mode and transmission mode transitions
US8768397B2 (en) 2009-10-02 2014-07-01 Sharp Kabushiki Kaisha Transmission power control on a wireless communication device for a plurality of regulated bands or component carriers
KR20110038585A (ko) 2009-10-08 2011-04-14 엘지전자 주식회사 다중 안테나 시스템에서 상향링크 전송 방법 및 장치
KR101148727B1 (ko) * 2009-12-15 2012-05-21 한국전자통신연구원 제어 정보를 기지국으로 전송하는 데이터 전송 시스템
KR20110073189A (ko) * 2009-12-21 2011-06-29 엘지전자 주식회사 다중 안테나를 지원하는 무선 이동 통신 시스템에 있어서, 상향링크 데이터와 제어정보를 전송하는 방법 및 장치
CN102122979B (zh) 2010-01-08 2013-04-17 华为技术有限公司 信号发送方法、设备及系统
JP2011147002A (ja) * 2010-01-15 2011-07-28 Kyocera Corp 通信装置および通信方法
JP5374796B2 (ja) * 2010-01-15 2013-12-25 京セラ株式会社 通信装置および通信方法
JP5528820B2 (ja) 2010-01-15 2014-06-25 京セラ株式会社 通信装置および通信方法
US8358615B2 (en) * 2010-03-11 2013-01-22 Research In Motion Limited Modulation and coding scheme selection method for a specific absorption rate compliant communication device
JP5630898B2 (ja) * 2010-04-15 2014-11-26 シャープ株式会社 基地局装置、端末装置、および無線通信システム
JP5291664B2 (ja) * 2010-04-30 2013-09-18 株式会社エヌ・ティ・ティ・ドコモ データ送信方法、基地局装置及び移動局装置
JP5291663B2 (ja) * 2010-04-30 2013-09-18 株式会社エヌ・ティ・ティ・ドコモ データ送信方法、基地局装置及び移動局装置
US8625695B2 (en) * 2010-08-13 2014-01-07 Nec Laboratories America, Inc. Feed-forward control signaling and decoding schemes
CN102130715A (zh) * 2010-08-24 2011-07-20 华为技术有限公司 控制信令的发送、接收方法及装置
WO2012035626A1 (ja) 2010-09-15 2012-03-22 富士通株式会社 無線通信方法、無線通信システム、基地局及び移動局
TWI452861B (zh) * 2010-10-08 2014-09-11 Realtek Semiconductor Corp 天線分集裝置與天線分集方法
JP5651005B2 (ja) * 2010-12-22 2015-01-07 京セラ株式会社 基地局、通信端末及び通信システム
CN102739342A (zh) * 2011-04-12 2012-10-17 中兴通讯股份有限公司 自适应传输模式的方法及装置
EP2701328B1 (de) 2011-04-19 2016-03-23 Panasonic Intellectual Property Corporation of America Übertragungsverfahren und -vorrichtung
KR102040614B1 (ko) * 2011-05-10 2019-11-05 엘지전자 주식회사 복수의 안테나 포트를 이용하여 신호를 전송하는 방법 및 이를 위한 송신단 장치
CA2876071A1 (en) * 2011-06-08 2012-12-13 Pertti Alapuranen Cognitive receiver architecture
US9166742B2 (en) 2011-06-24 2015-10-20 Panasonic Intellectual Property Corporation Of America Transmission device, transmission method, receiving device and receiving method
ES2682445T3 (es) 2011-06-24 2018-09-20 Sun Patent Trust Dispositivo de transmisión, procedimiento de transmisión, dispositivo de recepción y procedimiento de recepción
EP2597803B1 (de) 2011-06-24 2017-08-09 Sun Patent Trust Sendevorrichtung, sendeverfahren, empfangsvorrichtung und empfangsverfahren
EP3471362A1 (de) 2011-06-24 2019-04-17 Sun Patent Trust Sendevorrichtung, sendeverfahren, empfangsvorrichtung und empfangsverfahren
JP5670275B2 (ja) 2011-07-27 2015-02-18 京セラ株式会社 無線通信装置及び無線通信システム
KR101809273B1 (ko) * 2011-08-12 2018-01-18 아주대학교산학협력단 통신 시스템에서 단말 및 그의 제어 방법
CN102958183B (zh) * 2011-08-18 2015-09-09 华为技术有限公司 传输增强下行控制信道的方法、设备和系统
EP2605465A1 (de) * 2011-12-16 2013-06-19 Mitsubishi Electric R&D Centre Europe B.V. Verfahren und Vorrichtung zur Übertragung von OFDM-Symbolen, die mehrere Streams repräsentieren
CN103188768A (zh) * 2011-12-30 2013-07-03 华为终端有限公司 一种通信模式选择方法及装置
JP5429314B2 (ja) * 2012-02-21 2014-02-26 富士通株式会社 無線通信システムにおける伝送制御方法、送信装置及び受信装置
US20150271787A1 (en) * 2012-03-19 2015-09-24 Mediatek Singapore Pte. Ltd. Expert antenna control system
JP5985853B2 (ja) * 2012-03-28 2016-09-06 京セラ株式会社 通信システム、基地局、移動局及び通信制御方法
WO2013143099A1 (en) * 2012-03-29 2013-10-03 Nec(China) Co., Ltd. Method and apparatus for link adaptation in precoded mimo systems
