WO2014087663A1 - 送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラム - Google Patents

送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラム Download PDF

Info

Publication number
WO2014087663A1
WO2014087663A1 PCT/JP2013/007175 JP2013007175W WO2014087663A1 WO 2014087663 A1 WO2014087663 A1 WO 2014087663A1 JP 2013007175 W JP2013007175 W JP 2013007175W WO 2014087663 A1 WO2014087663 A1 WO 2014087663A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
mimo
transmission
data
coding
Prior art date
Application number
PCT/JP2013/007175
Other languages
English (en)
French (fr)
Inventor
幹博 大内
賀敬 井口
知弘 木村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/376,946 priority Critical patent/US9258083B2/en
Priority to EP21161212.2A priority patent/EP3849096A1/en
Priority to JP2014550934A priority patent/JP6402926B2/ja
Priority to EP13860110.9A priority patent/EP2930870B1/en
Publication of WO2014087663A1 publication Critical patent/WO2014087663A1/ja
Priority to US14/980,511 priority patent/US10666385B2/en
Priority to US16/281,270 priority patent/US10693588B2/en
Priority to US16/297,988 priority patent/US10666387B2/en
Priority to US16/866,735 priority patent/US11075714B2/en
Priority to US17/353,065 priority patent/US11632192B2/en
Priority to US18/112,654 priority patent/US20230198662A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/6541DVB-H and DVB-M
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Definitions

  • the present invention relates to MIMO transmission technology.
  • MIMO transmission technology is known as a transmission technology.
  • the MIMO transmission technology is characterized by parallel transmission of a plurality of signals using a plurality of antennas for both transmission and reception, and is useful for large capacity transmission.
  • the MIMO transmission technology is adopted in the DVB-NGH (DVB-Next Generation Handheld) standard, which is a transmission standard for portable and mobile receivers in Europe (Non-Patent Document 3).
  • this invention aims at providing the transmission apparatus which implement
  • a transmitter is a transmitter for performing Multiple Input Multiple Output (MIMO) transmission using a plurality of fundamental bands, and an error correction code is generated for each data block of a predetermined length.
  • An error correction coding unit that generates an error correction coding frame, a mapping unit that maps the error correction coding frame to symbols by a predetermined number of bits each to generate an error correction coding block, and the error correction code
  • a MIMO coding unit that performs MIMO coding on the coded block, and distributes data components included in the error correction coding block to two or more of the plurality of basic bands. It is characterized by performing transmission.
  • FIG. 2 is a diagram showing a configuration of transmitting apparatus 100 according to Embodiment 1.
  • FIG. 7 is a diagram showing the configuration of a MIMO-PLP processing unit 131 according to Embodiment 1.
  • 5 is a diagram showing a configuration of an L1 information processing unit 141 in Embodiment 1.
  • FIG. FIG. 2 is a diagram showing a configuration of a reception device 200 according to Embodiment 1.
  • FIG. 2 is a diagram showing a configuration of a MIMO-PLP processing unit 132 in Embodiment 1.
  • 5 is a diagram showing a configuration of an L1 information processing unit 142 in Embodiment 1.
  • FIG. FIG. 2 is a diagram showing a configuration of a reception device 250 in Embodiment 1.
  • FIG. 16 is a diagram showing a configuration of a transmission device 300 in Embodiment 2.
  • FIG. 16 is a diagram showing a configuration of a MIMO-PLP processing unit 331 in Embodiment 2.
  • FIG. 16 is a diagram showing a configuration of a MIMO-PLP processing unit 332 in Embodiment 2.
  • FIG. 18 is a diagram showing a configuration of an L1 information processing unit 341 in Embodiment 2.
  • FIG. 18 is a diagram showing a configuration of an L1 information processing unit 342 in Embodiment 2.
  • FIG. 16 is a diagram showing a configuration of a reception device 400 in Embodiment 2.
  • FIG. 16 is a diagram showing a configuration of a MIMO-PLP processing unit 333 in Embodiment 2.
  • FIG. 16 is a diagram showing a configuration of a MIMO-PLP processing unit 334 in Embodiment 2.
  • FIG. 18 is a diagram showing a configuration of an L1 information processing unit 343 according to Embodiment 2.
  • FIG. 18 is a diagram showing a configuration of an L1 information processing unit 344 in Embodiment 2.
  • FIG. 16 is a diagram showing a configuration of a reception device 450 in Embodiment 2.
  • FIG. 16 is a diagram showing a configuration of a transmission device 500 in Embodiment 3.
  • FIG. 16 is a diagram showing a configuration of a MIMO-PLP processing unit 531 in Embodiment 3.
  • FIG. 18 is a diagram showing a configuration of frequency channel interchanging portion 591 according to Embodiment 3.
  • FIG. 45 is a diagram showing a configuration of an L1 information processing unit 541 in Embodiment 3.
  • FIG. 16 is a diagram showing a configuration of a reception device 600 according to Embodiment 3.
  • FIG. 18 is a diagram showing a configuration of a MIMO-PLP processing unit 532 in Embodiment 3.
  • FIG. 18 is a diagram showing a configuration of an L1 information processing unit 542 according to Embodiment 3.
  • FIG. 18 is a diagram showing a configuration of a reception device 650 in Embodiment 3.
  • FIG. 16 is a diagram showing a configuration of a transmission device 700 in Embodiment 4.
  • FIG. 25 is a diagram showing a configuration of a MIMO-PLP processing unit 731 in Embodiment 4.
  • FIG. 16 is a diagram showing a configuration of a reception device 800 according to Embodiment 4.
  • FIG. 26 is a diagram showing a configuration of a MIMO-PLP processing unit 732 in Embodiment 4.
  • FIG. 18 is a diagram showing a configuration of a reception device 850 in Embodiment 4.
  • FIG. 16 is a diagram showing a configuration of a transmission device 900 in Embodiment 5.
  • FIG. 26 is a diagram showing a configuration of a MIMO-PLP processing unit 931 in Embodiment 5.
  • FIG. 35 is a diagram showing a configuration of frequency channel inter-exchange section 991 in Embodiment 5.
  • 45 is a diagram showing the configuration of an L1 information processing unit 941 according to Embodiment 5.
  • FIG. 18 is a diagram showing a configuration of a reception device 1000 according to Embodiment 5.
  • FIG. 26 is a diagram showing a configuration of a MIMO-PLP processing unit 932 in Embodiment 5.
  • 45 is a diagram showing a configuration of an L1 information processing unit 942 in Embodiment 5.
  • FIG. 26 is a diagram showing a configuration of a reception device 1050 according to Embodiment 5.
  • 111 is a diagram illustrating the configuration of a transmitting device 1100 according to Embodiment 6.
  • FIG. FIG. 55 is a diagram showing a configuration of a MIMO-PLP processing unit 1131 according to Embodiment 6.
  • FIG. 35 is a diagram showing a configuration of frequency channel interchanging section 1191 in the sixth embodiment.
  • FIG. 55 is a diagram showing a configuration of an L1 information processing unit 1141 in Embodiment 6.
  • FIG. 55 is a diagram showing a configuration of a MIMO-PLP processing unit 1132 according to Embodiment 6.
  • 55 is a diagram showing a configuration of an L1 information processing unit 1142 in Embodiment 6.
  • FIG. 26 is a diagram showing a configuration of a transmitting device 1300 according to Embodiment 7.
  • 55 is a diagram showing a configuration of a TS generation unit 1210 in Embodiment 7.
  • FIG. 45 is a diagram showing a configuration of an L1 information processing unit 1341 in Embodiment 7.
  • FIG. 111 is a diagram illustrating the configuration of a receiving device 1400 according to Embodiment 7.
  • FIG. 111 is a diagram showing a configuration of a reception device 1450 in Embodiment 7.
  • FIG. 111 is a diagram illustrating a configuration of a transmission device 150 in Embodiment 8.
  • FIG. 111 is a diagram showing a configuration of a reception device 270 in Embodiment 8.
  • FIG. It is a figure which shows the transmission frame structure of a DVB-NGH system. It is a figure which shows the structure of the transmitter 2000 in the MIMO profile of the conventional DVB-NGH system. It is a figure which shows the structure of the MIMO-PLP process part 2031 in the conventional DVB-NGH system. It is a figure which shows the structure of L1 information processing part 2041 in the conventional DVB-NGH system.
  • FIG. 111 is a diagram showing a configuration of a transmitting device 3000 in Embodiment 9.
  • FIG. 45 is a diagram showing the configuration of a hierarchical processing unit 3041 in Embodiment 9.
  • FIG. 24 is a diagram showing segment configurations of MIMO transmission and MISO transmission in Embodiment 9.
  • FIG. 40 is a diagram showing a part of the definition of TMCC signals in Embodiment 9.
  • FIG. 55 is a diagram showing a configuration of an existing ISDB-T reception device 3300 in Embodiment 9.
  • FIG. 55 is a diagram showing a configuration of a multi-tiered TS reproducing unit 3331 according to Embodiment 9.
  • FIG. 35 is a diagram showing the configuration of an FEC decoding unit 3333 in a ninth embodiment.
  • 111 is a diagram illustrating the configuration of a reception device 3500 according to Embodiment 9.
  • FIG. FIG. 55 is a diagram showing a configuration of a multi-tiered TS reproducing unit 3531 according to Embodiment 9.
  • 111 is a diagram illustrating the configuration of a transmitting device 3600 according to Embodiment 10.
  • FIG. Fig. 34 is a diagram illustrating the configuration of an LDPC hierarchical processing unit 3645 according to a tenth embodiment.
  • FIG. 24 is a diagram showing the definition of a TMCC signal related to LDPC coding in a tenth embodiment.
  • 111 is a diagram showing a configuration of a reception device 3800 in Embodiment 10. [FIG. FIG.
  • FIG. 55 is a diagram showing a structure of a multi-tiered TS reproducing unit 383 in the tenth embodiment.
  • FIG. 35 is a diagram showing the configuration of an FEC decoding unit 3833 in the tenth embodiment.
  • FIG. 55 is a diagram showing a configuration of a transmitting device 4000 in Embodiment 11.
  • 55 is a diagram showing a configuration of a TS generation unit 4210 in Embodiment 11.
  • [FIG. FIG. 55 is a diagram showing a configuration of a transmitting device 4300 in Embodiment 12. It is a figure which shows the structure of the transmitter 5000 in an ISDB-T system. It is a figure which shows the structure of the hierarchy process part 5041 in ISDB-T system. It is a figure which shows the structure of the frequency interleaving part 5071 in ISDB-T system. It is a figure which shows the segment structure of ISDB-T system.
  • DVB-NGH DVD-Next Generation Handheld
  • MIMO Multiple Input Multiple Output
  • FIG. 53 shows a transmission frame configuration of the DVB-NGH system.
  • the DVB-NGH system has a concept called PLP (Physical Layer Pipe), and is characterized in that transmission parameters such as a modulation system and a coding rate can be set independently for each PLP.
  • the number of PLPs is at least one and at most 255, and FIG. 53 shows an example in which the number of PLPs is ten.
  • the transmission frame configuration is shown below.
  • Frame P1 symbol + aP1 symbol + P2 symbol + data symbol
  • P1 symbol 1 symbol
  • aP1 symbol 0 to 1 symbol
  • P2 symbol N_P2 symbol (N_P2 is unique by FFT size)
  • the P1 symbol transmits the format of a frame starting from the P1 symbol (NGH_SISO, NGH_MISO, ESC indicating other, etc.) by 3 bits of S1.
  • the P1 symbol transmits information such as the FFT size in the subsequent P2 symbol and data symbol when the format of the frame is NGH_SISO or NGH_MISO by 4 bits of S2. Also, if the frame format of the P1 symbol is ESC indicating other than that of 4 bits of S2, then the format (such as NGH_MIMO) of the frame is transmitted.
  • the aP1 symbol transmits information such as the FFT size in the subsequent P2 symbol and data symbol by the 3 bits of S3.
  • the P2 symbol includes L1 signaling information in the first half and main signal data in the remaining second half.
  • the data symbols include the continuation of the main signal data.
  • the L1 signaling information to be transmitted by the P2 symbol is mainly composed of L1-pre information for transmitting information common to all PLPs and L1-post information for mainly transmitting information for each PLP.
  • FIG. 53 shows the configuration of LC (Logical Channel) type A in which L1-post information is transmitted following L1-pre information.
  • LC type B the transmission order of L1-post information is not limited to that of L1-pre information.
  • FIG. 54 is a diagram showing the configuration of the transmission apparatus 2000 in the MIMO profile of the DVB-NGH system (see Non-Patent Document 3).
  • the transmitting apparatus 2000 shows an example in which two streams are input, ie, two PLPs are generated, and includes a MIMO-PLP processing unit 2031 for each PLP.
  • the transmission apparatus 2000 further includes an L1 (Layer-1) information processing unit 2041 and a frame configuration unit 2051.
  • the transmission apparatus 2000 further includes an OFDM signal generation unit 2061, a D / A conversion unit 2091 and a frequency conversion unit 2096 for each transmission antenna.
  • the MIMO-PLP processing unit 2031 for each PLP corresponds the input stream to the PLP, performs processing relating to that PLP, and outputs mapping data (cell) of each PLP for two transmit antennas (Tx-1, Tx-2) Do.
  • Examples of the input stream include TS (Transport Stream), service components such as audio and video included in a program with TS, and service subparts such as Base layer and Enhancement layer of video using SVC (Scalable Video Coding). Components and the like, and one example of source coding is H.264. H.264 and HEVC (H. 265).
  • the L1 information processing unit 2041 performs processing on L1 information, and outputs mapping data of the L1 information for two transmission antennas (Tx-1, Tx-2).
  • the frame configuration unit 2051 includes mapping data of each PLP for two transmission antennas (Tx-1 and Tx-2) output from the MIMO-PLP processing unit 2031, and two transmission antennas output from the L1 information processing unit 2041.
  • mapping data of L1 information for (Tx-1, Tx-2) a transmission frame of the DVB-NGH system shown in FIG. 53 is generated and output.
  • the OFDM signal generation unit 2061 for each of two transmission antennas adds pilot signals, IFFT (Inverse Fast Fourier Transform), and GI insertions to the transmission frame configuration of the DVB-NGH system output from the frame configuration unit 2051, respectively. , P1 symbols and aP1 symbols are inserted, and a digital baseband transmission signal of the DVB-NGH system is output.
  • the D / A conversion unit 2091 for each of two transmission antennas performs D / A conversion on the digital baseband transmission signal of the DVB-NGH system output from the OFDM signal generation unit 2061, and the analog of the DVB-NGH system Output baseband transmission signal.
  • the frequency converter 2096 for each of the two transmitting antennas performs frequency conversion to the frequency channel A for the analog baseband transmission signal of the DVB-NGH system output from the D / A converter 2091 and An analog RF transmission signal is output from a transmission antenna (not shown).
  • the MIMO-PLP processing unit 2031 includes an input processing unit 2071, a forward error correction (FEC) coding unit 2072, a mapping unit 2073, a MIMO coding unit 2076, and an interleaving unit 2074 for each of two transmission antennas.
  • FEC forward error correction
  • the input processing unit 2071 converts the input stream into a baseband frame.
  • the FEC encoding unit 2072 performs BCH encoding and LDPC encoding for each baseband and frame, adds parity bits, and generates an FEC frame.
  • the mapping unit 2073 performs mapping to I and Q coordinates, converts it into an FEC block, and outputs each mapping data (cell).
  • the MIMO coding unit 2076 performs MIMO coding.
  • the interleaving unit 2074 for each of two transmission antennas rearranges mapping data (cell) in a TI (Time Interleaving) block including an integer number of FEC blocks.
  • the L1 information processing unit 2041 includes an L1 information generation unit 2081, an FEC encoding unit 2082, a mapping unit 2083, and a MIMO encoding unit 2076.
  • the L1 information generation unit 2081 In the L1 information processing unit 2041, the L1 information generation unit 2081 generates transmission parameters and converts them into L1-pre information and L1-post information.
  • the FEC coding unit 2082 performs BCH coding and LDPC coding for each of L1-pre information and L1-post information, and adds parity bits.
  • a mapping unit 2083 performs mapping to I and Q coordinates, and outputs mapping data (cell).
  • the MIMO coding unit 2076 performs MIMO coding.
  • the base band refers to the above-described frequency channel, which corresponds to CH-A in FIG. That is, the baseband refers to the bandwidth of the modulated RF transmit signal.
  • the LTE-Advanced standard (LTE Rel. 10) defines a MIMO transmission technology using a plurality of basic bands.
  • modulation and channel coding are performed independently in each baseband (CC: Component Carrier) in units of transport blocks, and each is mapped to only one CC. Therefore, the frequency diversity effect by channel coding is limited within the baseband.
  • CC Component Carrier
  • Patent Document 1 shows a configuration in which in MIMO transmission using a plurality of basic bands, interleaving is collectively performed on a plurality of basic bands prior to MIMO coding, a description related to specific processing of interleaving Has not been done.
  • the inventions according to the first to eighth embodiments described below are made to solve this problem, and a transmitting apparatus, a transmitting method, a receiving apparatus, and a receiving method that exhibit frequency diversity effects for a plurality of basic bands. , Integrated circuit, and program.
  • FIG. 1 is a diagram showing the configuration of transmitting apparatus 100 according to Embodiment 1 of the present invention.
  • the same components as those of the conventional transmission apparatus are denoted by the same reference numerals, and the description thereof is omitted.
  • the transmitting apparatus 100 shown in FIG. 1 is different from the conventional transmitting apparatus 2000 shown in FIG. 54 in the MIMO-PLP processing unit 2031, the L1 information processing unit 2041, and the frame configuration unit 2051 as the MIMO-PLP processing unit 131 and the L1 information processing.
  • the configuration is such that the unit 141 and the frame configuration unit 151 are replaced respectively.
  • the transmitting apparatus 100 further includes an OFDM signal generator 2061 and a D / A converter 2091 for each frequency channel of each transmitting antenna.
  • the transmitting apparatus 100 further includes a frequency conversion unit 2096 for the frequency channel A and a frequency conversion unit 196 for the frequency channel B for each transmission antenna.
  • the MIMO-PLP processing unit 131 for each PLP associates the input stream with the PLP, performs processing relating to the PLP, and two frequency channels (CH-A, CH-A, two) for each of two transmit antennas (Tx-1, Tx-2). Output mapping data (cell) of each PLP to CH-B).
  • the L1 information processing unit 141 performs processing on L1 information, and outputs mapping data of the L1 information for two frequency channels (CH-A and CH-B) of two transmission antennas (Tx-1 and Tx-2). Do.
  • Frame configuration section 151 mapping data of each PLP for each of two frequency channels (CH-A, CH-B) of two transmission antennas (Tx-1, Tx-2) output from MIMO-PLP processing section 131 Using the mapping data of L1 information for the two frequency channels (CH-A and CH-B) of each of the two transmission antennas (Tx-1 and Tx-2) output from the L1 information processing unit 141.
  • a transmission frame indicated by 53 is generated and output.
  • the point different from the conventional transmitting apparatus 2000 shown in FIG. 54 is that transmission frames are configured in two frequency channels (CH-A, CH-B) of two transmitting antennas (Tx-1, Tx-2) respectively. It is doing.
  • the OFDM signal generation unit 2061 and the D / A conversion unit 2091 for each frequency channel of two transmission antennas perform the same operation as the conventional transmission apparatus 2000 shown in FIG.
  • the frequency conversion unit 2096 for each of two transmission antennas for the frequency channel A performs frequency conversion on the frequency channel A, and outputs an analog RF transmission signal from a transmission antenna (not shown).
  • frequency conversion unit 196 for each of two transmission antennas for frequency channel B performs frequency conversion on frequency channel B, and outputs an analog RF transmission signal from a transmission antenna (not shown).
  • FIG. 2 is a diagram showing the configuration of the MIMO-PLP processing unit 131. As shown in FIG. Compared to the conventional MIMO-PLP processing unit 2031 shown in FIG. 55, the MIMO coding unit 2076 is replaced with a MIMO coding unit 176. The MIMO-PLP processing unit 131 further includes an interleaving unit 2074 for each frequency channel of each transmission antenna.
  • the MIMO coding unit 176 performs precoding on each input FEC block using four pieces of mapping data (cells) from the beginning to two transmit antennas. (Tx-1, Tx-2) Outputs MIMO encoded data for each of two frequency channels (CH-A, CH-B).
  • mapping data (cell) of each FEC block is represented as s1, s2, ..., sNcells (Ncells: number of cells in the FEC block) from the beginning
  • the input vector s (s4k + 1, s4k + 2, s4k + 3, s4k + 4) T
  • the output vector z (z1A_k, z2A_k, z1B_k, z2B_k) T is expressed as equation (1) for 0, 1,..., (Ncells / 4) ⁇ 1).
  • zPQ_k is output data (MIMO encoded data) for the transmission antenna P and frequency channel Q
  • F is a fixed precoding matrix expressed by equation (2).
  • wMN does not have to be all complex numbers, and real elements may be included.
  • the precoding may be performed by multiplying the equation (1) by the phase change matrix X (k) which changes more regularly.
  • phase change matrix X (k) Perform phase change of 9. Therefore, by causing regular fluctuations in the MIMO transmission path, it is possible to obtain an effect that the reception quality of data in the receiver in the LOS (Line Of Sight) environment in which the direct wave is dominant can be improved.
  • this example of phase change is merely an example, and the period is not limited to nine. If the number of cycles increases, it may be possible to promote the improvement of the reception performance (more accurately, the error correction performance) of the receiving apparatus by that much (though it is not always better if the cycle is larger, Small values such as are likely to be better avoided).
  • phase change example shown in the above equations (3) and (4) shows a configuration in which only the predetermined phase (in the above equation, 2 ⁇ / 9 radians in each case) is sequentially rotated
  • the phase of the modulation signal is regularly changed, and the degree of the phase to be changed is as uniform as possible, for example, - ⁇ radian to ⁇ radian
  • each element of the output vector z is expressed as shown in Expressions (5) to (8).
  • f1A, f2A, f1B and f2B represent functions.
  • the interleaving unit 2074 for each frequency channel of two transmission antennas performs the same operation as that of the conventional transmission apparatus 2000 shown in FIG. Thereby, the component of each mapping data (cell) in the FEC block is transmitted from all two frequency channels (CH-A, CH-B) of each of two transmitting antennas (Tx-1, Tx-2). .
  • FIG. 3 is a diagram showing the configuration of the L1 information processing unit 141. As shown in FIG. Compared with the conventional L1 information processing unit 2041 shown in FIG. 56, the L1 information generating unit 2081 and the MIMO encoding unit 2076 are replaced with an L1 information generating unit 181 and a MIMO encoding unit 176, respectively.
  • the L1 information generation unit 181 generates transmission parameters for two frequency channels (CH-A, CH-B).
  • the MIMO coding unit 176 performs the same operation as the MIMO coding unit 176 in FIG. 2 described above. Thereby, the component of each mapping data (cell) in the FEC block of L1 information is obtained from all two frequency channels (CH-A and CH-B) of each of two transmitting antennas (Tx-1 and Tx-2). Will be sent.
  • each mapping data (cell) in an FEC block is transmitted from all frequency channels of all transmission antennas, thereby relating to a plurality of base bands. It is possible to provide a transmitting apparatus, a transmitting method, and a program that can fully exhibit the frequency diversity effect. In particular, it is characterized in that the result of the MIMO precoding process is output over a plurality of base bands.
  • the fundamental band here refers to the above-mentioned frequency channel, and corresponds to CH-A and CH-B in FIG. That is, the baseband refers to the bandwidth of the modulated RF transmit signal.
  • the baseband refers to the bandwidth of the modulated RF transmit signal.
  • transmission using a plurality of base bands means generating and simultaneously transmitting an RF transmission signal storing the content of the common service in each of the plurality of base bands.
  • the plurality of base bands may be a plurality of base bands adjacent to each other, or a plurality of non-adjacent base bands including frequency channels used in other services or frequency bands in between. good.
  • FIG. 4 is a diagram showing a configuration of receiving apparatus 200 according to Embodiment 1 of the present invention.
  • the receiving device 200 of FIG. 4 corresponds to the transmitting device 100 of FIG. 1 and reflects the function of the transmitting device 100.
  • the receiving apparatus 200 includes a tuner unit 205A for one frequency channel (CH-A), an A / D conversion unit 208A, a demodulation unit 211A, and frequency deinterleaving for each reception antenna (Rx-1, Rx-2).
  • the receiving apparatus 200 includes, for each receiving antenna (Rx-1, Rx-2), a tuner unit 205B for the other frequency channel (CH-B), an A / D conversion unit 208B, a demodulation unit 211B, and frequency de-
  • the interleaving / L1 information deinterleaving unit 215B, the PLP deinterleaving unit 221B, and the selecting unit 231B are provided.
  • the receiving apparatus 200 further includes a MIMO demapping unit 232 and an FEC decoding unit 233.
  • the tuner unit 205A-1 When an analog RF transmission signal is input from one of the receiving antennas Rx-1, the tuner unit 205A-1 selectively receives a signal of one frequency channel (CH-A) and down-converts the signal into a predetermined band.
  • the A / D conversion unit 208A-1 performs A / D conversion and outputs a digital reception signal.
  • the demodulation unit 211A-1 performs OFDM demodulation, and outputs cell data of I ⁇ Q coordinates and a transmission path estimated value.
  • Frequency de-interleaving and L1 information de-interleaving section 215A-1 performs frequency de-interleaving on the cell data of the PLP including the selected program data and the channel estimation value, and demultiplexes the cell data of the L1 information and the channel estimation value. Perform interleaving. The cell data of the deinterleaved L1 information and the channel estimation value are selected by the selection unit 231A-1.
  • the tuner unit 205A-2 When an analog RF transmission signal is input from the other reception antenna Rx-2, the tuner unit 205A-2, the A / D conversion unit 208A-2, the demodulation unit 211A-2, frequency deinterleave and L1 information deinterleave
  • the unit 215A-2, the PLP deinterleave unit 221A-2, and the selection unit 231A-2 perform the same operation as the above-described Rx-1 (select reception of CH-A).
  • the tuner unit 205B-1 selectively receives the signal of the other frequency channel (CH-B) and down-converts the signal to a predetermined band.
  • the A / D conversion unit 208B-1, the demodulation unit 211B-1, the frequency deinterleaving / L1 information deinterleaving unit 215B-1, the PLP deinterleaving unit 221B-1, and the selection unit 231B-1 are the Rx described above. The same operation as -1 (selective reception of CH-A) is performed.
  • the tuner unit 205B-2 When an analog RF transmission signal is input from the reception antenna Rx-2, the tuner unit 205B-2, A / D conversion unit 208B-2, demodulation unit 211B-2, frequency deinterleave and L1 information deinterleaving unit
  • the unit 215 B- 2, the PLP de-interleaving unit 221 B- 2, and the selection unit 231 B- 2 perform the same operation as the above-described Rx- 1 (selective reception of CH-A).
  • the MIMO demapping unit 232 performs MIMO demapping processing on cell data and channel estimation values of L1 information output from four selection units (231A-1, 231A-2, 231B-1, and 231B-2).
  • the FEC decoding unit 233 performs LDPC decoding processing and BCH decoding processing. Thereby, the L1 information is decoded.
  • the four PLP deinterleave units 221 are PLPs including a program selected by the user based on the scheduling information included in the decoded L1 information. For example, the cell data of the PLP-1) shown in FIG. 1 and the channel estimation value are extracted, and reordering reverse to the interleaving processing on the transmission side is performed.
  • the MIMO demapping unit 232 performs a MIMO demapping process on cell data and channel estimation values of PLPs output from four selection units (231A-1, 231A-2, 231B-1, and 231B-2).
  • the FEC decoding unit 233 performs LDPC decoding processing and BCH decoding processing. Thereby, PLP data is decoded.
  • components other than the tuner units 205A and 205B may be included in the receiving device 200 in FIG. 4 to form an integrated circuit 240.
  • the operation of the MIMO demapping unit 232 will be described below.
  • yPQ_k is the receiving antenna P
  • input data for the frequency channel Q H is the channel matrix represented by equation (10)
  • n (n1A_k, n2A_k, n1B_k, n2B_k) T is a noise vector
  • nPQ_k is the average Value 0, variance ⁇ 2 i. i. d. Complex Gaussian noise.
  • MLD maximum likelihood decoding
  • the process of the MIMO demapping unit 232 is not limited to the maximum likelihood decoding, and another method such as ZF (Zero Forcing) may be used.
  • the FEC decoder 233 performs LDPC decoding and BCH decoding on the vector estimated value s ′ of each FEC block output from the MIMO demapping unit 232, and outputs a decoding result.
  • a receiving apparatus for receiving the components of each mapping data (cell) in the FEC block and signals transmitted from all frequency channels of all transmitting antennas, A receiving method and program can be provided.
  • the MIMO-PLP processing unit 131 shown in FIG. 2 may be replaced with the MIMO-PLP processing unit 132 shown in FIG.
  • the MIMO-PLP processing unit 132 shown in FIG. 5 has a configuration in which the MIMO coding unit 176 is replaced with a MIMO coding unit 177 as compared to the MIMO-PLP processing unit 131 shown in FIG. Furthermore, two interleaving units 2074-3 and 2074-4 for frequency channel B (CH-B) are replaced with interleaving units 174-3 and 174-4, respectively.
  • CH-B frequency channel B
  • the MIMO coding unit 177 may perform precoding by multiplying the phase change matrix X (k) shown in equation (11).
  • ⁇ / 9 can be mentioned, but it is not limited thereto.
  • the initial value is 0 radian for one frequency channel (CH-A)
  • the other frequency channel (CH-B) is subjected to phase change of period 9 which changes by 2 ⁇ / 9 radians at an initial value of ⁇ / 9 radians.
  • phase change matrix X (k) shown in equation (11) reduces the correlation to make the phase change patterns of the two frequency channels (CH-A, CH-B) different, and the reception quality of the data in the receiving apparatus Can be obtained.
  • the method of making the phase change patterns different is not limited to this, and, for example, different periods of phase change may be used.
  • two interleaving units 174-3 and 174-4 for frequency channel B have different patterns from those of two interleaving units 2074-1 and 2074-2 for frequency channel A (CH-A). Reordering may be performed.
  • An example of the different pattern is, but not limited to, the number of frames to be interleaved.
  • the two interleaving units 2074-1 and 2074-2 for the same frequency channel A (CH-A) rearrange the same pattern, and 2 for the same frequency channel B (CH-B).
  • the two interleaving units 174-1 and 174-2 are points that rearrange the same pattern.
  • phase change pattern of the phase change matrix X (k) different for two frequency channels (CH-A, CH-B) and making the interleaving reorder pattern different are simultaneously applied. You may apply only one or the other.
  • the L1 information processing unit 141 shown in FIG. 3 may be replaced with the L1 information processing unit 142 shown in FIG.
  • the L1 information processing unit 142 illustrated in FIG. 6 has a configuration in which the MIMO encoding unit 176 is replaced with a MIMO encoding unit 177 as compared to the L1 information processing unit 141 illustrated in FIG. 3.
  • the MIMO coding unit 177 performs the same operation as the MIMO coding unit 177 in FIG.
  • the phase change matrix X (k) shown in the equation (11) reduces the correlation and makes the data in the receiving apparatus different by changing the phase change patterns of the two frequency channels (CH-A, CH-B). The effect of improving the reception quality can be obtained.
  • FIG. 7 shows the configuration of the receiving apparatus 250 when the MIMO-PLP processing unit 132 shown in FIG. 5 and the L1 information processing unit 142 shown in FIG. 6 are applied.
  • the receiver 250 shown in FIG. 7 replaces the PLP deinterleaver 221B for the frequency channel B (CH-B) with the PLP deinterleaver 222B as compared to the receiver 200 shown in FIG.
  • the MIMO demapping unit 235 is used instead of the H.232.
  • PLP deinterleave unit 222B for frequency channel B (CH-B) performs reverse reordering to interleave unit 174 in FIG.
  • the MIMO demapping unit 235 takes account of the phase change matrix X (k) shown in equation (11) instead of the phase change matrix X (k) shown in equation (4) to obtain equations (9) and (10).
  • components other than the tuner units 205A and 205B may be included in the receiving device 250 of FIG. 7 as an integrated circuit 241.
  • FIG. 8 is a diagram showing the configuration of transmitting apparatus 300 according to Embodiment 2 of the present invention.
  • the same components as the conventional transmission apparatus and the transmission apparatus of the first embodiment use the same reference numerals, and descriptions thereof will be omitted.
  • the transmitting apparatus 300 of FIG. 8 is different from the transmitting apparatus 100 according to the first embodiment shown in FIG. 1 in that the MIMO-PLP processing unit 131 and the L1 information processing unit 141 are replaced by the MIMO-PLP processing unit 331 and the L1 information processing unit 341. Each configuration is replaced.
  • FIG. 9 is a diagram showing the configuration of the MIMO-PLP processing unit 331. As shown in FIG. Compared to the MIMO-PLP processing unit 131 in the first embodiment shown in FIG. 2, an S / P (Serial to Parallel) conversion unit 378 is added. Furthermore, the MIMO coding unit 176 is replaced with two MIMO coding units 376A and 376B.
  • S / P Serial to Parallel
  • the S / P conversion unit 378 sequentially performs mapping data (cells) two by two from the beginning on the MIMO coding unit 376A, MIMO coding for each FEC block input.
  • the MIMO coding unit 376A performs precoding on half of the input mapping data (cell) of each FEC block using two from the beginning, and transmits two transmit antennas (Tx ⁇ 1, Tx ⁇ Output the MIMO coded data for 2).
  • the mapping data (cell) of each FEC block is represented as s1, s2, ..., sNcells (Ncells: number of cells in the FEC block) from the beginning
  • the input vector s_A to the MIMO coding unit 376A (s4k + 1, s4k + 2) T
  • zPQ_k is output data (MIMO encoded data) for the transmission antenna P and frequency channel Q
  • F_A is a fixed precoding matrix represented by equation (13).
  • wMN_A need not be all complex numbers, and may include real elements.
  • the precoding may be performed by multiplying the equation (12) by the phase change matrix X_A (k) which changes more regularly.
