WO2016175144A1 - 無線基地局 - Google Patents

無線基地局 Download PDF

Info

Publication number
WO2016175144A1
WO2016175144A1 PCT/JP2016/062736 JP2016062736W WO2016175144A1 WO 2016175144 A1 WO2016175144 A1 WO 2016175144A1 JP 2016062736 W JP2016062736 W JP 2016062736W WO 2016175144 A1 WO2016175144 A1 WO 2016175144A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
antenna
reception
antenna elements
reception antenna
Prior art date
Application number
PCT/JP2016/062736
Other languages
English (en)
French (fr)
Inventor
アナス ベンジャブール
聡 須山
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US15/313,570 priority Critical patent/US10020596B2/en
Priority to CN201680002013.XA priority patent/CN106489242B/zh
Priority to JP2016552646A priority patent/JP6650408B2/ja
Publication of WO2016175144A1 publication Critical patent/WO2016175144A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • H01Q21/225Finite focus antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths

Definitions

  • the present invention relates to a radio base station.
  • TDD Time Division Duplex
  • the on-the-air channel state is basically the same in the uplink and downlink.
  • the fact that the uplink and downlink channel states are the same is called channel reciprocity.
  • the radio base station can estimate the downlink channel state based on the uplink channel state information (Channel Sate Information), and the parameters for downlink transmission are It is possible to determine. Determining parameters for downlink transmission based on uplink channel state information means parameters for downlink transmission based on downlink channel state information measured by a mobile station (user equipment). This is more advantageous than determining the channel state information because it is not necessary to report downlink channel state information from the mobile station to the radio base station.
  • the downlink channel state information measured by the mobile station in the TDD mobile communication system is the uplink channel state measured by the radio base station. This is different from the channel state information of the link.
  • These characteristics vary depending on the environment, such as temperature and humidity, and differ depending on the antenna in the same device.
  • a characteristic of the transmission circuit is referred to as a transmission gain
  • a characteristic of the reception circuit is referred to as a reception gain.
  • Non-Patent Document 1 RF (calibration)
  • antenna correction antenna correction
  • Non-Patent Document 1 The antenna correction described in Non-Patent Document 1 will be described with reference to FIG.
  • the radio base station 10 has N transmission / reception antenna elements 11 1 to 11 N
  • the user equipment 100 has M transmission / reception antenna elements 101 1 to 101 M. Due to the reversibility of the uplink and downlink channels, the following equation (1) is established.
  • Is the uplink channel gain in space from the antenna element 101 m of the user apparatus 100 to the antenna element 11 n of the radio base station 10 Is a downlink channel gain in space from the antenna element 11 n of the radio base station 10 to the antenna element 101 m of the user apparatus 100.
  • the subscript m is the antenna number of the user apparatus 100
  • the subscript n is the antenna number of the radio base station 10.
  • the radio base station 10 each transmit gain for the antenna elements 11 1 ⁇ 11 N In downlink transmission T eNB, 1 ⁇ T eNB, have N, respectively receive the antenna elements 11 1 ⁇ 11 N In the uplink reception Gains R eNB, 1 to R eNB, N are provided.
  • User apparatus 100 has reception gains R UE, 1 to R UE, M for antenna elements 101 1 to 101 M in downlink reception, and transmission gain T UE for antenna elements 101 1 to 101 M in uplink transmission, respectively. , 1 to T UE, M.
  • the uplink channel coefficient measured by the radio base station 10 Is represented by the following formula (2).
  • Downlink channel coefficient measured by user apparatus 100 Is represented by the following formula (3).
  • the radio base station 10 determines a parameter for downlink transmission (for example, a downlink transmission precoding matrix) based only on the uplink channel state, the determined parameter is received by the user apparatus 100. It may not be appropriate. Therefore, the user apparatus 100 gives a correction coefficient c UE, m to the uplink signal transmitted from each antenna, and the radio base station 10 applies the correction coefficient c eNB to the downlink signal transmitted from each antenna. , give n .
  • a parameter for downlink transmission for example, a downlink transmission precoding matrix
  • the corrected channel coefficient should satisfy the following equation.
  • Non-Patent Document 1 includes correction coefficients c UE, m and c so as to satisfy the following formulas (7) and (8) derived from formulas (2), (3) and (6): This is done by appropriately determining eNB, n .
  • Equation (9) the relationship between the uplink channel coefficient and the downlink channel coefficient is expressed by Equation (9) below.
  • Expression (10) is obtained. That is, when antenna correction is not performed, the relationship between the uplink channel matrix and the downlink channel matrix is expressed by Expression (10).
  • Expression (10) Is a downlink channel matrix and can be expressed as follows.
  • equation (10) can be rewritten as equation (11) below.
  • Expressions (7) and (8) are satisfied.
  • Expression (8) can be rewritten as Expression (12), and Expression (7) can be rewritten as Expression (13).
  • ⁇ n is a parameter of the radio base station 10 corrected by the correction coefficient c eNB, n
  • ⁇ m is a parameter of the user apparatus 100 after the correction of the correction coefficient c UE, m .
  • ⁇ n and ⁇ m are as follows.
  • equation (14) can be rewritten into equation (15).
  • the uplink channel matrix To downlink channel matrix Can be understood. Accordingly, parameters for downlink transmission such as a downlink transmission precoding matrix can be appropriately determined based on the uplink channel matrix.
  • the correction coefficients c eNB, n and c UE, m can be calculated from the downlink channel information measured by the user apparatus 100 and the uplink channel information measured by the radio base station 10.
  • this calculation method cannot be executed when the user apparatus 100 does not exist in the cell area of the radio base station 10.
  • it is a waste of time resources and the burden on the user apparatus 100 that the user apparatus 100 receives a dedicated downlink pilot signal for calculating the correction coefficient and reports the result to the radio base station 10. Is big.
  • Massive MIMO transmission systems have been studied (for example, Patent Document 1 and Non-Patent Document 3).
  • Massive MIMO advanced beamforming using a large number (for example, 100 or more) of transmitting antenna elements (for example, 100 or more) can be performed.
  • Beam forming is a method for controlling the direction and shape of a beam of radio waves emitted from a plurality of transmitting antenna elements, by giving weights (weighting coefficients) to the electric signals supplied to the transmitting antenna elements.
  • a technique for adjusting the amplitude, including precoding is mainly used in radio base stations.
  • Massive MIMO uses a large number of transmitting antenna elements, so it takes time to correct the antenna.
  • the correction coefficients c eNB, n and c UE, m are calculated from the downlink channel information measured by the user apparatus 100 and the uplink channel information measured by the radio base station 10 in the user apparatus 100 described above. It is considered that the burden is extremely large and the amount of downlink channel information reported from the user apparatus 100 is enormous.
  • the radio base station calculates a correction coefficient from the channel state information. Therefore, there is no burden on the user equipment for calculating the correction coefficient, and there is no need to report downlink channel state information for calculating the correction coefficient. Further, even when the user apparatus 100 does not exist in the cell area of the radio base station 10, the correction coefficient can be calculated.
  • the uplink channel matrix To downlink channel matrix Can be understood. Accordingly, parameters for downlink transmission such as a downlink transmission precoding matrix can be appropriately determined based on the uplink channel matrix.
  • the radio base station 10 transmits a pilot signal from one reference antenna element (step S1).
  • the reference antenna element may be any of the plurality of transmission / reception antenna elements 11 1 to 11 N , for example, may be the transmission / reception antenna element 11 1 .
  • the radio base station 10 controls so that other antenna elements do not transmit the pilot signal.
  • the radio base station 10 transmits a pilot signal transmitted from a reference antenna element and received by correction target antenna elements (all transmission / reception antenna elements 11 1 to 11 N other than the reference antenna element, for example, transmission / reception antenna elements 11 2 to 11 N ). Based on, channel estimation is executed (step S2). If the reference antenna element is a transmitting and receiving antenna elements 11 1, the radio base station 10 in step S2 is specifically estimate the effective channel coefficients h 1, 2 ⁇ h 1, N. The first subscript indicates the number of the antenna element that has transmitted the pilot signal, and the last subscript indicates the number of the antenna element that has received the pilot signal.
  • the radio base station 10 transmits a pilot signal from one correction target antenna element (step S3).
  • the correction target antenna element that transmits the pilot signal may be any of a plurality of correction target antenna elements.
  • the radio base station 10 controls so that other antenna elements do not transmit the pilot signal.
  • the radio base station 10 performs channel estimation based on the pilot signal transmitted from the correction target antenna element and received by the reference antenna element (step S4). If the reference antenna element is a transmitting and receiving antenna elements 11 1, the radio base station 10 in step S4, in particular to estimate the effective channel coefficients h n, 1.
  • the first subscript indicates the number of the antenna element that has transmitted the pilot signal, and the last subscript indicates the number of the antenna element that has received the pilot signal.
  • the radio base station 10 determines whether there is a correction target antenna element that has not transmitted a pilot signal (step S5). If this determination is affirmative, steps S3 and S4 are executed. When all the correction target antenna elements transmit pilot signals, the radio base station 10 calculates a correction coefficient from the estimated effective channel coefficient (step S6).
  • Effective channel coefficients from the antenna element 11 m to the antenna element 11 n h m, n is expressed by the following equation (17).
  • h m, n Te eNB, m ⁇ g m, n ⁇ R eNB, n ...
  • Effective channel coefficients from the antenna element 11 n to the antenna element 11 m h n, m is represented by the following equation (18).
  • h n, m Te eNB, n ⁇ g n, m ⁇ R eNB, m ... (18)
  • the channel gain of the downlink space from the antenna element 11 m to the antenna element 11 n g m, n is channel gain g n downlink space from the antenna element 11 n to the antenna element 11 m, equal to m . Therefore, from the equations (17) and (18) , the relationship between the effective channel coefficients h m, n and h n, m is expressed by the following equation (19).
  • the correction coefficient c eNB, n is determined so as to satisfy Expression (8).
  • the correction coefficient c eNB, n is expressed by the following equation (20) from the equation (8).
  • the radio base station 10 determines that the effective channel coefficient estimated in step S2 (eg, h 1, 2 to h 1, N ) and the effective channel coefficient estimated in step S4 ( For example, based on h 2, 1 to h N, 1 ), correction coefficients c eNB, 2 to c eNB, N are calculated for the antenna elements 11 2 to 11 N other than the reference antenna element 11 1 .
  • the radio base station 10 controls so that other antenna elements do not transmit the pilot signal.
  • a period is required.
  • N is the number of transmitting / receiving antenna elements 11 1 to 11 N.
  • Massive MIMO radio waves are emitted from a large number of transmitting and receiving antenna elements.
  • a technique for easily calculating a plurality of correction coefficients for these many transmitting and receiving antenna elements is desired.
  • the present invention provides a radio base station that uses self-correction for antenna correction in a TDD mobile communication system and easily calculates a plurality of correction coefficients for a plurality of transmission / reception antenna elements.
  • a radio base station applies a precoding matrix to a downlink signal to perform digital precoding, and a downlink signal subjected to the digital precoding. Then, an analog beamformer that performs analog beamforming that imparts a phase and amplitude change corresponding to a beamforming matrix, and a downlink signal that has been subjected to the analog beamforming are transmitted wirelessly, and the downlink signal is transmitted.
  • a plurality of transmission / reception antenna elements that wirelessly receive an uplink signal in the same frequency band as the frequency band used by the user apparatus, and an uplink signal that processes the uplink signals received by the plurality of transmission / reception antenna elements A processing unit.
  • the transmission / reception antenna elements are classified into a plurality of antenna groups, each antenna group has a plurality of transmission / reception antenna elements, and the analog beamformer has a plurality of branches respectively corresponding to the plurality of antenna groups.
  • Each branch has a plurality of sub-branches, each sub-branch has a variable phase shifter and an amplitude adjuster for performing the analog beam forming, and each sub-branch has one Connected to the transmission / reception antenna element
  • the uplink signal processing unit has a plurality of branches respectively corresponding to the plurality of antenna groups, each branch has a plurality of sub-branches, Each sub-branch has a receiving amplifier, and each sub-branch is connected to one of the transmitting and receiving antenna elements. That.
  • the radio base station further includes an antenna transmission control unit that controls transmission of pilot signals from the plurality of transmission / reception antenna elements, and a plurality of channel coefficients based on pilot signals received by the plurality of transmission / reception antenna elements.
  • an antenna transmission control unit that controls transmission of pilot signals from the plurality of transmission / reception antenna elements, and a plurality of channel coefficients based on pilot signals received by the plurality of transmission / reception antenna elements.
  • transmission is performed from the plurality of transmission / reception antenna elements.
  • a correction coefficient calculation unit that calculates a correction coefficient to be given to the downlink radio signal.
  • the antenna transmission control unit causes only the plurality of transmission / reception antenna elements belonging to a reference antenna group that is one of the plurality of antenna groups to transmit a pilot signal, and the channel estimation unit A plurality of channel coefficients are estimated based on pilot signals received by the plurality of transmission / reception antenna elements belonging to an antenna group other than the reference antenna group.
  • the antenna transmission control unit causes only the plurality of transmission / reception antenna elements belonging to an antenna group other than the reference antenna group to transmit a pilot signal, and the channel estimation unit Estimates a plurality of channel coefficients based on pilot signals received by a plurality of the transmitting and receiving antenna elements belonging to the reference antenna group.
  • the correction coefficient calculation unit calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period.
  • the pilot signal transmitted from the plurality of transmission / reception antenna elements belonging to one antenna group is identified by which transmission / reception antenna element is transmitted after being received by the plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signals received by the plurality of transmission / reception antenna elements belonging to one antenna group can be identified by which transmission / reception antenna element is received.
  • a radio base station includes a digital signal processing unit that performs digital precoding by applying a precoding matrix to a downlink signal, and a downlink signal subjected to the digital precoding.
  • a digital signal processing unit that performs digital precoding by applying a precoding matrix to a downlink signal, and a downlink signal subjected to the digital precoding.
  • an analog beamformer that performs analog beamforming that imparts phase and amplitude changes corresponding to a beamforming matrix, and a downlink signal that has been subjected to the analog beamforming are transmitted wirelessly, and the downlink signal
  • a plurality of transmission / reception antenna elements that wirelessly receive uplink signals in the same frequency band as that used for transmission of the user apparatus, and an uplink that processes the uplink signals received by the plurality of transmission / reception antenna elements
  • Link signal processor and pilot for antenna correction And at least one antenna correction reference receiving antenna elements to transmit and receive items.
  • the transmission / reception antenna elements are classified into a plurality of antenna groups, each antenna group has a plurality of transmission / reception antenna elements, and the analog beamformer has a plurality of branches respectively corresponding to the plurality of antenna groups.
  • Each branch has a plurality of sub-branches, each sub-branch has a variable phase shifter and an amplitude adjuster for performing the analog beam forming, and each sub-branch has one Connected to the transmission / reception antenna element
  • the uplink signal processing unit has a plurality of branches respectively corresponding to the plurality of antenna groups, each branch has a plurality of sub-branches, Each sub-branch has a receiving amplifier, and each sub-branch is connected to one of the transmitting and receiving antenna elements. That.
  • the radio base station further includes an antenna transmission control unit that controls transmission of pilot signals from the antenna correction reference transmission / reception antenna elements and the plurality of transmission / reception antenna elements, and the antenna correction reference transmission / reception antenna elements and the plurality of transmission / reception antennas.
  • an antenna transmission control unit controls transmission of pilot signals from the antenna correction reference transmission / reception antenna elements and the plurality of transmission / reception antenna elements, and the antenna correction reference transmission / reception antenna elements and the plurality of transmission / reception antennas.
  • a channel estimation unit that estimates a plurality of channel coefficients, and based on a plurality of channel coefficients estimated from uplink radio signals received by the plurality of transmission / reception antenna elements,
  • a correction coefficient calculator that calculates a correction coefficient to be given to a downlink radio signal transmitted from the plurality of transmission / reception antenna elements when performing downlink transmission;
  • the antenna transmission control unit causes only the antenna correction reference transmission / reception antenna element to transmit a pilot signal
  • the channel estimation unit is based on pilot signals received by the plurality of
  • the antenna transmission control unit causes only a plurality of transmission / reception antenna elements to transmit pilot signals
  • the channel estimation unit is configured to transmit the antenna correction reference transmission / reception antenna elements.
  • a plurality of channel coefficients are estimated based on the received pilot signal.
  • the correction coefficient calculation unit calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period. Pilot signals transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group can be identified from which transmission / reception antenna elements are transmitted after being received by the antenna correction reference transmission / reception antenna elements. Pilot signals received by the plurality of transmission / reception antenna elements belonging to the antenna group can specify which transmission / reception antenna element has received the pilot signal.
  • pilot signals transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group are received by a plurality of transmission / reception antenna elements belonging to another antenna group or the antenna correction reference transmission / reception antenna element.
  • the transmission / reception antenna elements can be identified, and the pilot signal received by the plurality of transmission / reception antenna elements belonging to one antenna group can be identified by which transmission / reception antenna element is received. Therefore, it is possible to easily calculate a plurality of correction coefficients for a plurality of transmission / reception antenna elements by using self-correction for antenna correction in a TDD mobile communication system.
  • FIG. 1 It is a flowchart which shows the process for the self-correction which concerns on 2nd Embodiment. It is a block diagram which shows the structure of the wireless base station which concerns on the 3rd Embodiment of this invention. It is the figure which simplified FIG. It is a flowchart which shows the process for the self correction which concerns on 3rd Embodiment. It is a block diagram which shows the structure of the wireless base station which concerns on the 4th Embodiment of this invention. It is a block diagram which shows the structure of the wireless base station which concerns on the 5th Embodiment of this invention. It is a block diagram which shows the part relevant to transmission of the radio base station which concerns on the 6th Embodiment of this invention.
  • Massive MIMO A radio base station that performs massive MIMO has an antenna set 10A illustrated in FIG.
  • the illustrated antenna set 10 ⁇ / b> A has 256 transmission / reception antenna elements 11 of 16 rows and 16 columns.
  • the number of antenna elements is not limited.
  • Massive MIMO realizes a high wireless communication speed (data rate) by multiplexing a large number of streams.
  • data rate data rate
  • degree of freedom of antenna control when performing beam forming increases, higher beam forming than before is realized.
  • a transmission beam carrying the downlink data signal can be formed toward each user apparatus 100 that is a destination of the downlink data signal. .
  • each transmission / reception antenna element 11 for the convenience of control of each transmission / reception antenna element 11, the plurality of transmission / reception antenna elements 11 are classified into a plurality of antenna groups.
  • Each antenna group has a plurality of transmitting / receiving antenna elements 11 in the vicinity of each other.
  • FIG. 6 shows an example in which 256 transmission / reception antenna elements are classified into 16 antenna groups
  • FIG. 7 shows an example in which 256 transmission / reception antenna elements are classified into 4 antenna groups.
  • the dotted line in the figure indicates the range of the group.
  • each antenna group has 16 transmission / reception antenna elements 11, and in FIG. 7, each antenna group has 64 transmission / reception antenna elements 11.
  • antenna grouping is not limited to the illustrated example.
  • Hybrid beam forming In various embodiments according to the present invention, a radio base station performs hybrid beam forming.
  • Hybrid beamforming is a combination of analog transmission beamforming and digital precoding, and provides rough beam direction control by analog transmission beamforming and high-precision direction control by digital precoding. Can be combined.
  • hybrid beamforming can reduce the processing load of digital precoding by analog transmission beamforming. In hybrid beamforming, first, digital precoding is performed, and then analog transmission beamforming is performed.
  • FIG. 8 is a block diagram of the radio base station 10 that performs hybrid beamforming, which is the basis of the embodiment of the present invention.
  • FIG. 8 shows only the part related to downlink transmission.
  • An L-sequence digital baseband signal corresponding to the transmitted L stream is supplied to a baseband processor (digital signal processing unit) 12.
  • the baseband processor 12 performs digital precoding by applying a precoding matrix to an L-sequence downlink signal. Therefore, the baseband processor 12 has a digital precoder function.
  • the baseband processor 12 is realized by digital signal processing such as DSP (Digital Signal Processor).
  • the L-sequence signal output from the baseband processor 12 is converted into an analog signal by a digital-analog converter (DAC) 14 and up-converted by an up converter (frequency converter) 16.
  • the L series signals up-converted by the L up-converters 16 are supplied to the analog beam former 18.
  • the analog beamformer 18 applies the transmission beamforming matrix to the L-sequence downlink signal to generate an N-sequence signal.
  • N is the number of transmitting / receiving antenna elements 11 1 to 11 N.
  • the N-series downlink signals subjected to analog beamforming output from the analog beamformer 18 are transmitted wirelessly by the N transmitting / receiving antenna elements 11.
  • a filter (not shown) may be provided in the analog beam former 18 or between the analog beam former 18 and the transmission / reception antenna element 11.
  • the up-converter 16 may be provided in the analog beam former 18 or between the analog beam former 18 and the transmission / reception antenna element 11.
  • the analog beamformer 18 is realized by an analog circuit.
  • the analog beamformer 18 has an L branch, and an L-sequence downlink signal corresponding to the L stream is supplied to the L branch.
  • Each branch has an N / L sub-branch, and each sub-branch has a variable phase shifter 20 and a power amplifier (amplitude adjuster) 22 for performing analog transmission beam forming.
  • each sub-branch is surrounded by one dotted rectangle.
  • Each sub-branch is connected to one transmitting / receiving antenna element 11. The signal supplied to each sub-branch and adjusted in phase and amplitude is supplied to the transmission / reception antenna element 11 corresponding to that sub-branch.
  • a signal processed in each sub-branch is supplied to one transmission / reception antenna element 11 without being added to a signal processed in another sub-branch.
  • the downlink signal supplied to the transmission / reception antenna element 11 is processed independently by only one sub-branch.
  • This type of analog beamformer 18 is referred to as a sub-array type analog beamformer.
  • the transmission antenna elements # 1 to #N transmit a plurality of streams # 1 to #L.
  • L branches each having N / L sub-branches are independent from each other, and one stream is transmitted by N / L transmitting / receiving antenna elements 11.
  • stream # 1 is transmitted from transmission / reception antenna elements 11 1 to 11 N / L
  • stream #L is transmitted from transmission / reception antenna elements 11 N + 1-N / L to 11 N.
  • the transmission / reception antenna elements 11 are classified into a plurality of antenna groups, and each antenna group has a plurality of transmission / reception antenna elements 11.
  • One antenna group corresponds to one branch. Therefore, the number of antenna groups is L, and a plurality of (N / L) transmission / reception antenna elements 11 belonging to one antenna group transmit one stream.
  • the radio base station 10 further includes a downlink parameter determination unit 24, an antenna transmission control unit 26, a digital phase controller 27, and a digital gain controller 28. Similar to the baseband processor 12, these are functional blocks realized by the DSP executing a computer program stored in a storage unit (not shown) and functioning according to the computer program.
  • the downlink parameter determination unit 24 determines parameters for downlink transmission (for example, a downlink precoding matrix and a transmission beamforming matrix) based on uplink channel state information.
  • the precoding matrix determined by the downlink parameter determination unit 24 is supplied to the baseband processor 12, and the baseband processor 12 performs digital precoding according to the precoding matrix.
  • the digital phase controller 27 controls the phase adjusted by each variable phase shifter 20 of the analog beamformer 18 according to the transmission beamforming matrix determined by the downlink parameter determination unit 24, and the digital phase controller 27 controls the digital phase according to the transmission beamforming matrix.
  • the gain controller 28 controls the gain of each power amplifier 22 of the analog beamformer 18.
  • the antenna transmission control unit 26 controls transmission of pilot signals from the plurality of transmission / reception antenna elements 11. The function of the antenna transmission control unit 26 will be described in detail later.
  • FIG. 9 is a block diagram of the radio base station 10 which is the basis of the embodiment of the present invention.
  • FIG. 9 mainly shows parts related to uplink reception.
  • the actual radio base station 10 has the components shown in FIG. 8 and the components shown in FIG.
  • the transmission / reception antenna elements 11 1 to 11 N receive uplink signals wirelessly from the user apparatus.
  • the mobile communication system to which the embodiment is applied is a TDD mobile communication system. Therefore, the transmission / reception antenna elements 11 1 to 11 N receive the uplink signal in the same frequency band as the frequency band used for transmission of the downlink signal from the user apparatus wirelessly.
  • the radio base station 10 includes an uplink signal processing unit 30 that processes uplink signals received by a plurality of transmission / reception antenna elements 11.
  • the uplink signal processing unit 30 is realized by an analog circuit.
  • the uplink signal processing unit 30 has L branches respectively corresponding to L antenna groups, and each branch has N / L sub-branches.
  • Each sub-branch has a low noise receiving amplifier 38 and a variable phase shifter 40. In FIG. 9, each sub-branch is surrounded by one dotted rectangle. Each sub-branch is connected to one transmitting / receiving antenna element 11.
  • the signal supplied from the transmission / reception antenna element 11 is supplied to the sub-branch corresponding to the transmission / reception antenna element 11, and the amplitude and phase are adjusted by the low noise reception amplifier (LNA)) 38 and the variable phase shifter 40. Is done.
  • LNA Low Noise Amplifier
  • the signal processed in each sub-branch is added to the signal processed in another sub-branch belonging to the same branch as that sub-branch.
  • the uplink signal processing unit 30 outputs an L-sequence signal.
  • the L-sequence signal is down-converted by a down converter (frequency converter) 32, converted to an analog signal by an analog-digital converter (ADC) 34, and supplied to the baseband processor 12.
  • the down converter 32 may be provided in the uplink signal processing unit 30 or between the uplink signal processing unit 30 and the transmission / reception antenna element 11.
  • the radio base station 10 further includes a channel estimation unit 42 and a correction coefficient calculation unit 44. Similar to the baseband processor 12, these are functional blocks realized by the DSP executing a computer program stored in a storage unit (not shown) and functioning according to the computer program.
  • the channel estimation unit 42 estimates a plurality of channel coefficients based on radio signals received by the plurality of transmission / reception antenna elements 11. In wireless communication with a user apparatus, the channel estimation unit 42 estimates an uplink channel coefficient based on uplink radio signals transmitted from the user apparatus and received by the plurality of transmission / reception antenna elements 11. In antenna correction, the channel estimation unit 42 calculates channel coefficients for combinations of transmission / reception antenna elements based on radio pilot signals transmitted from the plurality of transmission / reception antenna elements 11 and received by the plurality of transmission / reception antenna elements 11. presume.
  • the correction coefficient calculation unit 44 When the radio base station 10 performs downlink transmission based on a plurality of channel coefficients estimated from uplink radio signals received by the plurality of transmission / reception antenna elements 11, the correction coefficient calculation unit 44 performs a plurality of transmission / reception operations. A correction coefficient to be given to the downlink radio signal transmitted from the antenna element 11 is calculated. The correction coefficient calculation unit 44 supplies the correction coefficient to the downlink parameter determination unit 24, and the downlink parameter determination unit 24 controls at least one of digital precoding and analog transmission beamforming based on the correction coefficient. Thus, when the radio base station 10 performs downlink transmission based on a plurality of channel coefficients estimated from uplink radio signals received by the plurality of transmission / reception antenna elements 11, the plurality of transmission / reception antenna elements 11 The transmitted downlink radio signal is corrected. The functions of the channel estimation unit 42 and the correction coefficient calculation unit 44 will be described in detail later.
  • FIG. 10 shows components related to radio transmission and radio reception of the radio base station 10 in order to explain antenna correction (self-correction).
  • FIG. 10 shows only one branch of the analog beamformer 18 (corresponding to one antenna group) and another branch of the uplink signal processing unit 30 (corresponding to another one antenna group).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group.
  • Antenna correction is executed to appropriately correct the downlink signal based on the uplink channel matrix using the reversibility of the uplink and downlink channels in the TDD mobile communication system.
  • self-correction when transmitting radio signals in a plurality of transmitting and receiving antenna elements 11 1 ⁇ 11 N based on the channel coefficients estimated from the received pilot signals in a plurality of transmitting and receiving antenna elements 11 1 ⁇ 11 N, downlink A correction factor for correcting the transmission parameter of the link is calculated. Therefore, when beamforming or precoding is not performed, the correction coefficient for each of all other correction target antenna elements with respect to one reference antenna element is expressed as follows, as described above with reference to FIGS. Calculation may be performed according to (21).
  • the radio base station 10 transmits radio pilot signals (self-correction dedicated pilot signals) from a plurality of antenna elements belonging to the reference antenna group including the transmission / reception antenna elements 11 1 to 11 N / L.
  • a plurality of antenna elements belonging to the correction target antenna group by estimating a plurality of channel coefficients based on pilot signals received by a plurality of antenna elements belonging to an antenna group (correction target antenna group) other than the reference antenna group
  • a wireless pilot signal is transmitted, and a plurality of channel coefficients are estimated based on pilot signals received by a plurality of antenna elements belonging to the reference antenna group.
  • the radio base station 10 calculates a correction coefficient for each of all other antenna elements with respect to the reference antenna element.
  • the reference antenna group is an antenna group having one reference antenna element which is a reference for antenna correction and is not subjected to antenna correction (a correction coefficient is set to 1)
  • the correction target antenna group is an antenna group other than the reference antenna group.
  • Antenna correction is performed on the antenna elements belonging to the correction target antenna group (correction coefficient is calculated).
  • antenna correction is also performed on antenna elements that belong to the reference antenna group but are not reference antenna elements (a correction coefficient is calculated).
  • FIG. 11 shows a configuration of a radio base station 10 according to a first embodiment of the present invention.
  • FIG. 11 shows only one branch (corresponding to one antenna group) of the analog beamformer 18 and the other one branch (corresponding to another one antenna group) of the uplink signal processing unit 30.
  • the analog beamformer 18 has an L branch corresponding to the L antenna group
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group.
  • the antenna transmission control unit 26 transmits a plurality of transmission / reception antenna elements (for example, transmission / reception antenna elements 11 1 to 11 N /) belonging to a reference antenna group that is one of the L antenna groups in the first period. L ) only transmits a wireless pilot signal, and the channel estimation unit 42 estimates a plurality of channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the correction target antenna group. Further, the antenna transmission control unit 26 transmits a radio pilot only to a plurality of transmission / reception antenna elements belonging to the correction target antenna group in a second period (which may be before or after the first period) different from the first period.
  • a second period which may be before or after the first period
  • the signal is transmitted, and the channel estimation unit 42 estimates a plurality of channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the reference antenna group.
  • the correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period.
  • a pilot signal transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group can be identified from which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group. It is preferable that a pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can specify which transmission / reception antenna element is received.
  • each sub-branch of the analog beamformer 18 has a transmission-side switch 50 that prevents transmission of a signal, and is provided in one branch of the uplink signal processing unit 30 in the first period and the second period.
  • Each sub-branch of the uplink signal processing unit 30 has a receiving-side switch 60 that prevents another sub-branch belonging to the branch from processing the pilot signal when one sub-branch belongs to the pilot signal.
  • each sub-branch is surrounded by one dotted rectangle.
  • FIG. 12 is a flowchart showing processing for self-correction according to the first embodiment.
  • the antenna transmission control unit 26 transmits a pilot signal only from one antenna element (for example, transmission / reception antenna element 11 1 ) of a reference antenna group (for example, transmission / reception antenna elements 11 1 to 11 N / L ) (step S11).
  • the transmission-side switch 50 corresponding to the transmission / reception antenna element that transmits the pilot signal of the reference antenna group is closed, and the transmission-side switch 50 corresponding to the other transmission / reception antenna elements of the reference antenna group is opened.
  • the antenna transmission control unit 26 controls each transmission side switch 50.
  • step S11 the reception-side switch 60 corresponding to one transmission / reception antenna element of each correction target antenna group is closed, and the reception-side switch 60 corresponding to the other transmission / reception antenna elements of each correction target antenna group is opened.
  • the antenna transmission control unit 26 controls each reception-side switch 60 so that
  • the channel estimation unit 42 estimates the channel coefficient based on the pilot signal transmitted from the antenna element of the reference antenna group and received by the antenna element of each correction target antenna group (step S12).
  • the antenna transmission control unit 26 transmits a pilot signal for the current reception antenna element (currently, the transmission / reception antenna element of each correction target antenna group set by the reception-side switch 60 to receive and process the pilot signal). It is determined whether or not there are any antenna elements in the reference antenna group (step S13). If this determination is affirmative, the transmitting side switch 50 associated with the reference antenna group is controlled to control a pilot signal in the reference antenna group. Are switched (step S14). Thereafter, the processing returns to step S11, a pilot signal is transmitted from another antenna element of the reference antenna group, and the channel estimation unit 42 estimates a channel coefficient (step S12).
  • step S13 determines whether or not each correction target antenna group includes an antenna element that has not received the pilot signal (step S15). If affirmative, the receiving side switch 60 related to the correction target antenna group is controlled to switch the antenna element that should receive the pilot signal in each correction target antenna group (step S16). Thereafter, the process returns to step S11, and a pilot signal is transmitted again from one antenna element of the reference antenna group, and the channel estimation unit 42 estimates a channel coefficient (step S12).
  • step S17 When all the antenna elements belonging to each correction target antenna group receive the pilot signals transmitted from all the antenna elements belonging to the reference antenna group and the channel coefficients regarding these combinations are estimated, the process proceeds to step S17. .
  • first period is a period before step S17
  • second period is a period before step S25 starting from step S17.
  • step S17 the antenna transmission control unit 26 transmits one antenna element (for example, transmission / reception antenna element 11 1 + N ) of one correction target antenna group (for example, transmission / reception antenna element 11 1 + N / L to 11 2N / L ). / L ) to send a pilot signal only.
  • the transmission side switch 50 corresponding to the transmission / reception antenna element that transmits the pilot signal of the correction target antenna group is closed, and the transmission side switch 50 corresponding to the other transmission / reception antenna elements of the correction target antenna group is opened.
  • the antenna transmission control unit 26 controls each transmission side switch 50.
  • step S17 the receiving switch 60 corresponding to one transmitting / receiving antenna element of the reference antenna group is closed, and the receiving switch 60 corresponding to other transmitting / receiving antenna elements of the reference antenna group is opened.
  • the antenna transmission control unit 26 controls each reception side switch 60.
  • the channel estimation unit 42 estimates a channel coefficient based on a pilot signal transmitted from one antenna element of one correction target antenna group and received by one antenna element of the reference antenna group (step S18). .
  • the antenna transmission control unit 26 is an antenna that is not transmitting a pilot signal for the current reception antenna element (currently a transmission / reception antenna element of a reference antenna group that is set by the reception-side switch 60 to receive and process a pilot signal). It is determined whether or not the element is in the correction target antenna group (step S19). If this determination is affirmative, the transmission-side switch 50 associated with the correction target antenna group is controlled, and the correction target antenna group is determined. Among them, the antenna element that should transmit the pilot signal is switched (step S20). Thereafter, the process returns to step S17, where a pilot signal is transmitted from another antenna element of one correction target antenna group, and the channel estimation unit 42 estimates a channel coefficient (step S18).
  • step S19 If the determination in step S19 is negative (that is, all antennas belonging to the correction target antenna group for the transmission / reception antenna elements of the reference antenna group currently set by the reception-side switch 60 to receive and process the pilot signal).
  • the antenna transmission control unit 26 determines whether or not the antenna element that has not received the pilot signal is in the reference antenna group (step S21), and this determination is positive. If there is, the reception side switch 60 related to the reference antenna group is controlled to switch the antenna element that should receive the pilot signal in the reference antenna group (step S22). Thereafter, the process returns to step S17, and a pilot signal is transmitted again from one antenna element of the correction target antenna group, and the channel estimation unit 42 estimates a channel coefficient (step S18).
  • step S23 When all the antenna elements belonging to the reference antenna group receive the pilot signals transmitted from all the antenna elements belonging to the current correction target antenna group, and the channel coefficients regarding these combinations are estimated, the process proceeds to step S23. move on.
  • step S23 the antenna transmission control unit 26 determines whether there is a correction target antenna group that does not transmit a pilot signal. If this determination is affirmative, the antenna transmission control unit 26 switches the correction target antenna group (step S24), and thereafter, the process returns to step S17 to start pilot from one antenna element of another correction target antenna group. The signal is transmitted, and the channel estimation unit 42 estimates the channel coefficient (step S18).
  • Pilot signals are transmitted from all antenna elements of all correction target antenna groups, and all antenna elements belonging to the reference antenna group receive pilot signals transmitted from all antenna elements belonging to all correction target antenna groups.
  • the process proceeds to step S25.
  • the correction coefficient calculation unit 44 calculates correction coefficients for all the antenna elements of the correction target antenna group from the plurality of channel coefficients obtained in step S12 and step S18 according to the equation (21).
  • the channel coefficient from the antenna element other than the reference antenna element belonging to the reference antenna group to the antenna element belonging to the correction target antenna group and the channel coefficient in the reverse direction are calculated.
  • a correction factor for the antenna element to which it belongs is calculated.
  • the correction coefficient calculation unit 44 calculates correction coefficients for all antenna elements other than the reference antenna element belonging to the reference antenna group, from these channel coefficients and correction coefficients.
  • the correction coefficient calculation unit 44 supplies the calculated correction coefficient to the downlink parameter determination unit 24, and the downlink parameter determination unit 24 performs at least one of digital precoding and analog transmission beamforming based on the correction coefficient. Control.
  • the radio base station 10 performs downlink transmission based on a plurality of channel coefficients estimated from uplink radio signals received by the plurality of transmission / reception antenna elements 11, the plurality of transmission / reception antenna elements 11
  • the transmitted downlink radio signal is corrected.
  • the correction coefficient c eNB, n for a certain transmission / reception antenna element 11 n can be expressed by the following equation.
  • a (n) is the amplitude of the downlink signal given to the transmission / reception antenna element 11 n
  • ⁇ (n) is the phase of the downlink signal given to the transmission / reception antenna element 11 n
  • the downlink parameter determination unit 24 controls the digital gain controller 28 so that the amplitude of the downlink signal given to the transmission / reception antenna element 11 n becomes A in transmission of the downlink signal, and the transmission / reception antenna element 11 n
  • the gain of the corresponding power amplifier 22 is adjusted, and the digital phase controller 27 is controlled so that the phase of the downlink signal given to the transmission / reception antenna element 11 n becomes ⁇ (n), so that it corresponds to the transmission / reception antenna element 11 n .
  • the phase shift amount of the variable phase shifter 20 is adjusted.
  • the downlink parameter determination unit 24 may adjust the precoding matrix provided to the baseband processor 12 based on the correction coefficient.
  • pilot signals transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group are transmitted from any of the transmission / reception antenna elements after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can be specified by which transmission / reception antenna element. Therefore, it is possible to easily calculate a plurality of correction coefficients for a plurality of transmission / reception antenna elements by using self-correction for antenna correction in a TDD mobile communication system.
  • a transmission side switch 50 is provided to distinguish each transmission / reception antenna element.
  • Massive MIMO when downlink transmission is performed while actually performing beamforming, radio waves are simultaneously emitted from a plurality of transmission / reception antenna elements belonging to one antenna group. Therefore, current flows through a plurality of sub-branches of one branch corresponding to one antenna group, and electromagnetic coupling occurs.
  • the antenna element that transmits the pilot signal is switched by the transmission side switch 50, the influence of electromagnetic coupling is not reflected in the correction coefficient.
  • providing the transmission side switch 50 in each sub-branch complicates the structure and is complicated to control.
  • the sub-branch of the analog beamformer 18 is connected to the transmission / reception antenna elements 11 1 and 11 2, and the sub-branch of the uplink signal processing unit 30 is connected to the transmission / reception antenna elements 11 3 and 11 4 .
  • Transmission gains T 1 and T 2 are given to pilot signals X 1 and X 2 transmitted by the transmission / reception antenna elements 11 1 and 11 2 , respectively, and pilot signals received by the transmission / reception antenna elements 11 3 and 11 4 , Reception gains R 3 and R 4 are respectively provided.
  • the reception result r by the antenna elements 11 3 and 11 4 is expressed by the following equation (22).
  • the first embodiment described above is one of the measures for realizing such an independent equation state.
  • the first embodiment has the above problem.
  • the second to fifth embodiments solve these problems, and simultaneously transmit pilot signals from a plurality of antenna elements belonging to one antenna group (corresponding to one branch) to calculate a correction coefficient.
  • FIG. 14 shows a configuration of a radio base station 10 according to a second embodiment of the present invention.
  • FIG. 14 shows only one branch of the analog beamformer 18 (corresponding to one antenna group) and the other branch of the uplink signal processing unit 30 (corresponding to another antenna group).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group.
  • the antenna transmission control unit 26 transmits a plurality of transmission / reception antenna elements (for example, transmission / reception antenna elements 11 1 to 11 N /) belonging to a reference antenna group that is one of the L antenna groups in the first period. L ) only transmits a wireless pilot signal, and the channel estimation unit 42 estimates a plurality of channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the correction target antenna group. Further, the antenna transmission control unit 26 transmits a radio pilot only to a plurality of transmission / reception antenna elements belonging to the correction target antenna group in a second period (which may be before or after the first period) different from the first period.
  • a second period which may be before or after the first period
  • the signal is transmitted, and the channel estimation unit 42 estimates a plurality of channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the reference antenna group.
  • the correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period.
  • a pilot signal transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group can be identified from which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group. It is preferable that a pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can specify which transmission / reception antenna element is received.
  • the radio base station 10 when a plurality of transmission / reception antenna elements belonging to one antenna group transmit pilot signals in the first period and the second period, from these transmission / reception antenna elements.
  • a transmission-side phase control unit that varies the phase of the transmitted pilot signal.
  • the transmission side phase control unit may be a digital phase controller 27.
  • the digital phase controller 27 adjusts the phase of the variable phase shifter 20 for analog transmission beam forming, and in the antenna correction, the digital phase controller 27 changes the phase of the pilot signal. Adjust the phase given by.
  • digital phase controller transmission side phase controller 27 for example, a sub-branch of the pilot signal X 1 of the phase corresponding to the transmission and reception antenna elements 11 1 [1,1], it corresponds to the transmission and reception antenna elements 11 2 the sub-branch of the pilot signal X 2 the phase of [1, -1] so that, by adjusting the variable phase shifter 20, orthogonal the pilot signals of these sub-branches (i.e. diffusion).
  • each sub-branch of the uplink signal processing unit 30 has a reception-side switch 60 that prevents the branch from processing the pilot signal.
  • the baseband processor 12 has a despreader 62.
  • the despreading unit 62 performs the reverse operation (that is, despreading) that the variable phase shifter 20 spreads the pilot signal as a result of the operation of the digital phase controller (transmission side phase control unit) 27.
  • the pilot signal transmission side digital phase controller (transmission side phase control unit) 27 spreads and the pilot signal reception side despreading unit 62 despreads a plurality of transmission / reception antenna elements belonging to one antenna group.
  • the pilot signal transmitted simultaneously can be identified from which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signal received by the plurality of transmission / reception antenna elements belonging to one antenna group can be identified by which transmission / reception antenna element is received by the action of the reception-side switch 60 on the pilot signal reception side.
  • each sub-branch is surrounded by one dotted rectangle.
  • FIG. 15 is a flowchart showing processing for self-correction according to the second embodiment.
  • the antenna transmission control unit 26 transmits pilot signals from all antenna elements of only the reference antenna group (for example, the transmission / reception antenna elements 11 1 to 11 N / L ) (step S111).
  • the digital phase controller 27 gives different phases to a plurality of sub-branches of the reference antenna group.
  • the reception-side switch 60 corresponding to one transmission / reception antenna element of each correction target antenna group is closed, and the reception-side switch 60 corresponding to the other transmission / reception antenna elements of each correction target antenna group is opened.
  • the antenna transmission control unit 26 controls each reception-side switch 60 so that
  • the channel estimation unit 42 estimates a channel coefficient based on a pilot signal transmitted from each antenna element of the reference antenna group and received by one antenna element of each correction target antenna group (step S112).
  • the despreading unit 62 performs despreading and identifies the antenna element that is the transmission source of the pilot signal.
  • the antenna transmission control unit 26 determines whether each correction target antenna group includes an antenna element that has not received the pilot signal (step S115). If this determination is affirmative, the antenna transmission control unit 26 relates to the correction target antenna group.
  • the reception side switch 60 is controlled to switch the antenna element that should receive the pilot signal in each correction target antenna group (step S116). Thereafter, the process returns to step S111, and pilot signals are transmitted again from all antenna elements of the reference antenna group, and the channel estimation unit 42 estimates channel coefficients (step S112).
  • step S117 When all the antenna elements belonging to each correction target antenna group receive the pilot signals transmitted from all the antenna elements belonging to the reference antenna group and the channel coefficients regarding these combinations are estimated, the process proceeds to step S117. .
  • the “first period” described above is a period before step S117
  • the “second period” is a period before step S125 starting from step S117.
  • step S117 the antenna transmission control unit 26 transmits pilot signals from all antenna elements of only one correction target antenna group (for example, transmission / reception antenna elements 11 1 + N / L to 11 2N / L ).
  • the digital phase controller 27 gives different phases to the plurality of sub-branches of the correction target antenna group.
  • the reception-side switch 60 corresponding to one transmission / reception antenna element of the reference antenna group is closed, and the reception-side switch 60 corresponding to the other transmission / reception antenna elements of the reference antenna group is opened.
  • the antenna transmission control unit 26 controls each reception side switch 60.
  • the channel estimation unit 42 estimates a channel coefficient (step S118).
  • the despreading unit 62 performs despreading and identifies the antenna element that is the transmission source of the pilot signal.
  • the antenna transmission control unit 26 determines whether or not the antenna element that has not received the pilot signal is in the reference antenna group (step S121). If this determination is affirmative, the reception side related to the reference antenna group is determined. The switch 60 is controlled to switch the antenna element that should receive the pilot signal in the reference antenna group (step S122). Thereafter, the process returns to step S117, and pilot signals are transmitted again from all the antenna elements of the correction target antenna group, and the channel estimation unit 42 estimates the channel coefficient (step S118).
  • step S123 When all the antenna elements belonging to the reference antenna group receive the pilot signals transmitted from all the antenna elements belonging to the current correction target antenna group and the channel coefficients regarding these combinations are estimated, the process proceeds to step S123. move on.
  • step S123 the antenna transmission control unit 26 determines whether there is a correction target antenna group that does not transmit the pilot signal. If this determination is affirmative, the antenna transmission control unit 26 switches the correction target antenna group (step S124), and then the process returns to step S117, and pilots are transmitted from all antenna elements of the other correction target antenna groups. The signal is transmitted, and the channel estimation unit 42 estimates the channel coefficient (step S118).
  • Pilot signals are transmitted from all antenna elements of all correction target antenna groups, and all antenna elements belonging to the reference antenna group receive pilot signals transmitted from all antenna elements belonging to all correction target antenna groups.
  • the process proceeds to step S125.
  • the correction coefficient calculation unit 44 calculates correction coefficients for all antenna elements of the correction target antenna group from the plurality of channel coefficients obtained in steps S112 and S118.
  • the channel coefficient from the antenna element other than the reference antenna element belonging to the reference antenna group to the antenna element belonging to the correction target antenna group and the channel coefficient in the reverse direction are calculated.
  • a correction factor for the antenna element to which it belongs is calculated.
  • the correction coefficient calculation unit 44 calculates correction coefficients for all antenna elements other than the reference antenna element belonging to the reference antenna group, from these channel coefficients and correction coefficients.
  • the correction coefficient calculation unit 44 supplies the calculated correction coefficient to the downlink parameter determination unit 24, and the downlink parameter determination unit 24 performs digital precoding based on the correction coefficient as in the first embodiment. And / or analog transmit beamforming.
  • pilot signals transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group are transmitted from any of the transmission / reception antenna elements after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can be specified by which transmission / reception antenna element. Therefore, it is possible to easily calculate a plurality of correction coefficients for a plurality of transmission / reception antenna elements by using self-correction for antenna correction in a TDD mobile communication system.