US9167621B2 (en) * 2012-07-09 2015-10-20 Broadcom Corporation Communication device with phase/angle transformation and methods for use therewith
WO2014087663A1 (ja) 2012-12-07 2014-06-12 パナソニック株式会社 送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラム
JP5594383B2 (ja) * 2013-01-31 2014-09-24 富士通株式会社 無線通信装置及び通信方法
US10499456B1 (en) 2013-03-15 2019-12-03 Tarana Wireless, Inc. Distributed capacity base station architecture for broadband access with enhanced in-band GPS co-existence
KR102183213B1 (ko) * 2013-05-10 2020-11-25 삼성전자주식회사 무선 통신 시스템에서 송수신 빔을 선택하기 위한 장치 및 방법
JP5692287B2 (ja) * 2013-06-10 2015-04-01 富士通株式会社 無線通信システムにおける、伝送制御方法、送信装置、及び、受信装置
CN104348763B (zh) 2013-07-23 2018-06-05 华为技术有限公司 一种用于大规模天线的信道测量方法和用户终端
JP5569640B2 (ja) * 2013-09-24 2014-08-13 富士通株式会社 無線通信システムにおける伝送制御方法、送信装置及び受信装置
JP5644923B2 (ja) * 2013-09-24 2014-12-24 富士通株式会社 無線通信システムにおける伝送制御方法、送信装置及び受信装置
JP5734468B2 (ja) * 2014-01-06 2015-06-17 京セラ株式会社 端末装置
JP5825399B2 (ja) * 2014-06-09 2015-12-02 富士通株式会社 無線通信システムにおける、伝送制御方法、送信装置、及び、受信装置
CN107078827B (zh) 2014-10-31 2019-04-30 索尼公司 无线通信装置
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
WO2016141975A1 (en) 2015-03-10 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Uncertainty dependent beamforming configuration control
WO2016175144A1 (ja) 2015-04-30 2016-11-03 株式会社Nttドコモ 無線基地局
JP2017011568A (ja) * 2015-06-24 2017-01-12 日本放送協会 送信装置及び送受信システム
EP3317831A4 (de) * 2015-06-30 2019-01-02 Visa International Service Association Dynamisches übertragbares kommunikationssystem
WO2017090674A1 (ja) * 2015-11-26 2017-06-01 京セラ株式会社 送信装置及び受信装置
CN108605233A (zh) 2016-01-27 2018-09-28 株式会社Ntt都科摩 用户终端、无线基站和无线通信方法
JP6965335B2 (ja) * 2016-09-28 2021-11-10 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法、受信側装置及び送信側装置
US11096246B2 (en) * 2016-11-11 2021-08-17 Nippon Telegraph And Telephone Corporation Radio communication system and radio communication method
US9813138B1 (en) * 2017-03-03 2017-11-07 Qualcomm, Incorporated Enhanced multiple input, multiple output detection in wireless local area networks
CN108809484B (zh) * 2017-04-28 2020-04-21 华为技术有限公司 一种信道状态的指示方法、装置及网络设备
WO2020130892A1 (en) * 2018-12-18 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) First node and methods therein in a wireless communications network
CN111585926B (zh) * 2020-04-28 2021-07-27 北京升哲科技有限公司 一种多天线分集接收机
JP7131858B1 (ja) 2021-03-23 2022-09-06 株式会社光電製作所 送信装置、送信方法、およびプログラム
CN113376590B (zh) * 2021-05-11 2022-04-19 西安电子科技大学 一种空时编码阵列雷达中阵元间时延量的设计方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938819A (en) * 1997-06-25 1999-08-17 Gas Separation Technology Llc Bulk separation of carbon dioxide from methane using natural clinoptilolite
US6317466B1 (en) 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
JP3904754B2 (ja) * 1999-02-25 2007-04-11 富士通株式会社 符号分割多重通信における送信装置、受信装置及びその方法
JP2000261398A (ja) * 1999-03-11 2000-09-22 Kokusai Electric Co Ltd 通信装置
DE60037465T2 (de) 2000-08-10 2008-12-04 Fujitsu Ltd., Kawasaki Vorrichtung zur Kommunikation mit Diversität
JP2002064459A (ja) * 2000-08-16 2002-02-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm送受信回路
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US20020193146A1 (en) * 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
KR20040058268A (ko) 2001-11-07 2004-07-03 코닌클리케 필립스 일렉트로닉스 엔.브이. 다이버시티 시스템에서 복수의 안테나들 중 안테나들의서브세트를 선택하는 방법
US7154936B2 (en) * 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