  • phase change matrix X_A (k) phase change of period 9 changing by 2 ⁇ / 9 radians is performed on the MIMO encoded data sequence for the transmission antenna 2 (Tx-2). Therefore, by causing regular fluctuations in the MIMO transmission path, it is possible to obtain an effect that the reception quality of data in the receiver in the LOS (Line Of Sight) environment in which the direct wave is dominant can be improved.
  • this example of phase change is merely an example, and the period is not limited to nine. If the number of cycles increases, it may be possible to promote the improvement of the reception performance (more accurately, the error correction performance) of the receiving apparatus by that much (though it is not always better if the cycle is larger, Small values such as are likely to be better avoided.)
  • the configuration is shown in which the predetermined phase (in the above equation, each 2 ⁇ / 9 radian) is sequentially rotated. It is also possible to change the phase randomly instead of causing it to What is important in the regular change of the phase is that the phase of the modulation signal is regularly changed, and the degree of the phase to be changed is as uniform as possible, for example, - ⁇ radian to ⁇ radian However, it may be random although it is desirable to have a uniform distribution.
  • the MIMO coding unit 376B outputs the MIMO coded data for two transmission antennas (Tx-1, Tx-2) in the same manner as the MIMO coding unit 376A.
  • F_B is a fixed precoding matrix represented by Formula (17).
  • the precoding may be performed by multiplying the equation (16) by the phase change matrix X_B (k) which changes regularly.
  • f1 and f2 represent functions.
  • the interleaving unit 2074 for each frequency channel of two transmission antennas performs the same operation as the interleaving unit 2074 in FIG.
  • half of the mapping data (cell) in the FEC block is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of one frequency channel (CH-A).
  • the remaining half component is transmitted from each of two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • the MIMO-PLP processing unit 331 shown in FIG. 9 may be replaced with the MIMO-PLP processing unit 332 shown in FIG.
  • the MIMO-PLP processing unit 332 shown in FIG. 10 is different from the S / P conversion unit 378 downstream of the mapping unit 2073 in the S / P conversion unit 379 upstream of the mapping unit 2073. It is the replaced configuration. Furthermore, two mapping units 2073 are provided.
  • the S / P conversion unit 379 sequentially maps bit groups, which become mapping data (cells) two by two from the beginning, to each FEC frame output from the FEC encoding unit 2072, the mapping unit 2073 A, and a mapping unit 2073B, mapping unit 2073A, mapping unit 2073B, and so on.
  • the mapping unit 2073A and the mapping unit 2073B perform the same operation as the mapping unit 2073 in FIG. Therefore, as in the MIMO-PLP processing unit 331 shown in FIG. 9, half of the mapping data (cell) of each FEC block is distributed to the MIMO coding units 376A and 376B.
  • the other operations are similar to those of the MIMO-PLP processing unit 331 shown in FIG.
  • FIG. 11 is a diagram showing the configuration of the L1 information processing unit 341. As shown in FIG. Compared to the L1 information processing unit 141 in the first embodiment shown in FIG. 3, an S / P conversion unit 378 is added. Furthermore, the MIMO coding unit 176 is replaced with two MIMO coding units 376A and 376B.
  • the S / P conversion unit 378 sequentially performs mapping data (cells) two by two from the beginning for each FEC block to be input, as in the operation in FIG.
  • the MIMO coding unit 376A and the MIMO coding unit 376B operate similarly to the operation in FIG. 9 and use two from the beginning for the half mapping data (cell) in each FEC block to be input. Precoding is performed to output MIMO encoded data for two transmit antennas (Tx-1, Tx-2). Thus, half of the mapping data (cell) in the FEC block of L1 information is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of one frequency channel (CH-A). . The remaining half component is transmitted from each of two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • the L1 information processing unit 341 shown in FIG. 11 may be replaced with the L1 information processing unit 342 shown in FIG.
  • the L1 information processing unit 342 shown in FIG. 12 replaces the S / P conversion unit 378 in the latter stage of the mapping unit 2083 with the S / P conversion unit 379 in the former stage of the mapping unit 2083 compared with the 1 information processing unit 341 shown in FIG. It is a structure. Furthermore, two mapping units 2083 are provided.
  • the S / P converter 379 becomes two mapping data (cells) from the top for each FEC frame output from the FEC encoder 2082 in the same manner as the operation in FIG.
  • the bit groups are sequentially allocated to the mapping unit 2083A, the mapping unit 2083B, the mapping unit 2083A, the mapping unit 2083B, and so on.
  • the mapping unit 2083A and the mapping unit 2083B perform the same operation as the mapping unit 2083 in FIG. Therefore, as in the L1 information processing unit 341 illustrated in FIG. 11, half of the mapping data (cell) in the FEC block of the L1 information is distributed to the MIMO coding units 376A and 376B.
  • the other operations are similar to those of the L1 information processing unit 341 shown in FIG.
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1 and Tx-2), and the remaining half component is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • the present invention can provide a transmitting apparatus, a transmitting method, and a program that can fully exhibit the frequency diversity effect regarding.
  • FIG. 13 is a diagram showing a configuration of receiving apparatus 400 according to Embodiment 2 of the present invention.
  • the receiving device 400 of FIG. 13 corresponds to the transmitting device 300 of FIG. 8 and reflects the function of the transmitting device 300.
  • the same components as the conventional receiving apparatus and the receiving apparatus of the first embodiment use the same reference numerals, and the description thereof is omitted.
  • the receiver 400 of FIG. 13 has a configuration in which the MIMO demapping unit 232 is replaced with two MIMO demapping units 432 as compared to the receiver 200 in the first embodiment shown in FIG. 4. Furthermore, a P / S conversion unit 435 is added.
  • yPQ_k is the receiving antenna P
  • input data for the frequency channel Q H_A is the channel matrix represented by equation (25)
  • nPQ_k is an average value of 0, variance ⁇ 2 i. i. d. Complex Gaussian noise.
  • MLD maximum likelihood decoding
  • the processing of the MIMO demapping unit 432A is not limited to maximum likelihood decoding, and another method such as ZF may be used.
  • MLD Maximum Likelihood Decoding
  • the processing of the MIMO demapping unit 432B is not limited to the maximum likelihood decoding, and another method such as ZF (Zero Forcing) may be used.
  • Equations (25) and (27) do not include 4 rows and 4 columns, but includes a 2 ⁇ 2 channel matrix H. Therefore, compared with the MIMO demapping unit 232 of the first embodiment, the amount of operation in the MIMO demapping units 432A and 432B is reduced.
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1, Tx-2) A receiver for transmitting signals from the other half, and receiving the signals transmitted from the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B) , A receiving method, and a program can be provided.
  • components other than the tuner units 205A and 205B may be included in the receiving device 400 of FIG. 13 to form an integrated circuit 440.
  • the MIMO-PLP processing unit 331 shown in FIG. 9 may be replaced with the MIMO-PLP processing unit 333 shown in FIG.
  • the MIMO-PLP processing unit 333 shown in FIG. 14 has a configuration in which the MIMO coding unit 376B is replaced with a MIMO coding unit 377B as compared to the MIMO-PLP processing unit 331 shown in FIG.
  • two interleaving units 2074-3 and 2074-4 for frequency channel B (CH-B) are replaced with interleaving units 174-3 and 174-4, respectively.
  • MIMO coding section 377B may perform precoding using fixed precoding matrix F_B shown in equation (28).
  • the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • MIMO coding section 377B may perform precoding by multiplying by phase change matrix X_B (k) shown in equation (29).
  • (pi) / 9 is mentioned as an example of the value of (theta) in Formula (29), It is not limited to this.
  • the phase change matrix X_B (k) shown in equation (29) with respect to the MIMO encoded data sequence for transmit antenna 2 (Tx-2), one frequency channel (CH-A) has an initial value of 0 radian, A phase change of period 9 which changes by 2 ⁇ / 9 radians is performed, and a phase change of period 9 which changes by 2 ⁇ / 9 radians is performed with the initial value ⁇ / 9 radians to the other frequency channel (CH-B) Ru.
  • Two frequency channels are transmitted from the same transmit antenna group (Tx-1, Tx-2) and received by the same receive antenna group (Rx-1, Rx-2)
  • Tx-1, Tx-2 transmit antenna group
  • Rx-1, Rx-2 receive antenna group
  • the phase change matrices X_A (k) and X_B (k) shown in the equations (15) and (29), respectively, are correlated by making the phase change patterns of the two frequency channels (CH-A, CH-B) different. Can be reduced to improve the reception quality of data in the receiving apparatus.
  • two interleaving sections 174-3 and 174-4 for frequency channel B are the same as in ⁇ Modification of transmitting apparatus and transmitting method in the first embodiment>. Patterns different from the two interleave units 2074-1 and 2074-2 for A) may be rearranged. As a result, the correlation of the channel characteristics between the two frequency channels (CH-A, CH-B) is reduced without increasing the amount of operation in MIMO demapping, and the reception quality of data in the receiver is improved. The effect can be obtained.
  • making the reordering patterns of interleaving different may all be applied at the same time, any two may be applied simultaneously, or only one may be applied.
  • the MIMO-PLP processing unit 332 shown in FIG. 10 may be replaced with the MIMO-PLP processing unit 334 shown in FIG. A configuration in which the mapping unit 2073B and the MIMO coding unit 376B are replaced with a mapping unit 373B and a MIMO coding unit 377B, respectively, compared to the MIMO-PLP processing unit 332 shown in FIG. It is. Furthermore, two interleaving units 2074-3 and 2074-4 for frequency channel B (CH-B) are replaced with interleaving units 174-3 and 174-4, respectively.
  • CH-B frequency channel B
  • mapping section 373B for frequency channel B may perform mapping of a pattern different from mapping section 2073A for frequency channel A (CH-A).
  • different patterns include, but are not limited to, the mapping units 2073A and 373B use uniform mapping and non-uniform mapping, respectively.
  • uniform mapping and non-uniform mapping include, but are not limited to, 64-QAM (Quadrature Amplitude Modulation) and NU (Non Uniform) -64 QAM in Non-Patent Document 3, respectively.
  • the MIMO coding unit 377 B and the interleaving units 174-3 and 174-4 perform the same operations as in FIG.
  • mapping patterns for two frequency channels CH-A, CH-B
  • different fixed precoding matrices F_A and F_B phase change matrices X_A (k) and X_B (k)
  • Differentiating the phase change pattern of p and changing the interleaving reordering pattern may all be applied simultaneously, or any two or three may be applied simultaneously, or only one of them may be applied. It may apply.
  • the L1 information processing unit 341 shown in FIG. 11 may be replaced with the L1 information processing unit 343 shown in FIG.
  • the L1 information processing unit 343 illustrated in FIG. 16 has a configuration in which the MIMO coding unit 376B is replaced with a MIMO coding unit 377B as compared to the L1 information processing unit 341 illustrated in FIG.
  • the MIMO coding unit 377B performs the same operation as the MIMO coding unit 377B in FIG. As a result, the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • the L1 information processing unit 342 shown in FIG. 12 may be replaced with the L1 information processing unit 344 shown in FIG.
  • the L1 information processing unit 344 shown in FIG. 17 has a configuration in which the mapping unit 2083B and the MIMO encoding unit 376B are replaced with a mapping unit 383B and a MIMO encoding unit 377B, respectively, compared to the L1 information processing unit 342 shown in FIG. .
  • mapping section 383B for frequency channel B may perform mapping of a pattern different from mapping section 2083A for frequency channel A (CH-A) in the same manner as mapping section 373B in FIG. .
  • different patterns include, but are not limited to, the mapping units 2083A and 383B use uniform mapping and non-uniform mapping, respectively.
  • uniform mapping and non-uniform mapping include, but are not limited to, 64-QAM (Quadrature Amplitude Modulation) and NU (Non Uniform) -64 QAM in Non-Patent Document 3, respectively.
  • the MIMO coding unit 377B performs the same operation as the MIMO coding unit 377B in FIG. As a result, the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • mapping patterns for two frequency channels CH-A, CH-B
  • different fixed precoding matrices F_A and F_B phase change matrices X_A (k) and X_B (k)
  • the different phase change patterns may be applied simultaneously, any two may be applied simultaneously, or only one may be applied.
  • FIG. 18 The configuration of the receiving device 450 is shown in FIG.
  • the receiver 450 shown in FIG. 18 is different from the receiver 400 shown in FIG. 13 in the PLP deinterleaver 221B and the MIMO demapping unit 432B for the frequency channel B (CH-B) as the PLP deinterleaver 222B.
  • the MIMO demapping unit 434B is different from the receiver 400 shown in FIG. 13 in the PLP deinterleaver 221B and the MIMO demapping unit 432B for the frequency channel B (CH-B) as the PLP deinterleaver 222B.
  • CH-B frequency channel B
  • the PLP deinterleave unit 222B for the frequency channel B (CH-B) performs the same operation as that of FIG.
  • MIMO demapping section 434 B for frequency channel B (CH-B) takes account of fixed precoding matrix F_B shown in equation (28) instead of fixed precoding matrix F_B shown in equation (17), Maximum likelihood decoding (MLD) is performed using Eq.
  • MIMO demapping section 434B for frequency channel B (CH-B) takes into account phase change matrix X_B (k) shown in equation (29) instead of phase change matrix X_B (k) shown in equation (19).
  • Maximum likelihood decoding (MLD) is performed using Equations (26) and (27).
  • mapping of patterns in which frequency channel B (CH-B) differs from frequency channel A (CH-A) is performed. If so, maximum likelihood decoding (MLD) is performed taking that into consideration as well.
  • components other than the tuner units 205A and 205B may be included in the receiving device 450 of FIG. 18 to form an integrated circuit 441.
  • FIG. 19 is a diagram showing the configuration of transmitting apparatus 500 according to Embodiment 3 of the present invention.
  • the same components of the conventional transmission apparatus and the transmission apparatus of the first and second embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the transmitting apparatus 500 in FIG. 19 is different from the transmitting apparatus 100 in the first embodiment shown in FIG. 1 in that the MIMO-PLP processing unit 131 and the L1 information processing unit 141 are replaced by the MIMO-PLP processing unit 531 and the L1 information processing unit 541. Each configuration is replaced.
  • FIG. 20 is a diagram showing a configuration of the MIMO-PLP processing unit 531.
  • a configuration is such that a frequency channel interchanging unit 591 is added.
  • the S / P conversion unit 379 at the rear stage of the FEC coding unit 2072 is replaced with the S / P conversion unit 581 at the front stage of the FEC coding unit 2072 and two FEC coding units 2072 are provided.
  • the S / P conversion unit 581 sequentially performs FEC encoding unit 2072A, FEC encoding unit 2072B, for baseband / frames output from the input processing unit 2071 in order of baseband / frame from the top of the frame.
  • CH-B frequency channel B
  • FIG. 21 is a diagram showing a configuration of inter-frequency channel interchanging portion 591.
  • the frequency channel interchanging unit 591 is configured to include four selectors 595.
  • the frequency channel interchanging unit 591 generates a selection signal and inputs it to the four selectors 595. When the selection signal is "0", the selector selects and outputs the data input to "0". Conversely, when the selection signal is "1", the selector selects and outputs the data input to "1".
  • the generated selection signal alternates with “0”, “1”, “0”, “1”,... In cell units from the top of each FEC block, the output data series of inter-frequency channel interchanging portion 591 Is shown below.
  • uR_T (FB-L) is a component of T-th mapping data (cell) from the head of FB-L output from the interleaving unit 2074 -R, and N cells is the number of cells in the FEC block.
  • half of the mapping data (cell) in the FEC block is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of one frequency channel (CH-A).
  • the remaining half component is transmitted from each of two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • the selection signal is not limited to the alternation of "0”, “1”, “0”, “1”, ... in cell units from the top of each FEC block, and preferably the number of "0" and "1" is It should be equally close.
  • FIG. 22 is a diagram showing the configuration of the L1 information processing unit 541.
  • the configuration is such that a frequency channel interchanging unit 591 is added.
  • the S / P conversion unit 379 at the rear stage of the FEC coding unit 2082 is replaced with the S / P conversion unit 581 at the front stage of the FEC coding unit 2082, and two FEC coding units 2082 are provided.
  • the S / P conversion unit 581 sequentially performs baseband processing on the baseband frames of L1-pre information and L1-post information output from the L1 information generation unit 181 from the top of the frame.
  • the operations of the FEC encoding unit 2082, the mapping unit 2083 and the MIMO encoding unit 376 are the same as the operations in FIG.
  • the operation of inter-frequency channel interchanging portion 591 is the same as the operation in FIG.
  • the MIMO coding data output from the MIMO coding unit 376 is input, operates according to the configuration shown in FIG. 21, and is output to the frame configuration unit 151.
  • half of the mapping data (cell) in the FEC block is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of one frequency channel (CH-A).
  • the remaining half component is transmitted from each of two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1 and Tx-2), and the remaining half component is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • the present invention can provide a transmitting apparatus, a transmitting method, and a program that can fully exhibit the frequency diversity effect regarding.
  • it is characterized in that an FEC encoder for only frequency channels used in MIMO transmission is provided, and data is exchanged between frequency channels after interleaving.
  • FIG. 23 is a diagram showing a configuration of receiving apparatus 600 according to Embodiment 3 of the present invention.
  • the receiving device 600 in FIG. 23 corresponds to the transmitting device 500 in FIG. 19 and reflects the function of the transmitting device 500.
  • the same components as in the conventional receiving apparatus and the receiving apparatus in the first and second embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the receiver 600 of FIG. 23 has a configuration in which the P / S converter 435 is replaced with a P / S converter 635 as compared with the receiver 400 in the second embodiment shown in FIG. Furthermore, the inter-frequency channel reverse exchange unit 637 is added.
  • the inter-frequency channel reverse exchange unit 637 performs data exchange reverse to that of the inter-frequency channel exchange unit 591 shown in FIG.
  • the vector estimated value of the FEC block FB-2N of each frame output from 432B is multiplexed in units of FEC block and output.
  • the other operation is the same as that of receiving apparatus 400 in the second embodiment shown in FIG.
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1, Tx-2) A receiver for transmitting signals from the other half, and receiving the signals transmitted from the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B) , A receiving method, and a program can be provided.
  • the P / S conversion unit 635 is characterized in that input data is multiplexed and output in units of FEC blocks.
  • components other than the tuner units 205A and 205B may be included in the receiving device 600 of FIG. 23 to form an integrated circuit 640.
  • the MIMO-PLP processing unit 531 shown in FIG. 20 may be replaced with the MIMO-PLP processing unit 532 shown in FIG.
  • the MIMO-PLP processor 532 shown in FIG. 24 compares the FEC encoder 2072B, the mapping unit 2073B, and the MIMO encoder 376B with the FEC encoder 572B.
  • the configuration is such that the mapping unit 373B and the MIMO coding unit 377B are replaced.
  • two interleaving units 2074-3 and 2074-4 are replaced with interleaving units 174-3 and 174-4, respectively.
  • the FEC coding unit 572B may perform LDPC coding of a pattern different from that of the FEC coding unit 2072A.
  • a different pattern includes a parity check matrix used for encoding, it is not limited thereto, and for example, a different coding rate may be used.
  • the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • mapping section 373 B maps MIMO encoding section 377 B, and interleaving sections 174-3 and 174-4 are the same as those in FIG.
  • the other operations are the same as in the MIMO-PLP processing unit 531 shown in FIG.
  • different LDPC encoding patterns for two frequency channels CH-A, CH-B
  • different mapping patterns different fixed precoding matrices F_A and F_B
  • phase change matrix Differentifying the phase change patterns of X_A (k) and X_B (k) and changing the interleaving reordering pattern may all be applied simultaneously, or any two or three or four simultaneously It may apply or any one of them may apply.
  • the L1 information processing unit 541 illustrated in FIG. 22 may be replaced with the L1 information processing unit 542 illustrated in FIG.
  • the L1 information processing unit 542 shown in FIG. 25 is compared with the L1 information processing unit 541 shown in FIG. 22 with the FEC encoding unit 2082B, the mapping unit 2083B and the MIMO encoding unit 376B respectively, the FEC encoding unit 582B and the mapping unit
  • This is a configuration in which 383 B and MIMO encoding unit 377 B are replaced.
  • the FEC encoding unit 582B may perform LDPC encoding of a pattern different from that of the FEC encoding unit 2082A in the same manner as the FEC encoding unit 572B in FIG.
  • the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • different LDPC encoding patterns for two frequency channels CH-A, CH-B
  • different mapping patterns different fixed precoding matrices F_A and F_B
  • FIG. 26 shows the configuration of the reception apparatus 650 when the MIMO-PLP processing unit 532 shown in FIG. 24 and the L1 information processing unit 542 shown in FIG. 25 are applied.
  • the receiving apparatus 650 shown in FIG. 26 is different from the receiving apparatus 600 shown in FIG. 23 in the PLP deinterleaving section 221B, the MIMO demapping section 432B, and the FEC decoding section 233, respectively.
  • the configuration is such that the mapping unit 434 B and the FEC decoding unit 633 are replaced.
  • the operations of the PLP deinterleave unit 222B and the MIMO demapping unit 434B in FIG. 26 are the same as the operations in FIG.
  • LDPC decoding is performed on the FEC block FB- (2N-1) of each frame to be output using different parity check polynomials. Other operations are similar to those of the receiving device 600 shown in FIG.
  • components other than the tuner units 205A and 205B may be included in the receiving device 650 of FIG. 26 to form an integrated circuit 641.
  • FIG. 27 is a diagram showing the configuration of transmitting apparatus 700 according to Embodiment 4 of the present invention.
  • the same components as in the conventional transmission apparatus and the transmission apparatus in the first to third embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the transmitting apparatus 700 of FIG. 27 has a configuration in which the MIMO-PLP processing unit 531 is replaced with a MIMO-PLP processing unit 731 as compared to the transmitting apparatus 500 in the third embodiment shown in FIG.
  • FIG. 28 is a diagram showing the configuration of the MIMO-PLP processing unit 731. As shown in FIG. Compared with the MIMO-PLP processing unit 531 in the third embodiment shown in FIG. 20, the arrangement of the frequency channel interchanging unit 591 is changed from the latter stage of the interleaving unit 2074 to the former stage.
  • frequency channel interchanging portion 591 performs the same operation as in the third embodiment.
  • the MIMO coding data output from MIMO coding section 376 is input, operates according to the configuration shown in FIG. 21, and is output to interleaving section 2074.
  • the other operation is the same as that of the MIMO-PLP processing unit 531 in the third embodiment shown in FIG.
  • half of the mapping data (cell) in the FEC block is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of one frequency channel (CH-A).
  • the remaining half component is transmitted from each of two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1 and Tx-2), and the remaining half component is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • the present invention can provide a transmitting apparatus, a transmitting method, and a program that can fully exhibit the frequency diversity effect regarding.
  • FEC coding units for only frequency channels used for MIMO transmission are provided, and data switching between frequency channels is performed after MIMO coding.
  • FIG. 29 shows a configuration of receiving apparatus 800 according to Embodiment 4 of the present invention.
  • the receiving device 800 in FIG. 29 corresponds to the transmitting device 700 in FIG. 27 and reflects the function of the transmitting device 700.
  • the same components as in the conventional receiving apparatus and the receiving apparatus in the first to third embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the arrangement of the inter-frequency channel reverse rearrangement unit 637 is changed from the former stage of the PLP deinterleave unit 221 to the former stage of the MIMO demapping unit 432 as compared with the reception apparatus 600 in the third embodiment shown in FIG. Configuration.
  • the inter-frequency-channel reverse exchange unit 637 performs the same operation as that of the third embodiment, and performs reverse data exchange with the inter-frequency-channel exchange unit 591 shown in FIG.
  • the other operation is the same as that of receiving apparatus 600 in the third embodiment shown in FIG.
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1, Tx-2) A receiver for transmitting signals from the other half, and receiving the signals transmitted from the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B) , A receiving method, and a program can be provided.
  • the P / S conversion unit 635 is characterized in that input data is multiplexed and output in units of FEC blocks.
  • components other than the tuner units 205A and 205B may be included in the receiving device 800 of FIG.
  • the MIMO-PLP processing unit 731 shown in FIG. 28 may be replaced with the MIMO-PLP processing unit 732 shown in FIG.
  • the MIMO-PLP processing unit 732 shown in FIG. 30 compares the FEC encoding unit 2072B, the mapping unit 2073B and the MIMO encoding unit 376B with the FEC encoding unit 572B and The configuration is such that the mapping unit 373B and the MIMO coding unit 377B are replaced.
  • two interleaving units 2074-3 and 2074-4 are replaced with interleaving units 174-3 and 174-4, respectively.
  • the operations of the FEC encoding unit 572B, the mapping unit 373B, the MIMO encoding unit 377B, and the interleaving units 174-3 and 174-4 are the same as the operations in FIG.
  • the other operations are similar to those of the MIMO-PLP processing unit 731 shown in FIG.
  • the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • different LDPC encoding patterns for two frequency channels CH-A, CH-B
  • different mapping patterns different fixed precoding matrices F_A and F_B
  • phase change matrix Differentifying the phase change patterns of X_A (k) and X_B (k) and changing the interleaving reordering pattern may all be applied simultaneously, or any two or three or four simultaneously It may apply or any one of them may apply.
  • FIG. 31 shows the configuration of the receiving apparatus 850 when the MIMO-PLP processing unit 732 shown in FIG. 30 described above is applied.
  • the receiving apparatus 850 shown in FIG. 31 is different from the receiving apparatus 800 shown in FIG. 29 in the PLP deinterleaving section 221B, the MIMO demapping section 432B, and the FEC decoding section 233, respectively.
  • the configuration is such that the mapping unit 434 B and the FEC decoding unit 633 are replaced.
  • the operations of the PLP de-interleaving unit 222B, the MIMO demapping unit 434B, and the FEC decoding unit 633 in FIG. 31 are the same as the operations in FIG. The other operations are similar to those of the receiving device 800 shown in FIG.
  • components other than the tuner units 205A and 205B may be included in the receiving device 850 of FIG. 31 to form an integrated circuit 841.
  • FIG. 32 is a diagram showing the configuration of transmitting apparatus 900 according to Embodiment 5 of the present invention.
  • the same components as in the conventional transmission apparatus and the transmission apparatus in the first to fourth embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the transmitting apparatus 900 in FIG. 32 is different from the transmitting apparatus 100 in the first embodiment shown in FIG. 1 in the MIMO-PLP processing unit 131 and the L1 information processing unit 141 as the MIMO-PLP processing unit 931 and the L1 information processing unit 941. Each configuration is replaced.
  • FIG. 33 is a diagram showing a configuration of the MIMO-PLP processing unit 931. Compared with MIMO-PLP processing unit 731 in the fourth embodiment shown in FIG. 28, frequency channel interchanging unit 591 at the previous stage of interleaving unit 2074 is replaced with inter-frequency channel interchanging unit 991 at the previous stage of MIMO coding unit 376. is there.
  • FIG. 34 is a diagram showing a configuration of inter-frequency channel interchanging portion 991.
  • the frequency channel interchanging unit 991 is configured to include two selectors 595.
  • the frequency channel interchanging unit 991 generates a selection signal and inputs it to the two selectors 595. When the selection signal is "0", the selector selects and outputs the data input to "0". Conversely, when the selection signal is "1", the selector selects and outputs the data input to "1".
  • the generated selection signal is “0”, “0”, “1”, “1” “0”, “0”, “1”, “1”,.
  • the output data series of the inter-frequency channel interchanging unit 991 is shown below.
  • N cells are the number of cells in the FEC block, and N blocks is the number of FEC blocks in the frame.
  • the selection signal is an alternating number of “0”, “0”, “1”, “1” “0”, “0”, “1”, “1”, ... in 2 cell units from the top of each FEC block The number is not limited, and preferably, the numbers of “0” and “1” are equally close.
  • mapping data (cells) of FB- (2N-1) and FB-2N are alternately input in 2 cell units in both of MIMO coding sections 376A and 376B.
  • the MIMO coding units 376A and 376B both perform precoding in units of 2 cells and output one cell to each of two transmission antennas (Tx-1, Tx-2), as in the operation in FIG.
  • FIG. 35 is a diagram showing the configuration of the L1 information processing unit 941.
  • FIG. Compared with L1 information processor 541 in the third embodiment shown in FIG. 22, configuration in which inter-frequency channel interleaver 591 in the latter stage of MIMO coding unit 376 is replaced with inter-frequency channel interleaver 991 in the former stage of MIMO coding unit 376. It is.
  • the operation of the inter-frequency channel interchanging unit 991 is the same as the operation in FIG.
  • the mapping data (cell) output from mapping section 2083 is input and operates according to the configuration shown in FIG. 34, and is output to MIMO coding section 376.
  • half of the mapping data (cell) in the FEC block is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of one frequency channel (CH-A).
  • the remaining half component is transmitted from each of two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1 and Tx-2), and the remaining half component is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • the present invention can provide a transmitting apparatus, a transmitting method, and a program that can fully exhibit the frequency diversity effect regarding.
  • FEC coding units for only frequency channels used in MIMO transmission are provided, and data are exchanged between frequency channels after mapping.
  • FIG. 36 is a diagram showing a configuration of receiving apparatus 1000 according to Embodiment 5 of the present invention.
  • the receiving device 1000 of FIG. 36 corresponds to the transmitting device 900 of FIG. 32, and reflects the function of the transmitting device 900.
  • the same components as in the conventional reception apparatus and the reception apparatus in the first to fourth embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the receiver 1000 of FIG. 36 is different from the receiver 800 of the fourth embodiment shown in FIG. 29 in that the inter-frequency channel reverse exchange unit 637 in the former stage of the MIMO demapping unit 432 is the inter-frequency channel in the former stage of the P / S converter 635. This configuration is replaced by the reverse exchange unit 1037.
  • the inter-frequency channel reverse exchange unit 1037 performs reverse data exchange with the inter-frequency channel exchange unit 991 shown in FIG.
  • the other operation is the same as that of receiving apparatus 800 in the fourth embodiment shown in FIG.
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1, Tx-2) A receiver for transmitting signals from the other half, and receiving the signals transmitted from the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B) , A receiving method, and a program can be provided.
  • the P / S conversion unit 635 is characterized in that input data is multiplexed and output in units of FEC blocks.
  • components other than the tuner units 205A and 205B may be included in the receiving device 1000 of FIG. 36 to form an integrated circuit 1040.
  • the MIMO-PLP processing unit 931 shown in FIG. 33 may be replaced with the MIMO-PLP processing unit 932 shown in FIG.
  • the MIMO-PLP processor 932 shown in FIG. 37 compares the FEC encoder 2072B, the mapping unit 2073B and the MIMO encoder 376B with the FEC encoder 572B and The configuration is such that the mapping unit 373B and the MIMO coding unit 377B are replaced.
  • two interleaving units 2074-3 and 2074-4 are replaced with interleaving units 174-3 and 174-4, respectively.
  • the operations of the FEC encoding unit 572B, the mapping unit 373B, the MIMO encoding unit 377B, and the interleaving units 174-3 and 174-4 are the same as the operations in FIG.
  • the other operations are similar to those of the MIMO-PLP processing unit 931 shown in FIG.
  • the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • different LDPC encoding patterns for two frequency channels CH-A, CH-B
  • different mapping patterns different fixed precoding matrices F_A and F_B
  • the L1 information processing unit 941 shown in FIG. 35 may be replaced with the L1 information processing unit 942 shown in FIG.
  • the L1 information processing unit 942 shown in FIG. 38 compares the FEC encoding unit 2082B, the mapping unit 2083B and the MIMO encoding unit 376B with the FEC encoding unit 582B and the mapping unit as compared with the L1 information processing unit 941 shown in FIG. This is a configuration in which 383 B and MIMO encoding unit 377 B are replaced.
  • the operations of the FEC encoding unit 582B, the mapping unit 383B, and the MIMO encoding unit 377B are the same as the operations in FIG.
  • the other operation is the same as that of the L1 information processing unit 941 shown in FIG.
  • the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • different LDPC encoding patterns for two frequency channels CH-A, CH-B
  • different mapping patterns different fixed precoding matrices F_A and F_B
  • FIG. 39 shows the configuration of the reception device 1050 when the MIMO-PLP processing unit 932 shown in FIG. 37 and the L1 information processing unit 942 shown in FIG. 38 are applied.
  • the receiving apparatus 1050 shown in FIG. 39 is different from the receiving apparatus 1000 shown in FIG. 36 in the PLP deinterleaving section 221B, the MIMO demapping section 432B, and the FEC decoding section 233, respectively.
  • the configuration is such that the mapping unit 434 B and the FEC decoding unit 633 are replaced.
  • the operations of the PLP deinterleaving unit 222B, the MIMO demapping unit 434B, and the FEC decoding unit 633 are the same as the operations in FIG. The other operations are similar to those of the receiving device 1000 shown in FIG.
  • MIMO-PLP processing unit 932 shown in FIG. 37 and L1 information processing unit 942 shown in FIG. 38 cells of different patterns for frequency channel A (CH-A) and frequency channel B (CH-B) as mapping units.
  • CH-A frequency channel A
  • CH-B frequency channel B
  • each of the MIMO demapping units 432A and 434B performs processing in consideration of this.
  • components other than the tuner units 205A and 205B may be included in the receiving device 1050 of FIG. 39 to form an integrated circuit 1041.
  • FIG. 40 is a diagram showing the configuration of transmitting apparatus 1100 according to Embodiment 6 of the present invention.
  • the same components of the conventional transmission apparatus and the transmission apparatus of the first to fifth embodiments use the same reference numerals, and the description thereof will be omitted.
  • the transmitting apparatus 1100 in FIG. 40 is different from the transmitting apparatus 100 in the first embodiment shown in FIG. 1 in that the MIMO-PLP processing unit 131 and the L1 information processing unit 141 are replaced by the MIMO-PLP processing unit 1131 and the L1 information processing unit 1141. Each configuration is replaced.
  • FIG. 41 is a diagram showing a configuration of the MIMO-PLP processing unit 1131. Compared with the MIMO-PLP processing unit 931 in the fifth embodiment shown in FIG. 33, the configuration in which the inter-frequency channel interchanging unit 991 in the previous stage of the MIMO coding unit 376 is replaced with the inter-frequency channel interchanging unit 1191 in the previous stage of the mapping unit 2073. is there.
  • FIG. 42 is a diagram showing the configuration of the frequency channel interchanging unit 1191. As shown in FIG.