  • Massive MIMO when downlink transmission is performed while actually performing beamforming, radio waves are simultaneously emitted from a plurality of transmission / reception antenna elements belonging to one antenna group. Therefore, current flows through a plurality of sub-branches of one branch corresponding to one antenna group, and electromagnetic coupling occurs.
  • the pilot signal is simultaneously transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group in the antenna correction, a correction coefficient reflecting the influence of electromagnetic coupling can be calculated.
  • the transmission-side switch 50 is not provided in each sub-branch on the transmission side, the structure is simplified and the control of the components is also simplified. Further, as apparent from comparison between FIG. 12 and FIG. 15, the step of switching the antenna element that transmits the pilot signal is unnecessary, and the processing is simplified.
  • FIG. 16 shows a configuration of a radio base station 10 according to a third embodiment of the present invention.
  • FIG. 16 shows only one branch of the analog beamformer 18 (corresponding to one antenna group) and another branch of the uplink signal processing unit 30 (corresponding to another antenna group).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group.
  • the antenna transmission control unit 26 transmits a plurality of transmission / reception antenna elements (for example, transmission / reception antenna elements 11 1 to 11 N /) belonging to a reference antenna group that is one of the L antenna groups in the first period. L ) only transmits a wireless pilot signal, and the channel estimation unit 42 estimates a plurality of channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the correction target antenna group. Further, the antenna transmission control unit 26 transmits a radio pilot only to a plurality of transmission / reception antenna elements belonging to the correction target antenna group in a second period (which may be before or after the first period) different from the first period.
  • a second period which may be before or after the first period
  • the signal is transmitted, and the channel estimation unit 42 estimates a plurality of channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the reference antenna group.
  • the correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period.
  • a pilot signal transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group can be identified from which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group. It is preferable that a pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can specify which transmission / reception antenna element is received.
  • the radio base station 10 when a plurality of transmission / reception antenna elements belonging to one antenna group transmit pilot signals in the first period and the second period, from these transmission / reception antenna elements.
  • a transmission-side phase control unit that spreads a transmitted pilot signal with different first orthogonal spreading sequences, and a plurality of sub-branches belonging to one branch of the uplink signal processing unit 30 in the first period and the second period has a digital phase controller (reception-side phase control unit) 64 that spreads the pilot signal processed in these sub-branches with different second orthogonal spreading sequences when processing the pilot signal.
  • the transmission side phase control unit may be a digital phase controller 27.
  • the digital phase controller 27 adjusts the phase of the variable phase shifter 20 for analog transmission beam forming, and in the antenna correction, the digital phase controller 27 changes the phase of the pilot signal. Adjust the phase given by.
  • digital phase controller (transmission side phase controller) 27 for example, pilot signal X 1 sub-branch of the transmitting side corresponding to the transmitting and receiving antenna elements 11 1 [1,1, ...], the transmitting and receiving antennas pilot signal X 2 is a sub-branch of the transmitting side corresponding to the element 11 2 [1, -1, ... so that, by adjusting the phase of the variable phase shifter 20, a pilot of these sub-branches Orthogonalize the signal. That is, in the antenna correction, the digital phase controller 27 spreads the pilot signal transmitted from the transmission / reception antenna element with different first orthogonal spreading sequences.
  • the digital phase controller 64 is a functional block realized by the DSP executing a computer program stored in a storage unit (not shown) and functioning according to the computer program. In the normal uplink reception, the digital phase controller 64 adjusts the phase of the variable phase shifter 40 for reception beam forming, and in the antenna correction, the digital phase controller 64 adjusts the phase of the received pilot signal. The phase given by 40 is adjusted. In antenna correction, the digital phase controller (reception side phase control unit) 64 multiplies the pilot signal of the reception side sub-branch corresponding to a certain antenna element by [1, 1, 1, 1,. The phase of the variable phase shifter 40 is adjusted so that the pilot signal of the receiving side sub-branch corresponding to the other antenna element is multiplied by [1, -1, 1, -1,.
  • the pilot signals of these sub-branches are orthogonalized. That is, in the antenna correction, the digital phase controller 64 spreads the pilot signal received by the transmission / reception antenna element with a different second orthogonal spreading sequence.
  • the second orthogonal spreading sequence is longer than the period of the first orthogonal spreading sequence. That is, the second orthogonal spreading sequence is a long code, and the first orthogonal spreading sequence is a short code.
  • the baseband processor 12 has a double despreader 66.
  • the double despreading unit 66 is the reverse of the effect that the variable phase shifter 40 spreads the pilot signal as a result of the operation of the digital phase control unit (reception side phase control unit) 64 on the reception side (that is, the reverse to the long code (Spreading) and the reverse action of the variable phase shifter 20 spreading the pilot signal as a result of the action of the digital phase control part (transmission side phase control part) 27 on the transmission side (that is, despreading for the short code) ).
  • the double despreading unit 66 performs double despreading.
  • a plurality of signals belonging to one antenna group are spread by the pilot phase transmission side digital phase control unit (transmission side phase control unit) 27 and the pilot signal reception side despreading unit 66 despreads the short code.
  • the pilot signals transmitted simultaneously from the transmission / reception antenna elements can be identified from which transmission / reception antenna elements are transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • a plurality of signals belonging to one antenna group are spread by the pilot phase receiving side digital phase control unit (receiving side phase control unit) 64 and the pilot signal receiving side despreading unit 66 despreads the long code.
  • the pilot signal received by the transmitting / receiving antenna element can identify which transmitting / receiving antenna element is received.
  • the operations of the digital phase controller 27 and the constituent elements other than the digital phase controller 64 and the double despreading unit 66 are the configurations of the radio base station 10 which is the basis of the embodiment described above with reference to FIGS.
  • the same reference numerals are used in FIG. 16 to indicate the same components.
  • each sub-branch is surrounded by one dotted rectangle.
  • FIG. 17 is a simplified diagram of FIG. 16.
  • N / L 2.
  • the sub-branch of the analog beamformer 18 is connected to the transmission / reception antenna elements 11 1 and 11 2
  • the sub-branch of the uplink signal processing unit 30 is connected to the transmission / reception antenna elements 11 3 and 11 4 .
  • Transmission gains T 1 and T 2 are given to pilot signals X 1 and X 2 transmitted by the transmission / reception antenna elements 11 1 and 11 2 , respectively, and pilot signals received by the transmission / reception antenna elements 11 3 and 11 4 , Reception gains R 3 and R 4 are respectively provided.
  • the reception result r by the antenna elements 11 3 and 11 4 is expressed by the above equation (22).
  • a common pilot signal X is given to each sub-branch on the transmission side.
  • X is a sequence [1,1,1,1,1,1,1,1,1,1,1,1, ...].
  • Digital phase controller 27 controls the phase of each variable phase shifter 20 of the analog beamformer 18, a sub-branch of the transmitting side corresponding to the antenna element 11 first pilot signal X 1 is [1,1,1, 1,1,1,1,1,1,1,1,1,1, ...], the sub-branch of the transmitting side corresponding to the antenna element 11 second pilot signal X 2 is [ 1, -1,1, -1,1, -1,1, -1,1, -1,1, -1,1, -1,1, ...].
  • variable phase shifter 20 corresponding to the antenna element 11 1 has a first orthogonal spreading sequence [1,1,1,1,1,1,1,1,1,1,1,1 , 1,1, multiplied by ... to the pilot signal X
  • the variable phase shifter 20 corresponding to the antenna element 11 2 the first orthogonal spreading sequence [1, -1,1, -1,1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1 ...] is multiplied by the pilot signal X.
  • the pilot signal X n in the analog beamformer 18 can be expressed by the following equation.
  • B (n) is the amplitude of the pilot signal given to the transmitting / receiving antenna element 11 n
  • ⁇ (n) is the phase of the pilot signal given to the antenna element 11 n .
  • the digital gain controller 28 gives the same amplitude B to the pilot signals X 1 and X 2
  • the digital phase controller 27 always sets the phase ⁇ (n) of the pilot signal X 1 to 0 and the phase ⁇ of the pilot signal X 2 .
  • (n) is periodically switched between 0 and ⁇ .
  • the pilot signal X 1 of the transmission side sub-branch corresponding to the antenna element 11 1 is [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1,1, ...]
  • the antenna element 11 2 in the pilot signal X 2 sub-branch of the transmitting side corresponding [1, -1,1, -1,1, -1,1, -1,1 , -1, -1, -1,1, -1,1, -1, ...].
  • digital phase controller 64 on the reception side controls the phase of each variable phase shifter 40 of the uplink signal processing unit 30, a pilot signal on the receiving side of the sub-branch corresponding to the antenna element 11 3 second orthogonal spreading sequence S 3 that is, [1,1,1,1, ...]) is multiplied by the second orthogonal spreading sequence S pilot signal of the receiving side sub branch corresponding to the antenna element 11 4 4 Let [1, -1,1, -1, ...] be multiplied.
  • variable phase shifter 40 corresponding to the antenna element 11 3 is variable by the second orthogonal spreading sequence [1,1,1,1, ...] and multiplies the pilot signal, corresponding to the antenna element 11 4
  • the phase shifter 40 multiplies the pilot signal X by the second orthogonal spread sequence [1, -1,1, -1, ...].
  • the second orthogonal spreading sequences S 3 and S 4 are orthogonal to each other.
  • the period of the second orthogonal spreading sequence is four times that of the first orthogonal spreading sequence.
  • S 3 * X 1 [1,1,1,1,1,1,1,1,1,1,1,1,1,1, ...]
  • S 4 * X 2 [1, -1,1, -1, -1, -1, -1, -1,1,1, -1,1, -1, -1, -1, -1,1, ... ].
  • S 3 * X 1 and S 4 * X 2 are orthogonal to each other.
  • the reception result r 3 at the antenna element 11 3 and the reception result r 4 at the antenna element 11 4 are expressed by the following equations.
  • the combined reception result r r 3 + r 4 .
  • the double despreading unit 66 multiplies the reception result r by the first orthogonal spread sequence and the second orthogonal spread sequence (double despread), thereby obtaining the following result.
  • the effective channel coefficients g 1, 3, g 2, 3, g 1, 4, g 2, 4 can be calculated. From the above description, when the antenna elements 11 1 and 11 2 transmit pilot signals and the antenna elements 11 3 and 11 4 receive pilot signals, channel coefficients g 1, 3 , g 2, 3 , g 1, It will be understood that 4 , g 2, 4 can be calculated. Conversely, when the antenna elements 11 3 and 11 4 transmit pilot signals and the antenna elements 11 1 and 11 2 receive pilot signals, the effective channel coefficient g 3, 1 in the reverse direction is determined according to the same theory. , G 3, 2 , g 4, 1 , g 4, 2 can be calculated as follows.
  • the correction coefficients c eNB, 3 and c eNB, 4 for the antenna elements 11 3 and 11 4 can be calculated according to the following formula. here, It is.
  • the antenna element 11 first correction factor for the antenna element 11 2 belonging to the same reference antenna group and c eNB, 2 is unknown, the process up to here, the effective channel coefficients g 3, 2, g 2, 3 is It is known, the correction coefficient c eNB, 3 are calculated regarding the antenna element 11 3. Accordingly, the correction coefficient c eNB, 2 an antenna element 11 2 may be the effective channel coefficients g 3, 2, g 2, 3 and the correction coefficient c eNB, 3 is calculated as follows. Alternatively, the antenna element 11 second correction coefficient c eNB, 2 relates to the effective channel coefficients g 4, 2, g 2, 4 and the correction coefficient c eNB, 4 may be calculated as follows.
  • the correction coefficients related to the antenna elements of all antenna groups when the correction coefficient c eNB, 1 related to the reference antenna elements of the reference antenna group is set to 1 are found.
  • FIG. 18 is a flowchart showing a process for self-correction according to the third embodiment.
  • the antenna transmission control unit 26 transmits pilot signals from all antenna elements of only the reference antenna group (for example, the transmission / reception antenna elements 11 1 to 11 N / L ) (step S211).
  • the digital phase controller 27 gives different phases to a plurality of sub-branches of the reference antenna group.
  • the digital phase controller 64 gives different phases to a plurality of sub-branches of each correction target antenna group.
  • the channel estimation unit 42 estimates an effective channel coefficient based on the pilot signal transmitted from each antenna element of the reference antenna group and received by each antenna element of each correction target antenna group (step S212).
  • the double despreading unit 66 performs double despreading, and identifies the antenna element that has transmitted the pilot signal and the received antenna element.
  • the processing is performed.
  • the process proceeds to S217.
  • the “first period” described above is a period before step S217
  • the “second period” is a period before step S225 starting from step S217.
  • step S217 the antenna transmission control unit 26 transmits pilot signals from all antenna elements of only one correction target antenna group (for example, transmission / reception antenna elements 11 1 + N / L 1 to 11 2N / L ).
  • step S217 the digital phase controller 27 gives different phases to the plurality of sub-branches of the correction target antenna group.
  • the digital phase controller 64 gives different phases to the plurality of sub-branches of the reference antenna group.
  • the channel estimation unit 42 estimates an effective channel coefficient based on a pilot signal transmitted from each antenna element of one correction target antenna group and received by each antenna element of the reference antenna group (step S218). ).
  • the double despreading unit 66 performs double despreading and identifies the antenna element that has transmitted the pilot signal and the received antenna element.
  • step S223 the antenna transmission control unit 26 determines whether there is a correction target antenna group that does not transmit a pilot signal. If this determination is affirmative, the antenna transmission control unit 26 switches the correction target antenna group (step S224), and then the process returns to step S217, and pilots are transmitted from all antenna elements of the other correction target antenna groups. The signal is transmitted, and the channel estimation unit 42 estimates an effective channel coefficient (step S218).
  • step S225 the correction coefficient calculation unit 44 calculates correction coefficients for all antenna elements of the correction target antenna group from the plurality of effective channel coefficients obtained in steps S212 and S218.
  • the correction coefficient calculation unit 44 calculates correction coefficients for all antenna elements other than the reference antenna elements belonging to the reference antenna group, from these effective channel coefficients and correction coefficients.
  • the correction coefficient calculation unit 44 supplies the calculated correction coefficient to the downlink parameter determination unit 24, and the downlink parameter determination unit 24 performs digital precoding based on the correction coefficient as in the first embodiment. And / or analog transmit beamforming.
  • pilot signals transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group are transmitted from any of the transmission / reception antenna elements after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can be specified by which transmission / reception antenna element. Therefore, it is possible to easily calculate a plurality of correction coefficients for a plurality of transmission / reception antenna elements by using self-correction for antenna correction in a TDD mobile communication system.
  • FIG. 19 shows the configuration of a radio base station 10 according to a fourth embodiment of the present invention.
  • FIG. 19 shows only one branch of the analog beamformer 18 (corresponding to one antenna group) and the other one branch of the uplink signal processing unit 30 (corresponding to another one antenna group).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group.
  • the antenna transmission control unit 26 transmits a plurality of transmission / reception antenna elements (for example, transmission / reception antenna elements 11 1 to 11 N /) belonging to a reference antenna group that is one of the L antenna groups in the first period. L ) only transmits a wireless pilot signal, and the channel estimation unit 42 estimates a plurality of channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the correction target antenna group. Further, the antenna transmission control unit 26 transmits a radio pilot only to a plurality of transmission / reception antenna elements belonging to the correction target antenna group in a second period (which may be before or after the first period) different from the first period.
  • a second period which may be before or after the first period
  • the signal is transmitted, and the channel estimation unit 42 estimates a plurality of channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the reference antenna group.
  • the correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period.
  • a pilot signal transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group can be identified from which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group. It is preferable that a pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can specify which transmission / reception antenna element is received.
  • the radio base station 10 when a plurality of transmission / reception antenna elements belonging to one antenna group transmit pilot signals in the first period and the second period, When a plurality of transmission / reception antenna elements belonging to one antenna group transmit a pilot signal in a first period and a second period, a sequence supply unit that gives the same sequence to signals supplied to a plurality of corresponding sub-branches And a delay adding unit for changing the transmission timing of these pilot signals.
  • the affiliated supply unit may be the baseband processor 12.
  • the baseband processor (sequence supply unit) 12 supplies a sequence with high autocorrelation and low cross-correlation to the DAC 14 as a source of the pilot signal.
  • a sequence may be, for example, a PN (pseudo-noise) sequence or a Zadoff-Chu sequence.
  • the delay applying unit may be one or more delay units 52, or cables having different lengths in a plurality of sub branches on the transmission side.
  • each sub-branch of the uplink signal processing unit 30 has a reception-side switch 60 that prevents the branch from processing the pilot signal.
  • the baseband processor 12 has an inverse correlator 68.
  • the inverse correlation unit 68 inversely correlates the received pilot signal with the sequence supplied by the baseband processor (sequence supply unit) 12 when the pilot signal is transmitted.
  • pilot signals transmitted simultaneously from a plurality of transmission / reception antenna elements belonging to one antenna group by different delays on the transmission side of the pilot signal and inverse correlation by the inverse correlation unit 68 on the reception side of the pilot signal are transmitted to other antenna groups. It is possible to specify which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to the.
  • the pilot signal received by the plurality of transmission / reception antenna elements belonging to one antenna group can be identified by which transmission / reception antenna element is received by the action of the reception-side switch 60 on the pilot signal reception side.
  • the components other than the operation of the baseband processor 12 and the delay adding unit, the receiving-side switch 60, and the inverse correlation unit 68 are the configurations of the radio base station 10 that is the basis of the embodiment described above with reference to FIGS.
  • the same reference numerals are used in FIG. 19 to indicate the same components.
  • each sub-branch is surrounded by one dotted rectangle.
  • FIG. 15 is a flowchart showing the process for self-correction according to the second embodiment.
  • the digital phase controller 27 does not give different phases to a plurality of sub-branches of each antenna group.
  • the correction coefficient calculation unit 44 supplies the calculated correction coefficient to the downlink parameter determination unit 24, and the downlink parameter determination unit 24 performs digital precoding based on the correction coefficient as in the first embodiment. And / or analog transmit beamforming.
  • pilot signals transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group are transmitted from any of the transmission / reception antenna elements after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can be specified by which transmission / reception antenna element. Therefore, it is possible to easily calculate a plurality of correction coefficients for a plurality of transmission / reception antenna elements by using self-correction for antenna correction in a TDD mobile communication system.
  • Massive MIMO when downlink transmission is performed while actually performing beamforming, radio waves are simultaneously emitted from a plurality of transmission / reception antenna elements belonging to one antenna group. Therefore, current flows through a plurality of sub-branches of one branch corresponding to one antenna group, and electromagnetic coupling occurs.
  • the pilot signal is simultaneously transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group in the antenna correction, a correction coefficient reflecting the influence of electromagnetic coupling can be calculated.
  • the transmission-side switch 50 is not provided in each sub-branch on the transmission side, the structure is simplified and the control of the components is also simplified. Further, as apparent from comparison between FIG. 12 and FIG. 15, the step of switching the antenna element that transmits the pilot signal is unnecessary, and the processing is simplified.
  • FIG. 20 shows a configuration of a radio base station 10 according to a fifth embodiment of the present invention.
  • FIG. 20 shows only one branch of the analog beamformer 18 (corresponding to one antenna group) and another branch of the uplink signal processing unit 30 (corresponding to another one antenna group).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group.
  • the antenna transmission control unit 26 transmits a plurality of transmission / reception antenna elements (for example, transmission / reception antenna elements 11 1 to 11 N /) belonging to a reference antenna group that is one of the L antenna groups in the first period. L ) only transmit a wireless pilot signal, and the channel estimation unit 42 estimates a plurality of effective channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the correction target antenna group. . Further, the antenna transmission control unit 26 transmits a radio pilot only to a plurality of transmission / reception antenna elements belonging to the correction target antenna group in a second period (which may be before or after the first period) different from the first period.
  • a second period which may be before or after the first period
  • the signal is transmitted, and the channel estimation unit 42 estimates a plurality of effective channel coefficients based on pilot signals received by a plurality of transmission / reception antenna elements belonging to the reference antenna group.
  • the correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of effective channel coefficients estimated in the first period and the plurality of effective channel coefficients estimated in the second period.
  • a pilot signal transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group can be identified from which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group. It is preferable that a pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can specify which transmission / reception antenna element is received.
  • the radio base station 10 when a plurality of transmission / reception antenna elements belonging to one antenna group transmit pilot signals in the first period and the second period, When a plurality of transmission / reception antenna elements belonging to one antenna group transmit a pilot signal in a first period and a second period, a sequence supply unit that gives the same sequence to signals supplied to a plurality of corresponding sub-branches And a delay adding unit for changing the transmission timing of these pilot signals.
  • the affiliated supply unit may be the baseband processor 12.
  • the baseband processor (sequence supply unit) 12 supplies a sequence with high autocorrelation and low cross-correlation to the DAC 14 as a source of the pilot signal.
  • a sequence may be, for example, a PN (pseudo-noise) sequence or a Zadoff-Chu sequence.
  • the delay applying unit may be one or more delay units 52, or cables having different lengths in a plurality of sub branches on the transmission side.
  • the radio base station 10 is configured such that when a plurality of sub-branches belonging to one branch of the uplink signal processing unit 30 process pilot signals in the first period and the second period, A digital phase controller (reception-side phase control unit) 64 that varies the phase of the pilot signal processed in each sub-branch.
  • the digital phase controller 64 is a functional block realized by the DSP executing a computer program stored in a storage unit (not shown) and functioning according to the computer program. In the normal uplink reception, the digital phase controller 64 adjusts the phase of the variable phase shifter 40 for reception beam forming, and in the antenna correction, the digital phase controller 64 adjusts the phase of the received pilot signal. The phase given by 40 is adjusted. In the antenna correction, the digital phase controller (reception side phase control unit) 64 corresponds to other antenna elements, for example, the pilot signal of the reception side sub-branch corresponding to a certain antenna element is [1, 1, 1, 1]. The phase of the variable phase shifter 40 is adjusted so that the pilot signals of the receiving side sub-branches are [1, 1, ⁇ 1, ⁇ 1], and the pilot signals of these sub-branches are orthogonalized (that is, Spread.
  • the baseband processor 12 has a despreading / inverse correlation unit 70.
  • the despreading / decorrelation unit 70 has an operation opposite to that in which the variable phase shifter 40 spreads the pilot signal as a result of the operation of the digital phase control unit (reception side phase control unit) 64 on the reception side (ie, despreading).
  • the received pilot signal is inversely correlated with the sequence supplied by the baseband processor (sequence supply unit) 12 when transmitting the pilot signal.
  • pilot signals transmitted simultaneously from a plurality of transmission / reception antenna elements belonging to one antenna group due to different delays on the transmission side of the pilot signal and inverse correlation by the despreading / inverse correlation unit 70 on the reception side of the pilot signal It is possible to identify which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to the antenna group.
  • a plurality of transmission / reception belonging to one antenna group is performed by spreading by the digital phase control unit (reception side phase control unit) 64 on the reception side of the pilot signal and despreading by the despreading / inverse correlation unit 70 on the reception side of the pilot signal.
  • the pilot signal received by the antenna element can specify which transmission / reception antenna element is received.
  • the components other than the operation of the baseband processor 12 and the delay adding unit, the digital phase controller 64, and the despreading / decorrelating unit 70 are the radio bases that form the basis of the embodiment described above with reference to FIGS.
  • the same reference numerals are used in FIG. 20 to denote the same components as station 10 and to indicate the same components.
  • each sub-branch is surrounded by one dotted rectangle.
  • the flowchart showing the process for self-correction according to the fifth embodiment may be the same as FIG. 18 which is a flowchart showing the process for self-correction according to the third embodiment.
  • the digital phase controller 27 does not give different phases to the plurality of sub-branches of each antenna group, and the digital phase controller 64 also applies to the plurality of sub-branches of each antenna group. Do not give a different phase.
  • the correction coefficient calculation unit 44 supplies the calculated correction coefficient to the downlink parameter determination unit 24, and the downlink parameter determination unit 24 performs digital precoding based on the correction coefficient as in the first embodiment. And / or analog transmit beamforming.
  • pilot signals transmitted from a plurality of transmission / reception antenna elements belonging to one antenna group are transmitted from any of the transmission / reception antenna elements after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signal received by a plurality of transmission / reception antenna elements belonging to one antenna group can be specified by which transmission / reception antenna element. Therefore, it is possible to easily calculate a plurality of correction coefficients for a plurality of transmission / reception antenna elements by using self-correction for antenna correction in a TDD mobile communication system.
  • FIGS. 21 and 22 show the configuration of a radio base station 10 according to a sixth embodiment of the present invention.
  • FIG. 21 shows only a part related to transmission
  • FIG. 22 mainly shows a part related to reception.
  • the sixth embodiment is a modification to the first embodiment, and the radio base station 10 transmits a pilot signal for antenna correction in addition to the transmission / reception antenna elements 11 1 to 11 N for communication.
  • the antenna correction reference transmitting / receiving antenna elements 111 1 to 111 N / L for receiving are included.
  • the radio base station 10 has N / L antenna correction reference transmission / reception antenna elements, but the number of antenna correction reference transmission / reception antenna elements is not limited and may be one.
  • pilot signal In transmitting a pilot signal from a correction reference transmission / reception antenna element for antenna correction, the pilot signal is converted into an analog signal by the DAC 14 for the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L , and the up converter 16, the phase and amplitude are adjusted by the variable phase shifter 20 and the power amplifier 22 of the analog beamformer 18, and transmitted by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L (see FIG. 21). ). Pilot signals transmitted from the corrected reference transmitting / receiving antenna elements are received by the transmitting / receiving antenna elements 11 1 to 11 N for communication.
  • Pilot signals transmitted from the transmitting and receiving antenna elements 11 1 to 11 N for antenna correction are received by the antenna correction reference transmitting and receiving antenna elements 111 1 to 111 N / L.
  • the pilot signals received by the antenna correction reference transmitting / receiving antenna elements 111 1 to 111 N / L are adjusted in amplitude and phase by the low noise receiving amplifier 38 and the variable phase shifter 40, down-converted by the down converter 32, and analog by the ADC 34.
  • the signal is converted into a signal and supplied to the baseband processor 12.
  • Other components are the same as those of the radio base station 10 of the first embodiment, and the same reference numerals are used in FIGS. 21 and 22 to indicate the same components.
  • FIG. 23 shows the configuration of radio base station 10 according to the sixth embodiment of the present invention.
  • FIG. 23 shows one branch of the analog beamformer 18 (corresponding to the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ) and another branch of the uplink signal processing unit 30 (transmission / reception antenna for communication).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna elements.
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna element.
  • the antenna transmission control unit 26 causes only the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L to transmit radio pilot signals in the first period, and the channel estimation unit 42 A plurality of channel coefficients are estimated based on the pilot signal received by the transmitting / receiving antenna element 11 for communication. Further, the antenna transmission control unit 26 transmits a radio pilot signal only to the plurality of transmission / reception antenna elements 11 in a second period (which may be before or after the first period) different from the first period. Then, the channel estimation unit 42 estimates a plurality of channel coefficients based on the pilot signals received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L. The correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period.
  • the pilot signal transmitted from the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L is identified by which antenna correction reference transmission / reception antenna element 111 is transmitted after being received by the communication transmission / reception antenna element 11. It is preferable that the pilot signal received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L can identify which antenna correction reference transmission / reception antenna element 111 has received. Also, pilot signals transmitted from a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group are received by the antenna correction reference transmitting / receiving antenna elements 111 1 to 111 N / L , and then any of the transmitting / receiving antenna elements 11 is received. It is preferable that the pilot signal received by a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group can be specified by which transmitting / receiving antenna element 11 is received. .
  • the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L transmits a pilot signal in the first period
  • another antenna correction reference transmission / reception antenna element transmits the pilot signal.
  • the analog beamformer 18 has a transmission-side switch 50 that prevents the transmission
  • the sub-branch belonging to one branch of the uplink signal processing unit 30 processes the pilot signal in the first period.
  • the uplink signal processing unit 30 includes a reception side switch 60 that prevents other sub-branches belonging to the branch from processing the pilot signal.
  • another transmission / reception antenna element belonging to the antenna group transmits the pilot signal.
  • the analog beamformer 18 has a transmission-side switch 50 that prevents transmission, and one sub-branch corresponding to one antenna correction reference transmission / reception antenna element 111 of the uplink signal processing unit 30 is a pilot in the second period.
  • the uplink signal processing unit 30 includes a reception-side switch 60 that prevents another sub-branch corresponding to another antenna correction reference transmission / reception antenna element from processing the pilot signal.
  • FIG. 12 is a flowchart showing a process for self-correction according to the first embodiment.
  • the “reference antenna group” in FIG. 12 is read as “antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ”, and the “correction target antenna group” in FIG. It is read as “antenna group”.
  • all communication transmitting / receiving antenna elements 11 are antenna correction targets.
  • the transmission side switch 50 and the reception side switch 60 for the antenna correction reference transmission / reception antenna element 111 are not necessary.
  • FIG. 24 shows the structure of the wireless base station 10 which concerns on the 7th Embodiment of this invention.
  • FIG. 24 shows one branch of the analog beamformer 18 (corresponding to the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ) and another branch of the uplink signal processing unit 30 (transmission / reception antenna for communication).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna elements.
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna element.
  • the antenna transmission control unit 26 causes only the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L to transmit radio pilot signals in the first period, and the channel estimation unit 42 A plurality of channel coefficients are estimated based on the pilot signal received by the transmitting / receiving antenna element 11 for communication. Further, the antenna transmission control unit 26 transmits a radio pilot signal only to the plurality of transmission / reception antenna elements 11 in a second period (which may be before or after the first period) different from the first period. Then, the channel estimation unit 42 estimates a plurality of channel coefficients based on the pilot signals received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L. The correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period.
  • the pilot signal transmitted from the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L is identified by which antenna correction reference transmission / reception antenna element 111 is transmitted after being received by the communication transmission / reception antenna element 11. It is preferable that the pilot signal received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L can identify which antenna correction reference transmission / reception antenna element 111 has received. Also, pilot signals transmitted from a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group are received by the antenna correction reference transmitting / receiving antenna elements 111 1 to 111 N / L , and then any of the transmitting / receiving antenna elements 11 is received. It is preferable that the pilot signal received by a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group can be specified by which transmitting / receiving antenna element 11 is received. .
  • the radio base station 10 when the plurality of antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L transmit pilot signals in the first period, A transmission-side phase control unit that varies the phase of the pilot signal transmitted from the element. Also, the radio base station 10 according to this embodiment transmits a transmission signal from these transmission / reception antenna elements when a plurality of communication transmission / reception antenna elements 11 belonging to one antenna group transmit pilot signals in the second period. A transmission-side phase control unit that varies the phase of the pilot signal to be transmitted.
  • the transmission side phase control unit may be a digital phase controller 27.
  • the digital phase controller 27 adjusts the phase of the variable phase shifter 20 for analog transmission beam forming, and in the antenna correction, the digital phase controller 27 changes the phase of the pilot signal. Adjust the phase given by.
  • the digital phase controller (transmission-side phase control unit) 27 sets the phase of the pilot signal X 1 of the sub-branch corresponding to the antenna element 111 1 to [1, 1] and the sub-corresponding to the antenna element 111 2 , for example. the branch of the pilot signal X 2 phase [1, -1] so that, by adjusting the variable phase shifter 20, orthogonal the pilot signals of these sub-branches (i.e. diffusion).
  • each sub-branch of the uplink signal processing unit 30 has a reception-side switch 60 that prevents the branch from processing the pilot signal.
  • the baseband processor 12 has a despreader 62.
  • the despreading unit 62 performs the reverse operation (that is, despreading) that the variable phase shifter 20 spreads the pilot signal as a result of the operation of the digital phase controller (transmission side phase control unit) 27.
  • a plurality of transmission / reception antenna elements belonging to one antenna group are performed.
  • a pilot signal transmitted simultaneously from the transmission / reception antenna element 11 or the antenna correction reference transmission / reception antenna element 111) is transmitted from any of the transmission / reception antenna elements after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signal received by the plurality of transmission / reception antenna elements belonging to one antenna group can be identified by which transmission / reception antenna element is received by the action of the reception-side switch 60 on the pilot signal reception side.
  • FIG. 15 is a flowchart showing a process for self-correction according to the second embodiment.
  • the “reference antenna group” in FIG. 15 is read as “antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ”, and the “correction target antenna group” in FIG. It is read as “antenna group”.
  • all communication transmitting / receiving antenna elements 11 are subject to antenna correction.
  • the transmission-side phase control unit and the reception-side switch 60 for the antenna correction reference transmission / reception antenna element 111 are unnecessary, and the antenna correction reference transmission / reception antenna element In the reception processing of the pilot signal transmitted from 111, the despreading unit 62 is also unnecessary.
  • FIG. 25 shows the configuration of a radio base station 10 according to an eighth embodiment of the present invention.
  • FIG. 25 shows one branch of the analog beamformer 18 (corresponding to the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ) and another branch of the uplink signal processing unit 30 (transmission / reception antenna for communication).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna elements.
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna element.
  • the antenna transmission control unit 26 causes only the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L to transmit radio pilot signals in the first period, and the channel estimation unit 42 A plurality of effective channel coefficients are estimated based on the pilot signal received by the transmitting / receiving antenna element 11 for communication. Further, the antenna transmission control unit 26 transmits a radio pilot signal only to the plurality of transmission / reception antenna elements 11 in a second period (which may be before or after the first period) different from the first period. Then, the channel estimation unit 42 estimates a plurality of effective channel coefficients based on the pilot signals received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L. The correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of effective channel coefficients estimated in the first period and the plurality of effective channel coefficients estimated in the second period.
  • the pilot signal transmitted from the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L is identified by which antenna correction reference transmission / reception antenna element 111 is transmitted after being received by the communication transmission / reception antenna element 11. It is preferable that the pilot signal received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L can identify which antenna correction reference transmission / reception antenna element 111 has received. Also, pilot signals transmitted from a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group are received by the antenna correction reference transmitting / receiving antenna elements 111 1 to 111 N / L , and then any of the transmitting / receiving antenna elements 11 is received. It is preferable that the pilot signal received by a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group can be specified by which transmitting / receiving antenna element 11 is received. .
  • the radio base station 10 when the plurality of antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L transmit pilot signals in the first period,
  • the pilot signals transmitted from the elements are spread with different first orthogonal spreading sequences (short codes), and a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group transmit the pilot signals in the second period.
  • a transmission-side phase control unit that spreads pilot signals transmitted from these transmission / reception antenna elements with different first orthogonal spreading sequences is provided.
  • the radio base station 10 is configured such that when a plurality of sub-branches belonging to one branch of the uplink signal processing unit 30 process pilot signals in the first period and the second period, A digital phase controller (reception-side phase control unit) 64 that spreads pilot signals processed in the sub-branches with different second orthogonal spreading sequences (long codes). Similar to the third embodiment, the transmission-side phase control unit may be a digital phase controller 27.
  • the baseband processor 12 has a double despreader 66.
  • the double despreading unit 66 is the reverse of the effect that the variable phase shifter 40 spreads the pilot signal as a result of the operation of the digital phase control unit (reception side phase control unit) 64 on the reception side (that is, the reverse to the long code (Spreading) and the reverse action of the variable phase shifter 20 spreading the pilot signal as a result of the action of the digital phase control part (transmission side phase control part) 27 on the transmission side (that is, despreading for the short code) ).
  • the double despreading unit 66 performs double despreading.
  • a plurality of signals belonging to one antenna group are spread by the pilot phase transmission side digital phase control unit (transmission side phase control unit) 27 and the pilot signal reception side despreading unit 66 despreads the short code.
  • Pilot signals simultaneously transmitted from the transmission / reception antenna elements are received by a plurality of transmission / reception antenna elements belonging to another antenna group, It can be specified whether the signal is transmitted from the antenna element.
  • a plurality of signals belonging to one antenna group are spread by the pilot phase receiving side digital phase control unit (receiving side phase control unit) 64 and the pilot signal receiving side despreading unit 66 despreads the long code.
  • the pilot signal received by the transmitting / receiving antenna element can identify which transmitting / receiving antenna element is received.
  • FIG. 18 is a flowchart showing a process for self-correction according to the third embodiment.
  • the “reference antenna group” in FIG. 18 is replaced with “antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ”, and the “correction target antenna group” in FIG. It is read as “antenna group”.
  • all communication transmitting / receiving antenna elements 11 are antenna correction targets.
  • the transmission-side phase control unit and the reception-side phase control unit for the antenna correction reference transmission / reception antenna element 111 are unnecessary, and the antenna correction reference transmission / reception antenna 111
  • despreading for the short code by the double despreading unit 66 is unnecessary, and in the reception processing of the pilot signal received by the antenna correction reference transmission / reception antenna element 111, double despreading is performed.
  • Despreading of the long code by the unit 66 is not necessary.
  • FIG. 26 shows the configuration of a radio base station 10 according to a ninth embodiment of the present invention.
  • FIG. 26 shows one branch of the analog beamformer 18 (corresponding to the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ) and another branch of the uplink signal processing unit 30 (transmission / reception antenna for communication).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna elements.
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna element.
  • the antenna transmission control unit 26 causes only the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L to transmit radio pilot signals in the first period, and the channel estimation unit 42 A plurality of channel coefficients are estimated based on the pilot signal received by the transmitting / receiving antenna element 11 for communication. Further, the antenna transmission control unit 26 transmits a radio pilot signal only to the plurality of transmission / reception antenna elements 11 in a second period (which may be before or after the first period) different from the first period. Then, the channel estimation unit 42 estimates a plurality of channel coefficients based on the pilot signals received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L. The correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of channel coefficients estimated in the first period and the plurality of channel coefficients estimated in the second period.
  • the pilot signal transmitted from the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L is identified by which antenna correction reference transmission / reception antenna element 111 is transmitted after being received by the communication transmission / reception antenna element 11. It is preferable that the pilot signal received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L can identify which antenna correction reference transmission / reception antenna element 111 has received. Also, pilot signals transmitted from a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group are received by the antenna correction reference transmitting / receiving antenna elements 111 1 to 111 N / L , and then any of the transmitting / receiving antenna elements 11 is received. It is preferable that the pilot signal received by a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group can be specified by which transmitting / receiving antenna element 11 is received. .
  • the radio base station 10 when the plurality of antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L transmit pilot signals in the first period, when a plurality of antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L transmit pilot signals, a sequence supply unit that gives the same sequence to signals supplied to a plurality of sub-branches corresponding to the elements, these pilot signals Has a delay adding unit that changes the transmission timing of the. Also, the radio base station 10 according to this embodiment corresponds to these transmission / reception antenna elements when a plurality of communication transmission / reception antenna elements 11 belonging to one antenna group transmit pilot signals in the second period.
  • the sequence supply unit may be a baseband processor 12.
  • the baseband processor (sequence supply unit) 12 supplies a sequence with high autocorrelation and low cross-correlation to the DAC 14 as a source of the pilot signal.
  • Such a sequence may be, for example, a PN (pseudo-noise) sequence or a Zadoff-Chu sequence.
  • the delay adding unit may be one or more delay units 52, or cables having different lengths in a plurality of sub branches on the transmission side.
  • each sub-branch of the uplink signal processing unit 30 has a reception-side switch 60 that prevents the branch from processing the pilot signal.
  • the baseband processor 12 has an inverse correlator 68.
  • the inverse correlation unit 68 inversely correlates the received pilot signal with the sequence supplied by the baseband processor (sequence supply unit) 12 when the pilot signal is transmitted.
  • a plurality of transmission / reception antenna elements (transmission / reception antenna element 11 for communication or antenna correction reference transmission / reception) belonging to one antenna group are caused by different delays on the transmission side of the pilot signal and inverse correlation by the inverse correlation unit 68 on the reception side of the pilot signal.
  • the pilot signal transmitted simultaneously from the antenna element 111) can be identified from which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • the pilot signal received by the plurality of transmission / reception antenna elements belonging to one antenna group can be identified by which transmission / reception antenna element is received by the action of the reception-side switch 60 on the pilot signal reception side.
  • FIG. 15 is a flowchart showing a process for self-correction according to the second embodiment.
  • the “reference antenna group” in FIG. 15 is read as “antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ”, and the “correction target antenna group” in FIG. It is read as “antenna group”.
  • all communication transmitting / receiving antenna elements 11 are antenna correction targets.
  • the digital phase controller 27 does not give different phases to a plurality of sub-branches of each antenna group.
  • the delay applying unit and the reception-side switch 60 for the antenna correction reference transmission / reception antenna element 111 are not necessary.
  • the inverse correlation unit 68 is also unnecessary.
  • FIG. 27 shows the configuration of a radio base station 10 according to a tenth embodiment of the present invention.
  • FIG. 27 shows one branch of the analog beamformer 18 (corresponding to the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ) and another branch of the uplink signal processing unit 30 (transmission / reception antenna for communication).
  • the analog beamformer 18 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna elements.
  • the uplink signal processing unit 30 has an L branch corresponding to the L antenna group of the transmission / reception antenna elements for communication and one branch corresponding to the antenna correction reference transmission / reception antenna element.
  • the antenna transmission control unit 26 causes only the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L to transmit radio pilot signals in the first period, and the channel estimation unit 42 A plurality of effective channel coefficients are estimated based on the pilot signal received by the transmitting / receiving antenna element 11 for communication. Further, the antenna transmission control unit 26 transmits a radio pilot signal only to the plurality of transmission / reception antenna elements 11 in a second period (which may be before or after the first period) different from the first period. Then, the channel estimation unit 42 estimates a plurality of effective channel coefficients based on the pilot signals received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L. The correction coefficient calculation unit 44 calculates a plurality of correction coefficients from the plurality of effective channel coefficients estimated in the first period and the plurality of effective channel coefficients estimated in the second period.
  • the pilot signal transmitted from the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L is identified by which antenna correction reference transmission / reception antenna element 111 is transmitted after being received by the communication transmission / reception antenna element 11. It is preferable that the pilot signal received by the antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L can identify which antenna correction reference transmission / reception antenna element 111 has received. Also, pilot signals transmitted from a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group are received by the antenna correction reference transmitting / receiving antenna elements 111 1 to 111 N / L , and then any of the transmitting / receiving antenna elements 11 is received. It is preferable that the pilot signal received by a plurality of communication transmitting / receiving antenna elements 11 belonging to one antenna group can be specified by which transmitting / receiving antenna element 11 is received. .
  • the radio base station 10 when the plurality of antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L transmit pilot signals in the first period, when a plurality of antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L transmit pilot signals, a sequence supply unit that gives the same sequence to signals supplied to a plurality of sub-branches corresponding to the elements, these pilot signals Has a delay adding unit that changes the transmission timing of the. Also, the radio base station 10 according to this embodiment corresponds to these transmission / reception antenna elements when a plurality of communication transmission / reception antenna elements 11 belonging to one antenna group transmit pilot signals in the second period.
  • the sequence supply unit may be a baseband processor 12.
  • the baseband processor (sequence supply unit) 12 supplies a sequence with high autocorrelation and low cross-correlation to the DAC 14 as a source of the pilot signal.
  • Such a sequence may be, for example, a PN (pseudo-noise) sequence or a Zadoff-Chu sequence.
  • the delay adding unit may be one or more delay units 52, or cables having different lengths in a plurality of sub branches on the transmission side.
  • the radio base station 10 has a plurality of sub-stations belonging to one branch of the uplink signal processing unit 30 in the first period and the second period.
  • the branch processes the pilot signal
  • it has a digital phase controller (reception-side phase control unit) 64 that changes the phase of the pilot signal processed in these sub-branches.
  • the baseband processor 12 has a despreading / inverse correlation unit 70.
  • the despreading / decorrelation unit 70 has an operation opposite to that in which the variable phase shifter 40 spreads the pilot signal as a result of the operation of the digital phase control unit (reception side phase control unit) 64 on the reception side (ie, despreading).
  • the received pilot signal is inversely correlated with the sequence supplied by the baseband processor (sequence supply unit) 12 when transmitting the pilot signal.
  • a plurality of transmission / reception antenna elements (communication transmission / reception antenna elements 11 or antennas) belonging to one antenna group are caused by different delays on the transmission side of the pilot signal and inverse correlation by the despreading / inverse correlation unit 70 on the reception side of the pilot signal.
  • the pilot signal transmitted simultaneously from the corrected reference transmission / reception antenna element 111) can be identified from which transmission / reception antenna element is transmitted after being received by a plurality of transmission / reception antenna elements belonging to another antenna group.
  • a plurality of transmission / reception belonging to one antenna group is performed by spreading by the digital phase control unit (reception side phase control unit) 64 on the reception side of the pilot signal and despreading by the despreading / inverse correlation unit 70 on the reception side of the pilot signal.
  • the pilot signal received by the antenna element can specify which transmission / reception antenna element is received.
  • FIG. 18 is a flowchart showing a process for self-correction according to the third embodiment.
  • the “reference antenna group” in FIG. 18 is replaced with “antenna correction reference transmission / reception antenna elements 111 1 to 111 N / L ”, and the “correction target antenna group” in FIG. It is read as “antenna group”.
  • all communication antenna elements 11 for communication are antenna correction targets.
  • the digital phase controller 27 does not give different phases to a plurality of sub-branches of each antenna group.
  • the delay applying unit and the reception-side phase control unit for the antenna correction reference transmission / reception antenna elements 111 are not necessary.
  • the inverse spread by the despreading / decorrelation unit 70 is unnecessary, and in the reception process of the pilot signal received by the antenna correction reference transmission / reception antenna element 111, the despreading / inverse correlation unit 70 No despreading is necessary.
  • the antenna element transmits and receives a wireless pilot signal
  • the correction coefficient is calculated based on the wireless pilot signal propagating in space.
  • transmission / reception of a wireless pilot signal is based on a procedure, in which a pilot signal is transmitted and received in a wired manner between antenna elements via a coupling circuit that couples the antenna elements, and is transmitted through a coupling circuit.
  • a correction factor may be calculated based on the effective channel coefficient of the pilot signal.
  • each function executed by the DSP may be executed by hardware instead of the DSP, and programmable such as, for example, FPGA (Field Programmable Gate Array) and CPU (Central Processing Unit) It may be executed by a logic device.
  • programmable such as, for example, FPGA (Field Programmable Gate Array) and CPU (Central Processing Unit) It may be executed by a logic device.