KR100879942B1 (ko) * 2002-02-16 2009-01-22 엘지전자 주식회사 채널품질지시자 코딩을 위한 기저수열 생성방법
US6687492B1 (en) * 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
AU2002315928A1 (en) * 2002-04-09 2003-10-23 Nec Australia Pty Ltd Improved signalling scheme for high speed downlink packet access
US7092737B2 (en) 2002-07-31 2006-08-15 Mitsubishi Electric Research Laboratories, Inc. MIMO systems with rate feedback and space time transmit diversity
US7391755B2 (en) * 2002-09-30 2008-06-24 Lucent Technologies Inc. Signaling and control mechanisms in MIMO harq schemes for wireless communication systems
JP4602641B2 (ja) * 2002-10-18 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ 信号伝送システム、信号伝送方法及び送信機
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
KR100507519B1 (ko) * 2002-12-13 2005-08-17 한국전자통신연구원 Ofdma 기반 셀룰러 시스템의 하향링크를 위한 신호구성 방법 및 장치
JP4250002B2 (ja) * 2003-03-05 2009-04-08 富士通株式会社 適応型変調伝送システム及び適応型変調制御方法
CN1455524A (zh) * 2003-03-17 2003-11-12 西南交通大学 用于多发射多接收(mimo)天线阵列系统的空间并行交织方法
US7885228B2 (en) * 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
EP1615365A4 (de) * 2003-06-30 2011-05-11 Fujitsu Ltd Mehrfacheingabe-mehrfachausgabe-übertragungssystem
KR100790092B1 (ko) * 2003-08-18 2007-12-31 삼성전자주식회사 다중 사용자 다중 입력 다중 출력 방식을 사용하는 무선통신 시스템에서 자원 스케쥴링 장치 및 방법
KR101163225B1 (ko) * 2003-12-11 2012-07-05 엘지전자 주식회사 다중 안테나 시스템의 제어신호 전송방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006106613A1 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8422581B2 (en) 2007-01-19 2013-04-16 Panasonic Corporation Multi-antenna transmission device, multi-antenna reception device, multi-antenna transmission method, multi-antenna reception method, terminal device, and base station device
EP2124350A1 (de) * 2007-03-20 2009-11-25 NTT DoCoMo, Inc. Basisstationsvorrichtung und verfahren in einem mobilkommunikationssystem
EP2124350A4 (de) * 2007-03-20 2014-12-10 Ntt Docomo Inc Basisstationsvorrichtung und verfahren in einem mobilkommunikationssystem
US8514971B2 (en) 2007-03-20 2013-08-20 Ntt Docomo, Inc. Base station apparatus and method in mobile communication system
US9276706B2 (en) 2008-03-12 2016-03-01 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method
US8532164B2 (en) * 2008-03-12 2013-09-10 Panasonic Corporation Wireless communication apparatus, wireless communication system, and wireless communication method
US11129144B2 (en) 2008-03-12 2021-09-21 Panasonic Intellectual Property Corporation Of America Integrated circuit
US20110007834A1 (en) * 2008-03-12 2011-01-13 Panasonic Corporation Wireless communication apparatus, wireless communication system, and wireless communication method
US10694506B2 (en) 2008-03-12 2020-06-23 Panasonic Intellectual Property Corporation Of America Integrated circuit
CN102084683B (zh) * 2008-03-12 2016-09-28 松下电器(美国)知识产权公司 无线通信装置、无线通信系统以及无线通信方法
US10206198B2 (en) 2008-03-12 2019-02-12 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method
US8942277B2 (en) 2008-03-12 2015-01-27 Panasonic Intellectual Property Corporation Of America Wireless communication apparatus and wireless communication method
US10263683B2 (en) 2008-05-09 2019-04-16 Apple Inc. System and method for supporting antenna beamforming in a cellular network
US10686510B2 (en) 2008-05-09 2020-06-16 Apple Inc. System and method for supporting antenna beamforming in a cellular network