  • the frequency channel interchanging unit 1191 is configured to include two selectors 1195.
  • the frequency channel interchanging unit 1191 generates a selection signal and inputs it to the two selectors 1195.
  • the selector selects data (FEC frame output from the FEC encoder 2072) input to “0” and outputs the data to the mapping unit 2073.
  • the selector selects and outputs the data input to "1".
  • mapping unit 2073 in the latter stage of the frequency channel switching unit 1191 Is similar to that of the MIMO-PLP processing unit 931 in the fifth embodiment.
  • mapping data (cells) of FB- (2N-1) and FB-2N are alternately input in 2 cell units in both of MIMO coding sections 376A and 376B.
  • MIMO-PLP processing unit 1131 shown in FIG. 41 The other operations of MIMO-PLP processing unit 1131 shown in FIG. 41 are the same as those of MIMO-PLP processing unit 931 shown in FIG. As a result, half of the mapping data (cell) in the FEC block is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of one frequency channel (CH-A). The remaining half component is transmitted from each of two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • FIG. 43 is a diagram showing a configuration of the L1 information processing unit 1141.
  • inter-frequency channel interchanging unit 991 in the previous stage of MIMO coding unit 376 is replaced with inter-frequency channel interchanging unit 1191 in the previous stage of mapping unit 2083.
  • the operation of the frequency channel interchanging unit 1191 is the same as the operation in FIG. However, it operates with the configuration shown in FIG. 42 with the FEC frame output from FEC encoding 2082 as input, and outputs it to mapping section 2083.
  • half of the mapping data (cell) in the FEC block is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of one frequency channel (CH-A).
  • the remaining half component is transmitted from each of two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • half of the mapping data (cell) in the FEC block is the two transmit antennas (Tx ⁇ of one frequency channel (CH-A)). 1 and Tx-2), and the remaining half component is transmitted from each of the two transmit antennas (Tx-1, Tx-2) of the other frequency channel (CH-B).
  • the present invention can provide a transmitting apparatus, a transmitting method, and a program that can fully exhibit the frequency diversity effect regarding.
  • FEC coding units for only frequency channels used in MIMO transmission are provided to exchange data between frequency channels before mapping.
  • the receiving apparatus in the sixth embodiment of the present invention can use the same configuration as the receiving apparatus 1000 in the fifth embodiment shown in FIG.
  • the MIMO-PLP processing unit 1131 shown in FIG. 41 may be replaced with the MIMO-PLP processing unit 1132 shown in FIG.
  • the MIMO-PLP processor 1132 shown in FIG. 44 compares the FEC encoder 2072B, the mapping unit 2073B and the MIMO encoder 376B with the FEC encoder 572B and The configuration is such that the mapping unit 373B and the MIMO coding unit 377B are replaced.
  • two interleaving units 2074-3 and 2074-4 are replaced with interleaving units 174-3 and 174-4, respectively.
  • the operations of the FEC encoding unit 572B, the mapping unit 373B, the MIMO encoding unit 377B, and the interleaving units 174-3 and 174-4 are the same as the operations in FIG.
  • the other operations are similar to those of the MIMO-PLP processing unit 1131 shown in FIG.
  • the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • different LDPC encoding patterns for two frequency channels CH-A, CH-B
  • different mapping patterns different fixed precoding matrices F_A and F_B
  • the L1 information processing unit 1141 shown in FIG. 43 may be replaced with the L1 information processing unit 1142 shown in FIG.
  • the L1 information processing unit 1142 shown in FIG. 45 compares the FEC encoding unit 2082B, the mapping unit 2083B and the MIMO encoding unit 376B with the FEC encoding unit 582B and the mapping unit. This is a configuration in which 383 B and MIMO encoding unit 377 B are replaced.
  • the operations of the FEC encoding unit 582B, the mapping unit 383B, and the MIMO encoding unit 377B are the same as the operations in FIG.
  • the other operations are similar to those of the L1 information processing unit 1141 shown in FIG.
  • the correlation between the channel characteristics between the two frequency channels (CH-A and CH-B) can be reduced to improve the reception quality of data in the receiver.
  • different LDPC encoding patterns for two frequency channels CH-A, CH-B
  • different mapping patterns different fixed precoding matrices F_A and F_B
  • the receiving apparatus for the case where MIMO-PLP processing section 1132 shown in FIG. 44 and L1 information processing section 1142 shown in FIG. 45 is applied has the same configuration as receiving apparatus 1050 in the fifth embodiment shown in FIG. Can.
  • FIG. 46 is a diagram showing the configuration of transmitting apparatus 1300 according to Embodiment 7 of the present invention.
  • the same components of the conventional transmitter and the transmitters of Embodiments 1 to 6 use the same reference numerals, and the description thereof will be omitted.
  • a TS (Transport Stream) generation unit 1210 generates two video B (Base layer) and video E (Enhancement layer) as video components using SVC (Scalable Video Coding).
  • SVC Scalable Video Coding
  • the configuration of the transmitting device 1300 of FIG. 46 is such that the L1 information processing unit 341 and the frame configuration unit 151 are replaced with an L1 information processing unit 1341 and a frame configuration unit 1351, respectively, compared to the transmitting device 300 in the second embodiment shown in FIG. It is. Furthermore, two PLP assignment units 1321 and two MIMO-PLP processing units 2031 are added.
  • FIG. 47 is a diagram showing a configuration of the TS generation unit 1210.
  • the TS generation unit 1210 in FIG. 47 shows, as an example, a case where one program is generated in the TS, and includes one audio coding unit 1221 and one video coding unit 1222.
  • the TS generation unit 1210 includes a packetization unit 1223 for each service component of audio / video B / video E in each program.
  • the TS generation unit 1210 includes a packetized stream multiplexing unit 1224 and an L2 (Layer-2) information processing unit 1225.
  • L2 Layer-2
  • the speech encoding unit 1221 performs source coding of speech.
  • the video encoding unit 1222 performs source encoding of video using SVC, and generates two components of video B and video E.
  • source coding H.264. H.264 and HEVC (H. 265).
  • the packetization unit 1223 packetizes the output of the audio coding unit 1221 or the video coding unit 1222.
  • the L2 information processing unit 1225 generates L2 information such as PSI (Program-Specific Information) or SI (System Information).
  • the packetized stream multiplexing unit 1224 multiplexes the output of the packetization unit 1223 and the output of the L2 information processing unit 1225 to generate a TS, and outputs the TS to the transmission apparatus 1300 shown in FIG.
  • PLP allocation section 1321 allocates PLP to each service component of audio / video B / video E included in each program of TS output from TS generation section 1210 and L2 information. .
  • allocation is as follows.
  • PLP-1 TS-1 program-1 audio, video B, L2 information
  • PLP-2 TS-1 program-1 video
  • PLP-3 TS-2 program-1 audio, video B, L2 information
  • PLP-4 TS-2 program-1 video E
  • the voice and video B, L2 information packets to the MIMO-PLP processing unit 2031 are actually multiplexed and become one input.
  • the operation of the MIMO-PLP processing unit 2031 is the same as the operation in FIG.
  • the operation of the MIMO-PLP processing unit 331 is the same as the operation in FIG.
  • FIG. 48 is a diagram showing a configuration of the L1 information processing unit 1341.
  • the L1 information processing unit 1341 has a configuration in which the L1 information generation unit 2081 is replaced with an L1 information generation unit 1381 as compared with the conventional L1 information processing unit 2041 shown in FIG. Furthermore, an FEC encoder 2082, a mapping unit 2083 and a MIMO encoder 2076 are provided for each frequency channel.
  • the L1 information generation unit 1381 generates transmission parameters for two frequency channels (CH-A, CH-B).
  • the operations of FEC encoding unit 2082, mapping unit 2083 and MIMO encoding unit 2076 are the same as the operations in FIG.
  • frame configuration section 1351 is configured such that PLP-1 for one frequency channel (CH-A) for two transmit antennas (Tx-1 and Tx-2) output from MIMO-PLP processing section 2031-1.
  • Two transmission antennas (Tx-1, Tx-2) respectively output from the L1 information processing unit 1341 Using the mapping data of the L1 frequency information channels (CH-A, CH-B), it generates and outputs a transmission frame.
  • PLP PLP-2 and 4 of MIMO transmission using two frequency channels (CH-A, CH-B), and PLP (PLP-1) of MIMO transmission using frequency channel (CH-A) and PLP (PLP-3) of MIMO transmission using the other frequency channel (CH-B) are mixed in the transmission frame It is that you are.
  • the operations of the OFDM signal generation unit 2061, the D / A conversion unit 2091, the frequency conversion unit 2096, and the frequency conversion unit 196 are the same as the operations in FIG.
  • the PLP of the base information can be received by the MIMO receiving apparatus that supports only a single base band,
  • the basic information portion of the program for example, the standard image quality can enjoy the program.
  • the MIMO-PLP processing units 131 and 132 shown in FIG. 45 are shown in FIG. 2, 5, 10, 14, 15, 20, 24, 28, 30, 33, 37, 41 and 44, respectively. , 332, 333, 334, 531, 532, 531, 732, 731, 931, 932, 1131, and 1132.
  • FIG. 49 is a diagram showing a configuration of receiving apparatus 1400 according to Embodiment 7 of the present invention.
  • the receiving device 1400 of FIG. 49 corresponds to the transmitting device 1300 of FIG. 46, and reflects the function of the transmitting device 1300.
  • the same components as in the conventional receiving apparatus and the receiving apparatus in the first to sixth embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the reception apparatus 1400 of FIG. 49 has a configuration in which the P / S conversion unit 435 is replaced with a P / S conversion unit 1435 as compared with the reception apparatus 400 in the second embodiment shown in FIG.
  • P / S conversion section 1435 multiplexes the outputs from MIMO demapping sections 432A and 432B in units of FEC blocks for L1 information, and outputs the result to FEC decoding section 233 in the subsequent stage. More specifically, P / S conversion section 1435 is shown in FIG. 13 for PLP (PLP-2 and 4 in FIG. 46) of MIMO transmission using two frequency channels (CH-A, CH-B). The same operation as the P / S conversion unit 435 is performed. P / S conversion unit 1435 selects an output from MIMO demapping unit 432A for PLP of MIMO transmission using one frequency channel (CH-A) (PLP-1 in FIG. 46), It is output to the FEC decoding unit 233 in the latter stage.
  • CH-A frequency channel
  • P / S conversion unit 1435 selects the output from MIMO demapping unit 432B for PLP (PLP-3 in FIG. 46) of MIMO transmission using the other frequency channel (CH-B), It is output to the FEC decoding unit 233 in the latter stage.
  • the other operation is the same as that of receiving apparatus 400 in the second embodiment shown in FIG.
  • the present invention can provide a receiving apparatus, a receiving method, and a program for receiving the received signal.
  • it can be received including the extended information portion, and the program can be enjoyed, for example, with high definition.
  • components other than the tuner units 205A and 205B may be included in the receiving device 1400 of FIG.
  • the receiver 1450 may be configured. Compared with the receiving apparatus 1400 shown in FIG. 49, the receiving apparatus 1450 in FIG. 50 has a tuner unit 205B, an A / D converting unit 208B, a demodulating unit 211B, a frequency deinterleaving / L1 information deinterleaving unit 215B, and a PLP deinterleaving unit. A configuration in which the 221B, the selection unit 231B, the MIMO demapping unit 432B, and the P / S conversion unit 1435 are deleted.
  • a receiver 1450 is a MIMO receiver compatible with only a single base band.
  • the two tuner units 205A both selectively receive the signal of one frequency channel (CH-A) or the other frequency channel (CH-B), and down-convert the signal into a predetermined band.
  • the operations of A / D conversion unit 208A, demodulation unit 211A, frequency deinterleaving / L1 information deinterleaving unit 215A, PLP deinterleaving unit 221A, selecting unit 231A, and MIMO demapping unit 432A are the same as the operations in FIG. is there.
  • the FEC decoder 233 performs LDPC decoding and BCH decoding on the vector estimated value of each FEC block output from the MIMO demapping unit 432A, and outputs a decoding result.
  • the present invention can provide a receiving apparatus, a receiving method, and a program for receiving the received signal.
  • the PLP of the basic information can be received, and the basic information portion of the program, for example, the standard image quality can enjoy the program.
  • the basic information portion of the program for example, the standard image quality can enjoy the program.
  • components other than the tuner unit 205A may be included in the receiving device 1450 in FIG. 50 to form an integrated circuit 1441.
  • FIG. 51 is a diagram showing the configuration of transmitting apparatus 150 according to Embodiment 8 of the present invention.
  • the same components as in the conventional transmission apparatus and the transmission apparatus in the first to seventh embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the eighth embodiment when two frequency channels (CH-A, CH-B) are adjacent to each other, the two frequency channels are collectively processed in the processing after the frame configuration unit.
  • Transmitting apparatus 150 of FIG. 51 has four OFDM signal generating sections 2061, four D / A converting sections 2091, two frequency converting sections 2096, and four transmitting sections 1501 compared to transmitting apparatus 100 in the first embodiment shown in FIG.
  • 196 is replaced by two OFDM signal generation units 161, two D / A conversion units 191, and two frequency conversion units 198.
  • Tx-1 OFDM signal generator 161-1 for adding a pilot signal, an IFFT, inserting a GI, inserting a P1 symbol and an aP1 symbol collectively for two frequency channels (CH-A, CH-B), and a digital base Output band transmission signal.
  • the D / A conversion unit 191-1 for Tx-1 performs D / A conversion on the digital baseband transmission signal for Tx-1 output from the OFDM signal generation unit 161-1 and outputs an analog baseband transmission signal.
  • the frequency converter 196-1 for Tx-1 performs frequency conversion on the frequency channels A and B for the analog baseband transmission signal output from the D / A converter 191-1 and does not show the analog RF transmission signal. Output from the transmitting antenna. This transmits analog RF transmission signals on the two Tx-1 frequency channels (CH-A, CH-B).
  • an OFDM signal generation unit 161-2 for Tx-2 is used.
  • the operations of the D / A conversion unit 191-2 and the frequency conversion unit 196-2 are the same as those for Tx-1. This transmits analog RF transmission signals on the two Tx-2 frequency channels (CH-A and CH-B).
  • the other operation is the same as that of transmitting apparatus 100 in the first embodiment shown in FIG.
  • FIG. 52 is a diagram showing a configuration of receiving apparatus 270 in the eighth embodiment of the present invention.
  • the receiver 270 of FIG. 52 corresponds to the transmitter 150 of FIG. 51 and the transmitter 100 of FIG. 1 when two frequency channels (CH-A, CH-B) are adjacent, and the transmitters 150 and 100 It reflects the function of The same components as in the conventional receiving apparatus and the receiving apparatus in the first to seventh embodiments use the same reference numerals, and descriptions thereof will be omitted.
  • the receiving device 270 in FIG. 52 has four tuners 205, four A / D converters 208 and four demodulators 211 as two tuners respectively.
  • the configuration is such that the unit 206, two A / D conversion units 209, and two demodulation units 212 are replaced. Furthermore, two S / P conversion units 214 are added.
  • the tuner unit 206-1 for one receiving antenna selects and receives signals of two frequency channels (CH-A, CH-B) collectively and predetermined Downconvert to the band of The Rx-1 A / D conversion unit 209-1 A / D converts the signal output from the Rx-1 tuner unit 206-1 and outputs a digital reception signal.
  • the demodulation unit 212-1 performs OFDM demodulation, and outputs cell data of I ⁇ Q coordinates and a transmission path estimated value. As a result, cell data of I ⁇ Q coordinates and channel estimation values regarding the two frequency channels (CH-A, CH-B) of Rx-1 are output.
  • the S / P converter 214-1 In response to the output of the demodulator 212-1, the S / P converter 214-1 outputs data on one frequency channel (CH-A) to the frequency deinterleaver / L1 information deinterleaver 215A-1, and the other The data on the frequency channel (CH-B) is output to the frequency deinterleaving / L1 information deinterleaving unit 215B-1.
  • the operations of the tuner unit 206-2 for the other reception antenna (Rx-2), the A / D conversion unit 209-2, and the two demodulation units 212-2 are the same as the operation for Rx-1.
  • cell data of I ⁇ Q coordinates and channel estimation values regarding the two frequency channels (CH-A, CH-B) of Rx-2 are output.
  • the S / P converter 214-2 outputs the data on one frequency channel (CH-A) to the frequency deinterleaver / L1 information deinterleaver 215A-2 in response to the output of the demodulator 212-2 and the other
  • the data on the frequency channel (CH-B) is output to the frequency deinterleaving / L1 information deinterleaving unit 215B-2.
  • the other operation is the same as that of receiving apparatus 200 in the first embodiment shown in FIG.
  • the tuner unit, the A / D conversion unit, and the demodulation unit collectively process two frequency channels (CH-A and CH-B) for each reception antenna.
  • components other than the tuner units 206-1 and 206-2 may be included as the integrated circuit 242 in the reception device 270 of FIG.
  • the present invention is not limited to the contents described in the above embodiment, but can be practiced in any form for achieving the object of the present invention and the objects related to or associated with it, for example, the following may be possible. .
  • the number of transmitting and receiving antennas is two in all cases.
  • the number of transmitting and receiving antennas is not limited to two, and may be three or more. Also, the number of transmitting and receiving antennas may be different.
  • the number of frequency channels is two. However, the number is not limited to two and may be three or more.
  • each encoded block when the number of basic bands is three or more, each encoded block may be assigned to all of the plurality of basic bands or two or more of the plurality of basic bands. A process of distributing included data components may be performed.
  • different polarizations may be applied to two transmission antennas (Tx-1, Tx-2).
  • different polarizations include V (Vertical) polarization and H (Horizontal) polarization. This can further enhance the diversity effect.
  • the polarizations assigned to transmit antenna 1 (Tx-1) and transmit antenna 2 (Tx-2) may be the same or different for two frequency channels (CH-A, CH-B). It is also good.
  • the phase change is performed on the transmitting antenna 2 (Tx-2).
  • the present invention is not limited to this, and the phase change may be performed on the transmitting antenna 1 (Tx-1) Good.
  • transmit antennas that perform phase change for two frequency channels (CH-A and CH-B) are different, such as transmit antenna 1 (Tx-1) and transmit antenna 2 (Tx-2), Good.
  • the number of TSs is two, it is not limited to this.
  • the number of programs of TS-1 and 2 is set to 1, it is not limited to this.
  • the service components are audio and video
  • the present invention is not limited to this.
  • Other examples include data components.
  • the seventh embodiment is configured to perform scalable coding on video, the present invention is not limited to this, and scalable coding may be performed on audio and data components.
  • the video B and the video E are generated by SVC.
  • MVC_B Base view
  • MVC_D Dependent view
  • MVC Multi-view Video Coding
  • voice, video B, and L2 information is MIMO transmission using a single base band and video E is MIMO transmission using a plurality of base bands
  • the present invention is not limited thereto.
  • MISO Multiple Input Single Output
  • MIMO transmission of video B using a single base band MIMO transmission of video E using a plurality of base bands
  • SISO Single Input single Output
  • MISO transmission and SISO transmission may be further mixed.
  • the above first to eighth embodiments may relate to an implementation using hardware and software.
  • the above embodiments may be implemented or performed using a computing device (processor).
  • the computing device or processor may be, for example, a main processor / general purpose processor (digital purpose processor), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), other programmable logic devices, etc. May be there.
  • the above embodiments may be implemented or realized by combining these devices.
  • the above-described first to eighth embodiments may be realized by the mechanism of a software module executed by a processor or directly by hardware. Also, a combination of software modules and hardware implementation is possible.
  • the software modules may be stored on various types of computer readable storage media such as RAM, EPROM, EEPROM, flash memory, registers, hard disk, CD-ROM, DVD, etc.
  • FIG. 75 is a diagram showing a configuration of a transmitting device 5000 in the ISDB-T system.
  • the transmitting apparatus 5000 includes a TS (Transport Stream) remultiplexing unit 5011, an RS (Reed-Solomon) encoding unit 5021, a hierarchy division unit 5031, hierarchy processing units 5041-A to C, a hierarchy combination unit 5051, a time interleaving unit 5061, Frequency interleaving unit 5071, pilot signal generation unit 5081, transmission multiplexing configuration control (TMCC) / auxiliary channel (AC) signal generation unit 5091, frame configuration unit 5101, OFDM signal generation unit 5111, D / A conversion unit 5121, frequency conversion unit 5131 is provided.
  • TS Transport Stream
  • RS Random-Solomon
  • the operation of transmitting apparatus 5000 will be described below.
  • the plurality of TSs output from the MPEG-2 multiplexing unit (not shown) are input to the TS re-multiplexing unit 5011 in order to arrange TS packets suitable for signal processing in units of data segments.
  • the TS re-multiplexing unit 5011 converts the signal into a burst signal of 188 bytes and a single TS using a clock that is four times faster than a Fast Fourier Transform (FFT) sample clock.
  • FFT Fast Fourier Transform
  • the RS encoding unit 5021 performs RS encoding, and adds 16-byte parity to information of 188 bytes.
  • the layer division unit 5031 performs layer division of up to three systems (layer A, layer B, and layer C) in accordance with specification of layer information when layer transmission is performed.
  • FIG. 76 shows the structure of the hierarchical processing unit 5041.
  • the hierarchical processing unit 5041 includes an energy spreading unit 5201, a byte interleaving unit 5211, a convolutional encoding unit 5221, a bit interleaving unit 5231, and a mapping unit 5241.
  • the hierarchical processing unit 5041 mainly performs digital data processing such as error correction coding and interleaving, and carrier modulation on the input hierarchical data. Error correction, interleaving length, and carrier modulation scheme are set independently in each layer.
  • the layer combining unit 5051 performs layer combination of data of up to three systems (layer A, layer B, and layer C) output from the layer processing units 5041-AC.
  • FIG. 77 is a diagram showing a configuration of frequency interleaving section 5071.
  • the frequency interleaving unit 5071 includes a segment dividing unit 5301, inter-segment interleaving units 5311-D and S, intra-segment carrier rotation units 5321-P and D and S, and intra-segment carrier randomizing units 5331-P and D and S.
  • the time interleaving unit 5061 performs convolutional interleaving in the segment on the output from the layer combining unit 5051 to effectively exert the error correction coding capability against electric field fluctuation and multipath interference in mobile reception.
  • An interleaving unit 5071 performs interleaving between and within the segments.
  • the segment division unit 5301 is a partial reception unit, a differential modulation unit (a segment whose carrier modulation is designated as DQPSK), a synchronous modulation unit (a carrier modulation is designated as QPSK, 16 QAM, or 64 QAM).
  • Data segment numbers 0 to 12 are assigned in the order of.
  • the data segments of each layer are sequentially arranged in numerical order, and from the layer including the small number of the data segment to layer A, layer B, layer C. Even if the layers are different, inter-segment interleaving is performed on data segments belonging to the same type of modulator.
  • the pilot signal generation unit 5081 generates a pilot signal for synchronous reproduction.
  • the TMCC / AC signal generation unit 5091 generates a TMCC signal, which is control information, and an AC signal, which is additional information, in order to support demodulation and decoding of the receiver for hierarchical transmission in which a plurality of transmission parameters are mixed.
  • the frame configuration unit 5101 uses the information data output from the frequency interleaving unit 5071, the pilot signal for synchronous reproduction output from the pilot signal generation unit 5081, and the TMCC signal output from the TMCC / AC signal generation unit 5091 according to the ISDB-T system. Configure the transmission frame of
  • FIG. 78 shows a segment configuration of the ISDB-T system, taking a synchronous modulation unit (QPSK, 16 QAM, 64 QAM) of mode 1 as an example.
  • a scattered pilot signal hereinafter referred to as an SP signal: Scattered Pilot signal
  • SP signal scattered Pilot signal
  • SP signals are repeatedly arranged in a cycle of 4 symbols, and are arranged shifted by 3 carriers for each symbol.
  • the SP signal thus arranged is modulated to binary according to a specific pattern determined by its carrier position and transmitted.
  • the carriers of the TMCC signal and the AC signal are randomly arranged in the frequency direction in order to reduce the influence of periodic dips in channel characteristics due to multipath.
  • an information transmission signal is modulated to QPSK, 16 QAM, 64 QAM, etc., and transmitted using carriers in which an SP signal, a TMCC signal, and an AC signal are not arranged.
  • the OFDM signal generation unit 5111 performs IFFT (Inverse FFT) and GI (Guard Interval) insertion on the transmission frame configuration of the ISDB-T system output from the frame configuration unit 5101, and the digital baseband of the ISDB-T system. Output the transmission signal.
  • the D / A conversion unit 5121 performs D / A conversion on the digital baseband transmission signal of ISDB-T system output from the OFDM signal generation unit 5111, and outputs an analog baseband transmission signal of ISDB-T system. .
  • the frequency converter 5131 performs frequency conversion of the ISDB-T analog baseband transmission signal output from the D / A converter 5121 to the frequency channel Y, and does not illustrate the ISDB-T analog RF transmission signal. Output from the transmit antenna (Tx-1).
  • Non-Patent Document 5 In fixed reception where the receiving antenna is on the roof, a line of Sight (LOS) environment, which is a line of sight, is a typical transmission path. In this case, there is a problem that the reception quality is degraded depending on the MIMO transmission method (Non-Patent Document 5).
  • LOS line of Sight
  • polarization MIMO transmission technology consisting of a plurality of antennas having different polarization directions (for example, V (vertical) polarization, H (horizontal) polarization) is being studied.
  • a transmitting apparatus assigns a plurality of different data signals provided in a broadcasting station to each of a plurality of transmitting antennas, and broadcasts in the same frequency or overlapping frequency bands. Transmit OFDM signal by wave.
  • the OFDM signal is transmitted through a plurality of systems of propagation paths, and the receiving apparatus receives the OFDM signals of the plurality of systems by a plurality of receiving antennas, and propagates from each of the plurality of systems of OFDM signals.
  • polarization MIMO transmission technology it is important to distribute data after error correction (FEC) coding to each polarization antenna to enhance polarization diversity effect.
  • FEC error correction
  • FEC error correction
  • it is important to facilitate the introduction of the new scheme by enabling the existing ISDB-T scheme and the new scheme using the polarization MIMO transmission technique to be mixed in the same frequency channel.
  • the inventions according to the ninth to twelfth embodiments described below are made to solve the above-mentioned problems, and a transmitting apparatus, a transmitting method, a receiving apparatus, a receiving method, an integrated circuit, using MIMO transmission technology. And to provide a program.
  • FIG. 57 is a diagram showing the configuration of transmitting apparatus 3000 according to Embodiment 9 of the present invention.
  • the same components as those of the conventional transmission apparatus are denoted by the same reference numerals, and the description thereof is omitted.
  • the transmitting apparatus 3000 shown in FIG. 57 is different from the conventional transmitting apparatus 5000 shown in FIG. 75 in hierarchical processing sections 5041 -A to C, pilot signal generating section 5081, TMCC / AC signal generating section 5091 and frame configuration section 5101.
  • the hierarchical processing units 3041 -A to C, the pilot signal generation unit 3081, the TMCC / AC signal generation unit 3091, and the frame configuration unit 3101 are replaced respectively.
  • a hierarchy combining unit 5051, a time interleaving unit 5061, a frequency interleaving unit 5071, an OFDM signal generation unit 5111, a D / A conversion unit 5121, a frequency conversion unit for each transmission antenna (Tx-1, Tx-2) 5131 is provided.
  • Tx-1 and Tx-2 use H polarization and V polarization, respectively, the present invention is not limited to this, and different polarizations may be combined.
  • FIG. 58 is a diagram showing the configuration of the hierarchical processing unit 3041.
  • this embodiment has a configuration in which a MISO (Multiple Input Single Output) encoding unit 3251, a MIMO encoding unit 3261 and a selector 3271 are added.
  • the MISO coding unit 3251 performs MISO coding on the output from the mapping unit 5241, and generates MISO coded data for two transmission antennas (Tx-1, Tx-2). Output.
  • Alamouti coding is mentioned as an example of MISO coding, but it is not limited to this.
  • zP_k is output data (MIMO encoded data) for the transmission antenna P
  • F is a fixed precoding matrix represented by equation (31).
  • wMN does not have to be all complex numbers, and real elements may be included.
  • precoding may be performed by multiplying the equation (30) by the phase change matrix X (k) which changes more regularly.
  • phase change matrix X (k) performs phase change of period 9 changing by 2 ⁇ / 9 radians on the MIMO encoded data sequence for the transmission antenna 2 (Tx-2). Therefore, by causing regular fluctuations in the MIMO transmission path, it is possible to obtain an effect that the reception quality of data in the receiver in the LOS (Line Of Sight) environment in which the direct wave is dominant can be improved.
  • this example of phase change is merely an example, and the period is not limited to nine. If the number of cycles increases, it may be possible to promote the improvement of the reception performance (more accurately, the error correction performance) of the receiving apparatus by that much (though it is not always better if the cycle is larger, Small values such as are likely to be better avoided.)
  • the configuration is shown in which the predetermined phase (in the above equation, each 2 ⁇ / 9 radian) is sequentially rotated. It is also possible to change the phase randomly instead of causing it to What is important in the regular change of the phase is that the phase of the modulation signal is regularly changed, and the degree of the phase to be changed is as uniform as possible, for example, - ⁇ radian to ⁇ radian However, it may be random although it is desirable to have a uniform distribution.
  • each element of the output vector z is expressed as in equations (34) to (35).
  • f1 and f2 represent functions. Therefore, in the polarization MIMO transmission technology, by transmitting the components of each mapping data from all the transmission antennas, it is possible to provide a transmission apparatus, a transmission method, and a program that sufficiently exhibit polarization diversity effects.
  • Equation (36) a fixed precoding matrix F represented by equation (36) may be used.
  • precoding may be performed by multiplying the equation (36) by the phase change matrix X (k) which changes more regularly.
  • the MIMO coding unit 3261 performing the above operations, each element of the output vector z is expressed as shown in Equations (37) to (38).
  • f1 and f2 represent functions. Therefore, in polarization MIMO transmission technology, polarization diversity is achieved by transmitting half of all mapping data from one transmit antenna (Tx-1) and transmitting the other half from the other transmit antenna (Tx-2). It is possible to provide a transmitting device, a transmitting method, and a program that can fully exhibit the effects.
  • the selector 3271 selects data to be input to “0”, “1”, and “2” when the selection signal is “0”, “1”, and “2”, respectively. Output. That is, if the layer is the existing ISDB-T system, MISO transmission, and MIMO transmission, the selection signals are “0", “1”, and “2”, respectively. However, when the selection signal is "0", a null signal is output to Tx-2.
  • the hierarchical processing unit 3041 can output data of up to three systems (layer A, layer B, layer C), and can select one of ISDB-T, MISO transmission, and MIMO transmission. .
  • hierarchical combining section 5051, time interleaving section 5061 and frequency interleaving section 5071 of each transmitting antenna perform the same operation as in conventional transmitting apparatus 5000 shown in FIG. That is, the operation for both transmitting antennas is made the same.
  • the segment division unit 5301 does not have a synchronous modulation unit or a differential modulation unit according to ISDB-T.
  • the MISO / MIMO synchronous modulation unit is assigned to the synchronous modulation unit or the differential modulation unit (which is not used).
  • the ISDB-T system and the MISO / MIMO system are independently frequency interleaved, so that the ISDB-T system and the MISO / MIMO system do not coexist in each segment after frequency interleaving.
  • layers of MISO transmission and layers of MIMO transmission can be mixed in each segment after frequency interleaving.
  • the pilot signal generation unit 3081 generates a pilot signal for synchronization reproduction. However, for segments belonging to the layer of MIMO transmission or MISO transmission, a pilot signal for synchronization recovery for MIMO / MISO is generated.
  • the TMCC / AC signal generation unit 3091 generates a TMCC signal which is control information and an AC signal which is additional information. However, for segments belonging to the MIMO transmission and MISO transmission layers, TMCC signals for MIMO and MISO are generated.
  • the segment configuration of MIMO transmission and MISO transmission is shown by taking the synchronous modulation unit in mode 1 shown in FIG. 59 as an example.
  • the SP signals of both transmitting antennas are in phase, and when it is odd, the SP signal of Tx-2 is in reverse phase to Tx-1.
  • the synchronous modulation section of ISDB-T system has a lower frequency. When adjacent, it serves as the SP of the ISDB-T synchronous modulation unit.
  • CP signals may be transmitted from both transmission antennas.
  • the OFDM symbol number is even
  • the CP signals of both transmitting antennas are in phase
  • the CP signal of Tx-2 is in reverse phase to Tx-1.
  • the TMCC signal and AC signal are not subjected to MIMO / MISO coding, and the same signal is transmitted from both transmitting antennas (Tx-1 and Tx-2), and the frequency direction arrangement thereof is compared with that in ISDB-T.
  • the existing ISDB-T receiver can also receive the TMCC signal and the AC signal of the MIMO / MISO segment.
  • FIG. 60 shows a part of the definition of TMCC signal.
  • 60 (a) and 60 (b) respectively show the definitions of the ISDB-T scheme and the carrier modulation mapping scheme in the ninth embodiment.
  • MISO transmission and MIMO transmission are allocated to "100" and "101" which are undefined in the ISDB-T system.
  • a segment of MISO transmission or MIMO transmission can be recognized as "not receivable" by existing ISDB-T receivers, and a receiver compatible with MISO transmission or MIMO transmission can be recognized as a segment of MISO transmission or MIMO transmission. It can be recognized.
  • FIGS. 60 (c) and 60 (d) show the definitions of the ISDB-T method and B110 to B121 in the ninth embodiment, respectively.
  • QPSK MISO / MIMO transmission
  • 16 QAM MISO / MIMO transmission
  • 64 QAM MISO / MIMO transmission
  • FIGS. 60 (e) and 60 (f) show the definition of the segment identification in the ISDB-T system and the ninth embodiment, respectively.
  • “000” and “001” are respectively defined as a synchronous modulation unit or a MISO / MIMO synchronous modulation unit, a differential modulation unit or a MISO / MIMO synchronous modulation unit.
  • the MISO / MIMO synchronous modulation unit can be defined by "000” or "111", respectively. Whether “000” and “111” are MISO / MIMO synchronous modulation units is recognized by the definition of the carrier modulation mapping scheme in FIG. 60 (b).