Abstract

基地局は、ディジタルプリコーディングとアナログビームフォーミングの組合せを実行する。送受信アンテナ素子は、複数のアンテナグループに分類される。アナログビームフォーマは、複数のアンテナグループに対応する複数のブランチを有する。各ブランチは複数のサブブランチを有し、各サブブランチは1アンテナ素子に接続されている。自己補正において、1アンテナグループに属する複数のアンテナ素子から送信されるパイロット信号は、他のアンテナグループに属するアンテナ素子に受信された後に、いずれのアンテナ素子から送信されたか特定でき、1アンテナグループに属する複数のアンテナ素子で受信されるパイロット信号は、いずれのアンテナ素子で受信されたか特定できる。

Description

無線基地局
 本発明は、無線基地局に関する。
 移動体通信の方式として、TDD(時分割複信)が知られている。TDDでは、上りリンクと下りリンクの周波数帯が同じであるため、空間上の(on the air)チャネル状態は上りリンクと下りリンクで基本的に同じである。上りリンクと下りリンクのチャネル状態が同じであることは、チャネル可逆性(channel reciprocity)と呼ばれる。
 チャネルの可逆性のため、理論的には、上りリンクのチャネル状態情報(Channel Sate Information)に基づいて無線基地局が下りリンクチャネル状態を推定することができ,下りリンクの送信のためのパラメータを決定することが可能である。上りリンクのチャネル状態情報に基づいて下りリンクの送信のためのパラメータを決定することは、移動局(ユーザ装置)で測定された下りリンクのチャネル状態情報に基づいて下りリンクの送信のためのパラメータを決定することよりも、移動局から無線基地局への下りリンクのチャネル状態情報の報告が不要なため、有利である。
 しかし、実際には、送信回路の特性のばらつきおよび受信回路の特性のばらつきのため、TDD移動体通信システムにおいて移動局で測定される下りリンクのチャネル状態情報は、無線基地局で測定される上りリンクのチャネル状態情報とは異なってしまう。これらの特性は、温度および湿度といった環境に依存して変化し、同じ装置内のアンテナによっても異なる。以下、このような送信回路の特性を送信ゲインと呼び、受信回路の特性を受信ゲインと呼ぶ。
 このため、上りリンクのチャネル係数に基づいて下りリンクの送信のためのパラメータを決定する場合、チャネル係数を補正することが提案されている(例えば非特許文献1および非特許文献2)。このようなTDD移動体通信システムでのチャネル係数の補正は無線周波数特性補正(RF calibration)またはアンテナ補正(antenna calibration)と呼ばれる。
 図1を参照し、非特許文献1に記載されたアンテナ補正を説明する。図1に示すように、無線基地局10はN本の送受信アンテナ素子11~11を有し、ユーザ装置(user equipment)100はM本の送受信アンテナ素子101~101を有する。上りリンクと下りリンクのチャネルの可逆性のため、下記の式(1)が成立する。
Figure JPOXMLDOC01-appb-M000001
 ここで、
Figure JPOXMLDOC01-appb-M000002
は、ユーザ装置100のアンテナ素子101から無線基地局10のアンテナ素子11への空間上の上りリンクのチャネルゲインであり、
Figure JPOXMLDOC01-appb-M000003
は、無線基地局10のアンテナ素子11からユーザ装置100のアンテナ素子101への空間上の下りリンクのチャネルゲインである。添字mはユーザ装置100のアンテナの番号であり、添字nは無線基地局10のアンテナの番号である。
 しかし、無線基地局10は、下りリンク送信においてアンテナ素子11~11についてそれぞれ送信ゲインTeNB, 1~TeNB, Nを有し、上りリンク受信においてアンテナ素子11~11についてそれぞれ受信ゲインReNB, 1~ReNB, Nを有する。ユーザ装置100は、下りリンク受信においてアンテナ素子101~101についてそれぞれ受信ゲインRUE, 1~RUE, Mを有し、上りリンク送信においてアンテナ素子101~101についてそれぞれ送信ゲインTUE, 1~TUE, Mを有する。
 したがって、無線基地局10で測定される上りリンクのチャネル係数
Figure JPOXMLDOC01-appb-M000004
は下記の式(2)で表される。
Figure JPOXMLDOC01-appb-M000005
 ユーザ装置100で測定される下りリンクのチャネル係数
Figure JPOXMLDOC01-appb-M000006
は下記の式(3)で表される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
なので、
Figure JPOXMLDOC01-appb-M000009
である。
 したがって、上りリンクのチャネル状態だけに基づいて無線基地局10が下りリンクの送信のためのパラメータ(例えば下りリンクの送信プリコーディング行列)を決定すると、決定されたパラメータがユーザ装置100での受信に適切ではなくなることがありうる。そこで、ユーザ装置100が各アンテナで送信される上りリンクの信号に補正係数(calibration coefficient)cUE, mを与え、無線基地局10が各アンテナで送信される下りリンクの信号に補正係数ceNB, nを与える。
 上りリンクの補正後のチャネル係数
Figure JPOXMLDOC01-appb-M000010

Figure JPOXMLDOC01-appb-M000011
で表され、下りリンクの補正後のチャネル係数
Figure JPOXMLDOC01-appb-M000012