US9985710B2 (en) 2008-05-09 2018-05-29 Apple Inc. System and method for supporting antenna beamforming in a cellular network
US9680536B2 (en) * 2008-05-09 2017-06-13 Apple Inc. System and method for supporting antenna beamforming in a cellular network
US20140269581A1 (en) * 2008-05-09 2014-09-18 Apple Inc. System and Method for Supporting Antenna Beamforing in a Cellular Network
US11115099B2 (en) 2008-05-09 2021-09-07 Apple Inc. System and method for supporting antenna beamforming in a cellular network
US8666004B2 (en) 2008-05-21 2014-03-04 Qualcomm Incorporated Methods and systems for hybrid MIMO schemes in OFDM/A systems
RU2470460C2 (ru) * 2008-05-21 2012-12-20 Квэлкомм Инкорпорейтед Способы и системы для гибридных mimo-схем в ofdm/а-системах
WO2009142964A1 (en) * 2008-05-21 2009-11-26 Qualcomm Incorporated Methods and systems for hybrid mimo schemes in ofdm/a systems
KR101237452B1 (ko) * 2008-05-21 2013-02-27 퀄컴 인코포레이티드 Ofdm/a 시스템에서 하이브리드 mimo 방식을 위한 방법 및 시스템
WO2010032122A1 (en) * 2008-09-18 2010-03-25 Telefonaktiebolaget L M Ericsson (Publ) Spatial multiplexing communication system with enhanced codeword mapping with flexible rate selection on each spatial layer and with single harq process
US8726131B2 (en) 2008-09-18 2014-05-13 Telefonaktiebolaget Lm Ericsson (Publ) Spatial multiplexing communication system with enhanced codeword mapping with flexible rate selection on each spatial layer and with single HARQ process
WO2010059780A2 (en) * 2008-11-19 2010-05-27 Harris Corporation Code division multiple access based contingency transmission
US8169886B2 (en) 2008-11-19 2012-05-01 Harris Corporation Code division multiple access based contingency transmission
WO2010059780A3 (en) * 2008-11-19 2010-07-08 Harris Corporation Code division multiple access based contingency transmission
US8588352B2 (en) 2009-05-18 2013-11-19 Fujitsu Limited Wireless device
US8687601B2 (en) 2009-06-24 2014-04-01 Blackberry Limited Methods and apparatus to perform antenna management
US9673883B2 (en) 2009-10-28 2017-06-06 Huawei Technologies Co., Ltd. Method and apparatus for implementing channel measurement
US10630362B2 (en) 2009-10-28 2020-04-21 Huawei Technologies Co., Ltd. Method and apparatus for implementing channel measurement
US11025394B1 (en) 2012-04-12 2021-06-01 Tarana Wireless, Inc. System architecture for optimizing the capacity of adaptive array systems
US11831372B2 (en) 2012-04-12 2023-11-28 Tarana Wireless, Inc. Non-line of sight wireless communication system and method
EP2974074A4 (de) * 2013-03-14 2016-12-21 Tarana Wireless Inc Präzisionsarrayverarbeitung mit semi-kohärenten empfängern
WO2014151933A2 (en) 2013-03-14 2014-09-25 Tarana Wireless, Inc. Precision array processing using semi-coherent transceivers
US11552669B2 (en) 2013-03-14 2023-01-10 Tarana Wireless, Inc. Precision array processing using semi-coherent transceivers
US11115111B1 (en) 2014-03-14 2021-09-07 Tarana Wireless, Inc. System architecture and method for high mobility networking including air based nodes and computing devices
EP3160062A4 (de) * 2014-06-19 2017-07-05 ZTE Corporation Vorrichtung und system zur erkennung und demodulation optischer signale
US10601659B2 (en) 2015-01-29 2020-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods to signal current MIMO RX antenna configuration status
WO2016120391A1 (en) * 2015-01-29 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods to signal current mimo rx antenna configuration status