  • the existing ISDB-T receiver continues to interpret “000” and “111” as a synchronous modulation unit and a differential modulation unit, respectively, but the carrier modulation mapping method definition in FIG. 60 (b) is ISDB-T.
  • the carrier modulation mapping method definition in FIG. 60 (b) is ISDB-T.
  • a receiver supporting MISO transmission and MIMO transmission recognizes it as a segment of MISO transmission or MIMO transmission according to the definition of the carrier modulation mapping method of FIG. 60 (b), and recognizes the MISO / MIMO synchronous modulation unit. can do.
  • receivers compatible with MISO transmission and MIMO transmission can recognize carrier modulation mapping schemes of segments of MISO transmission or MIMO transmission without adversely affecting existing ISDB-T receivers.
  • Frame configuration section 3101 includes information data output from frequency interleaving 5071 for each transmission antenna, a pilot signal for synchronous reproduction output from pilot signal generation section 3081, and TMCC and AC signals output from TMCC / AC signal generation section 3091.
  • a transmission frame is configured in each of two transmit antennas (Tx-1, Tx-2) and a segment of MIMO or MISO transmission. It is good.
  • OFDM signal generating section 5111, D / A converting section 5121 and frequency converting section 5131 perform the same operation as in conventional transmitting apparatus 5000 shown in FIG. That is, the operation for both transmitting antennas is made the same.
  • the polarization diversity effect can be sufficiently exhibited, and in particular, a processing method with high affinity to the existing ISDB-T system (time interleaving same as ISDB-T system, It is characterized in that it is realized using frequency interleaving or the like.
  • FIG. 61 is a diagram showing the configuration of the existing ISDB-T receiver 3300. As shown in FIG. The ISDB-T receiver 3300 in FIG. 61 corresponds to the transmitter 5000 in FIG. 75, and reflects the function of the transmitter 5000.
  • the ISDB-T receiver 3300 includes a tuner 3305, an A / D converter 3308, a demodulator 3311, a frequency deinterleaver 3315, a time deinterleaver 3321, a multi-layer TS reproduction unit 3331, and FEC decoding.
  • a unit 3333 and a TMCC signal decoding unit 3335 are provided.
  • tuner section 3305 selects the signal of the tuned frequency channel (CH-Y). Receive and downconvert to a predetermined band.
  • the A / D conversion unit 3308 performs A / D conversion and outputs a digital reception signal.
  • Demodulation section 3311 performs OFDM demodulation, and outputs the mapping data (cell) of I and Q coordinates after equalization and the channel estimation value to frequency deinterleave section 3315, and the FFT output before equalization as a TMCC signal decoding section Output to 3335.
  • the TMCC signal decoding unit 3335 performs differential BPSK demodulation on each carrier on which the TMCC signal shown in FIG. 59 is arranged with respect to the FFT output before equalization output from the demodulation unit 3311, and collects them for each segment.
  • the demodulation result is subjected to majority decision decoding to decode the TMCC signal.
  • the decoded TMCC signal is output to the demodulation unit 3311, the frequency deinterleaving unit 3315, the time deinterleaving unit 3321, the multi-layer TS reproduction unit 3331, and the FEC decoding unit 3333 to be a TMCC signal decoded by each unit. An action based on it is performed.
  • the frequency de-interleaving unit 3315 applies the frequency to each of the partial reception unit, the differential modulation unit, and the synchronous modulation unit with respect to the mapping data of the I and Q coordinates after equalization and the channel estimation value output from the demodulation unit Perform deinterleaving.
  • the time de-interleaving unit 3321 performs time de-interleaving on the output from the frequency de-interleaving unit 3315.
  • FIG. 62 is a diagram showing the structure of the multi-tiered TS reproducing unit 3331.
  • the multi-layer TS reproduction unit 3331 includes a single input single output (SISO) demapping unit 3401, a bit deinterleaving unit 3411, a depuncture unit 3421, and a TS reproduction unit 3431.
  • the SISO demapping unit 3401 performs demapping processing based on the mapping data of the I and Q coordinates after equalization and the transmission path estimated value, which are rearranged by the frequency deinterleaving unit 3315 and the time deinterleaving unit 3321.
  • the bit deinterleaving unit 3411 performs bit deinterleaving, and the depuncturing unit 3421 performs depuncturing processing.
  • the TS reproduction unit 3431 performs TS reproduction for each layer with respect to the output of the depuncturing unit 3421.
  • FIG. 63 is a diagram showing a configuration of the FEC decoding unit 3333.
  • the FEC decoding unit 3333 includes a Viterbi decoding unit 3441, a byte deinterleaving unit 3451, an energy despreading unit 3461, and an RS decoding unit 3471.
  • the Viterbi decoding unit 3441 performs Viterbi decoding on the output from the multi-layer TS reproduction unit 3331
  • the byte deinterleaving unit 3451 performs byte deinterleaving
  • the energy despreading unit 3461 performs energy despreading
  • the RS decoding unit 3471 performs RS decoding.
  • the ISDB-T receiver 3300 in FIG. 61 outputs the TS of each layer subjected to the error correction decoding to the signal transmitted from the transmitter 5000 in FIG.
  • the integrated circuit 3341 may be configured by including components other than the tuner unit 3305 in the ISDB-T receiver 3300 in FIG.
  • the tuner unit 3305 and the A / D conversion unit 3308 perform the same operation as described above.
  • the TMCC signal decoding unit 3335 majority decodes the demodulation results collected for each segment to decode the TMCC signal, as in the above-described operation.
  • the transmission device 3000 in FIG. 57 does not perform MIMO / MISO coding on the TMCC signal, but from both transmission antennas (Tx-1, Tx-2) Send the same signal. Therefore, the TMCC decoding unit 3335 can decode the TMCC signal of the segment to which the hierarchy of MISO transmission or MIMO transmission is assigned, and determines that the segment can not be received according to the definition of the TMCC signal shown in FIG.
  • the determination result is output to the demodulator 3311, the frequency deinterleaver 3315, the time deinterleaver 3321, the multi-tiered TS reproducer 3331, and the FEC decoder 3333.
  • Each part is allocated to the ISDB-T hierarchy. Process only the specified segment.
  • the ISDB-T receiving apparatus 3300 of FIG. 61 outputs the TS of the layer of ISDB-T scheme subjected to the error correction decoding to the signal transmitted from the transmitting apparatus 3000 of FIG.
  • FIG. 64 is a diagram showing a configuration of receiving apparatus 3500 in the ninth embodiment of the present invention.
  • the reception device 3500 of FIG. 64 corresponds to the transmission device 3000 of FIG. 57, and reflects the function of the transmission device 3000.
  • the same components as those of the existing ISDB-T receiver use the same reference numerals and the description thereof is omitted.
  • Receiving apparatus 3500 replaces multi-layer TS reproducing section 3331 and TMCC signal decoding section 3335 with multi-layer TS reproducing section 3531 and TMCC signal decoding section 3535, respectively, as compared to ISDB-T receiving apparatus 3300 shown in FIG. It is a structure. Furthermore, the demodulation unit 3311 is replaced with a demodulation unit 3511 and provided for each transmission antenna. Further, the reception apparatus 3500 includes a tuner unit 3305, an A / D conversion unit 3308, a frequency deinterleave unit 3315, and a time deinterleave unit 3321 for each transmission antenna.
  • reception device 3500 When an analog RF transmission signal is input from both receiving antennas (Rx-1, Rx-2) to the signal transmitted from transmitting apparatus 3000 in FIG. 57, tuner section 3305 of each receiving antenna and A / D conversion The unit 3308 performs the same operation as the ISDB-T receiver 3300 shown in FIG.
  • the demodulator 3511 of each receiving antenna performs OFDM demodulation. However, equalization is not performed on the segment to which the hierarchy of MISO transmission or MIMO transmission is assigned, and transmission path estimation for MISO / MIMO is performed based on the SP signal shown in FIG. Therefore, the demodulator 3511 of each receiving antenna outputs the FFT output before equalization to the frequency deinterleaver 3315 and the TMCC signal decoder 3535 for the segment to which the layer of MISO transmission or MIMO transmission is assigned. The channel estimation value is output to the frequency deinterleave unit 3315.
  • the TMCC signal decoding unit 3535 performs differential BPSK demodulation and majority decision decoding on the FFT output before equalization output from the demodulation unit 3511 as in the TMCC signal decoding unit 3335 in FIG. 61, and decodes the TMCC signal. .
  • the decoding performance is further improved by performing majority decision decoding using the outputs from the demodulation units 3511 of both receiving antennas (Rx-1, Rx-2).
  • the TMCC signal decoding unit 3535 recognizes the definition of the TMCC signal shown in FIG. 60, and detects whether it is MISO transmission or MIMO transmission also for a segment to which a layer of MISO transmission or MIMO transmission is assigned.
  • the carrier modulation mapping scheme QPSK, 16 QAM, 64 QAM is also detected.
  • the detection result is output to the demodulation unit 3511, the frequency deinterleaving unit 3315, the time deinterleaving unit 3321, the multi-layer TS reproducing unit 3531, and the FEC decoding unit 3333 of each receiving antenna, and each unit is an ISDB-T system. Processing the segment to which the layer of H.sub.2 is assigned and the segment to which the layers of MISO transmission and MIMO transmission are assigned.
  • the frequency deinterleaving unit 3315 has a frequency de-interleaving function in each receiving antenna of ISDB-T synchronous modulation unit or ISDB-T differential modulation unit to which the MISO / MIMO synchronous modulation unit is assigned. Frequency de-interleaving is possible. Also, for segments to which a layer of ISDB-T scheme is assigned, the operation of the frequency deinterleaver 3315 and the time deinterleaver 3321 of one receiving antenna (Rx-1 or Rx-2) can be stopped. . Alternatively, both receive antennas (Rx-1, Rx-2) operate and diversity reception can further improve the reception performance.
  • FIG. 65 is a diagram showing the configuration of the multi-tiered TS reproduction unit 3531.
  • the multi-layer TS reproduction unit 3531 has a configuration in which the SISO demapping unit 3401 is replaced with a SISO / MISO / MIMO demapping unit 3501 as compared to the multi-layer TS reproduction unit 3331 shown in FIG.
  • the SISO / MISO / MIMO demapping unit 3501 performs the same operation as the SISO demapping unit 3401 on the segment to which the layer of ISDB-T scheme is allocated based on the input TMCC signal, and performs MISO transmission or MIMO transmission. MISO or MIMO demapping processing is performed on the segment to which the layer of
  • the other operations of multi-tier TS reproducing unit 3531 in FIG. 65 are the same as those in multi-tier TS reproducing unit 3331 in FIG.
  • the FEC decoding unit 3333 is the same as the operation in FIG. 64
  • the MIMO demapping processing in SISO / MISO / MIMO demapping section 3501 will be described below.
  • the input vector y (y 1 _k, y 2 _k) T to the MIMO demapping unit 3501 is expressed by equation (39).
  • H is a channel matrix expressed by equation (40)
  • nP_k is an average value of 0, i of variance ⁇ 2 . i. d. Complex Gaussian noise.
  • MLD maximum likelihood decoding
  • ZF Zero Forcing
  • components other than the tuner unit 3305 may be included in the receiving device 3500 of FIG.
  • FIG. 66 is a diagram showing the configuration of transmitting apparatus 3600 according to Embodiment 10 of the present invention.
  • the same components of the conventional transmission apparatus and the transmission apparatus of the ninth embodiment use the same reference numerals, and descriptions thereof will be omitted.
  • the transmitter 3600 of FIG. 66 differs from the transmitter 3000 of the ninth embodiment shown in FIG. 57 in that the TS remultiplexing unit 5011, the hierarchy division unit 5031 and the TMCC / AC signal generation unit 3091 are compared to the TS remultiplexer 3611 and It is the structure replaced by the hierarchy division part 3631 and the TMCC / AC signal generation part 3691, respectively. Furthermore, an LDPC layer allocation unit 3635 and an LDPC layer processing unit 3645 are added. In the tenth embodiment, only the C layer is configured to perform LDPC encoding. However, the present invention is not limited to this, and LDPC encoding may be performed on other layers, and LDPC encoding may be performed on a plurality of layers. You may go.
  • the TS re-multiplexing unit 3611 converts two TSs among the three TSs output from the MPEG-2 multiplexing unit (not shown) into a single TS as an input. However, a null packet is inserted for idle time due to the remaining one TS not being input.
  • the hierarchy division unit 3631 performs hierarchy division of up to two systems (A hierarchy, B hierarchy) in accordance with specification of hierarchy information.
  • LDPC layer allocating section 3635 inputs one remaining TS, allocates layer C to be subjected to LDPC encoding to that TS, generates timing information of each TS packet, and outputs it to LDPC layer processing section 3645 together with each TS packet Do.
  • FIG. 67 is a diagram showing a configuration of the LDPC hierarchical processing unit 3645.
  • the LDPC layer processing unit 3645 deletes the byte interleaving unit 5211 and the convolutional encoding unit 5221 compared to the layer processing unit 3041 in the tenth embodiment shown in FIG. 58, and the BCH encoding unit 3711 and the LDPC encoding unit 3721. Is added. Further, the LDPC hierarchical processing unit 3645 has a configuration in which the bit interleaving unit 5231 is replaced with a bit interleaving unit 3731.
  • the BCH encoding unit 3711 collects data included in one or more TS packets output from the LDPC layer allocation unit 3635, stores timing information in the header and uses it as information bits, and BCH code Perform.
  • the energy spreading unit 5201 is similar to the operation in FIG.
  • the LDPC encoding unit 3721 performs LDPC encoding
  • the bit interleaving unit 3731 generally performs bit interleaving different from the bit interleaving unit 5231 of the ISDB-T system in FIG. 58 in order to extract the capability of LDPC encoding.
  • the operation after mapping unit 5241 is the same as the operation in hierarchical processing unit 3041 shown in FIG.
  • the layer combining unit 5051 performs the same operation as the layer processing unit 3041 shown in FIG. 58 on the output data from the layer processing units 3041-AB and the layer processing unit 3454-C. Do.
  • the TMCC / AC signal generation unit 3691 generates a TMCC signal which is control information and an AC signal which is additional information. However, for segments belonging to the MIMO transmission and MISO transmission layers, TMCC signals for MIMO and MISO are generated, and for segments belonging to the LDPC layer, TMCC signals for LDPC coding are generated. .
  • FIG. 68 shows the definition of a TMCC signal related to LDPC coding.
  • FIGS. 68 (a) and 68 (b) show the definitions of the convolutional coding rate in the ISDB-T system and the tenth embodiment, respectively.
  • LDPC encoding is assigned to "101" which was undefined in the ISDB-T method in the tenth embodiment.
  • a segment that performs LDPC coding can be recognized as "not receivable" by existing ISDB-T receivers, and a receiver compatible with LDPC coding can be recognized as a segment of LDPC coding. .
  • FIG. 68C shows the definitions of B110 to B121 in the tenth embodiment.
  • 1/2 (LDPC coding rate), 2 (“LDPC coding rate”) are assigned to “000” to “100” of B113 to B115, which were undefined in the ISDB-T method in the tenth embodiment.
  • / 3 (LDPC coding rate), 3/4 (LDPC coding rate), 5/6 (LDPC coding rate), 7/8 (LDPC coding rate) are allocated.
  • the other operation is the same as that of transmitting apparatus 3000 in the ninth embodiment shown in FIG.
  • a transmission apparatus, a transmission method, and a program that make it possible to coexist the existing ISDB-T system and the new system using the polarization MIMO transmission technology and facilitate the introduction of the new system. Can be provided.
  • the BCH code + LDPC code as the error correction coding system in the new system, it is possible to improve the error correction capability.
  • the polarization diversity effect can be sufficiently exhibited, and in particular, a processing method with high affinity to the existing ISDB-T system (time interleaving same as ISDB-T system, It is characterized in that it is realized using frequency interleaving or the like.
  • the TMCC signal decoding unit 3335 majority decodes the demodulation results collected for each segment to decode the TMCC signal, as in the operation of the ninth embodiment. Therefore, the TMCC signal decoding unit 3335 can also decode the TMCC signal of the segment to be subjected to LDPC encoding, and determines that the segment can not be received according to the definition of the TMCC signal shown in FIG.
  • the determination result is output to the demodulator 3311, the frequency deinterleaver 3315, the time deinterleaver 3321, the multi-tiered TS reproducer 3331, and the FEC decoder 3333.
  • Each part is allocated to the ISDB-T hierarchy. Process only the specified segment.
  • the ISDB-T receiver 3300 in FIG. 61 outputs the TS of the ISDB-T scheme layer subjected to error correction decoding for the signal transmitted from the transmitter 3600 in FIG.
  • FIG. 69 is a diagram showing a configuration of receiving apparatus 3800 according to Embodiment 10 of the present invention.
  • the reception device 3800 in FIG. 69 corresponds to the transmission device 3600 in FIG. 66, and reflects the function of the transmission device 3600.
  • the same components as the existing ISDB-T receiver and the receiver according to the ninth embodiment use the same reference numerals, and the description thereof is omitted.
  • Receiving apparatus 3800 is different from receiving apparatus 3500 in the ninth embodiment shown in FIG. 64 in multi-layer TS reproducing section 3531, FEC decoding section 3333 and TMCC signal decoding section 3535 respectively in multi-layer TS reproducing section 3831 and
  • the configuration is such that the FEC decoding unit 3833 and the TMCC signal decoding unit 3835 are replaced.
  • the TMCC signal decoding unit 3835 recognizes the definition of the TMCC signal shown in FIG. 68, and detects that LDPC coding is being performed on a segment to be subjected to LDPC coding, and also detects an LDPC coding rate.
  • the detection result regarding LDPC coding is output to the multi-layer TS reproduction unit 3831 and the FEC decoding unit 3833.
  • FIG. 70 is a diagram showing a configuration of the multi-tiered TS reproducing unit 383.
  • the multi-layer TS reproduction unit 383 has a configuration in which the SISO / MISO / MIMO demapping unit 3501 is replaced with a SISO / MISO / MIMO demapping unit 3801 as compared to the multi-layer TS reproduction unit 3531 shown in FIG.
  • the SISO / MISO / MIMO demapping unit 3801 outputs the data after the demapping process as LDPC layer data for the segment data to be subjected to LDPC encoding based on the input TMCC signal.
  • the data after demapping processing is output to bit deinterleaver 3411 as in the operation in FIG. 62, and the operation after bit deinterleaver 3411 is as shown in FIG. 62. And output as non-LDPC hierarchical data.
  • FIG. 71 is a diagram showing a configuration of the FEC decoding unit 3833.
  • the FEC decoding unit 3833 compares the bit de-interleaving unit 3911, the LDPC decoding unit 3941, the BCH decoding unit 3971, and the LDPC layer / non-LDPC layer combining unit 3981. , And one more energy despreading unit 3461 is added.
  • the FEC decoding unit 3833 performs the same operation as that of FIG. 63 in the Viterbi decoding unit 3441 to the RS decoding unit 3471 for non-LDPC hierarchical data. Also, the FEC decoding unit 3833 performs bit deinterleaving on the LDPC layer data in the bit deinterleaving unit 3911, performs LDPC decoding in the LDPC decoding unit 3941, performs energy despreading in the energy despreading unit 3461, and performs BCH.
  • the decoding unit 3971 performs BCH decoding.
  • the LDPC layer / non-LDPC layer combining unit 3981 performs processing between non-LDPC layer decoded data output from the RS decoding unit 3471 based on timing information included in the header of the LDPC layer decoded data output from the BCH decoding unit 3971. Then, by inserting LDPC layer decoded data, the decoded data of both layers are combined, and a TS subjected to error correction decoding is output.
  • components other than the tuner unit 3305 may be included in the receiving device 3800 in FIG.
  • FIG. 72 is a diagram showing a configuration of transmitting apparatus 4000 in Embodiment 11 of the present invention.
  • a TS (Transport Stream) generation unit generates two video B (Base layer) and video E (Enhancement layer) as a video component using SVC (Scalable Video Coding). This enables allocation to a hierarchy for each component of audio, video B and video E, and makes it possible to select from the existing ISDB-T system, MISO transmission, and MIMO transmission for each hierarchy.
  • SVC Scalable Video Coding
  • Transmission apparatus 4000 shown in FIG. 72 has a configuration in which TS re-multiplexing unit 5011 is replaced with TS re-multiplexing unit 4011 as compared to transmission apparatus 3000 in the ninth embodiment shown in FIG. Furthermore, the transmission device 4000 of FIG. 72 has a configuration in which a hierarchy assignment unit 4005 is added.
  • FIG. 73 is a diagram showing a configuration of the TS generation unit 4210.
  • the TS generation unit 4210 in FIG. 73 shows a case where one program is generated in the TS, and includes one audio coding unit 4221 and one video coding unit 4222.
  • the TS generation unit 4210 includes a packetization unit 4223 for each service component of audio / video B / video E in each program.
  • the TS generation unit 4210 includes a packetized stream multiplexing unit 4224 and an L2 information processing unit 4225.
  • the speech encoding unit 4221 performs source coding of speech.
  • the video coding unit 4222 performs source coding of video using SVC, and generates two components of video B and video E.
  • source coding H.264. H.264 and HEVC (H. 265).
  • the packetization unit 4223 packetizes the output of the audio coding unit 4221 or the video coding unit 4222.
  • the L2 information processing unit 4225 generates L2 information such as PSI (Program-Specific Information) or SI (System Information).
  • the packetized stream multiplexing unit 4224 multiplexes the output of the packetization unit 4223 and the output of the L2 information processing unit 4225 to generate a TS, and outputs the TS to the transmission device 4000 shown in FIG.
  • the hierarchy allocating unit 4005 allocates a hierarchy to each service component of audio / video B / video E included in the program of the TS output from the TS generation unit 4210 and L2 information. As an example in FIG. 72, allocation is as follows.
  • Layer A audio of program-1
  • video B L2 information layer B: image E of program-1
  • FIG. 72 the audio and video B and L2 information packets to the TS remultiplexing unit 4011 are actually multiplexed and become one input.
  • the operation of the TS re-multiplexing unit 4011 is as shown in FIG. 57 except that a stream composed of multiplexed audio, video B, and L2 information packets and a stream composed of video E packets are each treated as one TS. It is similar to the operation.
  • the hierarchy division unit 5031 performs hierarchy division as allocated by the hierarchy allocation unit 4005.
  • hierarchical processing section 3041-A operates as the existing ISDB-T system
  • hierarchical processing section 3041-B operates as MISO transmission or MIMO transmission.
  • allocation to layers can be made for each component of audio, video B and video E, and it is possible to select from the existing ISDB-T method, MISO transmission, and MIMO transmission for each layer.
  • the existing ISDB-T method for audio and video B the layer of basic information can be received in the existing ISDB-T receiver, and the basic information portion of the program, for example, standard image quality can be obtained. You can enjoy the program.
  • the TMCC signal decoding unit 3335 performs majority decision decoding on the demodulation results collected for each segment, decodes the TMCC signal, and performs B layer of MISO transmission or MIMO transmission (image E of program-1 It is determined that the segment assigned) is not receivable.
  • the determination result is output to demodulation unit 3311, frequency deinterleaving unit 3315, time deinterleaving unit 3321, multi-layer TS reproduction unit 3331, and FEC decoding unit 3333. Performs processing only for the segment to which program-1 audio, video B, and L2 information is assigned.
  • the ISDB-T receiver 3300 in FIG. 61 outputs the TS of the ISDB-T scheme layer subjected to error correction decoding to the signal transmitted from the transmitter 4000 in FIG. That is, the audio and video B, L2 information of program-1 is output.
  • the TMCC signal decoding unit 3535 performs MISO transmission or MIMO transmission for the segment to which the B layer of the MISO transmission or the MIMO transmission (image E of program-1) is assigned, as in the operation in the ninth embodiment.
  • the carrier modulation mapping scheme (QPSK, 16 QAM, 64 QAM) is also detected.
  • the detection result is output to the demodulation unit 3511, the frequency deinterleaving unit 3315, the time deinterleaving unit 3321, the multi-layer TS reproduction unit 3531 and the FEC decoding unit 3333 of each receiving antenna, and each unit is an ISDB-T scheme A hierarchy.
  • the segment to which (voice-1, video B, L2 information of program-1) is allocated, and the segment to which layer B of MISO transmission or MIMO transmission (image E of program-1) is allocated are processed.
  • the reception apparatus 3500 of FIG. 64 performs layer A of ISDB-T scheme and layer B of MISO transmission or MIMO transmission in which error correction decoding is performed on the signal transmitted from transmission apparatus 4000 of FIG. Output the TS. That is, all components (audio, video B, video E, L2 information) of program-1 are output.
  • FIG. 74 is a diagram showing a configuration of transmitting apparatus 4300 according to Embodiment 12 of the present invention.
  • the TS generation unit generates two images, video B and video E, as video components using SVC. This makes it possible to assign to layers for each component of audio, video B and video E, and to select from the existing ISDB-T method, MISO transmission and MIMO transmission for each layer, as well as using the new method.
  • a BCH code + LDPC code is used as an error correction coding scheme in certain MISO transmission and MIMO transmission.
  • Transmission apparatus 4300 in FIG. 74 has a configuration in which TS re-multiplexing unit 3611 is replaced with TS re-multiplexing unit 4311 as compared with transmission apparatus 3600 in the tenth embodiment shown in FIG. Furthermore, the transmitting apparatus 4300 in FIG. 74 has a configuration in which a hierarchy allocating unit 4005 is added.
  • layer allocating section 4005 operates in the same manner as in Embodiment 11 to provide services of audio and video B and video E included in the program of TS output from TS generating section 4210 shown in FIG. Assign a hierarchy to each component and L2 information. As an example in FIG. 74, allocation is as follows.
  • Level A audio of program-1
  • the audio and video B and L2 information packets to the TS remultiplexing unit 4311 are actually multiplexed and become one input.
  • the operation of the TS re-multiplexing unit 4311 treats a stream composed of multiplexed audio, video B, and L2 information packets as one TS, with respect to the idle time due to the remaining one component (video E) not being input. Is the same as the operation in FIG. 66 except that a null packet is inserted.
  • the layer division unit 3631 performs layer division of the stream composed of the multiplexed audio, video B, and L2 information packets into layers A as allocated by the layer allocation unit 4005.
  • the LDPC layer allocation unit 3635 receives the stream composed of the remaining one component (image E) as allocated by the layer allocation unit 4005, and allocates the C layer to be subjected to LDPC encoding to the TS, and each TS packet Timing information is generated and output to the LDPC layer processing unit 3645 together with each TS packet.
  • hierarchical processing section 3041-A operates as the existing ISDB-T system
  • LDPC hierarchical processing section 3645-C operates as MISO transmission or MIMO transmission.
  • transmitting apparatus 4300 in FIG. 74 The other operations in transmitting apparatus 4300 in FIG. 74 are the same as in transmitting apparatus 3600 in the tenth embodiment shown in FIG.
  • a BCH code + LDPC code is used as an error correction coding method in the MISO transmission and the MIMO transmission which are the method.
  • the layer of basic information can be received in the existing ISDB-T receiver, and the basic information portion of the program, for example, standard image quality can be obtained. You can enjoy the program.
  • the TMCC signal decoding unit 3335 majority-decodes the demodulation results collected for each segment, decodes the TMCC signal, and performs C layer of MISO transmission or MIMO transmission (image E of program-1 It is determined that the segment assigned) is not receivable.
  • the determination result is output to demodulation unit 3311, frequency deinterleaving unit 3315, time deinterleaving unit 3321, multi-layer TS reproduction unit 3331, and FEC decoding unit 3333. Performs processing only for the segment to which program-1 audio, video B, and L2 information is assigned.
  • the ISDB-T receiver 3300 in FIG. 61 outputs the TS of the ISDB-T scheme layer subjected to the error correction decoding to the signal transmitted from the transmitter 4300 in FIG. That is, the audio and video B, L2 information of program-1 is output.
  • the TMCC signal decoding unit 3835 performs LDPC encoding as in the tenth embodiment, and performs MISO transmission even on a segment to which the C layer (image E of program-1) of MISO transmission or MIMO transmission is assigned. While detecting whether it is MIMO transmission or a carrier modulation mapping system (QPSK, 16 QAM, 64 QAM), it also detects that it is performing LDPC coding and an LDPC coding rate.
  • QPSK carrier modulation mapping system
  • the detection result is output to the demodulation unit 3511, the frequency deinterleaving unit 3315, the time deinterleaving unit 3321, the multi-layer TS reproduction unit 3831 and the FEC decoding unit 3833 of each receiving antenna, and each unit is an ISDB-T scheme A hierarchy.
  • the receiver 3800 in FIG. 69 performs the layer of the ISDB-T scheme which has been subjected to error correction decoding and the LDPC coding to the signal transmitted from the transmitter 4300 in FIG. 74, and performs MISO transmission. Or outputs the TS of the layer of MIMO transmission. That is, all components (audio, video B, video E, L2 information) of program-1 are output.
  • the present invention is not limited to the contents described in the above embodiments 9 to 12, but can be practiced in any form for achieving the object of the present invention and the related or attendant objects, for example, the following: May be
  • the TMCC signal and the AC signal are transmitted as the same signal from both transmitting antennas (Tx-1 and Tx-2) without performing MIMO / MISO coding.
  • the transmission may be performed from only one of the transmission antennas without performing MIMO / MISO coding.
  • the ISDB-T scheme may be preferentially assigned to the central segment (data segment number 0) of the frequency band. In particular, priority may be given to the partial reception unit of the ISDB-T system.
  • the number of transmission / reception antennas in MISO transmission and MIMO transmission is two, but the number is not limited to two, and may be three or more. Also, the number of transmitting and receiving antennas may be different.
  • layer A is transmitted by ISDB-T, layer B or layer C by MISO or MIMO, but the present invention is not limited thereto.
  • layer A is by MISO
  • layer B Alternatively, layer C may be transmitted by MIMO.
  • the phase change is performed on the transmit antenna 2 (Tx-2).
  • the present invention is not limited to this.
  • the phase change may be performed on the transmit antenna 1 (Tx-1) .
  • synchronous modulation is applied to MIMO or MISO, but differential modulation may be applied.
  • the service components are audio and video
  • the present invention is not limited to this.
  • Other examples include data components.
  • the scalable coding is performed on the video.
  • the present invention is not limited to this, and the scalable coding may be performed on audio and data components.
  • the video B and the video E are generated by SVC.
  • MVC_B Base view
  • MVC_D Dependent view
  • MVC Multi-view Video Coding
  • the audio, video B, and L2 information is the existing ISDB-T system
  • the video E is MISO transmission or MIMO transmission
  • audio and L2 information may be the existing ISDB-T method
  • video B may be MISO transmission
  • video E may be MIMO transmission.
  • time interleaving section 5061 and frequency interleaving section 5071 perform the same operation as in conventional transmission apparatus 5000 shown in FIG.
  • the segment configurations of MIMO transmission and MISO transmission shown in FIG. 59 are used.
  • the number of AC carriers may be reduced.
  • the time interleaving unit 5061 and the frequency interleaving unit 5071 operate as null carriers by the reduced number of data carriers, and delete null carriers at the output stage.
  • the time interleaving unit 5061 and the frequency interleaving unit 5071 can continue to maintain a method with high affinity to the ISDB-T scheme.
  • the carrier direction density of the pilot signal for synchronous reproduction for MIMO / MISO may be doubled, for example.
  • the time interleaving unit 5061 and the frequency interleaving unit 5071 can maintain the method having high affinity to the ISDB-T method.
  • the above-described ninth to twelfth embodiments may relate to an implementation using hardware and software.
  • the above embodiments may be implemented or performed using a computing device (processor).
  • the computing device or processor may be, for example, a main processor / general purpose processor (digital purpose processor), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), other programmable logic devices, etc. May be there.
  • the above embodiments may be implemented or realized by combining these devices.
  • the above embodiments 9 to 12 may be realized by the mechanism of a software module executed by a processor or directly by hardware. Also, a combination of software modules and hardware implementation is possible.
  • the software modules may be stored on various types of computer readable storage media such as RAM, EPROM, EEPROM, flash memory, registers, hard disk, CD-ROM, DVD, etc.
  • the transmitting device (1) is a transmitting device that performs MIMO (Multiple Input Multiple Output) transmission using a plurality of basic bands, and generates an error correction coded frame by error correction coding for each data block of a predetermined length.
  • An error correction coding unit, a mapping unit that maps the error correction coding frame to symbols by a predetermined number of bits to generate an error correction coding block, and MIMO coding the error correction coding block A MIMO coding unit to perform the operation, and a component of data included in the error correction coding block is distributed to two or more of the plurality of basic bands for transmission.
  • the transmitting apparatus (1) in MIMO transmission using a plurality of base bands, the data component included in the error correction coding block is distributed to the two or more base bands of the plurality of base bands for transmission. By doing so, it is possible to provide a transmitting apparatus that exhibits frequency diversity effects for a plurality of base bands.
  • the transmitting device (2) transmits, in the transmitting device (1), MIMO transmission using the plurality of basic bands with respect to basic information of transmission data, and transmits a single transmission information with respect to the extended information of the transmission data.
  • the basic information may be transmitted using a basic band, and the basic information may be information that can be decoded alone, and the extension information may be information that can be decoded in combination with the basic information.
  • the basic information of transmission data is transmitted by MIMO transmission using a plurality of basic bands, and the transmission information of extended data is transmitted using a single basic band.
  • the number of transmission antennas used for the MIMO transmission may be two in the transmission device (3), and the polarization polarities of the respective transmission antennas may be different.
  • the transmitting apparatus (3) in MIMO transmission using a plurality of base bands, the number of transmission antennas used for MIMO transmission is set to 2, and the polarization polarity of each transmission antenna is different. In addition to the effects, it is possible to provide a transmitter that exhibits polarization diversity effects.
  • the transmitting device (4) further distributes the data component contained in the error correction coding block to two or more of the plurality of transmitting antennas used for the MIMO transmission and transmits You may
  • the transmitting device (4) in MIMO transmission using a plurality of base bands, two or more transmission antennas among a plurality of transmission antennas further used for MIMO transmission, the data component included in the error correction coding block
  • the transmitting apparatus that exerts spatial (antenna) diversity effects by distributing the signal to.