Figure JPOXMLDOC01-appb-M000013
で表される。
 送信ゲインと受信ゲインによって歪められたチャネルの可逆性を補正するため、補正後のチャネル係数は下記の式を満たすべきである。
Figure JPOXMLDOC01-appb-M000014
 非特許文献1に記載されたアンテナ補正は、式(2)、(3)および(6)から導かれる下記の式(7)および(8)を満たすように、補正係数cUE, mおよびceNB, nを適切に決定することにより行われる。
Figure JPOXMLDOC01-appb-M000015
 次に非特許文献1に記載されたアンテナ補正の方法から導かれる、より具体的なアンテナ補正の方法を説明する。式(1)、(2)および(3)から、アンテナ補正をしない場合には上りリンクのチャネル係数と下りリンクのチャネル係数の関係は下記の式(9)で表される。
Figure JPOXMLDOC01-appb-M000016
 式(9)を行列の形式で表すと、式(10)が得られる。つまり、アンテナ補正をしない場合には上りリンクのチャネル行列と下りリンクのチャネル行列の関係は式(10)で表される。
Figure JPOXMLDOC01-appb-M000017
ここで
Figure JPOXMLDOC01-appb-M000018
は、下りリンクのチャネル行列であり、下記のように表すことができる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
は、上りリンクのチャネル行列であり、下記のように表すことができる。
Figure JPOXMLDOC01-appb-M000021
 したがって、式(10)は下記の式(11)のように書き換えることができる。
Figure JPOXMLDOC01-appb-M000022
 式(10)および式(11)のwnは、無線基地局10のパラメータであり、
n = TeNB, n/ReNB, n
である。vnは、ユーザ装置100のパラメータであり、
m = RUE, m/TUE, m
である。
 非特許文献1に記載されたアンテナ補正が行われる場合には、式(7)および(8)が満たされる。式(8)は式(12)に書き換えることができ、式(7)は式(13)に書き換えることができる。
Figure JPOXMLDOC01-appb-M000023
 ここで、αnは補正係数ceNB, nで補正後の無線基地局10のパラメータであり、βmは補正係数cUE, mの補正後のユーザ装置100のパラメータである。αnおよびβmは下記の通りである。
Figure JPOXMLDOC01-appb-M000024
 このアンテナ補正が行われる場合には、上りリンクのチャネル行列と下りリンクのチャネル行列の関係は下記の式(14)で表される。
Figure JPOXMLDOC01-appb-M000025
 式(12)および(13)から式(14)は式(15)に書き換えることができる。
Figure JPOXMLDOC01-appb-M000026
 式(15)から、補正後のパラメータα1およびβ1、または補正係数ceNB, nおよびcUE, mが既知であれば、上りリンクのチャネル行列
Figure JPOXMLDOC01-appb-M000027
から下りリンクのチャネル行列
Figure JPOXMLDOC01-appb-M000028
が推定されることが理解できる。したがって、上りリンクのチャネル行列に基づいて、例えば下りリンクの送信プリコーディング行列のような下りリンク送信のためのパラメータを適切に決定することができる。
 補正係数ceNB, nおよびcUE, mは、ユーザ装置100で測定された下りリンクのチャネル情報と無線基地局10で測定された上りリンクのチャネル情報から計算することが可能である。しかしながら、この計算方法は、無線基地局10のセルエリアにユーザ装置100が存在しない場合には実行できない。また、補正係数を計算するための専用の下りリンクのパイロット信号をユーザ装置100が受信し、その結果を無線基地局10に報告するのは、時間リソースの無駄であるし、ユーザ装置100の負担が大きい。補正係数を計算するための専用の上りリンクのパイロット信号をユーザ装置100が送信するのも、ユーザ装置100の負担が大きい。
 最近では、Massive MIMO伝送方式が検討されている(例えば、特許文献1、非特許文献3)。Massive MIMOにおいては、多数の(例えば、100以上の)送信アンテナ素子(例えば、100素子以上)を用いた高度なビームフォーミング(beamforming)を実施可能である。ビームフォーミングは、複数の送信アンテナ素子から放出される電波のビームの方向および形状を制御するために、送信アンテナ素子に供給される電気信号にウェイト(重み付け係数)を与えることにより、電気信号の位相および振幅を調整する技術であり、プリコーディング(precoding)を含む。Massive MIMOは、主に無線基地局で使用される。
 Massive MIMOでは、多数の送信アンテナ素子が使用されるため、アンテナ補正に手間がかかる。ユーザ装置100で測定された下りリンクのチャネル情報と無線基地局10で測定された上りリンクのチャネル情報から補正係数ceNB, nおよびcUE, mを計算するのは、上述したユーザ装置100の負担が極めて大きい上、ユーザ装置100から報告される下りリンクのチャネル情報の量が巨大になると考えられる。
 そこで、無線基地局でのローカルなアンテナ補正である自己補正(self calibration)を行うことが考えられる。自己補正によれば、無線基地局のアンテナ素子間のチャネルの可逆性を利用し、無線基地局の送受信アンテナ素子が無線基地局の他の送受信アンテナ素子で送信されたパイロット信号(自己補正専用のパイロット信号)を受信し、チャネル状態情報から無線基地局が補正係数を計算する。したがって、補正係数を計算するためのユーザ装置の負担はなく、補正係数を計算するための下りリンクのチャネル状態情報の報告のトラヒックは必要ない。また、無線基地局10のセルエリアにユーザ装置100が存在しない場合でも、補正係数を計算することができる。
 自己補正の場合、式(8)を満たすように、補正係数ceNB, nが決定される。上述のように、式(8)は式(12)に書き換えることができる。したがって、上りリンクのチャネル行列と下りリンクのチャネル行列の関係は下記の式(16)で表される。
Figure JPOXMLDOC01-appb-M000029
 式(16)から、補正後のパラメータα1、β1~βM、または補正係数ceNB, nおよび補正後のパラメータβ1~βMが既知であれば、上りリンクのチャネル行列
Figure JPOXMLDOC01-appb-M000030
から下りリンクのチャネル行列
Figure JPOXMLDOC01-appb-M000031
が推定されることが理解できる。したがって、上りリンクのチャネル行列に基づいて、例えば下りリンクの送信プリコーディング行列のような下りリンク送信のためのパラメータを適切に決定することができる。
 図2および図3を参照しながら、自己補正の具体的な方法を説明する。まず、無線基地局10は、1つの基準アンテナ素子(reference antenna element)からパイロット信号を送信する(ステップS1)。基準アンテナ素子は、複数の送受信アンテナ素子11~11のうちいずれであってもよく、例えば送受信アンテナ素子11であってよい。基準アンテナ素子がパイロット信号を送信する期間、無線基地局10は他のアンテナ素子がパイロット信号を送信しないよう制御する。
 無線基地局10は、基準アンテナ素子から送信され、補正対象アンテナ素子(基準アンテナ素子以外のすべての送受信アンテナ素子11~11、例えば送受信アンテナ素子11~11)で受信されるパイロット信号に基づいてチャネル推定を実行する(ステップS2)。基準アンテナ素子が送受信アンテナ素子11である場合、ステップS2で無線基地局10は、具体的には実効的なチャネル係数h1, 2~h1, Nを推定する。最初の添字はパイロット信号を送信したアンテナ素子の番号を示し、最後の添字はパイロット信号を受信したアンテナ素子の番号を示す。
 次に、無線基地局10は、1つの補正対象アンテナ素子からパイロット信号を送信する(ステップS3)。この時、パイロット信号を送信する補正対象アンテナ素子は、複数の補正対象アンテナ素子のうちいずれであってもよい。1つの補正対象アンテナ素子がパイロット信号を送信する期間、無線基地局10は他のアンテナ素子がパイロット信号を送信しないよう制御する。
 無線基地局10は、補正対象アンテナ素子から送信され、基準アンテナ素子で受信されるパイロット信号に基づいてチャネル推定を実行する(ステップS4)。基準アンテナ素子が送受信アンテナ素子11である場合、ステップS4で無線基地局10は、具体的には実効的なチャネル係数hn, 1を推定する。最初の添字はパイロット信号を送信したアンテナ素子の番号を示し、最後の添字はパイロット信号を受信したアンテナ素子の番号を示す。
 無線基地局10は、パイロット信号を送信していない補正対象アンテナ素子があるか否か判断し(ステップS5)、この判断が肯定的であれば、ステップS3およびS4を実行する。すべての補正対象アンテナ素子がパイロット信号を送信すると、無線基地局10は、推定された実効的なチャネル係数から補正係数を計算する(ステップS6)。
 アンテナ素子11mからアンテナ素子11nへの実効的なチャネル係数hm, nは、下記の式(17)で表される。
 hm, n = TeNB, m・gm, n・ReNB, n   ...(17)
 アンテナ素子11nからアンテナ素子11mへの実効的なチャネル係数hn, mは、下記の式(18)で表される。
 hn, m = TeNB, n・gn, m・ReNB, m   ...(18)
 ここで、アンテナ素子11からアンテナ素子11への空間上の下りリンクのチャネルゲインgm, nは、アンテナ素子11からアンテナ素子11への空間上の下りリンクのチャネルゲインgn, mに等しい。したがって、式(17)および(18)から、実効的なチャネル係数hm, nおよびhn, mの関係は下記の式(19)で表される。
Figure JPOXMLDOC01-appb-M000032
 自己補正の場合、式(8)を満たすように、補正係数ceNB, nが決定される。基準アンテナ素子の補正係数を1に設定する。例えばアンテナ素子11が基準アンテナ素子であれば、ceNB, 1 = 1である。この場合、式(8)から補正係数ceNB, nは下記の式(20)で表される。
Figure JPOXMLDOC01-appb-M000033
 式(19)および(20)から補正係数ceNB, nは下記の式(21)で表される。
Figure JPOXMLDOC01-appb-M000034
 したがって、ステップS6においては、無線基地局10は、ステップS2で推定された実効的なチャネル係数(例えばh1, 2~h1, N)と、ステップS4で推定された実効的なチャネル係数(例えばh2, 1~hN, 1)に基づいて、基準アンテナ素子11以外のアンテナ素子11~11についての補正係数ceNB, 2~ceNB, Nを計算する。
 上記の説明から理解されるように、自己補正においては、1つの補正対象アンテナ素子がパイロット信号を送信する期間、無線基地局10は他のアンテナ素子がパイロット信号を送信しないよう制御するので、N期間が必要である。Nは送受信アンテナ素子11~11の数である。
特開2013-232741号公報
Mitsubishi Electric, "Discussion on antenna calibration in TDD", 3GPP TSG RAN WG1 #55bis meeting, R1-090043, 3GPP, 2009年1月 Qualcomm Europe, "Calibration Procedures for TDD Beamforming", 3GPP TSG RAN1 #51bis, R1-080494, 3GPP, 2008年1月 T. Obara, S. Suyama, J. Shen, and Y. Okumura "Joint fixed beamforming and eigenmode precoding for super high bit rate Massive MIMO systems using higher frequency bands," IEEE PIMRC, 2014年9月.
 Massive MIMOにおいては、多数の送受信アンテナ素子から電波が放出される。これらの多数の送受信アンテナ素子についての複数の補正係数を容易に計算するための技術が待望されている。
 そこで、本発明は、TDD移動体通信システムでアンテナ補正に自己補正を使用し、複数の送受信アンテナ素子について複数の補正係数を容易に計算する無線基地局を提供する。
 本発明の1つの態様に係る無線基地局は、下りリンク信号にプリコーディング行列を適用して、ディジタルプリコーディングを実行するディジタル信号処理部と、前記ディジタルプリコーディングが施された下りリンク信号に対して、ビームフォーミング行列に相当する位相および振幅の変化を付与するアナログビームフォーミングを実行するアナログビームフォーマと、前記アナログビームフォーミングが施された下りリンク信号を無線で送信し、前記下りリンク信号の送信に利用される周波数帯と同じ周波数帯での上りリンク信号をユーザ装置から無線で受信する複数の送受信アンテナ素子と、前記複数の送受信アンテナ素子で受信された前記上りリンク信号を処理する上りリンク信号処理部とを備える。前記送受信アンテナ素子は、複数のアンテナグループに分類され、各アンテナグループは複数の送受信アンテナ素子を有しており、前記アナログビームフォーマは、前記複数のアンテナグループにそれぞれ対応する複数のブランチを有しており、各ブランチは複数のサブブランチを有しており、各サブブランチは、前記アナログビームフォーミングを実行するための可変移相器と振幅調整器を有しており、各サブブランチは1つの前記送受信アンテナ素子に接続されており、前記上りリンク信号処理部は、前記複数のアンテナグループにそれぞれ対応する複数のブランチを有しており、各ブランチは複数のサブブランチを有しており、各サブブランチは受信増幅器を有しており、各サブブランチは1つの前記送受信アンテナ素子に接続されている。この無線基地局は、さらに、前記複数の送受信アンテナ素子からのパイロット信号の送信を制御するアンテナ送信制御部と、前記複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定するチャネル推定部と、前記複数の送受信アンテナ素子で受信された上りリンクの無線信号から推定される複数のチャネル係数に基づいて、下りリンク送信を行う場合に、前記複数の送受信アンテナ素子から送信される下りリンクの無線信号に与えられるべき補正係数を計算する補正係数計算部とを備える。第1の期間に、前記アンテナ送信制御部は、前記複数のアンテナグループの1つである基準アンテナグループに属する複数の前記送受信アンテナ素子だけにパイロット信号を送信させて、前記チャネル推定部は、前記基準アンテナグループ以外のアンテナグループに属する複数の前記送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。前記第1の期間とは異なる第2の期間に、前記アンテナ送信制御部は、前記基準アンテナグループ以外のアンテナグループに属する複数の前記送受信アンテナ素子だけにパイロット信号を送信させて、前記チャネル推定部は、前記基準アンテナグループに属する複数の前記送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。前記補正係数計算部は、前記第1の期間で推定された複数の前記チャネル係数と、前記第2の期間で推定された複数の前記チャネル係数から、複数の前記補正係数を計算する。1つのアンテナグループに属する複数の前記送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の前記送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の前記送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 本発明の他の1つの態様に係る無線基地局は、下りリンク信号にプリコーディング行列を適用して、ディジタルプリコーディングを実行するディジタル信号処理部と、前記ディジタルプリコーディングが施された下りリンク信号に対して、ビームフォーミング行列に相当する位相および振幅の変化を付与するアナログビームフォーミングを実行するアナログビームフォーマと、前記アナログビームフォーミングが施された下りリンク信号を無線で送信し、前記下りリンク信号の送信に利用される周波数帯と同じ周波数帯での上りリンク信号をユーザ装置から無線で受信する複数の送受信アンテナ素子と、前記複数の送受信アンテナ素子で受信された前記上りリンク信号を処理する上りリンク信号処理部と、アンテナ補正のためのパイロット信号を送信および受信する少なくとも1つのアンテナ補正基準送受信アンテナ素子とを備える。前記送受信アンテナ素子は、複数のアンテナグループに分類され、各アンテナグループは複数の送受信アンテナ素子を有しており、前記アナログビームフォーマは、前記複数のアンテナグループにそれぞれ対応する複数のブランチを有しており、各ブランチは複数のサブブランチを有しており、各サブブランチは、前記アナログビームフォーミングを実行するための可変移相器と振幅調整器を有しており、各サブブランチは1つの前記送受信アンテナ素子に接続されており、前記上りリンク信号処理部は、前記複数のアンテナグループにそれぞれ対応する複数のブランチを有しており、各ブランチは複数のサブブランチを有しており、各サブブランチは受信増幅器を有しており、各サブブランチは1つの前記送受信アンテナ素子に接続されている。この無線基地局は、さらに、前記アンテナ補正基準送受信アンテナ素子および前記複数の送受信アンテナ素子からのパイロット信号の送信を制御するアンテナ送信制御部と、前記アンテナ補正基準送受信アンテナ素子および前記複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定するチャネル推定部と、前記複数の送受信アンテナ素子で受信された上りリンクの無線信号から推定される複数のチャネル係数に基づいて、下りリンク送信を行う場合に、前記複数の送受信アンテナ素子から送信される下りリンクの無線信号に与えられるべき補正係数を計算する補正係数計算部とを備える。第1の期間に、前記アンテナ送信制御部は、前記アンテナ補正基準送受信アンテナ素子だけにパイロット信号を送信させて、前記チャネル推定部は、複数の前記送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。前記第1の期間とは異なる第2の期間に、前記アンテナ送信制御部は、複数の前記送受信アンテナ素子だけにパイロット信号を送信させて、前記チャネル推定部は、前記アンテナ補正基準送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。前記補正係数計算部は、前記第1の期間で推定された複数の前記チャネル係数と、前記第2の期間で推定された複数の前記チャネル係数から、複数の前記補正係数を計算する。1つのアンテナグループに属する複数の前記送受信アンテナ素子から送信されるパイロット信号は、前記アンテナ補正基準送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の前記送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 本発明においては、1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子または前記アンテナ補正基準送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。したがって、TDD移動体通信システムでアンテナ補正に自己補正を使用し、複数の送受信アンテナ素子について複数の補正係数を容易に計算することが可能である。
従来のアンテナ補正を説明するための図である。 従来の自己補正を説明するための図である。 従来の自己補正の処理を示すフローチャートである。 本発明の各種の実施の形態で使用されるMassive MIMOのためのアンテナセットを示す正面図である。 Massive MIMOによるユーザ装置との通信の概略を示す図である。 本発明の各種の実施の形態で使用されるアンテナ素子のグルーピングの一例を示す図である。 本発明の各種の実施の形態で使用されるアンテナ素子のグルーピングの他の一例を示す図である。 本発明の実施の形態の基礎となるハイブリッドビームフォーミングを行う無線基地局の下りリンク送信に関連する部分を示すブロック図である。 本発明の実施の形態の基礎となる無線基地局の主に上りリンク受信に関連する部分を示すブロック図である。 自己補正を説明するために無線基地局の無線送信および無線受信に関する構成要素を示すブロック図である。 本発明の第1の実施の形態に係る無線基地局の構成を示すブロック図である。 第1の実施の形態に係る自己補正のための処理を示すフローチャートである。 図10を簡略化した図である。 本発明の第2の実施の形態に係る無線基地局の構成を示すブロック図である。 第2の実施の形態に係る自己補正のための処理を示すフローチャートである。 本発明の第3の実施の形態に係る無線基地局の構成を示すブロック図である。 図16を簡略化した図である。 第3の実施の形態に係る自己補正のための処理を示すフローチャートである。 本発明の第4の実施の形態に係る無線基地局の構成を示すブロック図である。 本発明の第5の実施の形態に係る無線基地局の構成を示すブロック図である。 本発明の第6の実施の形態に係る無線基地局の送信に関連する部分を示すブロック図である。 本発明の第6の実施の形態に係る無線基地局の主に受信に関連する部分を示すブロック図である。 本発明の第6の実施の形態に係る無線基地局の構成を示すブロック図である。 本発明の第7の実施の形態に係る無線基地局の構成を示すブロック図である。 本発明の第8の実施の形態に係る無線基地局の構成を示すブロック図である。 本発明の第9の実施の形態に係る無線基地局の構成を示すブロック図である。 本発明の第10の実施の形態に係る無線基地局の構成を示すブロック図である。
 以下、添付の図面を参照しながら本発明に係る様々な実施の形態を説明する。
Massive MIMO
 Massive MIMOを実行する無線基地局は、図4に例示するアンテナセット10Aを有する。図示のアンテナセット10Aは、16行16列の256個の送受信アンテナ素子11を有する。但し、アンテナ素子の数は、限定されない。
 Massive MIMOにおいては、多数ストリームの多重化によって高い無線通信速度(データレート)が実現される。また、ビームフォーミングを行う際のアンテナ制御の自由度が高まるため、従来よりも高度なビームフォーミングが実現される。例えば、図5に示すように、多数のユーザ装置100に応じて、下りリンクデータ信号の宛先となる各ユーザ装置100に向けて、下りリンクデータ信号が載せられた送信ビームを形成することができる。
 本発明に係る各種の実施の形態では、各送受信アンテナ素子11の制御の便宜のため、これらの複数の送受信アンテナ素子11が複数のアンテナグループに分類される。各アンテナグループは、互いに近傍にある複数の送受信アンテナ素子11を有する。図6は、256個の送受信アンテナ素子が16のアンテナグループに分類された例を示し、図7は、256個の送受信アンテナ素子が4のアンテナグループに分類された例を示す。図の点線はグループの範囲を示す。図6では各アンテナグループは16個の送受信アンテナ素子11を有し、図7では各アンテナグループは64個の送受信アンテナ素子11を有する。但し、アンテナのグルーピングは図示の例には限定されない。
ハイブリッドビームフォーミング
 本発明に係る各種の実施の形態では、無線基地局がハイブリッドビームフォーミング(hybrid beamforming)を実行する。ハイブリッドビームフォーミングは、アナログ送信ビームフォーミング(analog transmission beamforming)とディジタルプリコーディング(digital precoding)の組み合わせ技術であり、アナログ送信ビームフォーミングによるおおまかなビームの方向制御とディジタルプリコーディングによる高精度な方向制御を組み合わせることができる。また、ハイブリッドビームフォーミングは、ディジタルプリコーディングの処理負担をアナログ送信ビームフォーミングにより軽減することができる。ハイブリッドビームフォーミングでは、まずディジタルプリコーディングを行い、次にアナログ送信ビームフォーミングを行う。
 図8は、本発明の実施の形態の基礎となるハイブリッドビームフォーミングを行う無線基地局10のブロック図である。図8は、下りリンク送信に関連する部分のみを示す。
 送信されるLストリームに相当するL系列のディジタルのベースバンド信号がベースバンドプロセッサ(ディジタル信号処理部)12に供給される。ベースバンドプロセッサ12は、L系列の下りリンク信号にプリコーディング行列を適用して、ディジタルプリコーディングを実行する。したがって、ベースバンドプロセッサ12はディジタルプリコーダの機能を有する。ベースバンドプロセッサ12は、DSP(Digital Signal Processor)などのディジタル信号処理によって実現される。
 ベースバンドプロセッサ12から出力されたL系列の信号は、ディジタルアナログ変換器(DAC)14でアナログ信号に変換され、アップコンバータ(周波数変換器)16でアップコンバートされる。L個のアップコンバータ16でアップコンバートされたL系列の信号は、アナログビームフォーマ18に供給される。アナログビームフォーマ18は、送信ビームフォーミング行列をL系列の下りリンク信号に適用し、N系列の信号を生成する。Nは送受信アンテナ素子11~11の数である。
 アナログビームフォーマ18から出力されたアナログビームフォーミングが施されたN系列の下りリンク信号は、N個の送受信アンテナ素子11によってそれぞれ無線で送信される。アナログビームフォーマ18内またはアナログビームフォーマ18と送受信アンテナ素子11の間に図示しないフィルタを設けてもよい。アップコンバータ16は、アナログビームフォーマ18内またはアナログビームフォーマ18と送受信アンテナ素子11の間に設けてもよい。
 アナログビームフォーマ18はアナログ回路で実現される。アナログビームフォーマ18はLブランチを有しており、LブランチにはLストリームに対応するL系列の下りリンク信号が供給される。
 各ブランチはN/Lサブブランチを有し、各サブブランチはアナログ送信ビームフォーミングを実行するための可変移相器20と電力増幅器(振幅調整器)22を有している。図8において、各サブブランチは1つの点線の矩形で囲まれている。各サブブランチは1個の送受信アンテナ素子11に接続されている。各サブブランチに供給されて位相および振幅が調整された信号は、そのサブブランチに対応する送受信アンテナ素子11に供給される。
 したがって、各サブブランチで処理された信号は、他のサブブランチで処理された信号に加算されることなく、1つの送受信アンテナ素子11に供給される。換言すれば、送受信アンテナ素子11に供給される下りリンク信号は、1つのサブブランチだけで独立に処理されている。このタイプのアナログビームフォーマ18をサブアレー型のアナログビームフォーマと呼ぶ。
 サブアレー型のアナログビームフォーマ18によれば、送信アンテナ素子#1~#Nは複数のストリーム#1~#Lを送信する。各々がN/Lサブブランチを有するL個のブランチは互いに独立しており、1つのストリームはN/L個の送受信アンテナ素子11によって送信される。例えば、ストリーム#1は送受信アンテナ素子11~11N/Lから送信され、ストリーム#Lは送受信アンテナ素子11N+1-N/L~11Nから送信される。
 図6および図7を参照して上述したように、送受信アンテナ素子11は複数のアンテナグループに分類され、各アンテナグループは複数の送受信アンテナ素子11を有する。1つのアンテナグループは、1つのブランチに対応する。したがって、アンテナグループの数はLであり、1つのアンテナグループに属する複数の(N/L個の)送受信アンテナ素子11は、1つのストリームを送信する。
 無線基地局10は、さらに下りリンクパラメータ決定部24、アンテナ送信制御部26、ディジタル位相制御器27およびディジタルゲイン制御器28を有する。これらは、ベースバンドプロセッサ12と同様に、DSPが図示しない記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。
 下りリンクパラメータ決定部24は、上りリンクのチャネル状態情報に基づいて、下りリンクの送信のためのパラメータ(例えば下りリンクのプリコーディング行列、送信ビームフォーミング行列)を決定する。下りリンクパラメータ決定部24で決定されたプリコーディング行列は、ベースバンドプロセッサ12に供給され、ベースバンドプロセッサ12は、プリコーディング行列に従ってディジタルプリコーディングを実行する。
 また、下りリンクパラメータ決定部24で決定された送信ビームフォーミング行列に従って、ディジタル位相制御器27はアナログビームフォーマ18の各可変移相器20が調整する位相を制御し、送信ビームフォーミング行列に従って、ディジタルゲイン制御器28はアナログビームフォーマ18の各電力増幅器22のゲインを制御する。
 アンテナ送信制御部26は、複数の送受信アンテナ素子11からのパイロット信号の送信を制御する。アンテナ送信制御部26の機能についてはより詳細に後述する。
 図9は、本発明の実施の形態の基礎となる無線基地局10のブロック図である。図9は、主に上りリンク受信に関連する部分を示す。実際の無線基地局10は、図8に示された構成要素と図9に示された構成要素を有する。
 送受信アンテナ素子11~11は、上りリンク信号をユーザ装置から無線で受信する。実施の形態が適用される移動体通信システムは、TDD移動体通信システムである。したがって、送受信アンテナ素子11~11は、下りリンク信号の送信に利用される周波数帯と同じ周波数帯での上りリンク信号をユーザ装置から無線で受信する。
 無線基地局10は、複数の送受信アンテナ素子11で受信された上りリンク信号を処理する上りリンク信号処理部30を有する。上りリンク信号処理部30はアナログ回路で実現される。上りリンク信号処理部30は、L個のアンテナグループにそれぞれ対応するL個のブランチを有しており、各ブランチはN/Lサブブランチを有する。各サブブランチはローノイズ受信増幅器38および可変移相器40を有する。図9において、各サブブランチは1つの点線の矩形で囲まれている。各サブブランチは1つの送受信アンテナ素子11に接続されている。送受信アンテナ素子11から供給される信号は、その送受信アンテナ素子11に対応するサブブランチに供給されて、ローノイズ受信増幅器(Low Noise Amplifier (LNA))38および可変移相器40で振幅および位相が調整される。
 各サブブランチで処理された信号は、そのサブブランチと同じブランチに属する他のサブブランチで処理された信号に加算される。この結果、上りリンク信号処理部30からはL系列の信号が出力される。L系列の信号は、ダウンコンバータ(周波数変換器)32でダウンコンバートされ、アナログディジタル変換器(ADC)34でアナログ信号に変換されて、ベースバンドプロセッサ12に供給される。ダウンコンバータ32は、上りリンク信号処理部30内または上りリンク信号処理部30と送受信アンテナ素子11の間に設けてもよい。
 無線基地局10は、さらにチャネル推定部42および補正係数計算部44を有する。これらは、ベースバンドプロセッサ12と同様に、DSPが図示しない記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。
 チャネル推定部42は、複数の送受信アンテナ素子11で受信された無線信号に基づいて、複数のチャネル係数を推定する。ユーザ装置との無線通信においては、チャネル推定部42は、ユーザ装置から送信され、複数の送受信アンテナ素子11で受信された上りリンクの無線信号に基づいて、上りリンクのチャネル係数を推定する。アンテナ補正においては、チャネル推定部42は、複数の送受信アンテナ素子11から送信され、複数の送受信アンテナ素子11で受信された無線のパイロット信号に基づいて、各送受信アンテナ素子の組み合わせについてのチャネル係数を推定する。
 補正係数計算部44は、複数の送受信アンテナ素子11で受信された上りリンクの無線信号から推定される複数のチャネル係数に基づいて、無線基地局10が下りリンク送信を行う場合に、複数の送受信アンテナ素子11から送信される下りリンクの無線信号に与えられるべき補正係数を計算する。補正係数計算部44は補正係数を下りリンクパラメータ決定部24に供給し、下りリンクパラメータ決定部24は、補正係数に基づいて、ディジタルプリコーディングとアナログ送信ビームフォーミングの少なくともいずれかを制御する。これにより、複数の送受信アンテナ素子11で受信された上りリンクの無線信号から推定される複数のチャネル係数に基づいて、無線基地局10が下りリンク送信を行う場合に、複数の送受信アンテナ素子11から送信される下りリンクの無線信号が補正される。チャネル推定部42および補正係数計算部44の機能についてはより詳細に後述する。
 図10は、アンテナ補正(自己補正)を説明するために、無線基地局10の無線送信および無線受信に関する構成要素を示す。説明の便宜上、図10は、アナログビームフォーマ18の1ブランチ(1アンテナグループに対応)および上りリンク信号処理部30の他の1ブランチ(他の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、Lアンテナグループに対応するLブランチを有し、上りリンク信号処理部30はLアンテナグループに対応するLブランチを有する。
 アンテナ補正は、TDD移動体通信システムでの上りリンクと下りリンクのチャネルの可逆性を利用し、上りリンクのチャネル行列に基づいて、下りリンク信号を適切に補正するために実行される。自己補正においては、複数の送受信アンテナ素子11~11で受信されたパイロット信号から推定されるチャネル係数に基づいて複数の送受信アンテナ素子11~11で無線信号を送信する場合に、下りリンクの送信パラメータを補正する補正係数が計算される。したがって、ビームフォーミングまたはプリコーディングを実行しない場合には、図2および図3を参照して上述したように、1つの基準アンテナ素子に対する他のすべての補正対象アンテナ素子の各々についての補正係数を式(21)に従って計算すればよい。
 しかし、ビームフォーミングまたはプリコーディングを実行する場合には、複数の送受信アンテナ素子11が電波を同時に放出する。そこで、図10の例では、無線基地局10は、例えば、送受信アンテナ素子11~11N/Lからなる基準アンテナグループに属する複数のアンテナ素子から無線のパイロット信号(自己補正専用のパイロット信号)を送信し、基準アンテナグループ以外のアンテナグループ(補正対象アンテナグループ)に属する複数のアンテナ素子で受信されたパイロット信号に基づいて複数のチャネル係数を推定し、補正対象アンテナグループに属する複数のアンテナ素子から順次、無線のパイロット信号を送信し、基準アンテナグループに属する複数のアンテナ素子で受信されたパイロット信号に基づいて複数のチャネル係数を推定する。そして、無線基地局10は、基準アンテナ素子に対する他のすべてのアンテナ素子の各々についての補正係数を計算する。
 この明細書で、「基準アンテナグループ」および「補正対象アンテナグループ」という用語を便宜的に使用する。基準アンテナグループは、アンテナ補正の基準となりアンテナ補正が施されない(補正係数が1とされる)1つの基準アンテナ素子を有するアンテナグループであり、補正対象アンテナグループは基準アンテナグループ以外のアンテナグループであり、補正対象アンテナグループに属するアンテナ素子にはアンテナ補正が施される(補正係数が計算される)。但し、基準アンテナグループに属するが基準アンテナ素子ではないアンテナ素子にもアンテナ補正が施される(補正係数が計算される)。
第1の実施の形態
 図11は、本発明の第1の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図11は、アナログビームフォーマ18の1ブランチ(1アンテナグループに対応)および上りリンク信号処理部30の他の1ブランチ(他の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、Lアンテナグループに対応するLブランチを有し、上りリンク信号処理部30はLアンテナグループに対応するLブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、Lアンテナグループのうち1つである基準アンテナグループに属する複数の送受信アンテナ素子(例えば、送受信アンテナ素子11~11N/L)だけに無線のパイロット信号を送信させて、チャネル推定部42は、補正対象アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、補正対象アンテナグループに属する複数の送受信アンテナ素子だけに無線のパイロット信号を送信させて、チャネル推定部42は、基準アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数のチャネル係数と、第2の期間で推定された複数のチャネル係数から、複数の補正係数を計算する。
 1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができることが好ましい。
 そこで、この実施の形態では、第1の期間および第2の期間で、1つのアンテナグループに属する1つの送受信アンテナ素子がパイロット信号を送信する時に、そのアンテナグループに属する他の送受信アンテナ素子がパイロット信号を送信することを防止する送信側スイッチ50を、アナログビームフォーマ18の各サブブランチが有しており、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチ60を、上りリンク信号処理部30の各サブブランチが有する。
 送信側スイッチ50と受信側スイッチ60以外の構成要素は、図8~図10を参照して上述した実施の形態の基礎となる無線基地局10の構成要素と同じであり、同じ構成要素を示すために同じ参照符号が図11で使用されている。また、図11において、各サブブランチは1つの点線の矩形で囲まれている。
 図12は、第1の実施の形態に係る自己補正のための処理を示すフローチャートである。まず、アンテナ送信制御部26は、基準アンテナグループ(例えば、送受信アンテナ素子11~11N/L)の1つのアンテナ素子(例えば、送受信アンテナ素子11)だけからパイロット信号を送信させる(ステップS11)。ステップS11では、基準アンテナグループのパイロット信号を送信する送受信アンテナ素子に対応する送信側スイッチ50を閉状態にし、基準アンテナグループの他の送受信アンテナ素子に対応する送信側スイッチ50を開状態にするよう、アンテナ送信制御部26は各送信側スイッチ50を制御する。また、ステップS11では、各補正対象アンテナグループの1つの送受信アンテナ素子に対応する受信側スイッチ60を閉状態にし、各補正対象アンテナグループの他の送受信アンテナ素子に対応する受信側スイッチ60を開状態にするよう、アンテナ送信制御部26は各受信側スイッチ60を制御する。
 次に、基準アンテナグループのアンテナ素子から送信され、各補正対象アンテナグループのアンテナ素子で受信されるパイロット信号に基づいて、チャネル推定部42はチャネル係数を推定する(ステップS12)。
 アンテナ送信制御部26は、現在の受信アンテナ素子(現在、パイロット信号を受信処理するよう受信側スイッチ60により設定された各補正対象アンテナグループの送受信アンテナ素子)のために、パイロット信号を送信していないアンテナ素子が基準アンテナグループにあるか否か判断し(ステップS13)、この判断が肯定的であれば、基準アンテナグループに関連する送信側スイッチ50を制御して、基準アンテナグループのうちパイロット信号を送信するべきアンテナ素子を切り替える(ステップS14)。この後、処理は、ステップS11に戻り、基準アンテナグループの他の1つのアンテナ素子からパイロット信号が送信され、チャネル推定部42はチャネル係数を推定する(ステップS12)。
 ステップS13の判断が否定的であれば(すなわち、現在、パイロット信号を受信処理するよう受信側スイッチ60により設定された各補正対象アンテナグループの送受信アンテナ素子のために、基準アンテナグループに属するすべてのアンテナ素子からパイロット信号が送信されると)、アンテナ送信制御部26は、パイロット信号を受信処理していないアンテナ素子が各補正対象アンテナグループにあるか否か判断し(ステップS15)、この判断が肯定的であれば、補正対象アンテナグループに関連する受信側スイッチ60を制御して、各補正対象アンテナグループのうちパイロット信号を受信するべきアンテナ素子を切り替える(ステップS16)。この後、処理はステップS11に戻り、再度、基準アンテナグループの1つのアンテナ素子からパイロット信号が送信され、チャネル推定部42はチャネル係数を推定する(ステップS12)。
 各補正対象アンテナグループに属するすべてのアンテナ素子が、基準アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関するチャネル係数が推定されると、処理はステップS17に進む。このフローチャートにおいて、上述の「第1の期間」とはステップS17の前の期間であり、「第2の期間」とはステップS17で始まるステップS25の前の期間である。
 ステップS17において、アンテナ送信制御部26は、1つの補正対象アンテナグループ(例えば、送受信アンテナ素子111+N/L~112N/L)の1つのアンテナ素子(例えば、送受信アンテナ素子111+N/L)だけからパイロット信号を送信させる。ステップS17では、補正対象アンテナグループのパイロット信号を送信する送受信アンテナ素子に対応する送信側スイッチ50を閉状態にし、補正対象アンテナグループの他の送受信アンテナ素子に対応する送信側スイッチ50を開状態にするよう、アンテナ送信制御部26は各送信側スイッチ50を制御する。また、ステップS17では、基準アンテナグループの1つの送受信アンテナ素子に対応する受信側スイッチ60を閉状態にし、基準アンテナグループの他の送受信アンテナ素子に対応する受信側スイッチ60を開状態にするよう、アンテナ送信制御部26は各受信側スイッチ60を制御する。