Also Published As

Publication number Publication date
TW200707941A (en) 2007-02-16
EP1865642A4 (de) 2016-01-06
US20090213955A1 (en) 2009-08-27
CN101171781A (zh) 2008-04-30
CN101171781B (zh) 2012-11-07
BRPI0609537A2 (pt) 2010-04-13
CN102098088A (zh) 2011-06-15
JP4884722B2 (ja) 2012-02-29
CN102098088B (zh) 2013-02-27
TWI366358B (de) 2012-06-11
KR20070118256A (ko) 2007-12-14
KR101270986B1 (ko) 2013-06-05
JP2007028569A (ja) 2007-02-01
US8416872B2 (en) 2013-04-09
WO2006106613A1 (ja) 2006-10-12
TW200943773A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
US8416872B2 (en) Radio communication apparatus and a radio communication method
US11765763B2 (en) Multi-user MIMO systems and methods
US9641443B2 (en) MIMO PGRC system and method
JP5043079B2 (ja) 移動通信システム、受信機、受信方法
US7260366B2 (en) Apparatus and method for transmitting and receiving data using an antenna array in a mobile communication system
US7826346B2 (en) Multiple-input multiple-output transmission system
US20030128769A1 (en) Apparatus and method for transmitting/receiving data according to channel condition in a CDMA mobile communication system with antenna array
EP1355434A1 (de) Verfahren zur Übertragung eines Signals zwischen einem Endgerät und einer Netzwerkeinheit
KR101339587B1 (ko) 다중 안테나 시스템에서 변조 및 코딩 방식 결정 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 7/08 20060101ALI20150713BHEP

Ipc: H04B 7/06 20060101AFI20150713BHEP

Ipc: H04L 1/00 20060101ALI20150713BHEP

Ipc: H04L 1/06 20060101ALI20150713BHEP

Ipc: H04L 1/18 20060101ALI20150713BHEP

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151209

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 7/06 20060101AFI20151203BHEP

Ipc: H04L 1/18 20060101ALI20151203BHEP

Ipc: H04L 1/06 20060101ALI20151203BHEP

Ipc: H04B 7/08 20060101ALI20151203BHEP

Ipc: H04L 1/00 20060101ALI20151203BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160716