  • the number of basic bands is K (K is a natural number of 2 or more), and the number of transmission antennas is M (M is a natural number of 2 or more)
  • the MIMO coding unit has K ⁇ M output ports, each output port corresponds to each transmission antenna of each base band, and the component of each data included in the error correction coding block is the K ⁇ It may be output to all M output ports.
  • the MIMO coding unit outputs the component of each data included in the error correction coding block to all transmission antennas of the entire base band.
  • the MIMO coding unit may perform MIMO coding using a (K ⁇ M) row (K ⁇ M) precoding matrix.
  • the MIMO coding unit uses the precoding matrix to generate each data component included in the error correction coding block over the entire base band.
  • the number of basic bands is K (K is a natural number of 2 or more), and the number of transmission antennas is M (M is a natural number of 2 or more) , K output ports, each output port corresponds to each basic band, and serial / parallel (S / P: Serial to S) distributes mapping data included in the error correction coding block to the K output ports.
  • a transform unit is further provided, and the MIMO coding unit is provided for each of the base bands, the MIMO coding unit for each of the base bands has M output ports, and each output port is a transmission antenna. In this case, MIMO coding may be performed on the output data of the serial-to-parallel converter.
  • the serial-to-parallel converter distributes the mapping data included in the error correction coding block to the output ports corresponding to all the base bands.
  • the present invention can provide a transmitter that exhibits frequency diversity effects on the fundamental band of
  • the number of fundamental bands is K (K is a natural number of 2 or more), and the number of transmission antennas is M (M is a natural number of 2 or more) , K output ports, each output port corresponding to each basic band, and serial / parallel (S / P: Serial to Parallel) for distributing data included in the error correction coding frame to the K output ports.
  • the MIMO coding unit, and the mapping unit for each of the fundamental bands is configured to determine the output data of the serial-to-parallel converter.
  • the MIMO coding unit for each base band has M output ports, each output port corresponds to each transmitting antenna, and output data of the mapping unit for each base band against MI O coding may perform.
  • the serial-to-parallel converter distributes data included in the error correction coding frame to output ports corresponding to all the basic bands. It is possible to provide a transmitting device that exhibits frequency diversity effects on the baseband.
  • the MIMO coding unit for each baseband may perform MIMO coding using M rows and M columns of precoding matrices.
  • the serial-to-parallel converter converts mapping data included in the error correction coding block or data included in the error correction coding frame into the entire base band.
  • the number of basic bands is K (K is a natural number of 2 or more), and the number of transmission antennas is M (M is a natural number of 2 or more)
  • K K is a natural number of 2 or more
  • M is a natural number of 2 or more
  • K K is a natural number of 2 or more
  • K is a natural number of 2 or more
  • M is a natural number of 2 or more
  • the error correction coding unit further includes the error correction coding unit, the mapping unit, and the MIMO coding unit for each basic band, and the error correction coding unit for each basic band includes the serial-to-parallel conversion unit.
  • Error correction coding on the output data of the above to generate an error correction coding frame, and output data of the error correction coding unit for each basic band, output data of the mapping unit, and output of the MIMO coding unit Any of the data
  • part replacement between basic band performing replacement between baseband by a unit of a predetermined number, further comprising a may be.
  • the serial-to-parallel converter distributes data blocks of a predetermined length to the output ports corresponding to all the basic bands, and corrects the error for each basic band.
  • a plurality of basics are exchanged by switching a predetermined number of units between basic bands for any of the output data of the encoding unit, the output data of the mapping unit, and the output data of the MIMO encoding unit. It is possible to provide a transmitting apparatus that exhibits frequency diversity effects on bands.
  • the number of basic bands is K (K is a natural number of 2 or more), and the number of transmission antennas is M (M is a natural number of 2 or more).
  • the error correction coding unit further includes the error correction coding unit, the mapping unit, and the MIMO coding unit for each basic band, and the error correction coding unit for each basic band includes the serial-to-parallel conversion unit.
  • the error correction coding is performed on the output data of the above to generate an error correction coding frame, and rearrangement is performed on the data output from each of M output ports provided in the MIMO coding unit for each basic band.
  • M interns to perform The output data of the error correction coding unit for each basic band, the output data of the mapping unit, the output data of the MIMO coding unit, and the output data of the interleaving unit.
  • the apparatus may further include: an inter-basic-band interchanging unit which performs interchanging between the basic bands by a predetermined number of units.
  • the serial-to-parallel converter divides data blocks of a predetermined length into output ports corresponding to all the basic bands, and interleaves each basic band.
  • the output data of the MIMO coding unit is rearranged, the output data of the error correction coding unit for each basic band, the output data of the mapping unit, the output data of the MIMO coding unit, and the interleaving unit
  • a transmission apparatus can be provided that exhibits frequency diversity effects for a plurality of base bands by replacing the base band with a predetermined number of units for any of the output data.
  • the MIMO coding unit for each basic band may perform MIMO coding using M rows and M columns of precoding matrices.
  • the serial-to-parallel converter distributes data blocks of a predetermined length to output ports corresponding to all the basic bands, and specifies data for each basic band.
  • a transmitting apparatus can be provided that exhibits frequency diversity effects for a plurality of basic bands by performing switching between basic bands by units of numbers and performing MIMO coding using a precoding matrix by the MIMO coding unit. .
  • the transmitting device (13) is the transmitting device (1) or (4), wherein the MIMO coding unit regularly changes the phase of a signal transmitted from at least one antenna for each of the fundamental bands. May be provided.
  • the MIMO coding unit regularly changes the phase of the signal transmitted from at least one antenna for each base band, and the error correction code
  • the LOS in which the direct wave is dominant is performed by distributing the components of the data contained in the block to two or more of the plurality of basebands and transmitting them.
  • the transmitter (14) is the transmitter (7) or (8) or (10), and the MIMO coding unit performs different MIMO coding for each of the fundamental bands.
  • the MIMO coding unit further comprises: The MIMO coding unit performs MIMO coding using different precoding matrices of M rows and M columns for each band, and the MIMO coding unit regularly changes the phase of the signal for each base band, and the phase change is made in the base band.
  • the mapping unit performs different mapping for each basic band, and the error correction coding unit performs error correction coding for different patterns for each basic band. You may do one.
  • the transmission (14) in MIMO transmission using a plurality of base bands, in addition to the frequency diversity effect for a plurality of base bands, the reception quality improvement effect is exhibited by reducing the correlation regarding the transmission path characteristics between the base bands Can be provided.
  • the transmitting device performs, in the transmitting device (11), different patterns for each basic band in the interleaving unit, and performs different MIMO coding for each basic band in the MIMO coding unit
  • the MIMO coding unit performs MIMO coding using precoding matrices of M rows and M columns which are different for each of the basebands.
  • the MIMO coding unit regularly performs signal phases for each of the basebands. Changing the phase change for each of the base bands, mapping the different patterns for each of the base bands in the mapping unit, and correcting the patterns of the patterns different for each of the base bands in the error correction coding unit At least one of encoding may be performed.
  • the transmitter in MIMO transmission using a plurality of base bands, in addition to the frequency diversity effect for a plurality of base bands, the reception quality improvement effect by reducing the correlation regarding the transmission path characteristics between the base bands is exhibited Can be provided.
  • the interleaving unit rearranges patterns different for each basic band, and M interleaving units in the basic band rearrange the same patterns. You may do it.
  • the amount of operation in MIMO demapping is increased by the interleaving unit rearranging different patterns for each base band and rearranging the same pattern for each transmitting antenna in the base band. It is possible to provide a transmitting apparatus that exhibits the effect of improving the reception quality by reducing the correlation with respect to the transmission path characteristics between the base bands, in addition to the frequency diversity effects regarding the plurality of base bands.
  • the receiving device (17) is configured to transmit data components included in the error correction coding block to two or more of the plurality of fundamental bands by MIMO (Multiple Input Multiple Output) transmission using a plurality of fundamental bands.
  • MIMO Multiple Input Multiple Output
  • an error correction decoding unit that performs error correction decoding on the output of.
  • the demodulation unit demodulates for each base band
  • the MIMO demapping unit demodulates the data Perform MIMO demapping
  • the error correction decoding unit performs error correction decoding on the output of the MIMO demapping to receive a signal transmitted by MIMO transmission using a plurality of basic bands Receiver (reception method) can be provided.
  • the transmission method (18) is a transmission method for performing MIMO (Multiple Input Multiple Output) transmission using a plurality of basic bands, and error correction coding is performed for each data block of a predetermined length to generate an error correction coding frame.
  • MIMO Multiple Input Multiple Output
  • the transmission method (18) in MIMO transmission using a plurality of base bands, components of data included in the error correction coding block are distributed to two or more base bands among the plurality of base bands and transmission is performed. By doing this, it is possible to provide a transmission method that exhibits frequency diversity effects for multiple basebands.
  • a receiving method (19) is a MIMO (Multiple Input Multiple Output) transmission using a plurality of base bands to transmit data components included in an error correction coding block to two or more of the plurality of base bands.
  • a receiving method for receiving a signal distributed to a band comprising: a demodulation step of performing demodulation for each basic band; a MIMO demapping step of performing MIMO demapping on the demodulated data; and MIMO demapping And an error correction decoding step of performing error correction decoding on the output of
  • the transmitting device (20) is a transmitting device having a function of performing communication in Multiple Input Multiple Output (MIMO), and includes an error correction coding unit that performs error correction coding on transmission data, and the error correction code.
  • a mapping unit that maps the encoded data into modulation symbols by a predetermined number of bits to generate mapping data, a MIMO coding unit that performs MIMO coding on the mapping data, and control information including transmission parameters
  • a control information generation unit to generate, a MIMO configuration data to be transmitted from the MIMO encoding unit, and the control information are mixed in the same OFDM symbol to form a transmission frame
  • OFDM signal generation unit that applies orthogonal frequency division multiplexing (OFDM).
  • a transmission frame is configured by mixing MIMO encoded data and control information including transmission parameters in the same OFDM symbol, and MIMO encoding is not performed on the control information. Enables transmission of a new scheme using MIMO transmission technology without adversely affecting the SISO receiver by performing transmission as the same content from a single transmit antenna or transmitting from only one transmit antenna A transmitter can be provided.
  • the MIMO coding unit has M output ports, Each output port may correspond to each transmit antenna, and may further include M interleaving units that rearrange data from the M output ports.
  • each output port of the MIMO encoding unit corresponds to each transmitting antenna, and an interleave unit is provided for each data from the output port to adversely affect the SISO receiver. Accordingly, it is possible to provide a transmitter that enables the introduction of a new scheme using MIMO transmission technology.
  • the M interleaving units may perform the same pattern rearrangement in the transmission device (21).
  • each output port of the MIMO coding unit corresponds to each transmitting antenna
  • the SISO system is provided by providing an interleaving unit that rearranges the same pattern for each data from the output port.
  • the present invention can provide a transmitter capable of introducing a new scheme using the MIMO transmission technology without adversely affecting the SISO receiver by using interleaving with high affinity to the SISO scheme.
  • the number of transmission antennas used for the MIMO may be two in the transmission device (20), and the polarization polarities of the respective transmission antennas may be different.
  • the number of transmit antennas used for MIMO is 2, and the polarization polarity of each transmit antenna is different, so that a transmitter that exhibits polarization diversity effect in a new scheme using MIMO transmission technology Can be provided.
  • the transmitting device (24) may distribute the components of the data contained in the mapping data to all the transmitting antennas in the transmitting device (20) for transmission.
  • space (antenna) diversity effect is exhibited in the new scheme using the MIMO transmission technology by distributing the data components contained in the mapping data to all the transmitting antennas and transmitting them. Can be provided.
  • the MIMO coding unit has M output ports, Each output port may correspond to each transmit antenna, and a component of each data included in the mapping data may be output to all the M output ports.
  • the MIMO coding unit outputs the component of each data included in the mapping data to the output port corresponding to all the transmitting antennas, so that the new scheme using the MIMO transmission technology can (Antenna) It is possible to provide a transmitting apparatus that exhibits a diversity effect.
  • the MIMO coding unit may perform MIMO coding using a precoding matrix of M rows and M columns.
  • the MIMO coding section uses MIMO transmission technology by outputting the components of each data contained in the mapping data to the output port corresponding to all the transmission antennas using the precoding matrix.
  • the new system it is possible to provide a transmitter that exhibits space (antenna) diversity effects.
  • the MIMO coding unit may include a phase changing unit that regularly changes the phase of a signal transmitted from at least one antenna. .
  • the MIMO coding unit regularly changes the phase of the signal transmitted from at least one antenna, and distributes the data component contained in the mapping data to all the transmitting antennas for transmission
  • the present invention provides a transmitting apparatus that exhibits an effect of improving reception quality of data in a LOS environment in which direct waves are dominant. it can.
  • the transmitting device (28) further includes a layer dividing unit for dividing transmission data into L layers (L is a natural number of 2 or more) in the transmitting device (20), and the MIMO encoding unit is provided for each layer. And a segment division unit for dividing the transmission band into Q segments (Q is a natural number of 2 or more) and assigning the MIMO encoded data of each layer to any of the segments;
  • the transmission frame may be configured by mixing the data output from the segment division unit and the control information in the same segment.
  • SISO system reception compatible with hierarchization and segmentation is realized by hierarchization, segmentation, combining transmission data with MIMO encoded data and control information in the same segment. It is possible to provide a transmitter capable of introducing a new scheme using the MIMO transmission technology without adversely affecting the device.
  • the transmitting device (29) further has a function of performing communication with SISO (Single Input Single Output) in the transmitting device (20), and divides transmission data into L (L is a natural number of 2 or more) layers And a MIMO / SISO coding unit that performs MIMO or SISO coding on the mapping data for each hierarchy, and has Q transmission bands (where Q is a natural number of 2 or more).
  • the data processing apparatus further includes a segment division unit that divides into segments and assigns the MIMO or SISO encoded data of each layer to different segments, and the frame configuration unit includes data output from the segment division unit and the control information.
  • the transmission frame may be configured to be mixed in the same segment.
  • MIMO or SISO coding is performed for each layer, the segment division unit assigns MIMO or SISO encoded data of each layer to different segments, and the frame configuration unit is output from the segment division unit Providing a transmitting apparatus that facilitates mixing of the new scheme using the SISO scheme and the new scheme using the MIMO transmission technology by configuring the transmission frame by mixing data and control information in the same segment, and facilitating the introduction of the new scheme.
  • a transmitting apparatus that facilitates mixing of the new scheme using the SISO scheme and the new scheme using the MIMO transmission technology by configuring the transmission frame by mixing data and control information in the same segment, and facilitating the introduction of the new scheme.
  • the layer division unit divides the basic information and the extension information of transmission data into different layers, and performs MIMO / SISO coding of the layer to which the basic information is allocated.
  • the unit performs SISO encoding, and the MIMO / SISO encoding unit of the layer to which the extension information is assigned performs MIMO encoding, the basic information is information that can be decoded independently, and the extension information is the information The information may be decodable in combination with the basic information.
  • the SISO receiver is basic by performing SISO coding on the hierarchy of transmission data basic information and performing MIMO coding on the transmission data extension information hierarchy.
  • a hierarchy of information can be received, and a receiver compatible with the new scheme using the MIMO transmission technology can provide a transmitting apparatus capable of receiving the hierarchy of basic information and extended information.
  • control information generation unit may generate control information indicating MIMO or SISO for each hierarchy.
  • the transmitting apparatus (31) by generating control information indicating MIMO or SISO for each hierarchy, it is possible to mix the SISO system and the new system using the MIMO transmission technology, thereby facilitating the introduction of the new system.
  • An apparatus can be provided.
  • the transmitter (32) generates different pilot signal patterns to be applied to the segment to which the MIMO encoded data is allocated and the segment to which the SISO encoded data is allocated in the transmitter (29) May further include a pilot signal generation unit.
  • the SISO scheme and the MIMO are generated by generating different pilot signal patterns to be applied to the segment to which the MIMO encoded data is allocated and the segment to which the SISO encoded data is allocated. It is possible to provide a transmitter capable of mixing new methods using transmission technology and facilitating the introduction of new methods.
  • the pilot signal generation unit performs CP (for only one transmitting antenna) for the lowest frequency subcarrier of the segment to which the MIMO encoded data is assigned.
  • CP for only one transmitting antenna
  • a Continual Pilot signal may be placed, and null signals may be placed on all the remaining transmitting antennas.
  • the CP signal is allocated to only one transmit antenna for the lowest frequency subcarrier of the segment to which MIMO encoded data is assigned, and null signals are allocated to all the remaining transmit antennas.