 次に、1つの補正対象アンテナグループの1つのアンテナ素子から送信され、基準アンテナグループの1つのアンテナ素子で受信されるパイロット信号に基づいて、チャネル推定部42はチャネル係数を推定する(ステップS18)。
 アンテナ送信制御部26は、現在の受信アンテナ素子(現在、パイロット信号を受信処理するよう受信側スイッチ60により設定された基準アンテナグループの送受信アンテナ素子)のために、パイロット信号を送信していないアンテナ素子が補正対象アンテナグループにあるか否か判断し(ステップS19)、この判断が肯定的であれば、その補正対象アンテナグループに関連する送信側スイッチ50を制御して、その補正対象アンテナグループのうちパイロット信号を送信するべきアンテナ素子を切り替える(ステップS20)。この後、処理は、ステップS17に戻り、1つの補正対象アンテナグループの他の1つのアンテナ素子からパイロット信号が送信され、チャネル推定部42はチャネル係数を推定する(ステップS18)。
 ステップS19の判断が否定的であれば(すなわち、現在、パイロット信号を受信処理するよう受信側スイッチ60により設定された基準アンテナグループの送受信アンテナ素子のために、補正対象アンテナグループに属するすべてのアンテナ素子からパイロット信号が送信されると)、アンテナ送信制御部26は、パイロット信号を受信処理していないアンテナ素子が基準アンテナグループにあるか否か判断し(ステップS21)、この判断が肯定的であれば、基準アンテナグループに関連する受信側スイッチ60を制御して、基準アンテナグループのうちパイロット信号を受信するべきアンテナ素子を切り替える(ステップS22)。この後、処理はステップS17に戻り、再度、補正対象アンテナグループの1つのアンテナ素子からパイロット信号が送信され、チャネル推定部42はチャネル係数を推定する(ステップS18)。
 基準アンテナグループに属するすべてのアンテナ素子が、現在の補正対象アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関するチャネル係数が推定されると、処理はステップS23に進む。
 ステップS23において、アンテナ送信制御部26は、パイロット信号を送信していない補正対象アンテナグループがあるか否か判断する。この判断が肯定的であれば、アンテナ送信制御部26は、補正対象アンテナグループを切り替え(ステップS24)、この後、処理はステップS17に戻り、他の補正対象アンテナグループの1つのアンテナ素子からパイロット信号が送信され、チャネル推定部42はチャネル係数を推定する(ステップS18)。
 すべての補正対象アンテナグループのすべてのアンテナ素子からパイロット信号が送信され、基準アンテナグループに属するすべてのアンテナ素子が、すべての補正対象アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関するチャネル係数が推定されると、処理はステップS25に進む。ステップS25において、補正係数計算部44は、ステップS12およびステップS18で得られた複数のチャネル係数から、式(21)に従って、補正対象アンテナグループのすべてのアンテナ素子についての補正係数を計算する。
 また、ここまでの過程で、基準アンテナグループに属する基準アンテナ素子以外のアンテナ素子から補正対象アンテナグループに属するアンテナ素子へのチャネル係数および逆方向のチャネル係数が計算されており、補正対象アンテナグループに属するアンテナ素子に関する補正係数が計算されている。したがって、ステップS25において、補正係数計算部44は、これらのチャネル係数および補正係数から、基準アンテナグループに属する基準アンテナ素子以外のすべてのアンテナ素子についての補正係数を計算する。
 補正係数計算部44は、計算された補正係数を下りリンクパラメータ決定部24に供給し、下りリンクパラメータ決定部24は、補正係数に基づいて、ディジタルプリコーディングとアナログ送信ビームフォーミングの少なくともいずれかを制御する。これにより、複数の送受信アンテナ素子11で受信された上りリンクの無線信号から推定される複数のチャネル係数に基づいて、無線基地局10が下りリンク送信を行う場合に、複数の送受信アンテナ素子11から送信される下りリンクの無線信号が補正される。例えば、ある送受信アンテナ素子11nについての補正係数ceNB, nは下記の式で表すことができる。
Figure JPOXMLDOC01-appb-M000035
 ここで、A(n)は送受信アンテナ素子11nに与えられる下りリンク信号の振幅であり、φ(n)は、送受信アンテナ素子11nに与えられる下りリンク信号の位相である。下りリンクパラメータ決定部24は、下りリンク信号の送信において、送受信アンテナ素子11nに与えられる下りリンク信号の振幅がAになるように、ディジタルゲイン制御器28を制御し、送受信アンテナ素子11nに対応する電力増幅器22のゲインを調節し、送受信アンテナ素子11nに与えられる下りリンク信号の位相がφ(n)になるように、ディジタル位相制御器27を制御し、送受信アンテナ素子11nに対応する可変移相器20の位相シフト量を調節する。下りリンクパラメータ決定部24は、補正係数に基づいて、ベースバンドプロセッサ12に与えられるプリコーディング行列を調節してもよい。
 この実施の形態においては、1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。したがって、TDD移動体通信システムでアンテナ補正に自己補正を使用し、複数の送受信アンテナ素子について複数の補正係数を容易に計算することが可能である。
 この第1の実施の形態では、各送受信アンテナ素子を区別するために、送信側スイッチ50が設けられている。しかし、Massive MIMOにおいて、実際にビームフォーミングを行いながら下りリンク送信を実行する場合には、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に電波が放出される。したがって、1つのアンテナグループに対応する1つのブランチの複数のサブブランチに電流が流れ、電磁結合が生ずる。第1の実施の形態では、送信側スイッチ50によって、パイロット信号を送信するアンテナ素子を切り替えるため、電磁結合の影響が補正係数に反映されない。また、各サブブランチに送信側スイッチ50を設けるのは、構造が複雑化する上、その制御も煩雑である。
 そこで、1つのアンテナグループに属する(1つのブランチに対応する)複数アンテナ素子から同時にパイロット信号を送信し、補正係数を計算することが望ましい。しかし、この場合には補正係数を計算するのが困難である。図13を参照しながら、その理由を説明する。図13は、図10を簡略化した図であり、ここでは1ブランチに2サブブランチのみが存在すると想定する。すなわちN/L = 2である。アナログビームフォーマ18のサブブランチは送受信アンテナ素子11,11に接続され、上りリンク信号処理部30のサブブランチは送受信アンテナ素子11,11に接続されている。送受信アンテナ素子11,11で送信されるパイロット信号X,Xには、送信ゲインT,Tがそれぞれ与えられ、送受信アンテナ素子11,11で受信されるパイロット信号には、受信ゲインR,Rがそれぞれ与えられる。この場合、アンテナ素子11,11による受信結果rは、下記の式(22)で表される。
Figure JPOXMLDOC01-appb-M000036
 補正係数を得るには、実効的なチャネル係数(Rn*hm,n*Tm)を算出しなければならない。しかし式(22)では、送信ゲインT,T、受信ゲインR,Rが未知なので、実効的なチャネル係数(Rn*hm,n*Tm)を計算することはできない。仮にX・X = 1で、X・X = 1で、X・X = 0となるような直交性があるパイロット信号X,Xを送信し、受信側で受信結果rにX,Xをそれぞれ乗算した場合には、下記の式が得られる。
Figure JPOXMLDOC01-appb-M000037
 しかし、この場合でも、やはり実効的なチャネル係数(Rn*hm,n*Tm)を計算することはできない。
 理想的には、受信側での処理により、
Figure JPOXMLDOC01-appb-M000038
の4つの独立方程式の状態を実現できれば、実効的なチャネル係数(Rn*hm,n*Tm)を計算することができる。ここでra~rdは、受信側での処理により得られる受信結果である。
 上述の第1の実施の形態は、このような独立方程式の状態を実現する方策の1つである。しかし、第1の実施の形態には上記の問題がある。第2~第5の実施の形態は、これらの問題を解決し、同時に1つのアンテナグループに属する(1つのブランチに対応する)複数アンテナ素子から同時にパイロット信号を送信し、補正係数を計算する。
第2の実施の形態
 図14は、本発明の第2の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図14は、アナログビームフォーマ18の1ブランチ(1アンテナグループに対応)および上りリンク信号処理部30の他の1ブランチ(他の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、Lアンテナグループに対応するLブランチを有し、上りリンク信号処理部30はLアンテナグループに対応するLブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、Lアンテナグループのうち1つである基準アンテナグループに属する複数の送受信アンテナ素子(例えば、送受信アンテナ素子11~11N/L)だけに無線のパイロット信号を送信させて、チャネル推定部42は、補正対象アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、補正対象アンテナグループに属する複数の送受信アンテナ素子だけに無線のパイロット信号を送信させて、チャネル推定部42は、基準アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数のチャネル係数と、第2の期間で推定された複数のチャネル係数から、複数の補正係数を計算する。
 1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができることが好ましい。
 そこで、この実施の形態に係る無線基地局10は、第1の期間および第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらの送受信アンテナ素子から送信されるパイロット信号の位相を異ならせる送信側位相制御部を有する。送信側位相制御部はディジタル位相制御器27であってよい。ディジタル位相制御器27は、通常の下りリンク送信では、アナログ送信ビームフォーミングのために可変移相器20の位相を調整し、アンテナ補正では、パイロット信号の位相を異ならせるために可変移相器20で与えられる位相を調整する。アンテナ補正において、ディジタル位相制御器(送信側位相制御部)27は、例えば送受信アンテナ素子11に対応するサブブランチのパイロット信号Xの位相を[1,1]、送受信アンテナ素子11に対応するサブブランチのパイロット信号Xの位相を[1,-1]となるように、可変移相器20を調整して、これらのサブブランチのパイロット信号を直交化(つまり拡散)する。
 また、この実施の形態では、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチ60を、上りリンク信号処理部30の各サブブランチが有する。さらにこの実施の形態では、ベースバンドプロセッサ12は逆拡散部(despreader)62を有する。逆拡散部62は、ディジタル位相制御器(送信側位相制御部)27の作用の結果として可変移相器20がパイロット信号を拡散するのと逆の作用(すなわち逆拡散)を実行する。
 したがって、パイロット信号の送信側のディジタル位相制御器(送信側位相制御部)27による拡散およびパイロット信号の受信側の逆拡散部62による逆拡散によって、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができる。パイロット信号の受信側の受信側スイッチ60の作用によって、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 ディジタル位相制御器27の作用ならびに受信側スイッチ60および逆拡散部62以外の構成要素は、図8~図10を参照して上述した実施の形態の基礎となる無線基地局10の構成要素と同じであり、同じ構成要素を示すために同じ参照符号が図14で使用されている。また、図14において、各サブブランチは1つの点線の矩形で囲まれている。
 図15は、第2の実施の形態に係る自己補正のための処理を示すフローチャートである。まず、アンテナ送信制御部26は、基準アンテナグループ(例えば、送受信アンテナ素子11~11N/L)だけのすべてのアンテナ素子からパイロット信号を送信させる(ステップS111)。ステップS111では、ディジタル位相制御器27は、基準アンテナグループの複数のサブブランチに異なる位相を与える。また、ステップS111では、各補正対象アンテナグループの1つの送受信アンテナ素子に対応する受信側スイッチ60を閉状態にし、各補正対象アンテナグループの他の送受信アンテナ素子に対応する受信側スイッチ60を開状態にするよう、アンテナ送信制御部26は各受信側スイッチ60を制御する。
 次に、基準アンテナグループの各アンテナ素子から送信され、各補正対象アンテナグループの1つのアンテナ素子で受信されるパイロット信号に基づいて、チャネル推定部42はチャネル係数を推定する(ステップS112)。ステップS112では、逆拡散部62が逆拡散を実行し、パイロット信号の送信元のアンテナ素子を特定する。
 アンテナ送信制御部26は、パイロット信号を受信処理していないアンテナ素子が各補正対象アンテナグループにあるか否か判断し(ステップS115)、この判断が肯定的であれば、補正対象アンテナグループに関連する受信側スイッチ60を制御して、各補正対象アンテナグループのうちパイロット信号を受信するべきアンテナ素子を切り替える(ステップS116)。この後、処理はステップS111に戻り、再度、基準アンテナグループのすべてのアンテナ素子からパイロット信号が送信され、チャネル推定部42はチャネル係数を推定する(ステップS112)。
 各補正対象アンテナグループに属するすべてのアンテナ素子が、基準アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関するチャネル係数が推定されると、処理はステップS117に進む。このフローチャートにおいて、上述の「第1の期間」とはステップS117の前の期間であり、「第2の期間」とはステップS117で始まるステップS125の前の期間である。
 ステップS117において、アンテナ送信制御部26は、1つの補正対象アンテナグループ(例えば、送受信アンテナ素子111+N/L~112N/L)だけのすべてのアンテナ素子からパイロット信号を送信させる。ステップS117では、ディジタル位相制御器27は、補正対象アンテナグループの複数のサブブランチに異なる位相を与える。また、ステップS117では、基準アンテナグループの1つの送受信アンテナ素子に対応する受信側スイッチ60を閉状態にし、基準アンテナグループの他の送受信アンテナ素子に対応する受信側スイッチ60を開状態にするよう、アンテナ送信制御部26は各受信側スイッチ60を制御する。
 次に、1つの補正対象アンテナグループの各アンテナ素子から送信され、基準アンテナグループの1つのアンテナ素子で受信されるパイロット信号に基づいて、チャネル推定部42はチャネル係数を推定する(ステップS118)。ステップS118では、逆拡散部62が逆拡散を実行し、パイロット信号の送信元のアンテナ素子を特定する。
 アンテナ送信制御部26は、パイロット信号を受信処理していないアンテナ素子が基準アンテナグループにあるか否か判断し(ステップS121)、この判断が肯定的であれば、基準アンテナグループに関連する受信側スイッチ60を制御して、基準アンテナグループのうちパイロット信号を受信するべきアンテナ素子を切り替える(ステップS122)。この後、処理はステップS117に戻り、再度、補正対象アンテナグループのすべてのアンテナ素子からパイロット信号が送信され、チャネル推定部42はチャネル係数を推定する(ステップS118)。
 基準アンテナグループに属するすべてのアンテナ素子が、現在の補正対象アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関するチャネル係数が推定されると、処理はステップS123に進む。
 ステップS123において、アンテナ送信制御部26は、パイロット信号を送信していない補正対象アンテナグループがあるか否か判断する。この判断が肯定的であれば、アンテナ送信制御部26は、補正対象アンテナグループを切り替え(ステップS124)、この後、処理はステップS117に戻り、他の補正対象アンテナグループのすべてのアンテナ素子からパイロット信号が送信され、チャネル推定部42はチャネル係数を推定する(ステップS118)。
 すべての補正対象アンテナグループのすべてのアンテナ素子からパイロット信号が送信され、基準アンテナグループに属するすべてのアンテナ素子が、すべての補正対象アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関するチャネル係数が推定されると、処理はステップS125に進む。ステップS125において、補正係数計算部44は、ステップS112およびステップS118で得られた複数のチャネル係数から、補正対象アンテナグループのすべてのアンテナ素子についての補正係数を計算する。
 また、ここまでの過程で、基準アンテナグループに属する基準アンテナ素子以外のアンテナ素子から補正対象アンテナグループに属するアンテナ素子へのチャネル係数および逆方向のチャネル係数が計算されており、補正対象アンテナグループに属するアンテナ素子に関する補正係数が計算されている。したがって、ステップS125において、補正係数計算部44は、これらのチャネル係数および補正係数から、基準アンテナグループに属する基準アンテナ素子以外のすべてのアンテナ素子についての補正係数を計算する。
 補正係数計算部44は、計算された補正係数を下りリンクパラメータ決定部24に供給し、下りリンクパラメータ決定部24は、補正係数に基づいて、第1の実施の形態と同様に、ディジタルプリコーディングとアナログ送信ビームフォーミングの少なくともいずれかを制御する。
 この実施の形態においては、1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。したがって、TDD移動体通信システムでアンテナ補正に自己補正を使用し、複数の送受信アンテナ素子について複数の補正係数を容易に計算することが可能である。
 Massive MIMOにおいて、実際にビームフォーミングを行いながら下りリンク送信を実行する場合には、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に電波が放出される。したがって、1つのアンテナグループに対応する1つのブランチの複数のサブブランチに電流が流れ、電磁結合が生ずる。この実施の形態では、アンテナ補正において、1つのアンテナグループに属する複数の送受信アンテナ素子から同時にパイロット信号を送信するため、電磁結合の影響が反映された補正係数を計算することができる。また、送信側の各サブブランチに送信側スイッチ50を設けないので、構造が簡略化される上、構成要素の制御も簡素化される。さらに、図12と図15を比較すると明らかなように、パイロット信号を送信するアンテナ素子を切り替えるステップが不要であり、処理が簡素化される。
第3の実施の形態
 図16は、本発明の第3の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図16は、アナログビームフォーマ18の1ブランチ(1アンテナグループに対応)および上りリンク信号処理部30の他の1ブランチ(他の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、Lアンテナグループに対応するLブランチを有し、上りリンク信号処理部30はLアンテナグループに対応するLブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、Lアンテナグループのうち1つである基準アンテナグループに属する複数の送受信アンテナ素子(例えば、送受信アンテナ素子11~11N/L)だけに無線のパイロット信号を送信させて、チャネル推定部42は、補正対象アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、補正対象アンテナグループに属する複数の送受信アンテナ素子だけに無線のパイロット信号を送信させて、チャネル推定部42は、基準アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数のチャネル係数と、第2の期間で推定された複数のチャネル係数から、複数の補正係数を計算する。
 1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができることが好ましい。
 そこで、この実施の形態に係る無線基地局10は、第1の期間および第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらの送受信アンテナ素子から送信されるパイロット信号を異なる第1の直交拡散系列で拡散する送信側位相制御部と、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する複数のサブブランチがパイロット信号を処理する時に、これらのサブブランチで処理されるパイロット信号を異なる第2の直交拡散系列で拡散するディジタル位相制御器(受信側位相制御部)64を有する。
 送信側位相制御部はディジタル位相制御器27であってよい。ディジタル位相制御器27は、通常の下りリンク送信では、アナログ送信ビームフォーミングのために可変移相器20の位相を調整し、アンテナ補正では、パイロット信号の位相を異ならせるために可変移相器20で与えられる位相を調整する。アンテナ補正において、ディジタル位相制御器(送信側位相制御部)27は、例えば送受信アンテナ素子11に対応する送信側のサブブランチのパイロット信号Xが[1,1,...]、送受信アンテナ素子11に対応する送信側のサブブランチのパイロット信号Xが[1,-1,...]となるように、可変移相器20の位相を調整して、これらのサブブランチのパイロット信号を直交化する。つまり、アンテナ補正において、ディジタル位相制御器27は、送受信アンテナ素子から送信されるパイロット信号を異なる第1の直交拡散系列で拡散する。
 ディジタル位相制御器64は、DSPが図示しない記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。ディジタル位相制御器64は、通常の上りリンク受信では、受信ビームフォーミングのために可変移相器40の位相を調整し、アンテナ補正では、受信したパイロット信号の位相を異ならせるために可変移相器40で与えられる位相を調整する。アンテナ補正において、ディジタル位相制御器(受信側位相制御部)64は、例えばあるアンテナ素子に対応する受信側のサブブランチのパイロット信号に[1,1,1,1,...]が乗算され、他のアンテナ素子に対応する受信側のサブブランチのパイロット信号に[1,-1,1,-1,...]が乗算されるように、可変移相器40の位相を調整して、これらのサブブランチのパイロット信号を直交化する。つまり、アンテナ補正において、ディジタル位相制御器64は、送受信アンテナ素子で受信されるパイロット信号を異なる第2の直交拡散系列で拡散する。第2の直交拡散系列は第1の直交拡散系列の周期よりも長い。すなわち、第2の直交拡散系列はロングコードであり、第1の直交拡散系列はショートコードである。
 さらにこの実施の形態では、ベースバンドプロセッサ12は二重逆拡散部(double despreader)66を有する。二重逆拡散部66は、受信側のディジタル位相制御部(受信側位相制御部)64の作用の結果として可変移相器40がパイロット信号を拡散するのと逆の作用(すなわちロングコードに対する逆拡散)を実行するとともに、送信側のディジタル位相制御部(送信側位相制御部)27の作用の結果として可変移相器20がパイロット信号を拡散するのと逆の作用(すなわちショートコードに対する逆拡散)を実行する。このように二重逆拡散部66は二重逆拡散を実行する。
 したがって、パイロット信号の送信側のディジタル位相制御部(送信側位相制御部)27による拡散およびパイロット信号の受信側の二重逆拡散部66によるショートコードに対する逆拡散によって、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができる。また、パイロット信号の受信側のディジタル位相制御部(受信側位相制御部)64による拡散およびパイロット信号の受信側の二重逆拡散部66によるロングコードに対する逆拡散によって、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 ディジタル位相制御器27の作用ならびにディジタル位相制御器64および二重逆拡散部66以外の構成要素は、図8~図10を参照して上述した実施の形態の基礎となる無線基地局10の構成要素と同じであり、同じ構成要素を示すために同じ参照符号が図16で使用されている。また、図16において、各サブブランチは1つの点線の矩形で囲まれている。
 図17を参照して第3の実施の形態の原理を説明する。図17は、図16を簡略化した図であり、ここでは1ブランチに2サブブランチのみが存在すると想定する。すなわちN/L = 2である。アナログビームフォーマ18のサブブランチは送受信アンテナ素子11,11に接続され、上りリンク信号処理部30のサブブランチは送受信アンテナ素子11,11に接続されている。送受信アンテナ素子11,11で送信されるパイロット信号X,Xには、送信ゲインT,Tがそれぞれ与えられ、送受信アンテナ素子11,11で受信されるパイロット信号には、受信ゲインR,Rがそれぞれ与えられる。この場合、アンテナ素子11,11による受信結果rは、上記の式(22)で表される。
 アンテナ補正において、送信側では各サブブランチに共通のパイロット信号Xが与えられる。Xは[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]という系列である。ディジタル位相制御器27は、アナログビームフォーマ18の各可変移相器20の位相を制御して、アンテナ素子11に対応する送信側のサブブランチのパイロット信号Xが[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]、アンテナ素子11に対応する送信側のサブブランチのパイロット信号Xが[1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,...]となるようにする。つまり、アンテナ素子11に対応する可変移相器20は、第1の直交拡散系列[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]をパイロット信号Xに乗算し、アンテナ素子11に対応する可変移相器20は、第1の直交拡散系列[1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,...]をパイロット信号Xに乗算する。
 具体的には、アナログビームフォーマ18でのパイロット信号Xnは、下記の式で表すことができる。
Figure JPOXMLDOC01-appb-M000039
 ここで、B(n)は送受信アンテナ素子11nに与えられるパイロット信号の振幅であり、φ(n)は、アンテナ素子11nに与えられるパイロット信号の位相である。ディジタルゲイン制御器28は、パイロット信号X,Xに同じ振幅Bを与え、ディジタル位相制御器27は、パイロット信号Xの位相φ(n)を常に0にし、パイロット信号Xの位相φ(n)を周期的に0とπに切り替える。これにより、アンテナ素子11に対応する送信側のサブブランチのパイロット信号Xが[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]となり、アンテナ素子11に対応する送信側のサブブランチのパイロット信号Xが[1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,...]となる。
 アンテナ補正において、受信側ではディジタル位相制御器64は、上りリンク信号処理部30の各可変移相器40の位相を制御して、アンテナ素子11に対応する受信側のサブブランチのパイロット信号に第2の直交拡散系列Sすなわち[1,1,1,1,...])が乗算され、アンテナ素子11に対応する受信側のサブブランチのパイロット信号に第2の直交拡散系列S[1,-1,1,-1,...]が乗算されるようにする。つまり、アンテナ素子11に対応する可変移相器40は、第2の直交拡散系列[1,1,1,1,...]をパイロット信号に乗算し、アンテナ素子11に対応する可変移相器40は、第2の直交拡散系列[1,-1,1,-1,...]をパイロット信号Xに乗算する。第2の直交拡散系列S,Sは互いに直交性がある。
 第2の直交拡散系列の周期は、第1の直交拡散系列の4倍である。したがって、例えば、S*X = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]であり、S*X = [1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,...]である。S*XとS*Xは互いに直交性がある。
 受信側の可変移相器40の位相制御の結果、アンテナ素子11での受信結果rおよびアンテナ素子11での受信結果rは、下記の式で表される。
Figure JPOXMLDOC01-appb-M000040
 合成される受信結果r = r+rである。
 二重逆拡散部66が受信結果rに第1の直交拡散系列と第2の直交拡散系列を乗算する(二重逆拡散する)ことにより、下記の結果が得られる。
Figure JPOXMLDOC01-appb-M000041
 このようにして、4つの独立方程式の状態を実現でき、実効的なチャネル係数g1, 3、g2, 3、g1, 4、g2, 4を計算することができる。以上の説明から、アンテナ素子11,11がパイロット信号を送信し、アンテナ素子11,11がパイロット信号を受信する場合に、チャネル係数g1, 3、g2, 3、g1, 4、g2, 4を計算することができるのは理解されよう。逆に、アンテナ素子11,11がパイロット信号を送信し、アンテナ素子11,11がパイロット信号を受信する場合には、同じ理論によって、逆方向の実効的なチャネル係数g3, 1、g3, 2、g4, 1、g4, 2を下記の通り計算することができる。
Figure JPOXMLDOC01-appb-M000042
 アンテナ素子11が基準アンテナ素子である場合、ceNB, 1 = 1と置くことができる。この場合、アンテナ素子11,11に関する補正係数ceNB, 3、ceNB, 4は、下記の式に従って計算することができる。
Figure JPOXMLDOC01-appb-M000043
 ここで、
Figure JPOXMLDOC01-appb-M000044
である。
 基準アンテナ素子11と同じ基準アンテナグループに属するアンテナ素子11に関する補正係数ceNB, 2が未知であるが、ここまでの過程で、実効的なチャネル係数g3, 2、g2, 3が既知であり、アンテナ素子11に関する補正係数ceNB, 3が計算されている。したがって、アンテナ素子11に関する補正係数ceNB, 2は、実効的なチャネル係数g3, 2、g2, 3および補正係数ceNB, 3から下記の通り計算することができる。あるいは、アンテナ素子11に関する補正係数ceNB, 2は、実効的なチャネル係数g4, 2、g2, 4および補正係数ceNB, 4から下記の通り計算してもよい。
Figure JPOXMLDOC01-appb-M000045
 この結果、基準アンテナグループの基準アンテナ素子に関する補正係数ceNB, 1を1とした場合の、すべてのアンテナグループのアンテナ素子に関する補正係数が判明する。
 以上、各ブランチに2サブブランチのみが存在する場合を例にとり、第3の実施の形態の原理を説明したが、各ブランチに2より多いサブブランチが存在する場合には、上述の説明に修正を加えることにより、すべての補正係数を計算することができる。
 図18は、第3の実施の形態に係る自己補正のための処理を示すフローチャートである。まず、アンテナ送信制御部26は、基準アンテナグループ(例えば、送受信アンテナ素子11~11N/L)だけのすべてのアンテナ素子からパイロット信号を送信させる(ステップS211)。ステップS211では、ディジタル位相制御器27は、基準アンテナグループの複数のサブブランチに異なる位相を与える。また、ステップS211では、ディジタル位相制御器64は、各補正対象アンテナグループの複数のサブブランチに異なる位相を与える。
 次に、基準アンテナグループの各アンテナ素子から送信され、各補正対象アンテナグループの各アンテナ素子で受信されるパイロット信号に基づいて、チャネル推定部42は実効的なチャネル係数を推定する(ステップS212)。ステップS212では、二重逆拡散部66が二重逆拡散を実行し、パイロット信号の送信元のアンテナ素子および受信したアンテナ素子を特定する。
 各補正対象アンテナグループに属するすべてのアンテナ素子が、基準アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関する実効的なチャネル係数が推定されると、処理はステップS217に進む。このフローチャートにおいて、上述の「第1の期間」とはステップS217の前の期間であり、「第2の期間」とはステップS217で始まるステップS225の前の期間である。
 ステップS217において、アンテナ送信制御部26は、1つの補正対象アンテナグループ(例えば、送受信アンテナ素子111+N/L~112N/L)だけのすべてのアンテナ素子からパイロット信号を送信させる。ステップS217では、ディジタル位相制御器27は、補正対象アンテナグループの複数のサブブランチに異なる位相を与える。また、ステップS217では、ディジタル位相制御器64は、基準アンテナグループの複数のサブブランチに異なる位相を与える。
 次に、1つの補正対象アンテナグループの各アンテナ素子から送信され、基準アンテナグループの各アンテナ素子で受信されるパイロット信号に基づいて、チャネル推定部42は実効的なチャネル係数を推定する(ステップS218)。ステップS218では、二重逆拡散部66が二重逆拡散を実行し、パイロット信号の送信元のアンテナ素子および受信したアンテナ素子を特定する。
 基準アンテナグループに属するすべてのアンテナ素子が、現在の補正対象アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関する実効的なチャネル係数が推定されると、処理はステップS223に進む。
 ステップS223において、アンテナ送信制御部26は、パイロット信号を送信していない補正対象アンテナグループがあるか否か判断する。この判断が肯定的であれば、アンテナ送信制御部26は、補正対象アンテナグループを切り替え(ステップS224)、この後、処理はステップS217に戻り、他の補正対象アンテナグループのすべてのアンテナ素子からパイロット信号が送信され、チャネル推定部42は実効的なチャネル係数を推定する(ステップS218)。
 すべての補正対象アンテナグループのすべてのアンテナ素子からパイロット信号が送信され、基準アンテナグループに属するすべてのアンテナ素子が、すべての補正対象アンテナグループに属するすべてのアンテナ素子から送信されたパイロット信号を受信し、これらの組み合わせに関する実効的なチャネル係数が推定されると、処理はステップS225に進む。ステップS225において、補正係数計算部44は、ステップS212およびステップS218で得られた複数の実効的なチャネル係数から、補正対象アンテナグループのすべてのアンテナ素子についての補正係数を計算する。
 また、ここまでの過程で、基準アンテナグループに属する基準アンテナ素子以外のアンテナ素子から補正対象アンテナグループに属するアンテナ素子への実効的なチャネル係数および逆方向の実効的なチャネル係数が計算されており、補正対象アンテナグループに属するアンテナ素子に関する補正係数が計算されている。したがって、ステップS225において、補正係数計算部44は、これらの実効的なチャネル係数および補正係数から、基準アンテナグループに属する基準アンテナ素子以外のすべてのアンテナ素子についての補正係数を計算する。
 補正係数計算部44は、計算された補正係数を下りリンクパラメータ決定部24に供給し、下りリンクパラメータ決定部24は、補正係数に基づいて、第1の実施の形態と同様に、ディジタルプリコーディングとアナログ送信ビームフォーミングの少なくともいずれかを制御する。
 この実施の形態においては、1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。したがって、TDD移動体通信システムでアンテナ補正に自己補正を使用し、複数の送受信アンテナ素子について複数の補正係数を容易に計算することが可能である。
 Massive MIMOにおいて、実際にビームフォーミングを行いながら下りリンク送信を実行する場合には、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に電波が放出される。したがって、1つのアンテナグループに対応する1つのブランチの複数のサブブランチに電流が流れ、電磁結合が生ずる。この実施の形態では、アンテナ補正において、1つのアンテナグループに属する複数の送受信アンテナ素子から同時にパイロット信号を送信するため、電磁結合の影響が反映された補正係数を計算することができる。また、送信側の各サブブランチに送信側スイッチ50を設けないので、構造が簡略化される上、構成要素の制御も簡素化される。さらに、受信側の各サブブランチに受信側スイッチ60を設けないので、構造が簡略化される上、構成要素の制御も簡素化される。図12と図18を比較すると明らかなように、パイロット信号を送信するアンテナ素子を切り替えるステップおよびパイロット信号を受信するアンテナ素子を切り替えるステップが不要であり、処理が簡素化される。
第4の実施の形態
 図19は、本発明の第4の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図19は、アナログビームフォーマ18の1ブランチ(1アンテナグループに対応)および上りリンク信号処理部30の他の1ブランチ(他の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、Lアンテナグループに対応するLブランチを有し、上りリンク信号処理部30はLアンテナグループに対応するLブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、Lアンテナグループのうち1つである基準アンテナグループに属する複数の送受信アンテナ素子(例えば、送受信アンテナ素子11~11N/L)だけに無線のパイロット信号を送信させて、チャネル推定部42は、補正対象アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、補正対象アンテナグループに属する複数の送受信アンテナ素子だけに無線のパイロット信号を送信させて、チャネル推定部42は、基準アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数のチャネル係数と、第2の期間で推定された複数のチャネル係数から、複数の補正係数を計算する。
 1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができることが好ましい。
 そこで、この実施の形態に係る無線基地局10は、第1の期間および第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらの送受信アンテナ素子に対応する複数のサブブランチに供給される信号に同じ系列を与える系列供給部と、第1の期間および第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらのパイロット信号の送信時期を異ならせる遅延付与部を有する。
 系列供給部はベースバンドプロセッサ12であってよい。ベースバンドプロセッサ(系列供給部)12は、パイロット信号の元として、自己相関が高く相互相関が低い系列をDAC14に供給する。このような系列は、例えば、PN(擬似雑音)系列でもよいし、Zadoff-Chu系列でもよい。
 遅延付与部は、1つ以上の遅延器52であってもよいし、送信側の複数のサブブランチ内の互いに長さが異なるケーブルであってもよい。遅延付与部の作用によって、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらのアンテナ素子は、異なる遅延を有する系列を送信する。
 また、この実施の形態では、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチ60を、上りリンク信号処理部30の各サブブランチが有する。さらにこの実施の形態では、ベースバンドプロセッサ12は逆相関部(decorrelator)68を有する。逆相関部68は、ベースバンドプロセッサ(系列供給部)12がパイロット信号の送信時に供給する系列により、受信したパイロット信号を逆相関する。
 したがって、パイロット信号の送信側の異なる遅延およびパイロット信号の受信側の逆相関部68による逆相関によって、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができる。パイロット信号の受信側の受信側スイッチ60の作用によって、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 ベースバンドプロセッサ12の作用ならびに遅延付与部、受信側スイッチ60および逆相関部68以外の構成要素は、図8~図10を参照して上述した実施の形態の基礎となる無線基地局10の構成要素と同じであり、同じ構成要素を示すために同じ参照符号が図19で使用されている。また、図19において、各サブブランチは1つの点線の矩形で囲まれている。
 第4の実施の形態に係る自己補正のための処理を示すフローチャートは、第2の実施の形態に係る自己補正のための処理を示すフローチャートである図15と同じでよい。但し、第4の実施の形態では、自己補正において、ディジタル位相制御器27は各アンテナグループの複数のサブブランチに異なる位相を与えない。