  • the error correction coding layer allocation unit further includes a differential correction coding layer allocation unit that outputs the data together with the allocated data, and the error correction coding unit collects output data of the differential correction coding layer allocation unit and stores the timing information in a header It may be a bit and error correction coding may be performed.
  • the different-correction coding layer allocation unit allocates at least a part of the transmission data to a layer that performs error correction coding different from other layers and generates timing information.
  • the frame configuration unit may make the subcarrier arrangement pattern of the control information identical in all segments.
  • the transmitting apparatus (35) by making the subcarrier arrangement pattern of control information identical in all segments, MIMO and / or MIMO can be performed without adversely affecting the receiver of the SISO scheme corresponding to layering and segmentation. It is possible to provide a transmitter capable of introducing a new scheme using MISO.
  • the receiving device (36) is a receiving device having a function to execute communication in Multiple Input Multiple Output (MIMO), and is a transmission in which control information including MIMO encoded data and transmission parameters coexist in the same OFDM symbol.
  • a reception unit that receives a frame, a control information decoding unit that decodes the control information and acquires transmission parameters, and a transmission data demodulation unit that demodulates MIMO encoded data based on the transmission parameters, MIMO encoding is not performed on control information, and transmission is performed as the same content from a plurality of transmission antennas, or transmission is performed only from one transmission antenna.
  • the control information decoding unit decodes the control information to obtain the transmission parameter
  • the transmission data demodulation unit transmission data demodulation step
  • Receiving apparatus for receiving a signal transmitted by MIMO transmission in which MIMO encoded data and control information including the transmission parameter are mixed in the same OFDM symbol by demodulating MIMO encoded data based on the transmission parameter (reception method (reception method) ) Can be provided.
  • the transmission method (37) is a transmission method in a transmission apparatus having a function of executing communication in Multiple Input Multiple Output (MIMO), and includes an error correction coding step of error correction coding on transmission data; A mapping step of mapping error-correction-coded data into modulation symbols by a predetermined number of bits to generate mapping data, a MIMO coding step of performing MIMO coding on the mapping data, and transmission parameters A control information generation step of generating control information; a frame configuration step of configuring a transmission frame by mixing the MIMO encoded data generated in the MIMO encoding step and the control information in the same OFDM symbol; For transmission frames, OFDM (Orthogonal Frequency Division Multipl (e) OFDM signal generation step applying the scheme, wherein the control information is not subjected to MIMO coding, and transmission is performed as the same content from a plurality of transmission antennas, or transmission is performed from only one transmission antenna It is characterized by doing.
  • MIMO Multiple Input Multiple Output
  • a transmission frame is configured by mixing MIMO encoded data and control information including transmission parameters in the same OFDM symbol, and the control information is not subjected to MIMO encoding, Enables transmission of a new scheme using MIMO transmission technology without adversely affecting the SISO receiver by performing transmission as the same content from a single transmit antenna or transmitting from only one transmit antenna
  • a transmission method can be provided.
  • a receiving method (38) is a receiving method in a receiving apparatus having a function of executing communication by MIMO (Multiple Input Multiple Output), and is a transmission frame in which MIMO encoded data and the control information are mixed in the same OFDM symbol. And a control data decoding step for decoding the control information to obtain a transmission parameter, and a transmission data demodulation step for demodulating MIMO encoded data based on the transmission parameter, the control information
  • MIMO coding is not performed, and transmission is performed as the same content from a plurality of transmission antennas, or transmission is performed only from one transmission antenna.
  • the transmitting apparatus, transmitting method, receiving apparatus, receiving method, integrated circuit, and program according to the present invention can be applied to the MIMO transmission scheme.

Abstract

 本発明は、複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送を行う送信装置であって、所定長のデータブロック毎に、誤り訂正符号化して誤り訂正符号化フレームを生成する誤り訂正符号化部と、前記誤り訂正符号化フレームを所定数のビットずつシンボルにマッピングして誤り訂正符号化ブロックを生成するマッピング部と、前記誤り訂正符号化ブロックに対してMIMO符号化を行うMIMO符号化部と、を有し、前記誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内2以上の基本帯域に振り分けて送信を行うことを特徴とする。

Description

送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラム
 本発明は、MIMO伝送技術に関する。
 伝送技術として、MIMO(Multiple Input Multiple Output)伝送技術が知られている。MIMO伝送技術は、送受信とも複数のアンテナを用いて、複数の信号を並列伝送することを特徴とし、大容量伝送に有用である。例えば、欧州における携帯・モバイル受信機用伝送規格であるDVB―NGH(DVB-Next Generation Handheld)規格に、MIMO伝送技術が採用されている(非特許文献3)。
特表2008/526081号(国際公開第2006/068344号)
ETSI EN 302 755 V1.3.1 (2012年4月): Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2) ETSI TS 102 831 V1.2.1 (2012年8月): Implementation guidelines for a second generation digital terrestrial television broadcasting system (DVB-T2) DVB-TM文書 TM4701r3 (2012年9月): Next Generation broadcasting system to Handheld, physical layer specification (DVB-NGH) (Draft ETSI EN 303 105 V1.1.1) ARIB標準規格ARIB STD-B31 2.1版 (2012年12月):地上デジタルテレビジョン放送の伝送方式 "BER performance evaluation in 2x2 MIMO spatial multiplexing systems under Rician fading channels," IEICE Trans. Fundamentals, vol.E91-A, no.10, pp.2798-2807, Oct. 2008.
 一般的に、MIMO伝送における受信品質の向上が求められている。そこで、本発明は、MIMO伝送において、受信品質の向上を実現する送信装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る送信装置は、複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送を行う送信装置であって、所定長のデータブロック毎に、誤り訂正符号化して誤り訂正符号化フレームを生成する誤り訂正符号化部と、前記誤り訂正符号化フレームを所定数のビットずつシンボルにマッピングして誤り訂正符号化ブロックを生成するマッピング部と、前記誤り訂正符号化ブロックに対してMIMO符号化を行うMIMO符号化部と、を有し、前記誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内2以上の基本帯域に振り分けて送信を行う、ことを特徴とする。
 上記の送信装置によれば、MIMO伝送において、受信品質の向上を実現することができる。
実施の形態1における送信装置100の構成を示す図である。 実施の形態1におけるMIMO-PLP処理部131の構成を示す図である。 実施の形態1におけるL1情報処理部141の構成を示す図である。 実施の形態1における受信装置200の構成を示す図である。 実施の形態1におけるMIMO-PLP処理部132の構成を示す図である。 実施の形態1におけるL1情報処理部142の構成を示す図である。 実施の形態1における受信装置250の構成を示す図である。 実施の形態2における送信装置300の構成を示す図である。 実施の形態2におけるMIMO-PLP処理部331の構成を示す図である。 実施の形態2におけるMIMO-PLP処理部332の構成を示す図である。 実施の形態2におけるL1情報処理部341の構成を示す図である。 実施の形態2におけるL1情報処理部342の構成を示す図である。 実施の形態2における受信装置400の構成を示す図である。 実施の形態2におけるMIMO-PLP処理部333の構成を示す図である。 実施の形態2におけるMIMO-PLP処理部334の構成を示す図である。 実施の形態2におけるL1情報処理部343の構成を示す図である。 実施の形態2におけるL1情報処理部344の構成を示す図である。 実施の形態2における受信装置450の構成を示す図である。 実施の形態3における送信装置500の構成を示す図である。 実施の形態3におけるMIMO-PLP処理部531の構成を示す図である。 実施の形態3における周波数チャンネル間入替部591の構成を示す図である。 実施の形態3におけるL1情報処理部541の構成を示す図である。 実施の形態3における受信装置600の構成を示す図である。 実施の形態3におけるMIMO-PLP処理部532の構成を示す図である。 実施の形態3におけるL1情報処理部542の構成を示す図である。 実施の形態3における受信装置650の構成を示す図である。 実施の形態4における送信装置700の構成を示す図である。 実施の形態4におけるMIMO-PLP処理部731の構成を示す図である。 実施の形態4における受信装置800の構成を示す図である。 実施の形態4におけるMIMO-PLP処理部732の構成を示す図である。 実施の形態4における受信装置850の構成を示す図である。 実施の形態5における送信装置900の構成を示す図である。 実施の形態5におけるMIMO-PLP処理部931の構成を示す図である。 実施の形態5における周波数チャンネル間入替部991の構成を示す図である。 実施の形態5におけるL1情報処理部941の構成を示す図である。 実施の形態5における受信装置1000の構成を示す図である。 実施の形態5におけるMIMO-PLP処理部932の構成を示す図である。 実施の形態5におけるL1情報処理部942の構成を示す図である。 実施の形態5における受信装置1050の構成を示す図である。 実施の形態6における送信装置1100の構成を示す図である。 実施の形態6におけるMIMO-PLP処理部1131の構成を示す図である。 実施の形態6における周波数チャンネル間入替部1191の構成を示す図である。 実施の形態6におけるL1情報処理部1141の構成を示す図である。 実施の形態6におけるMIMO-PLP処理部1132の構成を示す図である。 実施の形態6におけるL1情報処理部1142の構成を示す図である。 実施の形態7における送信装置1300の構成を示す図である。 実施の形態7におけるTS生成部1210の構成を示す図である。 実施の形態7におけるL1情報処理部1341の構成を示す図である。 実施の形態7における受信装置1400の構成を示す図である。 実施の形態7における受信装置1450の構成を示す図である。 実施の形態8における送信装置150の構成を示す図である。 実施の形態8における受信装置270の構成を示す図である。 DVB―NGH方式の伝送フレーム構成を示す図である。 従来のDVB―NGH方式のMIMOプロファイルにおける送信装置2000の構成を示す図である。 従来のDVB―NGH方式におけるMIMO-PLP処理部2031の構成を示す図である。 従来のDVB―NGH方式におけるL1情報処理部2041の構成を示す図である。 実施の形態9における送信装置3000の構成を示す図である。 実施の形態9における階層処理部3041の構成を示す図である。 実施の形態9におけるMIMO伝送及びMISO伝送のセグメント構成を示す図である。 実施の形態9におけるTMCC信号の定義の一部を示す図である。 実施の形態9における既存のISDB―T受信装置3300の構成を示す図である。 実施の形態9における複数階層TS再生部3331の構成を示す図である。 実施の形態9におけるFEC復号化部3333の構成を示す図である。 実施の形態9における受信装置3500の構成を示す図である。 実施の形態9における複数階層TS再生部3531の構成を示す図である。 実施の形態10における送信装置3600の構成を示す図である。 実施の形態10におけるLDPC階層処理部3645の構成を示す図である。 実施の形態10におけるLDPC符号化に関するTMCC信号の定義を示す図である。 実施の形態10における受信装置3800の構成を示す図である。 実施の形態10における複数階層TS再生部3831の構成を示す図である。 実施の形態10におけるFEC復号化部3833の構成を示す図である。 実施の形態11における送信装置4000の構成を示す図である。 実施の形態11におけるTS生成部4210の構成を示す図である。 実施の形態12における送信装置4300の構成を示す図である。 ISDB―T方式における送信装置5000の構成を示す図である。 ISDB―T方式における階層処理部5041の構成を示す図である。 ISDB―T方式における周波数インターリーブ部5071の構成を示す図である。 ISDB-T方式のセグメント構成を示す図である。
 ≪発明者による検討内容と実施の形態(その1)≫
 欧州における地上デジタルテレビ放送の伝送規格であるDVB―T(DVB-Terrestrial)方式により、欧州を初め、欧州以外の国々でもテレビ放送のデジタル化が広く進行している。一方、周波数利用効率改善を目的として、第2世代地上デジタルテレビ放送であるDVB―T2方式の規格化が2006年より開始され、2009年に英国で本放送によるHDTVサービスが開始された。DVB―T2方式はDVB―Tと同じく、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式を採用している(非特許文献1、2)。
 一方、携帯・モバイル受信機用伝送規格であるDVB―NGH(DVB-Next Generation Handheld)方式の規格化が2010年より開始され、2012年9月に規格書ドラフトがDVB-TM(DVB-Technical Module)で承認された(非特許文献3)。DVB―NGHはMIMO(Multiple Input Multiple Output)伝送技術を採用した初のデジタルテレビ放送規格である。
 図53は、DVB―NGH方式の伝送フレーム構成を示す図である。DVB―NGH方式はPLP(Physical Layer Pipe)と呼ばれる概念を有し、PLP毎に独立に変調方式、符号化率などの伝送パラメータを設定できることが特徴の一つである。PLPの数は最小1、最大255であり、図53は例として、PLPの数が10の場合を示している。
 以下に、伝送フレーム構成を示す。
   スーパーフレーム=N_EBFフレーム群基本ブロック(N_EBF=2~255)
   フレーム群基本ブロック=N_Fフレーム(N_F=1~255)
   フレーム=P1シンボル+aP1シンボル+P2シンボル+データシンボル
   P1シンボル=1シンボル
   aP1シンボル=0~1シンボル
   P2シンボル=N_P2シンボル(N_P2はFFTサイズにより一意)
   データシンボル=L_dataシンボル(L_dataは可変、上限と下限あり)
 P1シンボルはFFTサイズ1k、GI(Guard Interval)=1/2で送信される。P1シンボルはS1の3ビットにより、そのP1シンボルから開始するフレームのフォーマット(NGH_SISO、NGH_MISO、それ以外を示すESCなど)を送信する。
 またP1シンボルはS2の4ビットにより、そのフレームのフォーマットがNGH_SISOまたはNGH_MISOの場合、後続するP2シンボル及びデータシンボルにおけるFFTサイズなどの情報を送信する。またP1シンボルはS2の4ビットにより、そのフレームのフォーマットがそれ以外を示すESCである場合、そのフレームのフォーマット(NGH_MIMOなど)を送信する。
 aP1シンボルは、P1シンボル中のS1でESCと送信された場合のみ送信される。P1シンボルと同じくFFTサイズ1k、GI(Guard Interval)=1/2で送信されるが、GIの生成方法がP1シンボルと異なる。aP1シンボルはS3の3ビットにより、後続するP2シンボル及びデータシンボルにおけるFFTサイズなどの情報を送信する。
 P2シンボルは前半部分にL1シグナリング情報を含み、余った後半部分に主信号データを含む。データシンボルは主信号データの続きを含む。
 P2シンボルで送信するL1シグナリング情報は、主に全PLPに共通な情報を送信するL1-pre情報と、主にPLP毎の情報を送信するL1-post情報によって構成される。図53ではL1-pre情報に続いてL1-post情報が送信される、LC(Logical Channel)type Aの構成を示している。なおLC type Bにおいては、L1-post情報の送信順序はL1-pre情報の次に限定されない。
 図54は、DVB―NGH方式のMIMOプロファイルにおける送信装置2000の構成を示す図である(非特許文献3参照)。送信装置2000は一例として2つのストリームが入力される、すなわち2つのPLPを生成する場合を示し、PLP毎にMIMO-PLP処理部2031を備える。また送信装置2000は、L1(Layer-1)情報処理部2041、フレーム構成部2051を備える。更に送信装置2000は、送信アンテナ毎にOFDM信号生成部2061、D/A変換部2091、周波数変換部2096を備える。
 以下、送信装置2000の動作について説明する。PLP毎のMIMO-PLP処理部2031はそれぞれ入力ストリームをPLPに対応させ、そのPLPに関する処理を行い、2つの送信アンテナ(Tx-1、Tx-2)に対する各PLPのマッピングデータ(cell)を出力する。入力ストリームの一例としては、TS(Transport Stream)、TSのあるプログラムに含まれる音声・映像などのサービス・コンポーネント、SVC(Scalable Video Coding)を用いた映像のBase layerやEnhancement layerなどのサービス・サブコンポーネントなどが挙げられ、情報源符号化の一例としてはH.264やHEVC(H.265)などが挙げられる。
 L1情報処理部2041は、L1情報に関する処理を行い、2つの送信アンテナ(Tx-1、Tx-2)に対するL1情報のマッピングデータを出力する。フレーム構成部2051は、MIMO-PLP処理部2031から出力される2つの送信アンテナ(Tx-1、Tx-2)に対する各PLPのマッピングデータと、L1情報処理部2041から出力される2つの送信アンテナ(Tx-1、Tx-2)に対するL1情報のマッピングデータを用いて、図53に示すDVB―NGH方式の伝送フレームを生成して出力する。
 2つの送信アンテナ毎のOFDM信号生成部2061はそれぞれ、フレーム構成部2051から出力されるDVB―NGH方式の伝送フレーム構成に対して、パイロット信号の付加、IFFT(Inverse Fast Fourier Transform)、GIの挿入、P1シンボルとaP1シンボルの挿入を行い、DVB―NGH方式のデジタルベースバンド送信信号を出力する。2つの送信アンテナ毎のD/A変換部2091はそれぞれ、OFDM信号生成部2061から出力されるDVB―NGH方式のデジタルベースバンド送信信号に対してD/A変換を行い、DVB―NGH方式のアナログベースバンド送信信号を出力する。2つの送信アンテナ毎の周波数変換部2096はそれぞれ、D/A変換部2091から出力されるDVB―NGH方式のアナログベースバンド送信信号に対して周波数チャンネルAに周波数変換を行い、DVB―NGH方式のアナログRF送信信号を図示しない送信アンテナから出力する。
 次に、MIMO-PLP処理部2031の動作について詳細を説明する。図55に示す通り、MIMO-PLP処理部2031は、入力処理部2071、FEC(Forward Error Correction)符号化部2072、マッピング部2073、MIMO符号化部2076、2つの送信アンテナ毎のインターリーブ部2074を備える。
 MIMO-PLP処理部2031において、入力処理部2071は入力ストリームをベースバンド・フレームに変換する。FEC符号化部2072はベースバンド・フレーム毎にBCH符号化、及びLDPC符号化を行ってパリティビットを付加し、FECフレームを生成する。マッピング部2073はI・Q座標へのマッピングを行ってFECブロックに変換し、各マッピングデータ(cell)を出力する。MIMO符号化部2076はMIMO符号化を行う。2つの送信アンテナ毎のインターリーブ部2074は、整数個のFECブロックを含むTI(Time Interleaving)ブロック内で、マッピングデータ(cell)の並べ替えを行う。
 次に、L1情報処理部2041の動作について詳細を説明する。図56に示す通り、L1情報処理部2041は、L1情報生成部2081、FEC符号化部2082、マッピング部2083、MIMO符号化部2076を備える。
 L1情報処理部2041において、L1情報生成部2081は、伝送パラメータを生成してL1-pre情報とL1-post情報に変換する。FEC符号化部2082はL1-pre情報とL1-post情報毎に、BCH符号化、及びLDPC符号化を行ってパリティビットを付加する。マッピング部2083はI・Q座標へのマッピングを行い、マッピングデータ(cell)を出力する。MIMO符号化部2076はMIMO符号化を行う。
 ところで、HDTVサービスの解像度を超えるUHDTV(Ultra HDTV)サービスの検討が盛んに行われている。特に8k画質(水平7,680×垂直4,320の画素数)のサービス実現のためにはHEVC(H.265)を用いたとしても、100Mbpsを超えるペイロード・ビットレートの伝送が必要である。英国におけるDVB―T2方式の本放送では、帯域幅8MHzを用いて約40Mbpsのペイロード・ビットレートにより伝送を行っている。DVB-T2方式に2つの送信アンテナを用いたMIMO伝送技術を適用したとしても、ペイロード・ビットレートは最大約80Mbpsであり、8k画質のサービスを伝送することができない。よって、複数の基本帯域(例:8MHz)を用いたMIMO伝送技術の検討が重要である。ここで基本帯域とは、上記の周波数チャンネルを指し、図54ではCH-Aに相当する。すなわち、基本帯域は変調されたRF送信信号の帯域幅を指す。
 ここでLTE-Advanced規格(LTE Rel.10)では、複数の基本帯域を用いたMIMO伝送技術を規定している。しかしながら、変調と伝送路符号化はトランスポートブロック単位で各基本帯域(CC:Component Carrier)で独立に行われ、それぞれ1つのCCのみにマッピングされる。従って、伝送路符号化による周波数ダイバーシティ効果は基本帯域内に限定される。
 また特許文献1には、複数の基本帯域を用いたMIMO伝送において、MIMO符号化の前に複数の基本帯域を一括してインターリーブを行う構成が示されているが、インターリーブの具体的処理に関する記載がなされていない。
 前述の通り、複数の基本帯域を用いたMIMO伝送技術において、複数の基本帯域に関する周波数ダイバーシティ効果が不十分であるという課題がある。
 以下で説明する、実施の形態1~8に係る発明は、この課題を解決するべくなされたものであり、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラムを提供することを目的とする。
 以下、各実施形態について、図面を用いて詳細に説明する。
 (実施の形態1)
 <送信装置及び送信方法>
 図1は、本発明の実施の形態1における送信装置100の構成を示す図である。従来の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図1に示す送信装置100は図54に示す従来の送信装置2000と比較して、MIMO-PLP処理部2031及びL1情報処理部2041及びフレーム構成部2051をMIMO-PLP処理部131及びL1情報処理部141及びフレーム構成部151にそれぞれ置き換えた構成である。また送信装置100では、各送信アンテナの周波数チャンネル毎にOFDM信号生成部2061、D/A変換部2091を備える。更に送信装置100では、送信アンテナ毎に周波数チャンネルAに対しては周波数変換部2096を備え、周波数チャンネルBに対しては周波数変換部196を備える。
 以下、送信装置100の動作について説明する。PLP毎のMIMO-PLP処理部131はそれぞれ入力ストリームをPLPに対応させ、そのPLPに関する処理を行い、2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)に対する各PLPのマッピングデータ(cell)を出力する。
 L1情報処理部141は、L1情報に関する処理を行い、2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)に対するL1情報のマッピングデータを出力する。
 フレーム構成部151は、MIMO-PLP処理部131から出力される2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)に対する各PLPのマッピングデータと、L1情報処理部141から出力される2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)に対するL1情報のマッピングデータを用いて、図53に示す伝送フレームを生成して出力する。ここで図54に示す従来の送信装置2000と異なる点は、2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)において、伝送フレームを構成していることである。
 2つの送信アンテナの周波数チャンネル毎のOFDM信号生成部2061及びD/A変換部2091は、図54に示す従来の送信装置2000と同様の動作を行う。
 周波数チャンネルAに対する2つの送信アンテナ毎の周波数変換部2096は図54に示す従来の送信装置2000と同様に、周波数チャンネルAに周波数変換を行い、アナログRF送信信号を図示しない送信アンテナから出力する。一方周波数チャンネルBに対する2つの送信アンテナ毎の周波数変換部196は、周波数チャンネルBに周波数変換を行い、アナログRF送信信号を図示しない送信アンテナから出力する。
 図2は、MIMO-PLP処理部131の構成を示す図である。図55に示す従来のMIMO-PLP処理部2031と比較して、MIMO符号化部2076をMIMO符号化部176に置き換えた構成である。またMIMO-PLP処理部131では、各送信アンテナの周波数チャンネル毎にインターリーブ部2074を備える。
 図2のMIMO-PLP処理部131において、MIMO符号化部176は入力される各FECブロックに対して、先頭から4つずつのマッピングデータ(cell)を用いてプリコーディングを行い、2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)に対するMIMO符号化データを出力する。各FECブロックのマッピングデータ(cell)を先頭からs1、s2、…、sNcells(Ncells:FECブロック中のcell数)と表すと、入力ベクトルs=(s4k+1,s4k+2,s4k+3,s4k+4)T(k=0,1,…,(Ncells/4)-1)に対して出力ベクトルz=(z1A_k,z2A_k,z1B_k,z2B_k)Tは式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 但し、zPQ_kは送信アンテナP、周波数チャンネルQに対する出力データ(MIMO符号化データ)、Fは式(2)で表される固定プリコーディング行列である。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、固定プリコーディング行列の各要素wMN(M=1,2,3,4、N=1,2,3,4)は複素数である。但し、wMNは全て複素数である必要はなく、実数の要素が含まれてもよい。
 なお式(3)と式(4)に示す通り、式(1)に対して更に規則的に変化する位相変更行列X(k)を乗算して、プリコーディングを行ってもよい。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 この位相変更行列X(k)により、送信アンテナ2(Tx-2)に対するMIMO符号化データ系列に対して、2つの周波数チャンネル(CH-A、CH-B)ともに2π/9ラジアンずつ変化する周期9の位相変更を施す。よってMIMO伝送路に規則的な変動を起こすことにより、直接波が支配的なLOS(Line Of Sight)環境における受信装置におけるデータの受信品質が向上するという効果を得ることができる。なお、この位相変更例は一例に過ぎず、周期は9に限ったものではない。この周期の数が多くなればその分だけ、受信装置の受信性能(より正確には誤り訂正性能)の向上を促すことができる可能性がある(周期が大きければよいというわけではないが、2のような小さい値は避ける方がよい可能性が高い)。
 また、上記式(3)と式(4)で示した位相変更例では逐次所定の位相(上記式では、2π/9ラジアンずつ)だけ回転させていく構成を示したが、同じ位相量だけ回転させるのではなくランダムに位相を変更することとしてもよい。位相の規則的な変更において重要となるのは、変調信号の位相が規則的に変更されることであり、変更される位相の度合いについては、なるべく均等になる、例えば、-πラジアンからπラジアンに対し、一様分布となるのが望ましいもののランダムであってもよい。
 MIMO符号化部176が以上の動作をすることにより、出力ベクトルzの各要素は式(5)~式(8)のように表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、f1A、f2A、f1B、f2Bは関数を表す。
 2つの送信アンテナの周波数チャンネル毎のインターリーブ部2074は、図54に示す従来の送信装置2000と同様の動作を行う。これにより、FECブロック中の各マッピングデータ(cell)の成分は、2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)全てから送信される。
 図3は、L1情報処理部141の構成を示す図である。図56に示す従来のL1情報処理部2041と比較して、L1情報生成部2081とMIMO符号化部2076をL1情報生成部181とMIMO符号化部176にそれぞれ置き換えた構成である。
 図3のL1情報処理部141において、L1情報生成部181は2つの周波数チャンネル(CH-A、CH-B)に関する伝送パラメータを生成する。MIMO符号化部176は前述した図2におけるMIMO符号化部176と同様の動作を行う。これにより、L1情報のFECブロック中の各マッピングデータ(cell)の成分は、2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)全てから送信される。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中の各マッピングデータ(cell)の成分を、全送信アンテナそれぞれの全周波数チャンネルから送信することにより、複数の基本帯域に関する周波数ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。特に、複数の基本帯域に渡ってMIMOプリコーディング処理結果を出力することが特徴である。
 なお、ここでの基本帯域とは、上記の周波数チャンネルを指し、図1ではCH-AとCH-Bに相当する。すなわち、基本帯域は変調されたRF送信信号の帯域幅を指す。以降でも、同じ定義である。
 また、複数の基本帯域を用いた伝送とは、複数の基本帯域のそれぞれにおいて、共通のサービスのコンテンツを格納したRF送信信号を生成して同時に送信することを意味する。ここで、複数の基本帯域は互いに隣接した複数の基本帯域であっても良いし、他のサービスで使用される周波数チャネル、または周波数帯域を間に含む、隣接しない複数の基本帯域であっても良い。
 なお、複数の基本帯域を用いた伝送では、複数の基本帯域のRF送信信号を常に同時に送信する必要は無く、例えば、時分割された一部の期間において一つの基本帯域のみを用いた伝送が行われるような使用する基本帯域の数を切り替え可能な方式であってもよい。
 <受信装置及び受信方法>
 図4は、本発明の実施の形態1における受信装置200の構成を示す図である。図4の受信装置200は、図1の送信装置100に対応し、送信装置100の機能を反映するものである。
 受信装置200は、受信アンテナ(Rx-1、Rx-2)毎に一方の周波数チャンネル(CH-A)用のチューナ部205Aと、A/D変換部208Aと、復調部211Aと、周波数デインターリーブ・L1情報デインターリーブ部215Aと、PLP用デインターリーブ部221Aと、選択部231Aを備える。また受信装置200は、受信アンテナ(Rx-1、Rx-2)毎に他方の周波数チャンネル(CH-B)用のチューナ部205Bと、A/D変換部208Bと、復調部211Bと、周波数デインターリーブ・L1情報デインターリーブ部215Bと、PLP用デインターリーブ部221Bと、選択部231Bを備える。更に受信装置200は、MIMOデマッピング部232と、FEC復号化部233を備える。
 以下、受信装置200の動作について説明する。
 一方の受信アンテナRx-1よりアナログRF送信信号が入力されると、チューナ部205A-1は一方の周波数チャンネル(CH-A)の信号を選択受信し、所定の帯域にダウンコンバートする。A/D変換部208A-1はA/D変換して、デジタル受信信号を出力する。復調部211A-1はOFDM復調を行い、I・Q座標のcellデータと伝送路推定値を出力する。周波数デインターリーブ・L1情報デインターリーブ部215A-1は、選局されたプログラムデータを含むPLPのcellデータと伝送路推定値を周波数デインターリーブし、かつL1情報のcellデータと伝送路推定値のデインターリーブを行う。デインターリーブされたL1情報のcellデータと伝送路推定値は、選択部231A-1で選択される。
 他方の受信アンテナRx-2よりアナログRF送信信号が入力されると、チューナ部205A-2と、A/D変換部208A-2と、復調部211A-2と、周波数デインターリーブ・L1情報デインターリーブ部215A-2と、PLP用デインターリーブ部221A-2と、選択部231A-2は前述のRx-1(CH-Aの選択受信)と同様の動作を行う。
 また受信アンテナRx-1よりアナログRF送信信号が入力されると、チューナ部205B-1は他方の周波数チャンネル(CH-B)の信号を選択受信し、所定の帯域にダウンコンバートする。A/D変換部208B-1と、復調部211B-1と、周波数デインターリーブ・L1情報デインターリーブ部215B-1と、PLP用デインターリーブ部221B-1と、選択部231B-1は前述のRx-1(CH-Aの選択受信)と同様の動作を行う。
 また受信アンテナRx-2よりアナログRF送信信号が入力されると、チューナ部205B-2と、A/D変換部208B-2と、復調部211B-2と、周波数デインターリーブ・L1情報デインターリーブ部215B-2と、PLP用デインターリーブ部221B-2と、選択部231B-2は前述のRx-1(CH-Aの選択受信)と同様の動作を行う。
 4つの選択部(231A-1、231A-2、231B-1、231B-2)から出力されたL1情報のcellデータと伝送路推定値に対して、MIMOデマッピング部232がMIMO用デマッピング処理を行い、FEC復号化部233がLDPC復号処理、BCH復号処理を行う。これにより、L1情報が復号される。
 4つのPLP用デインターリーブ部221(221A-1、221A-2、221B-1、221B-2)は、復号されたL1情報に含まれるスケジューリング情報に基づき、ユーザにより選択されたプログラムを含むPLP(例えば、図1に示すPLP-1)のcellデータと伝送路推定値を抽出して、送信側のインターリーブ処理と逆の並べ替えを行う。
 4つの選択部(231A-1、231A-2、231B-1、231B-2)はそれぞれ、これら4つのPLP用デインターリーブ部(221A-1、221A-2、221B-1、221B-2)出力を選択する。
 4つの選択部(231A-1、231A-2、231B-1、231B-2)から出力されたPLPのcellデータと伝送路推定値に対して、MIMOデマッピング部232がMIMO用デマッピング処理を行い、FEC復号化部233がLDPC復号処理、BCH復号処理を行う。これにより、PLPデータが復号される。
 また、図4の受信装置200の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路240としてもよい。
 以下、MIMOデマッピング部232の動作について説明する。MIMOデマッピング部232に入力される各FECブロックに対して、入力ベクトルy=(y1A_k,y2A_k,y1B_k,y2B_k)T(k=0,1,…,(Ncells/4)-1)は式(9)のように表される。
Figure JPOXMLDOC01-appb-M000009
 但し、yPQ_kは受信アンテナP、周波数チャンネルQに対する入力データ、Hは式(10)で表される伝送路行列、n=(n1A_k,n2A_k,n1B_k,n2B_k)Tはノイズベクトルであり、nPQ_kは平均値0、分散σ2のi.i.d.複素ガウス雑音である。
Figure JPOXMLDOC01-appb-M000010
 式(9)と式(10)を用いて、MIMOデマッピング部232は最尤復号(MLD:Maximum Likelihood Decoding)を行い、各FECブロックのベクトル推定値s’=(s’4k+1,s’4k+2,s’4k+3,s’4k+4)T(k=0,1,…,(Ncells/4)-1)を算出して、出力する。なお、MIMOデマッピング部232の処理は最尤復号に限らず、ZF(Zero Forcing)など他の方法を用いてもよい。
 ここで式(10)において、伝送路行列Hの各要素hMN_k(M=1,2,3,4、N=1,2,3,4)は複素数である。注目すべき点は、(M=1,2、N=3,4)及び(M=3,4、N=1,2)に対する伝送路行列Hの要素が0であることである。これらの要素は異なる2つの周波数チャンネル(CH-A、CH-B)間を示すため、0となる。よって、式(9)と式(10)は4行4列の伝送路行列Hを含むが、伝送路行列Hの全要素が非零の場合と比較して、MIMOデマッピング部232における演算量は少なくなる。
 FEC復号化部233はMIMOデマッピング部232から出力される各FECブロックのベクトル推定値s’に対してLDPC復号とBCH復号を行い、復号結果を出力する。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中の各マッピングデータ(cell)の成分を、全送信アンテナそれぞれの全周波数チャンネルから送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。
 <送信装置及び送信方法の変形例>
 なお、図2に示すMIMO-PLP処理部131を図5に示すMIMO-PLP処理部132に置き換えてもよい。図5に示すMIMO-PLP処理部132は図2に示すMIMO-PLP処理部131と比較して、MIMO符号化部176をMIMO符号化部177に置き換えた構成である。更に周波数チャンネルB(CH-B)に対する2つのインターリーブ部2074-3と2074-4をそれぞれインターリーブ部174-3と174-4にそれぞれ置き換えた構成である。
 図5において、MIMO符号化部177は式(11)に示す位相変更行列X(k)を乗算して、プリコーディングを行ってもよい。
Figure JPOXMLDOC01-appb-M000011
 式(11)におけるθの値の一例としてπ/9が挙げられるが、これに限定されない。式(11)に示す位相変更行列X(k)により、送信アンテナ2(Tx-2)に対するMIMO符号化データ系列に対して、一方の周波数チャンネル(CH-A)には初期値0ラジアンで、2π/9ラジアンずつ変化する周期9の位相変更を施す。他方の周波数チャンネル(CH-B)には初期値π/9ラジアンで、2π/9ラジアンずつ変化する周期9の位相変更を施す。2つの周波数チャンネル(CH-A、CH-B)が同一の送信アンテナ群(Tx-1,Tx-2)から送信され、同一の受信アンテナ群(Rx-1,Rx-2)で受信される場合、特に直接波が支配的なLOS環境においては、2つの周波数チャンネル(CH-A、CH-B)の伝送路特性が高い相関性を持つ可能性がある。式(11)に示す位相変更行列X(k)は2つの周波数チャンネル(CH-A、CH-B)の位相変更パターンを異ならせることで、相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。なお位相変更パターンを異ならせる方法がこれに限らず、例えば異なる位相変更の周期を用いてもよい。
 図5において、周波数チャンネルB(CH-B)に対する2つのインターリーブ部174-3と174-4は、周波数チャンネルA(CH-A)に対する2つのインターリーブ部2074-1と2074-2と異なるパターンの並べ替えを行ってもよい。異なるパターンの一例としては、インターリーブを行うフレーム数が挙げられるが、これに限定されない。ここで注目すべき点は、同じ周波数チャンネルA(CH-A)に対する2つのインターリーブ部2074-1と2074-2は同一パターンの並べ替えを行い、かつ同じ周波数チャンネルB(CH-B)に対する2つのインターリーブ部174-1と174-2は同一パターンの並べ替えを行う点である。これにより、MIMOデマッピングにおける演算量を増加させることなく、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対する位相変更行列X(k)の位相変更パターンを異ならせることとインターリーブの並び替えパターンを異ならせることは同時に適用してもよいし、いずれか一方のみ適用してもよい。
 また、図3に示すL1情報処理部141を図6に示すL1情報処理部142に置き換えてもよい。図6に示すL1情報処理部142は図3に示すL1情報処理部141と比較して、MIMO符号化部176をMIMO符号化部177に置き換えた構成である。MIMO符号化部177は、図5におけるMIMO符号化部177と同様の動作を行う。これにより、式(11)に示す位相変更行列X(k)は2つの周波数チャンネル(CH-A、CH-B)の位相変更パターンを異ならせることで、相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 <受信装置及び受信方法の変形例>
 以上の図5に示すMIMO-PLP処理部132及び図6に示すL1情報処理部142が適用された場合に対する受信装置250の構成を図7に示す。図7に示す受信装置250は図4に示す受信装置200と比較して、周波数チャンネルB(CH-B)用のPLP用デインターリーブ部221BをPLP用デインターリーブ部222Bに置き換え、MIMOデマッピング部232をMIMOデマッピング部235に置き換えた構成である。図7において周波数チャンネルB(CH-B)用のPLP用デインターリーブ部222Bは、図5におけるインターリーブ部174と逆の並び替えを行う。またMIMOデマッピング部235は、式(4)に示す位相変更行列X(k)の代わりに式(11)に示す位相変更行列X(k)を考慮して、式(9)と式(10)を用いて最尤復号(MLD)を行う。
 また、図7の受信装置250の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路241としてもよい。
 (実施の形態2)
 <送信装置及び送信方法>
 図8は、本発明の実施の形態2における送信装置300の構成を示す図である。従来の送信装置、及び実施の形態1の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図8の送信装置300は図1に示す実施の形態1における送信装置100と比較して、MIMO-PLP処理部131及びL1情報処理部141をMIMO-PLP処理部331及びL1情報処理部341にそれぞれ置き換えた構成である。
 図9は、MIMO-PLP処理部331の構成を示す図である。図2に示す実施の形態1におけるMIMO-PLP処理部131と比較して、S/P(Serial to Parallel)変換部378を追加した構成である。更に、MIMO符号化部176を2つのMIMO符号化部376Aと376Bに置き換えた構成である。
 図9のMIMO-PLP処理部331において、S/P変換部378は入力される各FECブロックに対して、先頭から2つずつのマッピングデータ(cell)を順にMIMO符号化部376A、MIMO符号化部376B、MIMO符号化部376A、MIMO符号化部376B、…と振り分ける。よって、各FECブロックの半分ずつのマッピングデータ(cell)がMIMO符号化部376Aと376Bに振り分けられる。
 MIMO符号化部376Aは入力される各FECブロックの内の半分のマッピングデータ(cell)に対して、先頭から2つずつを用いてプリコーディングを行い、2つの送信アンテナ(Tx-1、Tx-2)に対するMIMO符号化データを出力する。各FECブロックのマッピングデータ(cell)を先頭からs1、s2、…、sNcells(Ncells:FECブロック中のcell数)と表すと、MIMO符号化部376Aへの入力ベクトルs_A=(s4k+1,s4k+2)T(k=0,1,…,(Ncells/4)-1)に対して出力ベクトルz_A=(z1A_k,z2A_k)Tは式(12)のように表される。
Figure JPOXMLDOC01-appb-M000012
 但し、zPQ_kは送信アンテナP、周波数チャンネルQに対する出力データ(MIMO符号化データ)、F_Aは式(13)で表される固定プリコーディング行列である。
Figure JPOXMLDOC01-appb-M000013
 式(13)において、固定プリコーディング行列の各要素wMN_A(M=1,2、N=1,2)は複素数である。但し、wMN_Aは全て複素数である必要はなく、実数の要素が含まれてもよい。
 なお式(14)と式(15)に示す通り、式(12)に対して更に規則的に変化する位相変更行列X_A(k)を乗算して、プリコーディングを行ってもよい。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 この位相変更行列X_A(k)により、送信アンテナ2(Tx-2)に対するMIMO符号化データ系列に対して、2π/9ラジアンずつ変化する周期9の位相変更を施す。よってMIMO伝送路に規則的な変動を起こすことにより、直接波が支配的なLOS(Line Of Sight)環境における受信装置におけるデータの受信品質が向上するという効果を得ることができる。なお、この位相変更例は一例に過ぎず、周期は9に限ったものではない。この周期の数が多くなればその分だけ、受信装置の受信性能(より正確には誤り訂正性能)の向上を促すことができる可能性がある(周期が大きければよいというわけではないが、2のような小さい値は避ける方がよい可能性が高い。)。
 また、上記式(14)と式(15)で示した位相変更例では逐次所定の位相(上記式では、2π/9ラジアンずつ)だけ回転させていく構成を示したが、同じ位相量だけ回転させるのではなくランダムに位相を変更することとしてもよい。位相の規則的な変更において重要となるのは、変調信号の位相が規則的に変更されることであり、変更される位相の度合いについては、なるべく均等になる、例えば、-πラジアンからπラジアンに対し、一様分布となるのが望ましいもののランダムであってもよい。
 一方、MIMO符号化部376BはMIMO符号化部376Aと同様にして、2つの送信アンテナ(Tx-1、Tx-2)に対するMIMO符号化データを出力する。MIMO符号化部376Bへの入力ベクトルs_B=(s4k+3,s4k+4)T(k=0,1,…,(Ncells/4)-1)に対して出力ベクトルz_B=(z1B_k,z2B_k)Tは式(16)のように表される。
Figure JPOXMLDOC01-appb-M000016
 但し、F_Bは式(17)で表される固定プリコーディング行列である。
Figure JPOXMLDOC01-appb-M000017
 なお式(18)と式(19)に示す通り、式(16)に対して更に規則的に変化する位相変更行列X_B(k)を乗算して、プリコーディングを行ってもよい。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 MIMO符号化部376Aと376Bが以上の動作をすることにより、出力ベクトルz_A及びz_Bの各要素は式(20)~式(23)のように表される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 ここで、f1、f2は関数を表す。
 2つの送信アンテナの周波数チャンネル毎のインターリーブ部2074は、図55におけるインターリーブ部2074と同様の動作を行う。これにより、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 なお、図9に示すMIMO-PLP処理部331を図10に示すMIMO-PLP処理部332に置き換えてもよい。図10に示すMIMO-PLP処理部332は図9に示すMIMO-PLP処理部331と比較して、マッピング部2073後段のS/P変換部378をマッピング部2073前段のS/P変換部379に置き換えた構成である。更にマッピング部2073を2つ備えた構成である。
 図10において、S/P変換部379はFEC符号化部2072から出力される各FECフレームに対して、先頭から2つずつのマッピングデータ(cell)となるビットグループを順にマッピング部2073A、マッピング部2073B、マッピング部2073A、マッピング部2073B、…と振り分ける。マッピング部2073Aとマッピング部2073Bは、図9におけるマッピング部2073と同様の動作を行う。よって、図9に示すMIMO-PLP処理部331と同様に、各FECブロックの半分ずつのマッピングデータ(cell)がMIMO符号化部376Aと376Bに振り分けられることになる。その他の動作は、図9に示すMIMO-PLP処理部331と同様である。
 図11は、L1情報処理部341の構成を示す図である。図3に示す実施の形態1におけるL1情報処理部141と比較して、S/P変換部378を追加した構成である。更に、MIMO符号化部176を2つのMIMO符号化部376Aと376Bに置き換えた構成である。
 図11のL1情報処理部341において、S/P変換部378は図9での動作と同様にして、入力される各FECブロックに対して、先頭から2つずつのマッピングデータ(cell)を順にMIMO符号化部376A、MIMO符号化部376B、MIMO符号化部376A、MIMO符号化部376B、…と振り分ける。よって、各FECブロックの半分ずつのマッピングデータ(cell)がMIMO符号化部376Aと376Bに振り分けられる。
 MIMO符号化部376AとMIMO符号化部376Bは図9での動作と同様にして、入力される各FECブロックの内の半分のマッピングデータ(cell)に対して、先頭から2つずつを用いてプリコーディングを行い、2つの送信アンテナ(Tx-1、Tx-2)に対するMIMO符号化データを出力する。これにより、L1情報のFECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 なお、図11に示すL1情報処理部341を図12に示すL1情報処理部342に置き換えてもよい。図12に示すL1情報処理部342は図11に示す1情報処理部341と比較して、マッピング部2083後段のS/P変換部378をマッピング部2083前段のS/P変換部379に置き換えた構成である。更にマッピング部2083を2つ備えた構成である。
 図12において、S/P変換部379は図10での動作と同様にして、FEC符号化部2082から出力される各FECフレームに対して、先頭から2つずつのマッピングデータ(cell)となるビットグループを順にマッピング部2083A、マッピング部2083B、マッピング部2083A、マッピング部2083B、…と振り分ける。マッピング部2083Aとマッピング部2083Bは、図11におけるマッピング部2083と同様の動作を行う。よって、図11に示すL1情報処理部341と同様に、L1情報のFECブロック中の半分ずつのマッピングデータ(cell)がMIMO符号化部376Aと376Bに振り分けられることになる。その他の動作は、図11に示すL1情報処理部341と同様である。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信することにより、複数の基本帯域に関する周波数ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。特に、各FECブロックに対して、先頭から2つずつのマッピングデータ(cell)を順にMIMO符号化部376A、MIMO符号化部376B、MIMO符号化部376A、MIMO符号化部376B、…と振り分けることが特徴である。
 <受信装置及び受信方法>
 図13は、本発明の実施の形態2における受信装置400の構成を示す図である。図13の受信装置400は、図8の送信装置300に対応し、送信装置300の機能を反映するものである。従来の受信装置、及び実施の形態1の受信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図13の受信装置400は図4に示す実施の形態1における受信装置200と比較して、MIMOデマッピング部232を2つのMIMOデマッピング部432に置き換えた構成である。更に、P/S変換部435を追加した構成である。
 以下、図13の受信装置400の動作について説明する。MIMOデマッピング部432Aに入力される各FECブロック内の半分のマッピングデータ(cell)に対して、入力ベクトルy_A=(y1A_k,y2A_k)T(k=0,1,…,(Ncells/4)-1)は式(24)のように表される。
Figure JPOXMLDOC01-appb-M000024
 但し、yPQ_kは受信アンテナP、周波数チャンネルQに対する入力データ、H_Aは式(25)で表される伝送路行列、n_A=(n1A_k,n2A_k)Tはノイズベクトルであり、nPQ_kは平均値0、分散σ2のi.i.d.複素ガウス雑音である。
Figure JPOXMLDOC01-appb-M000025
 式(24)と式(25)を用いて、MIMOデマッピング部432Aは最尤復号(MLD)を行い、各FECブロックの内の半分のベクトル推定値s’=(s’4k+1,s’4k+2)T(k=0,1,…,(Ncells/4)-1)を算出して、出力する。なお、MIMOデマッピング部432Aの処理は最尤復号に限らず、ZFなど他の方法を用いてもよい。
 一方、MIMOデマッピング部432Bに入力される各FECブロック内の残り半分のマッピングデータ(cell)に対して、入力ベクトルy_B=(y1B_k,y2B_k)T(k=0,1,…,(Ncells/4)-1)は式(26)のように表される。
Figure JPOXMLDOC01-appb-M000026
 但し、H_Bは式(27)で表される伝送路行列、n_B=(n1B_k,n2B_k)Tはノイズベクトルである。
Figure JPOXMLDOC01-appb-M000027
 式(26)と式(27)を用いて、MIMOデマッピング部432Bは最尤復号(MLD:Maximum Likelihood Decoding)を行い、各FECブロックの内の残り半分のベクトル推定値s’=(s’4k+3,s’4k+4)T(k=0,1,…,(Ncells/4)-1)を算出して、出力する。なお、MIMOデマッピング部432Bの処理は最尤復号に限らず、ZF(Zero Forcing)など他の方法を用いてもよい。
 P/S変換部435は、MIMOデマッピング部432Aから出力される各FECブロックの内の半分のベクトル推定値s’=(s’4k+1,s’4k+2)T(k=0,1,…,(Ncells/4)-1)と、MIMOデマッピング部432Bから出力される各FECブロックの内の残り半分のベクトル推定値s’=(s’4k+3,s’4k+4)Tを多重し、各FECブロックのベクトル推定値s’=(s’4k+1,s’4k+2,s’4k+3,s’4k+4)Tを出力する。
 ここで式(25)と(27)において、伝送路行列H_AとH_Bの各要素hMN_k(M=1,2、N=1,2)(M=3,4、N=3,4)は複素数である。注目すべき点は、式(25)と(27)はともに4行4列ではなく、2行2列の伝送路行列Hを含んでいる。よって実記の形態1のMIMOデマッピング部232と比較して、MIMOデマッピング部432Aと432Bにおける演算量は少なくなる。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。
 また、図13の受信装置400の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路440としてもよい。
 <送信装置及び送信方法の変形例>
 なお、図9に示すMIMO-PLP処理部331を図14に示すMIMO-PLP処理部333に置き換えてもよい。図14に示すMIMO-PLP処理部333は図9に示すMIMO-PLP処理部331と比較して、MIMO符号化部376BをMIMO符号化部377Bに置き換えた構成である。更に周波数チャンネルB(CH-B)に対する2つのインターリーブ部2074-3と2074-4をそれぞれインターリーブ部174-3と174-4にそれぞれ置き換えた構成である。
 図14において、MIMO符号化部377Bは式(28)に示す固定プリコーディング行列F_Bを用いて、プリコーディングを行ってもよい。
Figure JPOXMLDOC01-appb-M000028
 これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 また図14において、MIMO符号化部377Bは式(29)に示す位相変更行列X_B(k)を乗算して、プリコーディングを行ってもよい。
Figure JPOXMLDOC01-appb-M000029
 式(29)におけるθの値の一例としてπ/9が挙げられるが、これに限定されない。式(29)に示す位相変更行列X_B(k)により、送信アンテナ2(Tx-2)に対するMIMO符号化データ系列に対して、一方の周波数チャンネル(CH-A)には初期値0ラジアンで、2π/9ラジアンずつ変化する周期9の位相変更が施され、他方の周波数チャンネル(CH-B)には初期値π/9ラジアンで、2π/9ラジアンずつ変化する周期9の位相変更が施される。2つの周波数チャンネル(CH-A、CH-B)が同一の送信アンテナ群(Tx-1,Tx-2)から送信され、同一の受信アンテナ群(Rx-1,Rx-2)で受信される場合、特に直接波が支配的なLOS環境においては、2つの周波数チャンネル(CH-A、CH-B)の伝送路特性が高い相関性を持つ可能性がある。式(15)と式(29)にそれぞれ示す位相変更行列X_A(k)とX_B(k)は2つの周波数チャンネル(CH-A、CH-B)の位相変更パターンを異ならせることで、相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 図14において、周波数チャンネルB(CH-B)に対する2つのインターリーブ部174-3と174-4は実施の形態1における<送信装置及び送信方法の変形例>と同様に、周波数チャンネルA(CH-A)に対する2つのインターリーブ部2074-1と2074-2と異なるパターンの並べ替えを行ってもよい。これにより、MIMOデマッピングにおける演算量を増加させることなく、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対する固定プリコーディング行列F_AとF_Bを異ならせること、位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせること、及びインターリーブの並び替えパターンを異ならせることは全て同時に適用してもよいし、いずれか2つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 また、図10に示すMIMO-PLP処理部332を図15に示すMIMO-PLP処理部334に置き換えてもよい。図15に示すMIMO-PLP処理部334は図10に示すMIMO-PLP処理部332と比較して、マッピング部2073BとMIMO符号化部376Bをそれぞれマッピング部373BとMIMO符号化部377Bに置き換えた構成である。更に周波数チャンネルB(CH-B)に対する2つのインターリーブ部2074-3と2074-4をそれぞれインターリーブ部174-3と174-4にそれぞれ置き換えた構成である。
 図15において、周波数チャンネルB(CH-B)に対するマッピング部373Bは、周波数チャンネルA(CH-A)に対するマッピング部2073Aと異なるパターンのマッピングを行ってもよい。異なるパターンの一例としては、マッピング部2073Aと373Bがそれぞれ均一マッピングと非均一マッピングを用いることが挙げられるが、これに限定されない。均一マッピングと非均一マッピングの一例としてはそれぞれ、非特許文献3における64-QAM(Quadrature Amplitude Modulation)とNU(Non Uniform)-64QAMが挙げられるが、これに限定されない。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 MIMO符号化部377Bと、インターリーブ部174-3と174-4は図14と同様の動作を行う。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するマッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせること、及びインターリーブの並び替えパターンを異ならせることは全て同時に適用してもよいし、いずれか2つまたは3つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 また、図11に示すL1情報処理部341を図16に示すL1情報処理部343に置き換えてもよい。図16に示すL1情報処理部343は図11に示すL1情報処理部341と比較して、MIMO符号化部376BをMIMO符号化部377Bに置き換えた構成である。MIMO符号化部377Bは、図14におけるMIMO符号化部377Bと同様の動作を行う。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 また、図12に示すL1情報処理部342を図17に示すL1情報処理部344に置き換えてもよい。図17に示すL1情報処理部344は図12に示すL1情報処理部342と比較して、マッピング部2083BとMIMO符号化部376Bをそれぞれマッピング部383BとMIMO符号化部377Bに置き換えた構成である。
 図17において、周波数チャンネルB(CH-B)に対するマッピング部383Bは図15におけるマッピング部373Bと同様にして、周波数チャンネルA(CH-A)に対するマッピング部2083Aと異なるパターンのマッピングを行ってもよい。異なるパターンの一例としては、マッピング部2083Aと383Bがそれぞれ均一マッピングと非均一マッピングを用いることが挙げられるが、これに限定されない。均一マッピングと非均一マッピングの一例としてはそれぞれ、非特許文献3における64-QAM(Quadrature Amplitude Modulation)とNU(Non Uniform)-64QAMが挙げられるが、これに限定されない。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 またMIMO符号化部377Bは、図14におけるMIMO符号化部377Bと同様の動作を行う。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するマッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせることは全て同時に適用してもよいし、いずれか2つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 <受信装置及び受信方法の変形例>
 以上の図14に示すMIMO-PLP処理部333または図15に示すMIMO-PLP処理部334と、図16に示すL1情報処理部343または図17に示すL1情報処理部344が適用された場合に対する受信装置450の構成を図18に示す。図18に示す受信装置450は図13に示す受信装置400と比較して、周波数チャンネルB(CH-B)用のPLP用デインターリーブ部221BとMIMOデマッピング部432BをそれぞれPLP用デインターリーブ部222BとMIMOデマッピング部434Bに置き換えた構成である。図18において周波数チャンネルB(CH-B)用のPLP用デインターリーブ部222Bは図7のそれと同様の動作を行う。また周波数チャンネルB(CH-B)用MIMOデマッピング部434Bは、式(17)に示す固定プリコーディング行列F_Bの代わりに式(28)に示す固定プリコーディング行列F_Bを考慮して、式(26)と式(27)を用いて最尤復号(MLD)を行う。また周波数チャンネルB(CH-B)用MIMOデマッピング部434Bは、式(19)に示す位相変更行列X_B(k)の代わりに式(29)に示す位相変更行列X_B(k)を考慮して、式(26)と式(27)を用いて最尤復号(MLD)を行う。更に、図15に示すMIMO-PLP処理部334と図17に示すL1情報処理部344のように、周波数チャンネルB(CH-B)が周波数チャンネルA(CH-A)と異なるパターンのマッピングを行っている場合には、それも考慮して最尤復号(MLD)を行う。
 また、図18の受信装置450の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路441としてもよい。
 (実施の形態3)
 <送信装置及び送信方法>
 図19は、本発明の実施の形態3における送信装置500の構成を示す図である。従来の送信装置、及び実施の形態1~2の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図19の送信装置500は図1に示す実施の形態1における送信装置100と比較して、MIMO-PLP処理部131及びL1情報処理部141をMIMO-PLP処理部531及びL1情報処理部541にそれぞれ置き換えた構成である。
 図20は、MIMO-PLP処理部531の構成を示す図である。図10に示す実施の形態2におけるMIMO-PLP処理部332と比較して、周波数チャンネル間入替部591を追加した構成である。更に、FEC符号化部2072後段のS/P変換部379をFEC符号化部2072前段のS/P変換部581に置き換え、FEC符号化部2072を2つ備えた構成である。
 図20において、S/P変換部581は入力処理部2071から出力されるベースバンド・フレームに対して、フレーム先頭から順にベースバンド・フレーム単位で順にFEC符号化部2072A、FEC符号化部2072B、FEC符号化部2072A、FEC符号化部2072B、…と振り分ける。
 FEC符号化部2072、マッピング部2073、MIMO符号化部376、及びインターリーブ部2074の動作は、図10での動作と同様である。よって、各フレームのFECブロックを先頭からFB-1、FB-2、FB-3、FB-4、…、FB-Nblocks(Nblocks:フレーム中のFECブロック数)と表すと、周波数チャンネルA(CH-A)用のインターリーブ部2074-1と2074-2からは、フレームそれぞれについて、FB-(2N-1)(N=1,2,…,(Nblocks/2))の全cellマッピングデータ(cell)の成分が出力される。一方周波数チャンネルB(CH-B)用のインターリーブ部2074-3と2074-4からは、フレームそれぞれについて、FB-2Nの全マッピングデータ(cell)の成分が出力される。
 図21は、周波数チャンネル間入替部591の構成を示す図である。周波数チャンネル間入替部591はセレクタ595を4つ備えた構成である。周波数チャンネル間入替部591は選択信号を生成し、4つのセレクタ595に入力する。選択信号が“0”の場合、セレクタは“0”に入力されるデータを選択して出力する。逆に選択信号が“1”の場合、セレクタは“1”に入力されるデータを選択して出力する。一例として、生成された選択信号が各FECブロックの先頭からcell単位で“0”、“1”、“0”、“1”、…と交番する場合、周波数チャンネル間入替部591の出力データ系列は以下で示される。
Tx-1,CH-A:u1_2k+1(FB-(2N-1)),u3_2k+2(FB-2N)
Tx-2,CH-A:u2_2k+1(FB-(2N-1)),u4_2k+2(FB-2N)
Tx-1,CH-B:u3_2k+1(FB-2N),u1_2k+2(FB-2N-1)
Tx-2,CH-B:u4_2k+1(FB-2N),u4_2k+2(FB-2N-1)
   (k=0,1,…,(Ncells/2)-1)
 但し、uR_T(FB-L)はインターリーブ部2074-Rから出力されるFB-Lの先頭からT番目のマッピングデータ(cell)の成分であり、NcellsはFECブロック中のcell数である。これにより、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 なお、選択信号は各FECブロックの先頭からcell単位で“0”、“1”、“0”、“1”、…の交番とは限らず、好ましくは“0”と“1”の数が均等に近ければよい。
 図22は、L1情報処理部541の構成を示す図である。図12に示す実施の形態2におけるL1情報処理部342と比較して、周波数チャンネル間入替部591を追加した構成である。更に、FEC符号化部2082後段のS/P変換部379をFEC符号化部2082前段のS/P変換部581に置き換え、FEC符号化部2082を2つ備えた構成である。S/P変換部581は図20での動作と同様にして、L1情報生成部181から出力されるL1-pre情報とL1-post情報のベースバンド・フレームに対して、フレーム先頭から順にベースバンド・フレーム単位で順にFEC符号化部2082A、FEC符号化部2082B、FEC符号化部2082A、FEC符号化部2082B、…と振り分ける。FEC符号化部2082、マッピング部2083、MIMO符号化部376の動作は、図12での動作と同様である。周波数チャンネル間入替部591の動作は、図21での動作と同様である。但し、MIMO符号化部376から出力されるMIMO符号化データを入力として図21に示す構成により動作し、フレーム構成部151に出力する。これにより、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信することにより、複数の基本帯域に関する周波数ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。特に、MIMO伝送の用いる周波数チャンネル分だけのFEC符号化部を設けて、インターリーブ後に周波数チャンネル間のデータ入替を行うことが特徴である。
 <受信装置及び受信方法>
 図23は、本発明の実施の形態3における受信装置600の構成を示す図である。図23の受信装置600は、図19の送信装置500に対応し、送信装置500の機能を反映するものである。従来の受信装置、及び実施の形態1~2の受信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図23の受信装置600は図13に示す実施の形態2における受信装置400と比較して、P/S変換部435をP/S変換部635に置き換えた構成である。更に、周波数チャンネル間逆入替部637を追加した構成である。
 以下、図23の受信装置600の動作について説明する。周波数チャンネル間逆入替部637は、図21に示す周波数チャンネル間入替部591と逆のデータ入替を行う。P/S変換部635は、MIMOデマッピング部432Aから出力される各フレームのFECブロックFB-(2N-1)(N=1,2,…,(Nblocks/2))と、MIMOデマッピング部432Bから出力される各フレームのFECブロックFB-2Nのベクトル推定値をFECブロック単位で多重して出力する。その他の動作は、図13に示す実施の形態2における受信装置400と同様である。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。特に、P/S変換部635はFECブロック単位で入力データを多重して出力することが特徴である。これにより、MIMOデマッピングにおいてスフィア復号(Sphere decoding)など、復号時間が受信C/N(Carrier to Noise power ratio)などの伝送路に依存して変化する場合に、P/S変換部での処理が容易となる効果を有する。
 また、図23の受信装置600の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路640としてもよい。
 <送信装置及び送信方法の変形例>
 なお、図20に示すMIMO-PLP処理部531を図24に示すMIMO-PLP処理部532に置き換えてもよい。図24に示すMIMO-PLP処理部532は図20に示すMIMO-PLP処理部531と比較して、FEC符号化部2072Bとマッピング部2073BとMIMO符号化部376Bをそれぞれ、FEC符号化部572Bとマッピング部373BとMIMO符号化部377Bに置き換えた構成である。更に2つのインターリーブ部2074-3と2074-4をそれぞれインターリーブ部174-3と174-4にそれぞれ置き換えた構成である。
 図24において、FEC符号化部572BはFEC符号化部2072Aと異なるパターンのLDPC符号化を行ってもよい。異なるパターンの一例としては、符号化に用いるパリティ検査行列が挙げられるが、これに限定されず、例えば異なる符号化率を用いてもよい。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 マッピング部373B、MIMO符号化部377B、及びインターリーブ部174-3と174-4の動作は、図15での動作と同様である。その他の動作は、図20に示すMIMO-PLP処理部531と同様である。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するLDPC符号化パターンを異ならせること、マッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせること、及びインターリーブの並び替えパターンを異ならせることは全て同時に適用してもよいし、いずれか2つまたは3つまたは4つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 また、図22に示すL1情報処理部541を図25に示すL1情報処理部542に置き換えてもよい。図25に示すL1情報処理部542は図22に示すL1情報処理部541と比較して、FEC符号化部2082Bとマッピング部2083BとMIMO符号化部376Bをそれぞれ、FEC符号化部582Bとマッピング部383BとMIMO符号化部377Bに置き換えた構成である。
 図25において、FEC符号化部582Bは図24におけるFEC符号化部572Bと同様にして、FEC符号化部2082Aと異なるパターンのLDPC符号化を行ってもよい。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するLDPC符号化パターンを異ならせること、マッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、及び位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせることは全て同時に適用してもよいし、いずれか2つまたは3つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 <受信装置及び受信方法の変形例>
 以上の図24に示すMIMO-PLP処理部532及び図25に示すL1情報処理部542が適用された場合に対する受信装置650の構成を図26に示す。図26に示す受信装置650は図23に示す受信装置600と比較して、PLP用デインターリーブ部221BとMIMOデマッピング部432BとFEC復号化部233をそれぞれ、PLP用デインターリーブ部222BとMIMOデマッピング部434BとFEC復号化部633に置き換えた構成である。図26においてPLP用デインターリーブ部222BとMIMOデマッピング部434Bの動作は、図18での動作と同様である。FEC復号化部633はLDPC復号において、MIMOデマッピング部434Bから出力される各フレームのFECブロックFB-2N(N=1,2,…,(Nblocks/2))と、MIMOデマッピング部432Aから出力される各フレームのFECブロックFB-(2N-1)に対して、それぞれ異なるパリティ検査多項式を用いて、LDPC復号を行う。その他の動作は、図23に示す受信装置600と同様である。
 また、図26の受信装置650の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路641としてもよい。
 (実施の形態4)
 <送信装置及び送信方法>
 図27は、本発明の実施の形態4における送信装置700の構成を示す図である。従来の送信装置、及び実施の形態1~3の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図27の送信装置700は図19に示す実施の形態3における送信装置500と比較して、MIMO-PLP処理部531をMIMO-PLP処理部731に置き換えた構成である。
 図28は、MIMO-PLP処理部731の構成を示す図である。図20に示す実施の形態3におけるMIMO-PLP処理部531と比較して、周波数チャンネル間入替部591の配置をインターリーブ部2074後段から前段に変更した構成である。
 図28において、周波数チャンネル間入替部591は実施の形態3と同様の動作を行う。但し、MIMO符号化部376から出力されるMIMO符号化データを入力として図21に示す構成により動作し、インターリーブ部2074に出力する。その他の動作は、図20に示す実施の形態3におけるMIMO-PLP処理部531と同様である。これにより、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信することにより、複数の基本帯域に関する周波数ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。特に、MIMO伝送の用いる周波数チャンネル分だけのFEC符号化部を設けて、MIMO符号化後に周波数チャンネル間のデータ入替を行うことが特徴である。
 <受信装置及び受信方法>
 図29は、本発明の実施の形態4における受信装置800の構成を示す図である。図29の受信装置800は、図27の送信装置700に対応し、送信装置700の機能を反映するものである。従来の受信装置、及び実施の形態1~3の受信装置と同じ構成要素は、同じ符号を用い、説明を省略する。図29の受信装置800は図23に示す実施の形態3における受信装置600と比較して、周波数チャンネル間逆入替部637の配置をPLP用デインターリーブ部221前段からMIMOデマッピング部432前段に変更した構成である。
 図29において、周波数チャンネル間逆入替部637は実施の形態3と同様の動作を行い、図28に示す周波数チャンネル間入替部591と逆のデータ入替を行う。その他の動作は、図23に示す実施の形態3における受信装置600と同様である。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。特に、P/S変換部635はFECブロック単位で入力データを多重して出力することが特徴である。これにより、MIMOデマッピングにおいてスフィア復号(Sphere decoding)など、復号時間が受信C/N(Carrier to Noise power ratio)などの伝送路に依存して変化する場合に、P/S変換部での処理が容易となる効果を有する。
 また、図29の受信装置800の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路840としてもよい。
 <送信装置及び送信方法の変形例>
 なお、図28に示すMIMO-PLP処理部731を図30に示すMIMO-PLP処理部732に置き換えてもよい。図30に示すMIMO-PLP処理部732は図28に示すMIMO-PLP処理部731と比較して、FEC符号化部2072Bとマッピング部2073BとMIMO符号化部376Bをそれぞれ、FEC符号化部572Bとマッピング部373BとMIMO符号化部377Bに置き換えた構成である。更に2つのインターリーブ部2074-3と2074-4をそれぞれインターリーブ部174-3と174-4にそれぞれ置き換えた構成である。
 図30において、FEC符号化部572B、マッピング部373B、MIMO符号化部377B、及びインターリーブ部174-3と174-4の動作は、図24での動作と同様である。その他の動作は、図28に示すMIMO-PLP処理部731と同様である。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するLDPC符号化パターンを異ならせること、マッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせること、及びインターリーブの並び替えパターンを異ならせることは全て同時に適用してもよいし、いずれか2つまたは3つまたは4つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 <受信装置及び受信方法の変形例>
 以上の図30に示すMIMO-PLP処理部732が適用された場合に対する受信装置850の構成を図31に示す。図31に示す受信装置850は図29に示す受信装置800と比較して、PLP用デインターリーブ部221BとMIMOデマッピング部432BとFEC復号化部233をそれぞれ、PLP用デインターリーブ部222BとMIMOデマッピング部434BとFEC復号化部633に置き換えた構成である。図31においてPLP用デインターリーブ部222B、MIMOデマッピング部434B、FEC復号化部633の動作は、図26での動作と同様である。その他の動作は、図29に示す受信装置800と同様である。
 また、図31の受信装置850の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路841としてもよい。
 (実施の形態5)
 <送信装置及び送信方法>
 図32は、本発明の実施の形態5における送信装置900の構成を示す図である。従来の送信装置、及び実施の形態1~4の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図32の送信装置900は図1に示す実施の形態1における送信装置100と比較して、MIMO-PLP処理部131及びL1情報処理部141をMIMO-PLP処理部931及びL1情報処理部941にそれぞれ置き換えた構成である。
 図33は、MIMO-PLP処理部931の構成を示す図である。図28に示す実施の形態4におけるMIMO-PLP処理部731と比較して、インターリーブ部2074前段の周波数チャンネル間入替部591をMIMO符号化部376前段の周波数チャンネル間入替部991に置き換えた構成である。
 図34は、周波数チャンネル間入替部991の構成を示す図である。周波数チャンネル間入替部991はセレクタ595を2つ備えた構成である。周波数チャンネル間入替部991は選択信号を生成し、2つのセレクタ595に入力する。選択信号が“0”の場合、セレクタは“0”に入力されるデータを選択して出力する。逆に選択信号が“1”の場合、セレクタは“1”に入力されるデータを選択して出力する。一例として、生成された選択信号が各FECブロックの先頭から2cell単位で“0”、“0”、“1”、“1”“0”、“0”、“1”、“1”、…と交番する場合、周波数チャンネル間入替部991の出力データ系列は以下で示される。
 MIMO符号化部376Aへの出力:vA_2k+1(FB-(2N-1)),vA_2k+2(FB-(2N-1)),vB_2k+3(FB-2N),vB_2k+4(FB-2N)
 MIMO符号化部376Bへの出力:vB_2k+1(FB-2N),vB_2k+2(FB-2N),vA_2k+3(FB-(2N-1)),vA_2k+4(FB-(2N-1))
   (k=0,1,…,(Ncells/2)-1)(N=1,2,…,(Nblocks/2))
 但し、vA_T(FB-L)はマッピング部2073Aから出力されるFB-Lの先頭からT番目のマッピングデータ(cell)であり、vB_T(FB-L)はマッピング部2073Bから出力されるFB-Lの先頭からT番目のマッピングデータ(cell)であり、NcellsはFECブロック中のcell数であり、Nblocksはフレーム中のFECブロック数である。なお、選択信号は各FECブロックの先頭から2cell単位で“0”、“0”、“1”、“1”“0”、“0”、“1”、“1”、…の交番とは限らず、好ましくは“0”と“1”の数が均等に近ければよい。
 よって図33において、MIMO符号化部376Aと376Bともに、FB-(2N-1)とFB-2Nのマッピングデータ(cell)が2cell単位で交互に入力される。MIMO符号化部376Aと376Bは図9での動作と同様に、どちらも2cell単位でプリコーディングを行って、2つの送信アンテナ(Tx-1、Tx-2)に1cellずつ出力する。
 図33に示すMIMO-PLP処理部931のその他の動作は、図28に示すMIMO-PLP処理部731と同様である。これにより、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 図35は、L1情報処理部941の構成を示す図である。図22に示す実施の形態3におけるL1情報処理部541と比較して、MIMO符号化部376後段の周波数チャンネル間入替部591をMIMO符号化部376前段の周波数チャンネル間入替部991に置き換えた構成である。周波数チャンネル間入替部991の動作は、図34での動作と同様である。但し、マッピング部2083から出力されるマッピングデータ(cell)を入力として図34に示す構成により動作し、MIMO符号化部376に出力する。これにより、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信することにより、複数の基本帯域に関する周波数ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。特に、MIMO伝送の用いる周波数チャンネル分だけのFEC符号化部を設けて、マッピング後に周波数チャンネル間のデータ入替を行うことが特徴である。
 <受信装置及び受信方法>
 図36は、本発明の実施の形態5における受信装置1000の構成を示す図である。図36の受信装置1000は、図32の送信装置900に対応し、送信装置900の機能を反映するものである。従来の受信装置、及び実施の形態1~4の受信装置と同じ構成要素は、同じ符号を用い、説明を省略する。図36の受信装置1000は図29に示す実施の形態4における受信装置800と比較して、MIMOデマッピング部432前段の周波数チャンネル間逆入替部637をP/S変換部635前段の周波数チャンネル間逆入替部1037に置き換えた構成である。
 図36において、周波数チャンネル間逆入替部1037は図34に示す周波数チャンネル間入替部991と逆のデータ入替を行う。その他の動作は、図29に示す実施の形態4における受信装置800と同様である。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。特に、P/S変換部635はFECブロック単位で入力データを多重して出力することが特徴である。これにより、MIMOデマッピングにおいてスフィア復号(Sphere decoding)など、復号時間が受信C/N(Carrier to Noise power ratio)などの伝送路に依存して変化する場合に、P/S変換部での処理が容易となる効果を有する。
 また、図36の受信装置1000の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路1040としてもよい。
 <送信装置及び送信方法の変形例>
 なお、図33に示すMIMO-PLP処理部931を図37に示すMIMO-PLP処理部932に置き換えてもよい。図37に示すMIMO-PLP処理部932は図33に示すMIMO-PLP処理部931と比較して、FEC符号化部2072Bとマッピング部2073BとMIMO符号化部376Bをそれぞれ、FEC符号化部572Bとマッピング部373BとMIMO符号化部377Bに置き換えた構成である。更に2つのインターリーブ部2074-3と2074-4をそれぞれインターリーブ部174-3と174-4にそれぞれ置き換えた構成である。図37において、FEC符号化部572B、マッピング部373B、MIMO符号化部377B、及びインターリーブ部174-3と174-4の動作は、図24での動作と同様である。その他の動作は、図33に示すMIMO-PLP処理部931と同様である。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するLDPC符号化パターンを異ならせること、マッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、及び位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせること、及びインターリーブの並び替えパターンを異ならせることは全て同時に適用してもよいし、いずれか2つまたは3つまたは4つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 また、図35に示すL1情報処理部941を図38に示すL1情報処理部942に置き換えてもよい。図38に示すL1情報処理部942は図35に示すL1情報処理部941と比較して、FEC符号化部2082Bとマッピング部2083BとMIMO符号化部376Bをそれぞれ、FEC符号化部582Bとマッピング部383BとMIMO符号化部377Bに置き換えた構成である。図38において、FEC符号化部582B、マッピング部383B、MIMO符号化部377Bの動作は、図25での動作と同様である。その他の動作は、図35に示すL1情報処理部941と同様である。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するLDPC符号化パターンを異ならせること、マッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、及び位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせることは全て同時に適用してもよいし、いずれか2つまたは3つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 <受信装置及び受信方法の変形例>
 以上の図37に示すMIMO-PLP処理部932及び図38に示すL1情報処理部942が適用された場合に対する受信装置1050の構成を図39に示す。図39に示す受信装置1050は図36に示す受信装置1000と比較して、PLP用デインターリーブ部221BとMIMOデマッピング部432BとFEC復号化部233をそれぞれ、PLP用デインターリーブ部222BとMIMOデマッピング部434BとFEC復号化部633に置き換えた構成である。図39においてPLP用デインターリーブ部222B、MIMOデマッピング部434B、FEC復号化部633の動作は、図26での動作と同様である。その他の動作は、図36に示す受信装置1000と同様である。
 但し、図37に示すMIMO-PLP処理部932と図38に示すL1情報処理部942において、マッピング部が周波数チャンネルA(CH-A)と周波数チャンネルB(CH-B)とで異なるパターンのセルマッピングを行っている場合には、MIMOデマッピング部432A及び434Bはそれぞれ、これを考慮して処理を行う。
 また、図39の受信装置1050の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路1041としてもよい。
 (実施の形態6)
 <送信装置及び送信方法>