 補正係数計算部44は、計算された補正係数を下りリンクパラメータ決定部24に供給し、下りリンクパラメータ決定部24は、補正係数に基づいて、第1の実施の形態と同様に、ディジタルプリコーディングとアナログ送信ビームフォーミングの少なくともいずれかを制御する。
 この実施の形態においては、1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。したがって、TDD移動体通信システムでアンテナ補正に自己補正を使用し、複数の送受信アンテナ素子について複数の補正係数を容易に計算することが可能である。
 Massive MIMOにおいて、実際にビームフォーミングを行いながら下りリンク送信を実行する場合には、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に電波が放出される。したがって、1つのアンテナグループに対応する1つのブランチの複数のサブブランチに電流が流れ、電磁結合が生ずる。この実施の形態では、アンテナ補正において、1つのアンテナグループに属する複数の送受信アンテナ素子から同時にパイロット信号を送信するため、電磁結合の影響が反映された補正係数を計算することができる。また、送信側の各サブブランチに送信側スイッチ50を設けないので、構造が簡略化される上、構成要素の制御も簡素化される。さらに、図12と図15を比較すると明らかなように、パイロット信号を送信するアンテナ素子を切り替えるステップが不要であり、処理が簡素化される。
第5の実施の形態
 図20は、本発明の第5の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図20は、アナログビームフォーマ18の1ブランチ(1アンテナグループに対応)および上りリンク信号処理部30の他の1ブランチ(他の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、Lアンテナグループに対応するLブランチを有し、上りリンク信号処理部30はLアンテナグループに対応するLブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、Lアンテナグループのうち1つである基準アンテナグループに属する複数の送受信アンテナ素子(例えば、送受信アンテナ素子11~11N/L)だけに無線のパイロット信号を送信させて、チャネル推定部42は、補正対象アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数の実効的なチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、補正対象アンテナグループに属する複数の送受信アンテナ素子だけに無線のパイロット信号を送信させて、チャネル推定部42は、基準アンテナグループに属する複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数の実効的なチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数の実効的なチャネル係数と、第2の期間で推定された複数の実効的なチャネル係数から、複数の補正係数を計算する。
 1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができることが好ましい。
 そこで、この実施の形態に係る無線基地局10は、第1の期間および第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらの送受信アンテナ素子に対応する複数のサブブランチに供給される信号に同じ系列を与える系列供給部と、第1の期間および第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらのパイロット信号の送信時期を異ならせる遅延付与部を有する。
 系列供給部はベースバンドプロセッサ12であってよい。ベースバンドプロセッサ(系列供給部)12は、パイロット信号の元として、自己相関が高く相互相関が低い系列をDAC14に供給する。このような系列は、例えば、PN(擬似雑音)系列でもよいし、Zadoff-Chu系列でもよい。
 遅延付与部は、1つ以上の遅延器52であってもよいし、送信側の複数のサブブランチ内の互いに長さが異なるケーブルであってもよい。遅延付与部の作用によって、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらのアンテナ素子は、異なる遅延を有する系列を送信する。
 また、この実施の形態に係る無線基地局10は、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する複数のサブブランチがパイロット信号を処理する時に、これらのサブブランチで処理されるパイロット信号の位相を異ならせるディジタル位相制御器(受信側位相制御部)64を有する。
 ディジタル位相制御器64は、DSPが図示しない記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。ディジタル位相制御器64は、通常の上りリンク受信では、受信ビームフォーミングのために可変移相器40の位相を調整し、アンテナ補正では、受信したパイロット信号の位相を異ならせるために可変移相器40で与えられる位相を調整する。アンテナ補正において、ディジタル位相制御器(受信側位相制御部)64は、例えばあるアンテナ素子に対応する受信側のサブブランチのパイロット信号が[1,1,1,1]、他のアンテナ素子に対応する受信側のサブブランチのパイロット信号が[1,1,-1,-1]となるように、可変移相器40の位相を調整して、これらのサブブランチのパイロット信号を直交化(つまり拡散)する。
 さらにこの実施の形態では、ベースバンドプロセッサ12は逆拡散・逆相関部70を有する。逆拡散・逆相関部70は、受信側のディジタル位相制御部(受信側位相制御部)64の作用の結果として可変移相器40がパイロット信号を拡散するのと逆の作用(すなわち逆拡散)を実行するとともに、ベースバンドプロセッサ(系列供給部)12がパイロット信号の送信時に供給する系列により、受信したパイロット信号を逆相関する。
 したがって、パイロット信号の送信側の異なる遅延およびパイロット信号の受信側の逆拡散・逆相関部70による逆相関によって、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができる。また、パイロット信号の受信側のディジタル位相制御部(受信側位相制御部)64による拡散およびパイロット信号の受信側の逆拡散・逆相関部70による逆拡散によって、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 ベースバンドプロセッサ12の作用ならびに遅延付与部、ディジタル位相制御器64および逆拡散・逆相関部70以外の構成要素は、図8~図10を参照して上述した実施の形態の基礎となる無線基地局10の構成要素と同じであり、同じ構成要素を示すために同じ参照符号が図20で使用されている。また、図20において、各サブブランチは1つの点線の矩形で囲まれている。
 第5の実施の形態に係る自己補正のための処理を示すフローチャートは、第3の実施の形態に係る自己補正のための処理を示すフローチャートである図18と同じでよい。但し、第5の実施の形態では、自己補正において、ディジタル位相制御器27は各アンテナグループの複数のサブブランチに異なる位相を与えないし、ディジタル位相制御器64も各アンテナグループの複数のサブブランチに異なる位相を与えない。
 補正係数計算部44は、計算された補正係数を下りリンクパラメータ決定部24に供給し、下りリンクパラメータ決定部24は、補正係数に基づいて、第1の実施の形態と同様に、ディジタルプリコーディングとアナログ送信ビームフォーミングの少なくともいずれかを制御する。
 この実施の形態においては、1つのアンテナグループに属する複数の送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。したがって、TDD移動体通信システムでアンテナ補正に自己補正を使用し、複数の送受信アンテナ素子について複数の補正係数を容易に計算することが可能である。
 Massive MIMOにおいて、実際にビームフォーミングを行いながら下りリンク送信を実行する場合には、1つのアンテナグループに属する複数の送受信アンテナ素子から同時に電波が放出される。したがって、1つのアンテナグループに対応する1つのブランチの複数のサブブランチに電流が流れ、電磁結合が生ずる。この実施の形態では、アンテナ補正において、1つのアンテナグループに属する複数の送受信アンテナ素子から同時にパイロット信号を送信するため、電磁結合の影響が反映された補正係数を計算することができる。また、送信側の各サブブランチに送信側スイッチ50を設けないので、構造が簡略化される上、構成要素の制御も簡素化される。さらに、受信側の各サブブランチに受信側スイッチ60を設けないので、構造が簡略化される上、構成要素の制御も簡素化される。図12と図18を比較すると明らかなように、パイロット信号を送信するアンテナ素子を切り替えるステップおよびパイロット信号を受信するアンテナ素子を切り替えるステップが不要であり、処理が簡素化される。
第6の実施の形態
 図21および図22は、本発明の第6の実施の形態に係る無線基地局10の構成を示す。図21は、送信に関連する部分のみを示し、図22は、主に受信に関連する部分を示す。第6の実施の形態は、第1の実施の形態に修正であり、無線基地局10は、通信用の送受信アンテナ素子11~11に加えて、アンテナ補正のためのパイロット信号を送信および受信するアンテナ補正基準送受信アンテナ素子111~111N/Lを有する。図示の実施の形態では、無線基地局10はN/L本のアンテナ補正基準送受信アンテナ素子を有するが、アンテナ補正基準送受信アンテナ素子の数は限定されず、1つでもよい。
 アンテナ補正のための補正基準送受信アンテナ素子からのパイロット信号の送信においては、パイロット信号は、アンテナ補正基準送受信アンテナ素子111~111N/Lのために、DAC14でアナログ信号に変換され、アップコンバータ16でアップコンバートされ、アナログビームフォーマ18の可変移相器20と電力増幅器22で位相および振幅が調整されて、アンテナ補正基準送受信アンテナ素子111~111N/Lで送信される(図21参照)。補正基準送受信アンテナ素子から送信されるパイロット信号は、通信用の送受信アンテナ素子11~11に受信される。
 アンテナ補正のために通信用の送受信アンテナ素子11~11から送信されるパイロット信号は、アンテナ補正基準送受信アンテナ素子111~111N/Lに受信される。アンテナ補正基準送受信アンテナ素子111~111N/Lに受信されたパイロット信号は、ローノイズ受信増幅器38および可変移相器40で振幅および位相が調整され、ダウンコンバータ32でダウンコンバートされ、ADC34でアナログ信号に変換されて、ベースバンドプロセッサ12に供給される。他の構成要素は、第1の実施の形態の無線基地局10の構成要素と同じであり、同じ構成要素を示すために同じ参照符号が図21および図22で使用されている。
 図23は、本発明の第6の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図23は、アナログビームフォーマ18の1ブランチ(アンテナ補正基準送受信アンテナ素子111~111N/Lに対応)および上りリンク信号処理部30の他の1ブランチ(通信用の送受信アンテナ素子の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有し、上りリンク信号処理部30は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、アンテナ補正基準送受信アンテナ素子111~111N/Lだけに無線のパイロット信号を送信させて、チャネル推定部42は、複数の通信用の送受信アンテナ素子11で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、複数の通信用の送受信アンテナ素子11だけに無線のパイロット信号を送信させて、チャネル推定部42は、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数のチャネル係数と、第2の期間で推定された複数のチャネル係数から、複数の補正係数を計算する。
 アンテナ補正基準送受信アンテナ素子111~111N/Lから送信されるパイロット信号は、通信用の送受信アンテナ素子11に受信された後に、いずれのアンテナ補正基準送受信アンテナ素子111から送信されたか特定することができ、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されるパイロット信号は、いずれのアンテナ補正基準送受信アンテナ素子111で受信されたか特定することができることが好ましい。また、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11から送信されるパイロット信号は、アンテナ補正基準送受信アンテナ素子111~111N/Lに受信された後に、いずれの送受信アンテナ素子11から送信されたか特定することができ、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11で受信されるパイロット信号は、いずれの送受信アンテナ素子11で受信されたか特定することができることが好ましい。
 そこで、この実施の形態では、第1の期間で、アンテナ補正基準送受信アンテナ素子111~111N/Lの1つがパイロット信号を送信する時に、他のアンテナ補正基準送受信アンテナ素子がパイロット信号を送信することを防止する送信側スイッチ50を、アナログビームフォーマ18が有しており、第1の期間で、上りリンク信号処理部30の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチ60を、上りリンク信号処理部30が有する。また、この実施の形態では、第2の期間で、1つのアンテナグループに属する1つの送受信アンテナ素子がパイロット信号を送信する時に、そのアンテナグループに属する他の送受信アンテナ素子がパイロット信号を送信することを防止する送信側スイッチ50を、アナログビームフォーマ18が有しており、第2の期間で、上りリンク信号処理部30の1つのアンテナ補正基準送受信アンテナ素子111に対応する1つのサブブランチがパイロット信号を処理する時に、他のアンテナ補正基準送受信アンテナ素子に対応する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチ60を、上りリンク信号処理部30が有する。
 第6の実施の形態に係る自己補正のための処理を示すフローチャートは、第1の実施の形態に係る自己補正のための処理を示すフローチャートである図12と類似する。但し、図12における「基準アンテナグループ」は、「アンテナ補正基準送受信アンテナ素子111~111N/L」と読み替えられ、図12における「補正対象アンテナグループ」は「通信用の送受信アンテナ素子11のアンテナグループ」と読み替えられる。第6の実施の形態では、すべての通信用の送受信アンテナ素子11がアンテナ補正の対象である。
 この実施の形態において、アンテナ補正基準送受信アンテナ素子111が1つの場合には、アンテナ補正基準送受信アンテナ素子111についての送信側スイッチ50および受信側スイッチ60は不要である。
第7の実施の形態
 図24は、本発明の第7の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図24は、アナログビームフォーマ18の1ブランチ(アンテナ補正基準送受信アンテナ素子111~111N/Lに対応)および上りリンク信号処理部30の他の1ブランチ(通信用の送受信アンテナ素子の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有し、上りリンク信号処理部30は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、アンテナ補正基準送受信アンテナ素子111~111N/Lだけに無線のパイロット信号を送信させて、チャネル推定部42は、複数の通信用の送受信アンテナ素子11で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、複数の通信用の送受信アンテナ素子11だけに無線のパイロット信号を送信させて、チャネル推定部42は、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数のチャネル係数と、第2の期間で推定された複数のチャネル係数から、複数の補正係数を計算する。
 アンテナ補正基準送受信アンテナ素子111~111N/Lから送信されるパイロット信号は、通信用の送受信アンテナ素子11に受信された後に、いずれのアンテナ補正基準送受信アンテナ素子111から送信されたか特定することができ、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されるパイロット信号は、いずれのアンテナ補正基準送受信アンテナ素子111で受信されたか特定することができることが好ましい。また、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11から送信されるパイロット信号は、アンテナ補正基準送受信アンテナ素子111~111N/Lに受信された後に、いずれの送受信アンテナ素子11から送信されたか特定することができ、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11で受信されるパイロット信号は、いずれの送受信アンテナ素子11で受信されたか特定することができることが好ましい。
 そこで、この実施の形態に係る無線基地局10は、第1の期間で、複数のアンテナ補正基準送受信アンテナ素子111~111N/Lがパイロット信号を送信する時に、これらのアンテナ補正基準送受信アンテナ素子から送信されるパイロット信号の位相を異ならせる送信側位相制御部を有する。また、この実施の形態に係る無線基地局10は、第2の期間で、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11がパイロット信号を送信する時に、これらの送受信アンテナ素子から送信されるパイロット信号の位相を異ならせる送信側位相制御部を有する。送信側位相制御部はディジタル位相制御器27であってよい。ディジタル位相制御器27は、通常の下りリンク送信では、アナログ送信ビームフォーミングのために可変移相器20の位相を調整し、アンテナ補正では、パイロット信号の位相を異ならせるために可変移相器20で与えられる位相を調整する。アンテナ補正において、ディジタル位相制御器(送信側位相制御部)27は、例えばアンテナ素子111に対応するサブブランチのパイロット信号Xの位相を[1,1]、アンテナ素子111に対応するサブブランチのパイロット信号Xの位相を[1,-1]となるように、可変移相器20を調整して、これらのサブブランチのパイロット信号を直交化(つまり拡散)する。
 また、この実施の形態では、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチ60を、上りリンク信号処理部30の各サブブランチが有する。さらにこの実施の形態では、ベースバンドプロセッサ12は逆拡散部(despreader)62を有する。逆拡散部62は、ディジタル位相制御器(送信側位相制御部)27の作用の結果として可変移相器20がパイロット信号を拡散するのと逆の作用(すなわち逆拡散)を実行する。
 したがって、パイロット信号の送信側のディジタル位相制御器(送信側位相制御部)27による拡散およびパイロット信号の受信側の逆拡散部62による逆拡散によって、1つのアンテナグループに属する複数の送受信アンテナ素子(通信用の送受信アンテナ素子11またはアンテナ補正基準送受信アンテナ素子111)から同時に送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができる。パイロット信号の受信側の受信側スイッチ60の作用によって、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 第7の実施の形態に係る自己補正のための処理を示すフローチャートは、第2の実施の形態に係る自己補正のための処理を示すフローチャートである図15と類似する。但し、図15における「基準アンテナグループ」は、「アンテナ補正基準送受信アンテナ素子111~111N/L」と読み替えられ、図15における「補正対象アンテナグループ」は「通信用の送受信アンテナ素子11のアンテナグループ」と読み替えられる。第7の実施の形態では、すべての通信用の送受信アンテナ素子11がアンテナ補正の対象である。
 この実施の形態において、アンテナ補正基準送受信アンテナ素子111が1つの場合には、アンテナ補正基準送受信アンテナ素子111についての送信側位相制御部および受信側スイッチ60は不要であり、アンテナ補正基準送受信アンテナ素子111から送信されたパイロット信号の受信処理において逆拡散部62も不要である。
第8の実施の形態
 図25は、本発明の第8の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図25は、アナログビームフォーマ18の1ブランチ(アンテナ補正基準送受信アンテナ素子111~111N/Lに対応)および上りリンク信号処理部30の他の1ブランチ(通信用の送受信アンテナ素子の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有し、上りリンク信号処理部30は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、アンテナ補正基準送受信アンテナ素子111~111N/Lだけに無線のパイロット信号を送信させて、チャネル推定部42は、複数の通信用の送受信アンテナ素子11で受信されたパイロット信号に基づいて、複数の実効的なチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、複数の通信用の送受信アンテナ素子11だけに無線のパイロット信号を送信させて、チャネル推定部42は、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されたパイロット信号に基づいて、複数の実効的なチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数の実効的なチャネル係数と、第2の期間で推定された複数の実効的なチャネル係数から、複数の補正係数を計算する。
 アンテナ補正基準送受信アンテナ素子111~111N/Lから送信されるパイロット信号は、通信用の送受信アンテナ素子11に受信された後に、いずれのアンテナ補正基準送受信アンテナ素子111から送信されたか特定することができ、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されるパイロット信号は、いずれのアンテナ補正基準送受信アンテナ素子111で受信されたか特定することができることが好ましい。また、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11から送信されるパイロット信号は、アンテナ補正基準送受信アンテナ素子111~111N/Lに受信された後に、いずれの送受信アンテナ素子11から送信されたか特定することができ、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11で受信されるパイロット信号は、いずれの送受信アンテナ素子11で受信されたか特定することができることが好ましい。
 そこで、この実施の形態に係る無線基地局10は、第1の期間で、複数のアンテナ補正基準送受信アンテナ素子111~111N/Lがパイロット信号を送信する時に、これらのアンテナ補正基準送受信アンテナ素子から送信されるパイロット信号を異なる第1の直交拡散系列(ショートコード)で拡散し、第2の期間で、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11がパイロット信号を送信する時に、これらの送受信アンテナ素子から送信されるパイロット信号を異なる第1の直交拡散系列で拡散する送信側位相制御部を有する。また、この実施の形態に係る無線基地局10は、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する複数のサブブランチがパイロット信号を処理する時に、これらのサブブランチで処理されるパイロット信号を異なる第2の直交拡散系列(ロングコード)で拡散するディジタル位相制御器(受信側位相制御部)64を有する。第3の実施の形態と同様に、送信側位相制御部はディジタル位相制御器27であってよい。
 さらにこの実施の形態では、ベースバンドプロセッサ12は二重逆拡散部(double despreader)66を有する。二重逆拡散部66は、受信側のディジタル位相制御部(受信側位相制御部)64の作用の結果として可変移相器40がパイロット信号を拡散するのと逆の作用(すなわちロングコードに対する逆拡散)を実行するとともに、送信側のディジタル位相制御部(送信側位相制御部)27の作用の結果として可変移相器20がパイロット信号を拡散するのと逆の作用(すなわちショートコードに対する逆拡散)を実行する。このように二重逆拡散部66は二重逆拡散を実行する。
 したがって、パイロット信号の送信側のディジタル位相制御部(送信側位相制御部)27による拡散およびパイロット信号の受信側の二重逆拡散部66によるショートコードに対する逆拡散によって、1つのアンテナグループに属する複数の送受信アンテナ素子(通信用の送受信アンテナ素子11またはアンテナ補正基準送受信アンテナ素子111)から同時に送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができる。また、パイロット信号の受信側のディジタル位相制御部(受信側位相制御部)64による拡散およびパイロット信号の受信側の二重逆拡散部66によるロングコードに対する逆拡散によって、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 第8の実施の形態に係る自己補正のための処理を示すフローチャートは、第3の実施の形態に係る自己補正のための処理を示すフローチャートである図18と類似する。但し、図18における「基準アンテナグループ」は、「アンテナ補正基準送受信アンテナ素子111~111N/L」と読み替えられ、図18における「補正対象アンテナグループ」は「通信用の送受信アンテナ素子11のアンテナグループ」と読み替えられる。第8の実施の形態では、すべての通信用の送受信アンテナ素子11がアンテナ補正の対象である。
 この実施の形態において、アンテナ補正基準送受信アンテナ素子111が1つの場合には、アンテナ補正基準送受信アンテナ素子111についての送信側位相制御部および受信側位相制御部は不要であり、アンテナ補正基準送受信アンテナ素子111から送信されたパイロット信号の受信処理において二重逆拡散部66によるショートコードに対する逆拡散が不要であり、アンテナ補正基準送受信アンテナ素子111で受信されたパイロット信号の受信処理において二重逆拡散部66によるロングコードに対する逆拡散が不要である。
第9の実施の形態
 図26は、本発明の第9の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図26は、アナログビームフォーマ18の1ブランチ(アンテナ補正基準送受信アンテナ素子111~111N/Lに対応)および上りリンク信号処理部30の他の1ブランチ(通信用の送受信アンテナ素子の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有し、上りリンク信号処理部30は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、アンテナ補正基準送受信アンテナ素子111~111N/Lだけに無線のパイロット信号を送信させて、チャネル推定部42は、複数の通信用の送受信アンテナ素子11で受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、複数の通信用の送受信アンテナ素子11だけに無線のパイロット信号を送信させて、チャネル推定部42は、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されたパイロット信号に基づいて、複数のチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数のチャネル係数と、第2の期間で推定された複数のチャネル係数から、複数の補正係数を計算する。
 アンテナ補正基準送受信アンテナ素子111~111N/Lから送信されるパイロット信号は、通信用の送受信アンテナ素子11に受信された後に、いずれのアンテナ補正基準送受信アンテナ素子111から送信されたか特定することができ、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されるパイロット信号は、いずれのアンテナ補正基準送受信アンテナ素子111で受信されたか特定することができることが好ましい。また、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11から送信されるパイロット信号は、アンテナ補正基準送受信アンテナ素子111~111N/Lに受信された後に、いずれの送受信アンテナ素子11から送信されたか特定することができ、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11で受信されるパイロット信号は、いずれの送受信アンテナ素子11で受信されたか特定することができることが好ましい。
 そこで、この実施の形態に係る無線基地局10は、第1の期間で、複数のアンテナ補正基準送受信アンテナ素子111~111N/Lがパイロット信号を送信する時に、これらのアンテナ補正基準送受信アンテナ素子に対応する複数のサブブランチに供給される信号に同じ系列を与える系列供給部と、複数のアンテナ補正基準送受信アンテナ素子111~111N/Lがパイロット信号を送信する時に、これらのパイロット信号の送信時期を異ならせる遅延付与部を有する。また、この実施の形態に係る無線基地局10は、第2の期間で、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11がパイロット信号を送信する時に、これらの送受信アンテナ素子に対応する複数のサブブランチに供給される信号に同じ系列を与える系列供給部と、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11がパイロット信号を送信する時に、これらのパイロット信号の送信時期を異ならせる遅延付与部を有する。系列供給部はベースバンドプロセッサ12であってよい。ベースバンドプロセッサ(系列供給部)12は、パイロット信号の元として、自己相関が高く相互相関が低い系列をDAC14に供給する。このような系列は、例えば、PN(擬似雑音)系列でもよいし、Zadoff-Chu系列でもよい。遅延付与部は、1つ以上の遅延器52であってもよいし、送信側の複数のサブブランチ内の互いに長さが異なるケーブルであってもよい。遅延付与部の作用によって、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらのアンテナ素子は、異なる遅延を有する系列を送信する。
 また、この実施の形態では、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチ60を、上りリンク信号処理部30の各サブブランチが有する。さらにこの実施の形態では、ベースバンドプロセッサ12は逆相関部(decorrelator)68を有する。逆相関部68は、ベースバンドプロセッサ(系列供給部)12がパイロット信号の送信時に供給する系列により、受信したパイロット信号を逆相関する。
 したがって、パイロット信号の送信側の異なる遅延およびパイロット信号の受信側の逆相関部68による逆相関によって、1つのアンテナグループに属する複数の送受信アンテナ素子(通信用の送受信アンテナ素子11またはアンテナ補正基準送受信アンテナ素子111)から同時に送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができる。パイロット信号の受信側の受信側スイッチ60の作用によって、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 第9の実施の形態に係る自己補正のための処理を示すフローチャートは、第2の実施の形態に係る自己補正のための処理を示すフローチャートである図15と類似する。但し、図15における「基準アンテナグループ」は、「アンテナ補正基準送受信アンテナ素子111~111N/L」と読み替えられ、図15における「補正対象アンテナグループ」は「通信用の送受信アンテナ素子11のアンテナグループ」と読み替えられる。第9の実施の形態では、すべての通信用の送受信アンテナ素子11がアンテナ補正の対象である。また、この実施の形態では、自己補正において、ディジタル位相制御器27は各アンテナグループの複数のサブブランチに異なる位相を与えない。
 この実施の形態において、アンテナ補正基準送受信アンテナ素子111が1つの場合には、アンテナ補正基準送受信アンテナ素子111についての遅延付与部および受信側スイッチ60は不要であり、アンテナ補正基準送受信アンテナ素子111から送信されたパイロット信号の受信処理において逆相関部68も不要である。
第10の実施の形態
 図27は、本発明の第10の実施の形態に係る無線基地局10の構成を示す。説明の便宜上、図27は、アナログビームフォーマ18の1ブランチ(アンテナ補正基準送受信アンテナ素子111~111N/Lに対応)および上りリンク信号処理部30の他の1ブランチ(通信用の送受信アンテナ素子の1アンテナグループに対応)のみを示すが、実際には、アナログビームフォーマ18は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有し、上りリンク信号処理部30は、通信用の送受信アンテナ素子のLアンテナグループに対応するLブランチとアンテナ補正基準送受信アンテナ素子に対応する1ブランチを有する。
 この実施の形態において、アンテナ送信制御部26は、第1の期間に、アンテナ補正基準送受信アンテナ素子111~111N/Lだけに無線のパイロット信号を送信させて、チャネル推定部42は、複数の通信用の送受信アンテナ素子11で受信されたパイロット信号に基づいて、複数の実効的なチャネル係数を推定する。また、アンテナ送信制御部26は、第1の期間とは異なる第2の期間(第1の期間の前でも後でもよい)に、複数の通信用の送受信アンテナ素子11だけに無線のパイロット信号を送信させて、チャネル推定部42は、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されたパイロット信号に基づいて、複数の実効的なチャネル係数を推定する。補正係数計算部44は、第1の期間で推定された複数の実効的なチャネル係数と、第2の期間で推定された複数の実効的なチャネル係数から、複数の補正係数を計算する。
 アンテナ補正基準送受信アンテナ素子111~111N/Lから送信されるパイロット信号は、通信用の送受信アンテナ素子11に受信された後に、いずれのアンテナ補正基準送受信アンテナ素子111から送信されたか特定することができ、アンテナ補正基準送受信アンテナ素子111~111N/Lで受信されるパイロット信号は、いずれのアンテナ補正基準送受信アンテナ素子111で受信されたか特定することができることが好ましい。また、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11から送信されるパイロット信号は、アンテナ補正基準送受信アンテナ素子111~111N/Lに受信された後に、いずれの送受信アンテナ素子11から送信されたか特定することができ、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11で受信されるパイロット信号は、いずれの送受信アンテナ素子11で受信されたか特定することができることが好ましい。
 そこで、この実施の形態に係る無線基地局10は、第1の期間で、複数のアンテナ補正基準送受信アンテナ素子111~111N/Lがパイロット信号を送信する時に、これらのアンテナ補正基準送受信アンテナ素子に対応する複数のサブブランチに供給される信号に同じ系列を与える系列供給部と、複数のアンテナ補正基準送受信アンテナ素子111~111N/Lがパイロット信号を送信する時に、これらのパイロット信号の送信時期を異ならせる遅延付与部を有する。また、この実施の形態に係る無線基地局10は、第2の期間で、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11がパイロット信号を送信する時に、これらの送受信アンテナ素子に対応する複数のサブブランチに供給される信号に同じ系列を与える系列供給部と、1つのアンテナグループに属する複数の通信用の送受信アンテナ素子11がパイロット信号を送信する時に、これらのパイロット信号の送信時期を異ならせる遅延付与部を有する。系列供給部はベースバンドプロセッサ12であってよい。ベースバンドプロセッサ(系列供給部)12は、パイロット信号の元として、自己相関が高く相互相関が低い系列をDAC14に供給する。このような系列は、例えば、PN(擬似雑音)系列でもよいし、Zadoff-Chu系列でもよい。遅延付与部は、1つ以上の遅延器52であってもよいし、送信側の複数のサブブランチ内の互いに長さが異なるケーブルであってもよい。遅延付与部の作用によって、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらのアンテナ素子は、異なる遅延を有する系列を送信する。
  また、この実施の形態に係る無線基地局10は、第5の実施の形態と同様に、第1の期間および第2の期間で、上りリンク信号処理部30の1つのブランチに属する複数のサブブランチがパイロット信号を処理する時に、これらのサブブランチで処理されるパイロット信号の位相を異ならせるディジタル位相制御器(受信側位相制御部)64を有する。さらにこの実施の形態では、ベースバンドプロセッサ12は逆拡散・逆相関部70を有する。逆拡散・逆相関部70は、受信側のディジタル位相制御部(受信側位相制御部)64の作用の結果として可変移相器40がパイロット信号を拡散するのと逆の作用(すなわち逆拡散)を実行するとともに、ベースバンドプロセッサ(系列供給部)12がパイロット信号の送信時に供給する系列により、受信したパイロット信号を逆相関する。
 したがって、パイロット信号の送信側の異なる遅延およびパイロット信号の受信側の逆拡散・逆相関部70による逆相関によって、1つのアンテナグループに属する複数の送受信アンテナ素子(通信用の送受信アンテナ素子11またはアンテナ補正基準送受信アンテナ素子111)から同時に送信されるパイロット信号は、他のアンテナグループに属する複数の送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができる。また、パイロット信号の受信側のディジタル位相制御部(受信側位相制御部)64による拡散およびパイロット信号の受信側の逆拡散・逆相関部70による逆拡散によって、1つのアンテナグループに属する複数の送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる。
 第10の実施の形態に係る自己補正のための処理を示すフローチャートは、第3の実施の形態に係る自己補正のための処理を示すフローチャートである図18と類似する。但し、図18における「基準アンテナグループ」は、「アンテナ補正基準送受信アンテナ素子111~111N/L」と読み替えられ、図18における「補正対象アンテナグループ」は「通信用の送受信アンテナ素子11のアンテナグループ」と読み替えられる。第10の実施の形態では、すべての通信用の送受信アンテナ素子11がアンテナ補正の対象である。また、この実施の形態では、自己補正において、ディジタル位相制御器27は各アンテナグループの複数のサブブランチに異なる位相を与えない。
 この実施の形態において、アンテナ補正基準送受信アンテナ素子111が1つの場合には、アンテナ補正基準送受信アンテナ素子111についての遅延付与部および受信側位相制御部は不要であり、アンテナ補正基準送受信アンテナ素子111から送信されたパイロット信号の受信処理において逆拡散・逆相関部70による逆相関が不要であり、アンテナ補正基準送受信アンテナ素子111で受信されたパイロット信号の受信処理において逆拡散・逆相関部70による逆拡散が不要である。
他の変形
 上記の実施の形態では、アンテナ素子が無線のパイロット信号を送信および受信し、空間を伝搬する無線のパイロット信号に基づいて、補正係数が計算される。しかし、無線のパイロット信号の送受信とは手順に基づいて,各アンテナ素子を結合する結合回路(coupling circuit)を介してアンテナ素子間で有線でパイロット信号を送信および受信し、結合回路を伝搬する有線のパイロット信号の実効的なチャネル係数に基づいて、補正係数が計算されてもよい。
 無線基地局10および移動端末において、DSPが実行する各機能は、DSPの代わりに、ハードウェアで実行してもよいし、例えばFPGA(Field Programmable Gate Array),CPU(Central Processing Unit)等のプログラマブルロジックデバイスで実行してもよい。
10 無線基地局、11 送受信アンテナ素子、10A アンテナセット、12 ベースバンドプロセッサ(系列供給部、ディジタル信号処理部)、14 ディジタルアナログ変換器(DAC)、16 アップコンバータ(周波数変換器)、18 アナログビームフォーマ、20 可変移相器、22 電力増幅器(振幅調整器)、24 下りリンクパラメータ決定部、26 アンテナ送信制御部、27 ディジタル位相制御器(送信側位相制御部)、28 ディジタルゲイン制御器、30 上りリンク信号処理部、32 ダウンコンバータ(周波数変換器)、34 アナログディジタル変換器(ADC)、38 ローノイズ受信増幅器、40 可変移相器、42 チャネル推定部、44 補正係数計算部、50 送信側スイッチ、52 遅延器(遅延付与部)、60 受信側スイッチ、62 逆拡散部、64 ディジタル位相制御器(受信側位相制御部)、66 二重逆拡散部、68 逆相関部、70 逆拡散・逆相関部
 

Claims (7)

  1.  下りリンク信号にプリコーディング行列を適用して、ディジタルプリコーディングを実行するディジタル信号処理部と、
     前記ディジタルプリコーディングが施された下りリンク信号に対して、ビームフォーミング行列に相当する位相および振幅の変化を付与するアナログビームフォーミングを実行するアナログビームフォーマと、
     前記アナログビームフォーミングが施された下りリンク信号を無線で送信し、前記下りリンク信号の送信に利用される周波数帯と同じ周波数帯での上りリンク信号をユーザ装置から無線で受信する複数の送受信アンテナ素子と、
     前記複数の送受信アンテナ素子で受信された前記上りリンク信号を処理する上りリンク信号処理部と
    を備え、
     前記送受信アンテナ素子は、複数のアンテナグループに分類され、各アンテナグループは複数の送受信アンテナ素子を有しており、
     前記アナログビームフォーマは、前記複数のアンテナグループにそれぞれ対応する複数のブランチを有しており、各ブランチは複数のサブブランチを有しており、各サブブランチは、前記アナログビームフォーミングを実行するための可変移相器と振幅調整器を有しており、各サブブランチは1つの前記送受信アンテナ素子に接続されており、
     前記上りリンク信号処理部は、前記複数のアンテナグループにそれぞれ対応する複数のブランチを有しており、各ブランチは複数のサブブランチを有しており、各サブブランチは受信増幅器を有しており、各サブブランチは1つの前記送受信アンテナ素子に接続されており、
     さらに、前記複数の送受信アンテナ素子からのパイロット信号の送信を制御するアンテナ送信制御部と、
     前記複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定するチャネル推定部と、
     前記複数の送受信アンテナ素子で受信された上りリンクの無線信号から推定される複数のチャネル係数に基づいて、下りリンク送信を行う場合に、前記複数の送受信アンテナ素子から送信される下りリンクの無線信号に与えられるべき補正係数を計算する補正係数計算部とを備え、
     第1の期間に、前記アンテナ送信制御部は、前記複数のアンテナグループの1つである基準アンテナグループに属する複数の前記送受信アンテナ素子だけにパイロット信号を送信させて、前記チャネル推定部は、前記基準アンテナグループ以外のアンテナグループに属する複数の前記送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定し、
     前記第1の期間とは異なる第2の期間に、前記アンテナ送信制御部は、前記基準アンテナグループ以外のアンテナグループに属する複数の前記送受信アンテナ素子だけにパイロット信号を送信させて、前記チャネル推定部は、前記基準アンテナグループに属する複数の前記送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定し、
     前記補正係数計算部は、前記第1の期間で推定された複数の前記チャネル係数と、前記第2の期間で推定された複数の前記チャネル係数から、複数の前記補正係数を計算し、
     1つのアンテナグループに属する複数の前記送受信アンテナ素子から送信されるパイロット信号は、他のアンテナグループに属する複数の前記送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、
     1つのアンテナグループに属する複数の前記送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる
    無線基地局。
  2.  前記第1の期間および前記第2の期間で、1つのアンテナグループに属する1つの送受信アンテナ素子がパイロット信号を送信する時に、そのアンテナグループに属する他の送受信アンテナ素子がパイロット信号を送信することを防止する送信側スイッチと、
     前記第1の期間および前記第2の期間で、前記上りリンク信号処理部の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチとを
    さらに備える請求項1に記載の無線基地局。
  3.  前記第1の期間および前記第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらの送受信アンテナ素子から送信されるパイロット信号の位相を異ならせる送信側位相制御部と、
     前記第1の期間および前記第2の期間で、前記上りリンク信号処理部の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチとを
    さらに備える請求項1に記載の無線基地局。
  4.  前記第1の期間および前記第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらの送受信アンテナ素子から送信されるパイロット信号を異なる第1の直交拡散系列で拡散する送信側位相制御部と、
     前記第1の期間および前記第2の期間で、前記上りリンク信号処理部の1つのブランチに属する複数のサブブランチがパイロット信号を処理する時に、これらのサブブランチで処理されるパイロット信号を異なる第2の直交拡散系列で拡散する受信側位相制御部とを
    さらに備える請求項1に記載の無線基地局。
  5.  前記第1の期間および前記第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらの送受信アンテナ素子に対応する複数のサブブランチに供給される信号に同じ系列を与える系列供給部と、
     前記第1の期間および前記第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらのパイロット信号の送信時期を異ならせる遅延付与部と、
     前記第1の期間および前記第2の期間で、前記上りリンク信号処理部の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、そのブランチに属する他のサブブランチがパイロット信号を処理することを防止する受信側スイッチとを
    さらに備える請求項1に記載の無線基地局。
  6.  前記第1の期間および前記第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらの送受信アンテナ素子に対応する複数のサブブランチに供給される信号に同じ系列を与える系列供給部と、
     前記第1の期間および前記第2の期間で、1つのアンテナグループに属する複数の送受信アンテナ素子がパイロット信号を送信する時に、これらのパイロット信号の送信時期を異ならせる遅延付与部と、
     前記第1の期間および前記第2の期間で、前記上りリンク信号処理部の1つのブランチに属する1つのサブブランチがパイロット信号を処理する時に、これらのサブブランチで処理されるパイロット信号の位相を異ならせる受信側位相制御部とを
    さらに備える請求項1に記載の無線基地局。
  7.  下りリンク信号にプリコーディング行列を適用して、ディジタルプリコーディングを実行するディジタル信号処理部と、
     前記ディジタルプリコーディングが施された下りリンク信号に対して、ビームフォーミング行列に相当する位相および振幅の変化を付与するアナログビームフォーミングを実行するアナログビームフォーマと、
     前記アナログビームフォーミングが施された下りリンク信号を無線で送信し、前記下りリンク信号の送信に利用される周波数帯と同じ周波数帯での上りリンク信号をユーザ装置から無線で受信する複数の送受信アンテナ素子と、
     前記複数の送受信アンテナ素子で受信された前記上りリンク信号を処理する上りリンク信号処理部と、
     アンテナ補正のためのパイロット信号を送信および受信する少なくとも1つのアンテナ補正基準送受信アンテナ素子と
    を備え、
     前記送受信アンテナ素子は、複数のアンテナグループに分類され、各アンテナグループは複数の送受信アンテナ素子を有しており、
     前記アナログビームフォーマは、前記複数のアンテナグループにそれぞれ対応する複数のブランチを有しており、各ブランチは複数のサブブランチを有しており、各サブブランチは、前記アナログビームフォーミングを実行するための可変移相器と振幅調整器を有しており、各サブブランチは1つの前記送受信アンテナ素子に接続されており、
     前記上りリンク信号処理部は、前記複数のアンテナグループにそれぞれ対応する複数のブランチを有しており、各ブランチは複数のサブブランチを有しており、各サブブランチは受信増幅器を有しており、各サブブランチは1つの前記送受信アンテナ素子に接続されており、
     さらに、前記アンテナ補正基準送受信アンテナ素子および前記複数の送受信アンテナ素子からのパイロット信号の送信を制御するアンテナ送信制御部と、
     前記アンテナ補正基準送受信アンテナ素子および前記複数の送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定するチャネル推定部と、
     前記複数の送受信アンテナ素子で受信された上りリンクの無線信号から推定される複数のチャネル係数に基づいて、下りリンク送信を行う場合に、前記複数の送受信アンテナ素子から送信される下りリンクの無線信号に与えられるべき補正係数を計算する補正係数計算部とを備え、
     第1の期間に、前記アンテナ送信制御部は、前記アンテナ補正基準送受信アンテナ素子だけにパイロット信号を送信させて、前記チャネル推定部は、複数の前記送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定し、
     前記第1の期間とは異なる第2の期間に、前記アンテナ送信制御部は、複数の前記送受信アンテナ素子だけにパイロット信号を送信させて、前記チャネル推定部は、前記アンテナ補正基準送受信アンテナ素子で受信されたパイロット信号に基づいて、複数のチャネル係数を推定し、
     前記補正係数計算部は、前記第1の期間で推定された複数の前記チャネル係数と、前記第2の期間で推定された複数の前記チャネル係数から、複数の前記補正係数を計算し、
     1つのアンテナグループに属する複数の前記送受信アンテナ素子から送信されるパイロット信号は、前記アンテナ補正基準送受信アンテナ素子に受信された後に、いずれの送受信アンテナ素子から送信されたか特定することができ、
     1つのアンテナグループに属する複数の前記送受信アンテナ素子で受信されるパイロット信号は、いずれの送受信アンテナ素子で受信されたか特定することができる
    無線基地局。
     
PCT/JP2016/062736 2015-04-30 2016-04-22 無線基地局 WO2016175144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/313,570 US10020596B2 (en) 2015-04-30 2016-04-22 Radio base station
CN201680002013.XA CN106489242B (zh) 2015-04-30 2016-04-22 无线基站
JP2016552646A JP6650408B2 (ja) 2015-04-30 2016-04-22 無線基地局

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-092708 2015-04-30
JP2015092708 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016175144A1 true WO2016175144A1 (ja) 2016-11-03

Family

ID=57198343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062736 WO2016175144A1 (ja) 2015-04-30 2016-04-22 無線基地局

Country Status (4)

Country Link
US (1) US10020596B2 (ja)
JP (1) JP6650408B2 (ja)
CN (1) CN106489242B (ja)
WO (1) WO2016175144A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139539A1 (ja) * 2017-01-27 2018-08-02 日本電信電話株式会社 無線基地局およびその制御方法
US20200014473A1 (en) * 2017-03-16 2020-01-09 Huawei Technologies Co., Ltd. Determination of Hardware Impairment Parameters for Downlink Channel State Information Estimation
JP2022525624A (ja) * 2019-03-15 2022-05-18 大唐移▲動▼通信▲設▼▲備▼有限公司 ハイブリッドビームフォーミングアーキテクチャベースのキャリブレーション補償方法および装置
WO2024058152A1 (ja) * 2022-09-14 2024-03-21 Agc株式会社 アンテナ装置及びアンテナユニット

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471751A (zh) * 2014-08-15 2017-03-01 富士通株式会社 资源配置方法、装置以及通信系统
US20180159640A1 (en) * 2016-12-02 2018-06-07 National Instruments Corporation Combined Calibration Method to Time and Phase Synchronize MIMO Receive Channels and Perform Frequency Response Correction
WO2018136581A1 (en) * 2017-01-19 2018-07-26 Idac Holdings, Inc. Efficient implementation of hybrid beamforming
KR102373474B1 (ko) * 2017-03-23 2022-03-11 삼성전자주식회사 무선 통신 시스템에서 데이터를 전송하기 위한 장치 및 방법
CN107809274B (zh) * 2017-10-18 2021-03-23 东南大学 一种基于新型移相开关网络的混合预编码方法
US10985797B2 (en) * 2017-12-28 2021-04-20 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Blocker-resilient broadband wireless transceivers with multi-user collision tolerance based on mixed-mode correlation
CN108111204B (zh) * 2017-12-28 2021-08-03 浙江中智海通信科技有限公司 无线数据通信多天线协同发射机架构及其信号发射方法
EP3776928A1 (en) * 2018-03-29 2021-02-17 Telefonaktiebolaget Lm Ericsson (Publ) Identification of low performing radio branch
US11757183B2 (en) * 2018-08-31 2023-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Efficient antenna calibration for large antenna arrays
TWI717736B (zh) 2019-05-15 2021-02-01 財團法人工業技術研究院 多天線系統及其通道校正方法
US11258498B2 (en) * 2020-06-20 2022-02-22 Ahmad Reza Sharafat Hybrid beamforming in communication systems
US11683757B2 (en) * 2020-06-22 2023-06-20 Qualcomm Incorporated Leveraging wake-up signals and discontinuous reception cycles for assisted antenna calibration
CN114204962B (zh) * 2020-09-18 2023-11-17 上海华为技术有限公司 接收信号的方法和装置
US11901977B2 (en) * 2022-01-14 2024-02-13 Bae Systems Information And Electronic Systems Integration Inc. Delay compensated analog beam forming network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205645A (ja) * 2007-02-16 2008-09-04 Mitsubishi Electric Corp アンテナ装置
WO2014204868A1 (en) * 2013-06-20 2014-12-24 Ntt Docomo, Inc. Method and apparatus for relative transceiver calibration for wireless communication systems

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119886C (zh) * 2000-02-29 2003-08-27 华为技术有限公司 一种快速帧同步和均衡系数校正方法
US7392015B1 (en) * 2003-02-14 2008-06-24 Calamp Corp. Calibration methods and structures in wireless communications systems
JP2006526916A (ja) * 2003-05-09 2006-11-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 移動体通信装置の送信電力を設定するための方法および装置
JP4884722B2 (ja) 2005-03-31 2012-02-29 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
JP2007214750A (ja) * 2006-02-08 2007-08-23 Nec Corp 無線受信機および雑音推定値補正方法
CN100571241C (zh) * 2006-04-13 2009-12-16 中兴通讯股份有限公司 一种正交频分复用系统的半盲信道估计方法
US20100150013A1 (en) 2007-05-29 2010-06-17 Mitsubishi Electric Corporation Calibration method, communication system, frequency control method, and communication device
JP5080400B2 (ja) * 2008-08-25 2012-11-21 株式会社日立製作所 無線端末、基地局及びチャンネル特性推定方法
JP5221285B2 (ja) * 2008-11-05 2013-06-26 株式会社東芝 無線通信装置及び方法
CN101616104B (zh) * 2009-07-27 2011-12-07 北京天碁科技有限公司 正交频分复用系统的信道估计方法和装置
KR101878211B1 (ko) 2011-09-19 2018-07-16 삼성전자주식회사 무선 통신 시스템에서 다중 빔포밍 송수신기를 운용하기 위한 장치 및 방법
JP5845549B2 (ja) 2012-03-26 2016-01-20 株式会社国際電気通信基礎技術研究所 摂動ベクトル選択装置、通信装置、摂動ベクトル選択方法、及びプログラム
JP6045812B2 (ja) 2012-04-27 2016-12-14 株式会社Nttドコモ 無線通信方法、無線基地局及び無線通信システム
JP5551810B1 (ja) 2013-05-10 2014-07-16 ソフトバンクモバイル株式会社 無線通信装置及び無線伝送システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205645A (ja) * 2007-02-16 2008-09-04 Mitsubishi Electric Corp アンテナ装置
WO2014204868A1 (en) * 2013-06-20 2014-12-24 Ntt Docomo, Inc. Method and apparatus for relative transceiver calibration for wireless communication systems

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236797B1 (ko) 2017-01-27 2021-04-06 니폰 덴신 덴와 가부시끼가이샤 무선 기지국 및 그 제어 방법
TWI646790B (zh) * 2017-01-27 2019-01-01 日商日本電信電話股份有限公司 Wireless base station and control method thereof
KR20190095480A (ko) * 2017-01-27 2019-08-14 니폰 덴신 덴와 가부시끼가이샤 무선 기지국 및 그 제어 방법
CN110268639A (zh) * 2017-01-27 2019-09-20 日本电信电话株式会社 无线基站及其控制方法
JPWO2018139539A1 (ja) * 2017-01-27 2019-12-19 日本電信電話株式会社 無線基地局およびその制御方法
WO2018139539A1 (ja) * 2017-01-27 2018-08-02 日本電信電話株式会社 無線基地局およびその制御方法
US11005545B2 (en) 2017-01-27 2021-05-11 Nippon Telegraph And Telephone Corporation Base station and control method thereof
CN110268639B (zh) * 2017-01-27 2022-04-01 日本电信电话株式会社 无线基站及其控制方法
US20200014473A1 (en) * 2017-03-16 2020-01-09 Huawei Technologies Co., Ltd. Determination of Hardware Impairment Parameters for Downlink Channel State Information Estimation
US10998987B2 (en) * 2017-03-16 2021-05-04 Huawei Technologies Co., Ltd. Determination of hardware impairment parameters for downlink channel state information estimation
JP2022525624A (ja) * 2019-03-15 2022-05-18 大唐移▲動▼通信▲設▼▲備▼有限公司 ハイブリッドビームフォーミングアーキテクチャベースのキャリブレーション補償方法および装置
JP7361786B2 (ja) 2019-03-15 2023-10-16 大唐移▲動▼通信▲設▼▲備▼有限公司 ハイブリッドビームフォーミングアーキテクチャベースのキャリブレーション補償方法および装置
WO2024058152A1 (ja) * 2022-09-14 2024-03-21 Agc株式会社 アンテナ装置及びアンテナユニット

Also Published As

Publication number Publication date
CN106489242A (zh) 2017-03-08
JP6650408B2 (ja) 2020-02-19
JPWO2016175144A1 (ja) 2018-02-22
US20180040964A1 (en) 2018-02-08
US10020596B2 (en) 2018-07-10
CN106489242B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
JP6650408B2 (ja) 無線基地局
EP3566332B1 (en) Beam sweep configuration
US7203246B2 (en) Method of estimating a channel, and a radio system
US7340248B2 (en) Calibration apparatus
JP4344133B2 (ja) フィードバック信号を利用する適応ビーム整形
US7277730B2 (en) Method of allocating radio resources in telecommunication system, and telecommunication system
CN107078781B (zh) 在无线接入系统中支持多秩的混合波束成形方法及装置
JP4744965B2 (ja) 無線通信装置
JP4107494B2 (ja) 無線通信システム
KR20090088193A (ko) 멀티 빔 결합을 이용한 스위치 빔 포밍 장치 및 방법
JP2007244002A (ja) スマートアンテナおよびダイバーシティ技法を実施するための方法およびシステム
KR100869302B1 (ko) Cdma 역 링크를 위한 위상 교정 없는 스마트 안테나
JP2002124900A (ja) 適応アンテナアレイの方法および多重接続ワイヤレス通信システム内で使用する装置
JP3554207B2 (ja) 無線通信装置及び無線通信方法
KR102053565B1 (ko) 기지국, 무선 통신 장치, 무선 통신 시스템, 무선 통신 방법 및 기록 매체
WO2011052222A1 (ja) 無線通信装置及び参照信号生成方法
KR100963333B1 (ko) 다중 안테나를 이용한 빔 형성 방법
JP2008236066A (ja) 空間多重伝送用送信方法および装置
JP4408262B2 (ja) 適応アンテナアレー送信装置および適応アンテナアレー送信方法
JP2017069688A (ja) 送信装置及び受信装置およびこれらを用いた通信方法
JP2007166459A (ja) 無線通信装置及び無線通信方式
Stepanets et al. Beamforming signal processing performance analysis for massive MIMO systems
KR101548668B1 (ko) 빔분할 다중접속 통신시스템에서의 송신기 및 신호 송신 방법
WO2018059691A1 (en) A full-duplex wireless beamforming apparatus with self-interference cancellation and method
KR102003877B1 (ko) 빔 스페이스 방식의 매시브 mimo용 채널 에뮬레이터

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016552646

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15313570

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786421

Country of ref document: EP

Kind code of ref document: A1