 図40は、本発明の実施の形態6における送信装置1100の構成を示す図である。従来の送信装置、及び実施の形態1~5の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図40の送信装置1100は図1に示す実施の形態1における送信装置100と比較して、MIMO-PLP処理部131及びL1情報処理部141をMIMO-PLP処理部1131及びL1情報処理部1141にそれぞれ置き換えた構成である。
 図41は、MIMO-PLP処理部1131の構成を示す図である。図33に示す実施の形態5におけるMIMO-PLP処理部931と比較して、MIMO符号化部376前段の周波数チャンネル間入替部991をマッピング部2073前段の周波数チャンネル間入替部1191に置き換えた構成である。
 図42は、周波数チャンネル間入替部1191の構成を示す図である。周波数チャンネル間入替部1191はセレクタ1195を2つ備えた構成である。
 周波数チャンネル間入替部1191は選択信号を生成し、2つのセレクタ1195に入力する。選択信号が“0”の場合、セレクタは“0”に入力されるデータ(FEC符号化部2072から出力されるFECフレーム)を選択して、マッピング部2073へ出力する。逆に選択信号が“1”の場合、セレクタは“1”に入力されるデータを選択して出力する。一例として、変調方式が16-QAMである場合、生成された選択信号が各FECフレームに対して、先頭から2つずつのマッピングデータ(cell)となるビットグループ単位(この例の場合 8ビット)で“0”、“0”、“0”、“0”、“0”、“0”、“0”、“0”、“1”、“1”、“1”、“1”、“1”、“1”、“1”、“1”、“0”、“0”、“0”、“0”、“0”、“0”、“0”、“0”、“1”、“1”、“1”、“1”、“1”、“1”、“1”、“1”、…と交番する場合、周波数チャンネル間入替部1191後段のマッピング部2073の出力データ系列は実施の形態5におけるMIMO-PLP処理部931と同様になる。
 よって図41において、MIMO符号化部376Aと376Bともに、FB-(2N-1)とFB-2Nのマッピングデータ(cell)が2cell単位で交互に入力される。
 図41に示すMIMO-PLP処理部1131のその他の動作は、図33に示すMIMO-PLP処理部931と同様である。これにより、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 図43は、L1情報処理部1141の構成を示す図である。図35に示す実施の形態5におけるL1情報処理部941と比較して、MIMO符号化部376前段の周波数チャンネル間入替部991をマッピング部2083前段の周波数チャンネル間入替部1191に置き換えた構成である。周波数チャンネル間入替部1191の動作は、図42での動作と同様である。但し、FEC符号化2082から出力されるFECフレームを入力として図42に示す構成により動作し、マッピング部2083に出力する。これにより、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。また残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信される。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、FECブロック中のマッピングデータ(cell)の内、半分の成分は一方の周波数チャンネル(CH-A)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信し、残り半分の成分は他方の周波数チャンネル(CH-B)の2つの送信アンテナ(Tx-1、Tx-2)それぞれから送信することにより、複数の基本帯域に関する周波数ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。特に、MIMO伝送の用いる周波数チャンネル分だけのFEC符号化部を設けて、マッピング前に周波数チャンネル間のデータ入替を行うことが特徴である。
 <受信装置及び受信方法>
 本発明の実施の形態6における受信装置は、図36に示す実施の形態5における受信装置1000と同じ構成を用いることができる。
 <送信装置及び送信方法の変形例>
 なお、図41に示すMIMO-PLP処理部1131を図44に示すMIMO-PLP処理部1132に置き換えてもよい。図44に示すMIMO-PLP処理部1132は図41に示すMIMO-PLP処理部1131と比較して、FEC符号化部2072Bとマッピング部2073BとMIMO符号化部376Bをそれぞれ、FEC符号化部572Bとマッピング部373BとMIMO符号化部377Bに置き換えた構成である。更に2つのインターリーブ部2074-3と2074-4をそれぞれインターリーブ部174-3と174-4にそれぞれ置き換えた構成である。
 図44において、FEC符号化部572B、マッピング部373B、MIMO符号化部377B、及びインターリーブ部174-3と174-4の動作は、図24での動作と同様である。その他の動作は、図41に示すMIMO-PLP処理部1131と同様である。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するLDPC符号化パターンを異ならせること、マッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、及び位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせること、及びインターリーブの並び替えパターンを異ならせることは全て同時に適用してもよいし、いずれか2つまたは3つまたは4つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 また、図43に示すL1情報処理部1141を図45に示すL1情報処理部1142に置き換えてもよい。図45に示すL1情報処理部1142は図43に示すL1情報処理部1141と比較して、FEC符号化部2082Bとマッピング部2083BとMIMO符号化部376Bをそれぞれ、FEC符号化部582Bとマッピング部383BとMIMO符号化部377Bに置き換えた構成である。図45において、FEC符号化部582B、マッピング部383B、MIMO符号化部377Bの動作は、図25での動作と同様である。その他の動作は、図43に示すL1情報処理部1141と同様である。これにより、2つの周波数チャンネル(CH-A、CH-B)間の伝送路特性に関する相関性を低減して受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 以上のように、2つの周波数チャンネル(CH-A、CH-B)に対するLDPC符号化パターンを異ならせること、マッピングパターンを異ならせること、固定プリコーディング行列F_AとF_Bを異ならせること、及び位相変更行列X_A(k)とX_B(k)の位相変更パターンを異ならせることは全て同時に適用してもよいし、いずれか2つまたは3つを同時に適用してもよいし、いずれか1つのみ適用してもよい。
 <受信装置及び受信方法の変形例>
 以上の図44に示すMIMO-PLP処理部1132及び図45に示すL1情報処理部1142が適用された場合に対する受信装置は、図39に示す実施の形態5における受信装置1050と同じ構成を用いることができる。
 (実施の形態7)
 <送信装置及び送信方法>
 図46は、本発明の実施の形態7における送信装置1300の構成を示す図である。従来の送信装置、及び実施の形態1~6の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。本実施の形態7では、TS(Transport Stream)生成部1210において、SVC(Scalable Video Coding)を用いて映像コンポーネントとして映像B(Base layer)と映像E(Enhancement layer)の2つを生成する。これにより、音声、映像B、映像Eのコンポーネント毎にPLPに割当を行い、PLP毎に複数の基本帯域を用いたMIMO伝送と単一の基本帯域を用いたMIMO伝送を選択することを可能とする。
 図46の送信装置1300は図8に示す実施の形態2における送信装置300と比較して、L1情報処理部341とフレーム構成部151をL1情報処理部1341及びフレーム構成部1351にそれぞれ置き換えた構成である。更に、2つのPLP割当部1321と2つのMIMO-PLP処理部2031を追加した構成である。
 図47は、TS生成部1210の構成を示す図である。図47のTS生成部1210は一例としてTS中に1つのプログラムを生成する場合を示し、音声符号化部1221と映像符号化部1222を1つずつ備える。またTS生成部1210は、各プログラム中における音声・映像B・映像Eのサービス・コンポーネント毎にパケット化部1223を備える。またTS生成部1210は、パケット化ストリーム多重化部1224とL2(Layer-2)情報処理部1225を備える。
 TS生成部1210において、音声符号化部1221は音声の情報源符号化を行う。映像符号化部1222はSVCを用いた映像の情報源符号化を行い、映像Bと映像Eの2つのコンポーネントを生成する。情報源符号化の一例としては、H.264やHEVC(H.265)などが挙げられる。
 パケット化部1223は音声符号化部1221、または映像符号化部1222の出力をパケット化する。L2情報処理部1225は、PSI(Program-Specific Information)やSI(System Information)などのL2情報を生成する。パケット化ストリーム多重化部1224は、パケット化部1223の出力とL2情報処理部1225の出力を多重化してTSを生成して、図46に示す送信装置1300に出力する。
 図46に示す送信装置1300において、PLP割当部1321は、TS生成部1210から出力されるTSのプログラム毎に含まれる音声・映像B・映像Eのサービス・コンポーネント毎、及びL2情報にPLPを割り当てる。図46では一例として、以下のように割り当てる。
   PLP-1:TS-1のプログラム-1の音声、映像B、L2情報
   PLP-2:TS-1のプログラム-1の映像E
   PLP-3:TS-2のプログラム-1の音声、映像B、L2情報
   PLP-4:TS-2のプログラム-1の映像E
 図46において、MIMO-PLP処理部2031への音声、映像B、L2情報パケットは実際には多重化されて、1つの入力となる。MIMO-PLP処理部2031の動作は、図55での動作と同様である。また映像Eパケットが入力されると、MIMO-PLP処理部331の動作は、図9での動作と同様である。
 図48は、L1情報処理部1341の構成を示す図である。L1情報処理部1341は図56に示す従来のL1情報処理部2041と比較して、L1情報生成部2081をL1情報生成部1381に置き換えた構成である。更に、周波数チャンネル毎にFEC符号化部2082とマッピング部2083とMIMO符号化部2076を備える。
 図48において、L1情報生成部1381は2つの周波数チャンネル(CH-A、CH-B)に関する伝送パラメータを生成する。FEC符号化部2082とマッピング部2083とMIMO符号化部2076の動作は、図56での動作と同様である。
 図46において、フレーム構成部1351は、MIMO-PLP処理部2031-1から出力される2つの送信アンテナ(Tx-1、Tx-2)に対する一方の周波数チャンネル(CH-A)に対するPLP-1のマッピングデータと、MIMO-PLP処理部2031-3から出力される2つの送信アンテナ(Tx-1、Tx-2)に対する他方の周波数チャンネル(CH-B)に対するPLP-3のマッピングデータと、MIMO-PLP処理部331から出力される2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)に対する各PLP(PLP-2と4)のマッピングデータと、L1情報処理部1341から出力される2つの送信アンテナ(Tx-1、Tx-2)それぞれの2つの周波数チャンネル(CH-A、CH-B)に対するL1情報のマッピングデータを用いて、伝送フレームを生成して出力する。ここで図8に示す実施の形態2における送信装置300と異なる点は、2つの周波数チャンネル(CH-A、CH-B)を用いたMIMO伝送のPLP(PLP-2と4)と、一方の周波数チャンネル(CH-A)を用いたMIMO伝送のPLP(PLP-1)と、他方の周波数チャンネル(CH-B)を用いたMIMO伝送のPLP(PLP-3)が伝送フレーム内で混在していることである。
 OFDM信号生成部2061とD/A変換部2091と周波数変換部2096と周波数変換部196の動作は、図8での動作と同様である。
 以上の構成により、音声、映像B、映像Eのコンポーネント毎にPLPに割当を行い、PLP毎に複数の基本帯域を用いたMIMO伝送と単一の基本帯域を用いたMIMO伝送を選択することを可能とする。特に、音声、映像B、L1情報に対して単一の基本帯域を用いたMIMO伝送を行うことにより、単一の基本帯域のみに対応したMIMO受信装置において、基本情報のPLPは受信可能となり、その番組の基本情報部分、例えば標準画質でその番組を楽しむことができる。
 なお、図45におけるMIMO-PLP処理部331を、図2、5、10、14、15、20、24、28、30、33、37、41、44にそれぞれ示すMIMO-PLP処理部131、132、332、333、334、531、532、731、732、931、932、1131、1132に置き換えてもよい。
 <受信装置及び受信方法>
 図49は、本発明の実施の形態7における受信装置1400の構成を示す図である。図49の受信装置1400は、図46の送信装置1300に対応し、送信装置1300の機能を反映するものである。従来の受信装置、及び実施の形態1~6の受信装置と同じ構成要素は、同じ符号を用い、説明を省略する。図49の受信装置1400は図13に示す実施の形態2における受信装置400と比較して、P/S変換部435をP/S変換部1435に置き換えた構成である。
 図49において、P/S変換部1435はL1情報に対しては、FECブロック単位でMIMOデマッピング部432Aと432Bからの出力を多重して、後段のFEC復号化部233へ出力する。具体的には、P/S変換部1435は2つの周波数チャンネル(CH-A、CH-B)を用いたMIMO伝送のPLP(図46のPLP-2と4)に対しては、図13におけるP/S変換部435と同様の動作を行う。またP/S変換部1435は、一方の周波数チャンネル(CH-A)を用いたMIMO伝送のPLP(図46のPLP-1)に対しては、MIMOデマッピング部432Aからの出力を選択し、後段のFEC復号化部233へ出力する。またP/S変換部1435は、他方の周波数チャンネル(CH-B)を用いたMIMO伝送のPLP(図46のPLP-3)に対しては、MIMOデマッピング部432Bからの出力を選択し、後段のFEC復号化部233へ出力する。その他の動作は、図13に示す実施の形態2における受信装置400と同様である。
 以上の構成により、音声、映像B、映像Eのコンポーネント毎にPLPに割当を行い、PLP毎に複数の基本帯域を用いたMIMO伝送と単一の基本帯域を用いたMIMO伝送を選択して送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。特に、拡張情報部分も含めて受信し、例えば高精細画質でその番組を楽しむことができる。
 また、図49の受信装置1400の内、チューナ部205Aと205Bを除く構成要素を含んで集積回路1440としてもよい。
 また図50に示す通り、受信装置1450を構成してもよい。図50の受信装置1450は図49に示す受信装置1400と比較して、チューナ部205BとA/D変換部208Bと復調部211Bと周波数デインターリーブ・L1情報デインターリーブ部215BとPLP用デインターリーブ部221Bと選択部231BとMIMOデマッピング部432BとP/S変換部1435を削除した構成である。
 図50において、受信装置1450は単一の基本帯域のみに対応したMIMO受信装置である。2つのチューナ部205Aがともに一方の周波数チャンネル(CH-A)あるいは他方の周波数チャンネル(CH-B)の信号を選択受信し、所定の帯域にダウンコンバートする。A/D変換部208Aと復調部211Aと周波数デインターリーブ・L1情報デインターリーブ部215AとPLP用デインターリーブ部221Aと選択部231AとMIMOデマッピング部432Aの動作は、図49での動作と同様である。FEC復号化部233はMIMOデマッピング部432Aから出力される各FECブロックのベクトル推定値に対してLDPC復号とBCH復号を行い、復号結果を出力する。
 以上の構成により、音声、映像B、映像Eのコンポーネント毎にPLPに割当を行い、PLP毎に複数の基本帯域を用いたMIMO伝送と単一の基本帯域を用いたMIMO伝送を選択して送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。特に、基本情報のPLPは受信可能となり、その番組の基本情報部分、例えば標準画質でその番組を楽しむことができる。図49に示す受信装置と比較して、図50に示す通り、回路規模を半分に削減する効果を有する。
 また、図50の受信装置1450の内、チューナ部205Aを除く構成要素を含んで集積回路1441としてもよい。
 (実施の形態8)
 <送信装置及び送信方法>
 図51は、本発明の実施の形態8における送信装置150の構成を示す図である。従来の送信装置、及び実施の形態1~7の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。本実施の形態8では、2つの周波数チャンネル(CH-A、CH-B)が隣接している場合に、フレーム構成部より後段の処理に関して、2つの周波数チャンネルを一括して行う。
 図51の送信装置150は図1に示す実施の形態1における送信装置100と比較して、4つのOFDM信号生成部2061と4つのD/A変換部2091と2つずつの周波数変換部2096及び196をそれぞれ、2つのOFDM信号生成部161と2つのD/A変換部191と2つの周波数変換部198に置き換えた構成である。
 図51に示す送信装置150において、フレーム構成部151より出力される2つの周波数チャンネル(CH-A,CH-B)の一方の送信アンテナ(Tx-1)に関する伝送フレームに対して、Tx-1用のOFDM信号生成部161-1は2つの周波数チャンネル(CH-A,CH-B)を一括してパイロット信号の付加、IFFT、GIの挿入、P1シンボルとaP1シンボルの挿入を行い、デジタルベースバンド送信信号を出力する。Tx-1用のD/A変換部191-1はOFDM信号生成部161-1から出力されるTx-1用のデジタルベースバンド送信信号に対してD/A変換を行い、アナログベースバンド送信信号を出力する。Tx-1用の周波数変換部196-1はD/A変換部191-1から出力されるアナログベースバンド送信信号に対して周波数チャンネルAとBに周波数変換を行い、アナログRF送信信号を図示しない送信アンテナから出力する。これにより、Tx-1の2つの周波数チャンネル(CH-A,CH-B)に関するアナログRF送信信号を送信する。
 フレーム構成部151より出力される2つの周波数チャンネル(CH-A,CH-B)の他方の送信アンテナ(Tx-2)に関する伝送フレームに対して、Tx-2用のOFDM信号生成部161-2とD/A変換部191-2と周波数変換部196-2の動作は、Tx-1用の動作と同様である。これにより、Tx-2の2つの周波数チャンネル(CH-A,CH-B)に関するアナログRF送信信号を送信する。
 その他の動作は、図1に示す実施の形態1における送信装置100と同様である。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、複数の基本帯域に関する周波数ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。特に、フレーム構成部より出力される伝送フレームに対して、送信アンテナ毎に2つの周波数チャンネル(CH-A,CH-B)を一括して処理を行うことが特徴である。
 なお、フレーム構成部より出力される伝送フレームに対して、送信アンテナ毎に2つの周波数チャンネル(CH-A,CH-B)を一括して処理を行うことは、実施の形態2~7における送信装置に対しても同様に適用可能である。
 <受信装置及び受信方法>
 図52は、本発明の実施の形態8における受信装置270の構成を示す図である。図52の受信装置270は、2つの周波数チャンネル(CH-A、CH-B)が隣接している場合の図51の送信装置150及び図1の送信装置100に対応し、送信装置150及び100の機能を反映するものである。従来の受信装置、及び実施の形態1~7の受信装置と同じ構成要素は、同じ符号を用い、説明を省略する。図52の受信装置270は図4に示す実施の形態1における受信装置200と比較して、4つのチューナ部205と4つのA/D変換部208と4つの復調部211をそれぞれ、2つのチューナ部206と2つのA/D変換部209と2つの復調部212に置き換えた構成である。更に、2つのS/P変換部214を追加した構成である。
 図52に示す受信装置270において、一方の受信アンテナ(Rx-1)用のチューナ部206-1は2つの周波数チャンネル(CH-A,CH-B)の信号を一括して選択受信し、所定の帯域にダウンコンバートする。Rx-1用のA/D変換部209-1はRx-1用のチューナ部206-1から出力される信号をA/D変換して、デジタル受信信号を出力する。復調部212-1はOFDM復調を行い、I・Q座標のcellデータと伝送路推定値を出力する。これにより、Rx-1の2つの周波数チャンネル(CH-A,CH-B)に関するI・Q座標のcellデータと伝送路推定値を出力する。S/P変換部214-1は復調部212-1の出力に対して、一方の周波数チャンネル(CH-A)に関するデータを周波数デインターリーブ・L1情報デインターリーブ部215A-1に出力し、他方の周波数チャンネル(CH-B)に関するデータを周波数デインターリーブ・L1情報デインターリーブ部215B-1に出力する。
 他方の受信アンテナ(Rx-2)用のチューナ部206-2とA/D変換部209-2と2つの復調部212-2の動作は、Rx-1用の動作と同様である。これにより、Rx-2の2つの周波数チャンネル(CH-A,CH-B)に関するI・Q座標のcellデータと伝送路推定値を出力する。S/P変換部214-2は復調部212-2の出力に対して、一方の周波数チャンネル(CH-A)に関するデータを周波数デインターリーブ・L1情報デインターリーブ部215A-2に出力し、他方の周波数チャンネル(CH-B)に関するデータを周波数デインターリーブ・L1情報デインターリーブ部215B-2に出力する。
 その他の動作は、図4に示す実施の形態1における受信装置200と同様である。
 以上の構成により、複数の基本帯域を用いたMIMO伝送技術において、複数の基本帯域に関する周波数ダイバーシティ効果を十分発揮させて送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。特に、チューナ部とA/D変換部と復調部が受信アンテナ毎に2つの周波数チャンネル(CH-A,CH-B)を一括して処理を行うことが特徴である。
 なお、受信アンテナ毎に2つの周波数チャンネル(CH-A,CH-B)を一括して処理を行うことは、実施の形態2~7における受信装置に対しても同様に適用可能である。
 また、図52の受信装置270の内、チューナ部206-1と206-2を除く構成要素を含んで集積回路242としてもよい。
 (補足)
 本発明は上記の実施の形態で説明した内容に限定されず、本発明の目的とそれに関連又は付随する目的を達成するためのいかなる形態においても実施可能であり、例えば、以下であってもよい。
 (1)実施の形態1~8において、DVB-NGH方式をベースに説明したが、これに限らず、DVB-NGH方式以外の伝送方式に対しても適用可能である。
 (2)実施の形態1~8において、送受信アンテナ数がいずれも2の場合を示したがこれに限らず、3以上であってもよい。また、送受信アンテナ数が異なってもよい。
 (3)実施の形態1~8において、周波数チャンネル(基本帯域)数が2の場合を示したがこれに限らず、3以上であってもよい。
 (4)実施の形態1~8において、基本帯域数が3以上である場合には、その複数の基本帯域の全て、または複数の基本帯域の内2以上の基本帯域に各符号化ブロック中に含まれるデータ成分を振り分ける処理を行ってもよい。
 (5)実施の形態1~8において、2つの送信アンテナ(Tx-1、Tx-2)に対して異なる偏波を適用してもよい。異なる偏波の一例としては、V(Vertical:垂直)偏波とH(Horizontal:水平)偏波が挙げられる。これにより、更にダイバーシティ効果を高めることができる。また2つの周波数チャンネル(CH-A、CH-B)に対して、送信アンテナ1(Tx-1)、送信アンテナ2(Tx-2)に割り当てる偏波は同じであってもよいし、異なってもよい。
 (6)実施の形態1~8において、送信アンテナ2(Tx-2)に対して位相変更を施したがこれに限らず、送信アンテナ1(Tx-1)に対して位相変更を施してもよい。また2つの周波数チャンネル(CH-A、CH-B)に対して、位相変更を施す送信アンテナをそれぞれ送信アンテナ1(Tx-1)、送信アンテナ2(Tx-2)のように、異なってもよい。
 (7)実施の形態7において、TS数を2つとしたが、これに限らない。またTS-1と2のプログラム数を1としたが、これに限らない。
 (8)実施の形態7において、サービス・コンポーネントを音声と映像としたが、これに限らない。他に、データ・コンポーネントなどが挙げられる。また実施の形態7において、映像に対してscalable codingを行う構成としたが、これに限らず、音声やデータ・コンポーネントに対してscalable codingを行ってもよい。
 (9)実施の形態7において、SVCにより映像Bと映像Eを生成するとしたがこれに限らず、例えばMVC(Multi-view Video Coding)によりMVC_B(Base view)とMVC_D(Dependent view)を生成してもよい。この場合、MVC_BをあるPLPに割り当てて単一の基本帯域を用いたMIMO伝送とし、MVC_Dを別のPLPに割り当てて複数の基本帯域を用いたMIMO伝送とすれば、単一の基本帯域のみに対応したMIMO受信装置において、基本情報のPLPは受信可能となり、その番組の基本情報部分、例えば2Dでその番組を楽しむことができる。更に複数の基本帯域に対応したMIMO受信装置において、基本情報と拡張情報のPLPを受信可能となり、例えば3Dでその番組を楽しむことができる。
 (10)実施の形態7において、音声、映像B、L2情報を単一の基本帯域を用いたMIMO伝送、映像Eを複数の基本帯域を用いたMIMO伝送としたが、これに限らない。例えば、音声とL2情報を単一の基本帯域を用いたMISO(Multiple Input Single Output)伝送、映像Bを単一の基本帯域を用いたMIMO伝送、映像Eを複数の基本帯域を用いたMIMO伝送としてもよい。また別の例として、音声とL2情報を単一の基本帯域を用いたSISO(Single Input single Output)伝送、映像Bを単一の基本帯域を用いたMISO伝送、映像Eを複数の基本帯域を用いたMIMO伝送としてもよい。以上のように、更にMISO伝送とSISO伝送を混在させてもよい。
 (11)上記の実施の形態1~8は、ハードウェアとソフトウェアを使った実装に関するものであってもよい。上記の実施の形態はコンピューティングデバイス(プロセッサ)を使って実装又は実行されてもよい。コンピューティングデバイスまたはプロセッサは、例えば、メインプロセッサ/汎用プロセッサ(general purpose processor)、デジタル信号プロセッサ(DSP)、ASIC(application specific integrated circuit)、FPGA(field programmable gate array)、他のプロラマブル論理デバイスなどであってよい。上記の実施の形態は、これらのデバイスの結合によって実行され、あるいは、実現されてもよい。
 (12)上記の実施の形態1~8は、プロセッサによって、または、直接ハードウェアによって実行される、ソフトウェアモジュールの仕組みによって実現されてもよい。また、ソフトウェアモジュールとハードウェア実装の組み合わせも可能である。ソフトウェアモジュールは、様々な種類のコンピュータ読み取り可能なストレージメディア、例えば、RAM、EPROM、EEPROM、フラッシュメモリ、レジスタ、ハードディスク、CD-ROM、DVDなど、に保存されてもよい。
 ≪発明者による検討内容と実施の形態(その2)≫
 ところで、国内地上テレビ放送は2011年7月に完全にデジタル放送に移行され、伝送規格としてISDB―T(ISDB-Terrestrial)方式を用いてHDTVサービスが行われている。ISDB―T方式はOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式を採用している(非特許文献4)。
 図75は、ISDB―T方式における送信装置5000の構成を示す図である。送信装置5000は、TS(Transport Stream)再多重部5011、RS(Reed-Solomon)符号化部5021、階層分割部5031、階層処理部5041-A~C、階層合成部5051、時間インターリーブ部5061、周波数インターリーブ部5071、パイロット信号生成部5081、TMCC(Transmission Multiplexing Configuration Control)/AC(Auxiliary Channel)信号生成部5091、フレーム構成部5101、OFDM信号生成部5111、D/A変換部5121、周波数変換部5131を備える。
 以下、送信装置5000の動作について説明する。図示しないMPEG-2多重部から出力された複数のTSは、データセグメント単位の信号処理に適したTSパケット配置とするためTS再多重部5011に入力される。TS再多重部5011は、FFT(Fast Fourier Transform)サンプルクロックの4倍のクロックにより、188バイト単位のバースト信号形式かつ単一のTSに変換する。RS符号化部5021はRS符号化を行い、188バイトの情報に対して16バイトのパリティを付加する。階層分割部5031は階層伝送を行う場合には、階層情報の指定に沿って最大3系統(A階層、B階層、C階層)の階層分割を行う。
 図76は、階層処理部5041の構成を示す図である。階層処理部5041は、エネルギー拡散部5201、バイトインターリーブ部5211、畳込符号化部5221、ビットインターリーブ部5231、マッピング部5241を備える。階層処理部5041は入力された階層のデータに対して、主として誤り訂正符号化、インターリーブ等のデジタルデータ処理、キャリア変調を行う。誤り訂正、インターリーブ長、キャリア変調方式はそれぞれの階層で独立に設定する。
 階層合成部5051は、階層処理部5041-A~Cから出力される最大3系統(A階層、B階層、C階層)のデータの階層合成を行う。
 図77は、周波数インターリーブ部5071の構成を示す図である。周波数インターリーブ部5071は、セグメント分割部5301、セグメント間インターリーブ部5311-D及びS、セグメント内キャリアローテーション部5321-P及びD及びS、セグメント内キャリアランダマイズ部5331-P及びD及びSを備える。移動受信における電界変動やマルチパス妨害に対して誤り訂正符号化の能力を有効に発揮させるため、階層合成部5051からの出力に対して時間インターリーブ部5061がセグメント内の畳込インターリーブを行い、周波数インターリーブ部5071がセグメント間とセグメント内のインターリーブを行う。周波数インターリーブ部5071において、セグメント分割部5301は、部分受信部、差動変調部(キャリア変調がDQPSKに指定されたセグメント)、同期変調部(キャリア変調がQPSK、16QAM、または64QAMに指定されたセグメント)の順に、データセグメント番号0から12を割り当てる。なお、階層構成とデータセグメントの関係については、各階層のデータセグメントを番号順に連続的に配置し、データセグメントの小さい番号を含む階層から、A階層、B階層、C階層とする。階層が異なる場合でも、同じ種類の変調部に属するデータセグメントにはセグメント間インターリーブを行う。
 パイロット信号生成部5081は同期再生用パイロット信号を生成する。複数の伝送パラメータが混在する階層伝送に対して、受信機の復調・復号を補助するため、TMCC/AC信号生成部5091は制御情報であるTMCC信号と、付加情報であるAC信号を生成する。フレーム構成部5101は周波数インターリーブ部5071から出力される情報データ、パイロット信号生成部5081から出力される同期再生用パイロット信号、及びTMCC/AC信号生成部5091から出力されるTMCC信号からISDB-T方式の伝送フレームを構成する。
 図78に、モード1の同期変調部(QPSK、16QAM、64QAM)を例に、ISDB-T方式のセグメント構成を示す。同期再生用パイロット信号としての分散パイロット信号(以下SP信号:Scattered Pilot信号)をサブキャリア毎に伝送するのではなく、周波数(サブキャリア)方向及び時間(シンボル)方向に、シンボル番号nのシンボルに対し、キャリア番号kがk=3(n mod 4)+12p(modは剰余演算を表し、pは整数)を満たすキャリア位置で伝送する。すなわち図78に示すように、SP信号を4シンボルの周期で反復して配置し、シンボル毎に3キャリアずつシフトして配置する。このように配置したSP信号をそのキャリア位置で決定される特定のパターンで2値に変調し、送信する。またTMCC信号とAC信号のキャリアは、マルチパスによる伝送路特性の周期的なディップの影響を軽減するために、周波数方向にランダムに配置される。ISDB-T方式では、SP信号、TMCC信号、及びAC信号を配置していないキャリアを用いて、情報伝送信号をQPSK,16QAM,64QAMなどに変調し、送信する。
 OFDM信号生成部5111はフレーム構成部5101から出力されるISDB-T方式の伝送フレーム構成に対して、IFFT(Inverse FFT)、GI(Guard Interval)の挿入を行い、ISDB-T方式のデジタルベースバンド送信信号を出力する。D/A変換部5121は、OFDM信号生成部5111から出力されるISDB-T方式のデジタルベースバンド送信信号に対してD/A変換を行い、ISDB-T方式のアナログベースバンド送信信号を出力する。周波数変換部5131は、D/A変換部5121から出力されるISDB-T方式のアナログベースバンド送信信号に対して周波数チャンネルYに周波数変換を行い、ISDB-T方式のアナログRF送信信号を図示しない送信アンテナ(Tx-1)から出力する。
 ところで、HDTVサービスの解像度を超えるUHDTV(Ultra HDTV)サービスの検討が盛んに行われている。ビットレートが高いUHDTVサービス実現のために、ISDB―T方式より周波数利用効率の高い大容量伝送を可能とする伝送方式の検討が重要である。このためには、送受信とも複数のアンテナを用いるMIMO(Multiple Input Multiple Output)伝送技術の導入が鍵となる。
 受信アンテナが屋根の上に存在する固定受信では、見通しとなるLOS(Line Of Sight)環境が典型的な伝送路である。この場合、MIMO伝送方式によっては受信品質が劣化するという問題が発生する(非特許文献5)。
 この問題を緩和するため、異なる偏波方向(例えば、V(Vertical:垂直)偏波、H(Horizontal:水平)偏波)を有する複数のアンテナからなる偏波MIMO伝送技術が検討されている。偏波MIMOを使用する放送システムにおいて、送信装置は、例えば放送局に設けられた複数系統の異なるデータ信号を複数本の送信アンテナの各々に割り当て、同一の周波数上または周波数帯が重なる状態の放送波によりOFDM信号を送信する。このOFDM信号は複数系統の伝搬路を経て送信されることになり、受信装置は、複数本の受信アンテナによって、当該複数系統のOFDM信号を受信し、各複数系統のOFDM信号から、経由した伝搬路ごとの伝達関数を推定して分離することにより、送信装置から送信された複数系統の異なるデータ信号を復調することができる。
 偏波MIMO伝送技術において、誤り訂正(FEC:Forward Error Correction)符号化後のデータをそれぞれの偏波アンテナに分散させて、偏波ダイバーシティ効果を高めることが重要である。また国内地上テレビ放送に偏波MIMO伝送技術を導入する場合には、既存のISDB―T方式との親和性を高くすることが重要である。更に同一周波数チャンネル内で、既存のISDB―T方式と偏波MIMO伝送技術を用いた新方式を混在可能とすることで、新方式の導入を容易にすることが重要である。
 以下で説明する、実施の形態9~12に係る発明は、上述の問題を解決するべくなされたものであり、MIMO伝送技術を用いた送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラムを提供することを目的とする。
 以下、各実施形態について、図面を用いて詳細に説明する。
 (実施の形態9)
 <送信装置及び送信方法>
 図57は、本発明の実施の形態9における送信装置3000の構成を示す図である。従来の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図57に示す送信装置3000は図75に示す従来の送信装置5000と比較して、階層処理部5041-A~C及びパイロット信号生成部5081及びTMCC/AC信号生成部5091及びフレーム構成部5101を、階層処理部3041-A~C及びパイロット信号生成部3081及びTMCC/AC信号生成部3091及びフレーム構成部3101にそれぞれ置き換えた構成である。また送信装置3000では、送信アンテナ(Tx-1、Tx-2)毎に階層合成部5051、時間インターリーブ部5061、周波数インターリーブ部5071、OFDM信号生成部5111、D/A変換部5121、周波数変換部5131を備える。なおTx-1、Tx-2はそれぞれ、H偏波とV偏波を用いるとするが、これに限らず、異なる偏波を組み合わせればよい。
 以下、送信装置3000の動作について説明する。図58は、階層処理部3041の構成を示す図である。図76に示す従来の階層処理部5041と比較して、MISO(Multiple Input Single Output)符号化部3251、MIMO符号化部3261、及びセレクタ3271を追加した構成である。図58の階層処理部3041において、マッピング部5241からの出力に対して、MISO符号化部3251はMISO符号化を行い、2つの送信アンテナ(Tx-1、Tx-2)に対するMISO符号化データを出力する。MISO符号化の一例としてAlamouti符号化が挙げられるが、これに限らない。
 またマッピング部5241からの出力に対して、MIMO符号化部3261はMIMO符号化を行い、2つの送信アンテナ(Tx-1、Tx-2)に対するMIMO符号化データを出力する。具体的には、2つずつのマッピングデータを用いてプリコーディングを行い、2つの送信アンテナ(Tx-1、Tx-2)に対するMIMO符号化データを出力する。マッピングデータの組をs2k+1、s2k+2、…と表すと、入力ベクトルs=(s2k+1,s2k+2)T、(k=0,1,…)に対して出力ベクトルz=(z1_k,z2_k)Tは式(30)のように表される。
Figure JPOXMLDOC01-appb-M000030
 但し、zP_kは送信アンテナPに対する出力データ(MIMO符号化データ)、Fは式(31)で表される固定プリコーディング行列である。
Figure JPOXMLDOC01-appb-M000031
 式(31)において、固定プリコーディング行列の各要素wMN(M=1,2、N=1,2)は複素数である。但し、wMNは全て複素数である必要はなく、実数の要素が含まれてもよい。
 なお式(32)と式(33)に示す通り、式(30)に対して更に規則的に変化する位相変更行列X(k)を乗算して、プリコーディングを行ってもよい。
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
 この位相変更行列X(k)により、送信アンテナ2(Tx-2)に対するMIMO符号化データ系列に対して、2π/9ラジアンずつ変化する周期9の位相変更を施す。よってMIMO伝送路に規則的な変動を起こすことにより、直接波が支配的なLOS(Line Of Sight)環境における受信装置におけるデータの受信品質が向上するという効果を得ることができる。なお、この位相変更例は一例に過ぎず、周期は9に限ったものではない。この周期の数が多くなればその分だけ、受信装置の受信性能(より正確には誤り訂正性能)の向上を促すことができる可能性がある(周期が大きければよいというわけではないが、2のような小さい値は避ける方がよい可能性が高い。)。
 また、上記式(32)と式(33)で示した位相変更例では逐次所定の位相(上記式では、2π/9ラジアンずつ)だけ回転させていく構成を示したが、同じ位相量だけ回転させるのではなくランダムに位相を変更することとしてもよい。位相の規則的な変更において重要となるのは、変調信号の位相が規則的に変更されることであり、変更される位相の度合いについては、なるべく均等になる、例えば、-πラジアンからπラジアンに対し、一様分布となるのが望ましいもののランダムであってもよい。
 MIMO符号化部3261が以上の動作をすることにより、出力ベクトルzの各要素は式(34)~式(35)のように表される。
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
 ここで、f1、f2は関数を表す。よって偏波MIMO伝送技術において、各マッピングデータの成分を、全送信アンテナから送信することにより、偏波ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。
 また式(36)で表される固定プリコーディング行列Fを用いてもよい。
Figure JPOXMLDOC01-appb-M000036
 なお式(32)と式(33)に示す通り、式(36)に対して更に規則的に変化する位相変更行列X(k)を乗算して、プリコーディングを行ってもよい。MIMO符号化部3261が以上の動作をすることにより、出力ベクトルzの各要素は式(37)~式(38)のように表される。
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
 ここで、f1、f2は関数を表す。よって偏波MIMO伝送技術において、全マッピングデータの内、半分は一方の送信アンテナ(Tx-1)から送信し、残り半分は他方の送信アンテナ(Tx-2)から送信することにより、偏波ダイバーシティ効果を十分発揮させる送信装置、送信方法、及びプログラムを提供することができる。
 図58の階層処理部3041において、セレクタ3271は選択信号が“0”、“1”、“2”の場合、それぞれ“0” 、“1”、“2”に入力されるデータを選択して出力する。すなわち、その階層が既存のISDB―T方式、MISO伝送、MIMO伝送であれば、それぞれ選択信号が“0”、“1”、“2”である。但し選択信号が“0”の場合、Tx-2にはヌル信号が出力される。
 以上の構成により、階層処理部3041は最大3系統(A階層、B階層、C階層)のデータを出力し、それぞれISDB―T方式、MISO伝送、MIMO伝送の内のいずれかを選択可能である。
 図57の送信装置3000において、各送信アンテナの階層合成部5051、時間インターリーブ部5061、及び周波数インターリーブ部5071は、図75に示す従来の送信装置5000と同様の動作を行う。すなわち両送信アンテナに対する動作を同じにする。但し、図60(TMCC信号の定義の一部)を用いて後述する通り、図77に示す周波数インターリーブ部5071において、セグメント分割部5301はISDB-T方式が同期変調部または差動変調部を未使用の場合、MISO/MIMO同期変調部を同期変調部または差動変調部(未使用である方)に割り当てる。これにより、ISDB-T方式とMISO/MIMO方式とをそれぞれ独立して周波数インターリーブを行い、周波数インターリーブ後の各セグメント内にISDB-T方式とMISO/MIMO方式とが混在しないようにする。但し、周波数インターリーブ後の各セグメント内にMISO伝送の階層とMIMO伝送の階層を混在させることができる。
 パイロット信号生成部3081は同期再生用パイロット信号を生成する。但し、MIMO伝送またはMISO伝送の階層に属するセグメントに対しては、MIMO/MISO用の同期再生用パイロット信号を生成する。TMCC/AC信号生成部3091は制御情報であるTMCC信号と、付加情報であるAC信号を生成する。但し、MIMO伝送及びMISO伝送の階層に属するセグメントに対しては、それぞれMIMO用、MISO用のTMCC信号を生成する。
 図59に示すモード1の同期変調部を例に、MIMO伝送及びMISO伝送のセグメント構成を示す。図59に示す通り、OFDMシンボル番号が偶数の場合には両送信アンテナのSP信号を同位相とし、奇数の場合にはTx-2のSP信号をTx-1と逆位相とする。またキャリア番号0にISDB-T方式のCP(Continual Pilot)信号を配置する(Tx-1:CP、Tx-2:ヌル)ことにより、ISDB-T方式の同期変調部セグメントが周波数の低い方に隣接する場合に、ISDB-T方式同期変調部のSPの代わりを果たす。但し、周波数の低い方に隣接するセグメントがMIMO伝送またはMISO伝送のセグメントの場合には、両送信アンテナからCP信号を送信してもよい。この場合には、OFDMシンボル番号が偶数の場合には両送信アンテナのCP信号を同位相とし、奇数の場合にはTx-2のCP信号をTx-1と逆位相とする。
 またTMCC信号とAC信号にはMIMO/MISO符号化を行わず、同一の信号を両送信アンテナ(Tx-1、Tx-2)から送信し、また、その周波数方向配置をISDB-T方式におけるそれと同一とすることにより、既存ISDB-T受信機もMIMO/MISOセグメントのTMCC信号とAC信号とが受信可能となる。
 図60にTMCC信号の定義の一部を示す。図60(a)(b)はそれぞれ、ISDB-T方式及び本実施の形態9におけるキャリア変調マッピング方式の定義を示す。図60(b)に示す通り、本実施の形態9ではISDB-T方式で未定義であった“100”及び“101”にそれぞれ、MISO伝送、MIMO伝送を割り当てる。これにより、MISO伝送またはMIMO伝送のセグメントを、既存のISDB-T受信機は「受信不可」と認識することができ、MISO伝送及びMIMO伝送に対応した受信機はMISO伝送またはMIMO伝送のセグメントと認識することができる。
 図60(c)(d)はそれぞれ、ISDB-T方式及び本実施の形態9におけるB110~B121の定義を示す。図60(d)に示す通り、本実施の形態9ではISDB-T方式で未定義であったB110~B112の“000”及び“001”及び“010”にそれぞれ、QPSK(MISO/MIMO伝送)、16QAM(MISO/MIMO伝送)、64QAM(MISO/MIMO伝送)、を割り当てる。これにより、既存のISDB-T受信機に悪影響を与えることなく、MISO伝送及びMIMO伝送に対応した受信機は、MISO伝送またはMIMO伝送のセグメントのキャリア変調マッピング方式を認識することができる。
 図60(e)(f)はそれぞれ、ISDB-T方式及び本実施の形態9におけるセグメント識別の定義を示す。図60(f)に示す通り、本実施の形態9では“000”及び“001”をそれぞれ、同期変調部またはMISO/MIMO同期変調部、差動変調部またはMISO/MIMO同期変調部とする。ISDB-T方式において同期変調部または差動変調部が未使用の場合、それぞれ“000”または“111”でMISO/MIMO同期変調部を定義することができる。“000”及び“111”がそれぞれMISO/MIMO同期変調部かどうかに関しては、図60(b)のキャリア変調マッピング方式の定義により認識される。既存のISDB-T受信機は、引き続き、“000”及び“111”をそれぞれ同期変調部及び差動変調部と解釈するが、図60(b)のキャリア変調マッピング方式の定義がISDB-T方式で未定義であった“100”及び“101”(MISO伝送及びMIMO伝送のセグメント)である場合には、「受信不可」と認識することができる。これに対して、MISO伝送及びMIMO伝送に対応した受信機は、図60(b)のキャリア変調マッピング方式の定義により、MISO伝送またはMIMO伝送のセグメントと認識し、MISO/MIMO同期変調部を認識することができる。このように、既存のISDB-T受信機に悪影響を与えることなく、MISO伝送及びMIMO伝送に対応した受信機はMISO伝送またはMIMO伝送のセグメントのキャリア変調マッピング方式を認識することができる。
 フレーム構成部3101は送信アンテナ毎の周波数インターリーブ5071から出力される情報データ、パイロット信号生成部3081から出力される同期再生用パイロット信号、及びTMCC/AC信号生成部3091から出力されるTMCC及びAC信号から、伝送フレームを構成する。ここで図75に示す従来のフレーム構成部5101と異なる点は、2つの送信アンテナ(Tx-1、Tx-2)それぞれにおいて伝送フレームを構成していることと、MIMOまたはMISO伝送のセグメントを含んでもよいことである。
 図57の送信装置3000において、OFDM信号生成部5111、D/A変換部5121、周波数変換部5131は、図75に示す従来の送信装置5000と同様の動作を行う。すなわち両送信アンテナに対する動作を同じにする。
 以上の構成により、偏波MIMO伝送技術において、既存のISDB―T方式と偏波MIMO伝送技術を用いた新方式を混在可能とし、新方式の導入を容易にする送信装置、送信方法、及びプログラムを提供することができる。更に偏波MIMO伝送技術を用いた新方式において、偏波ダイバーシティ効果を十分発揮させることができ、特に既存のISDB―T方式と親和性の高い処理方法(ISDB―T方式と同一の時間インターリーブ、周波数インターリーブなど)を用いて実現していることが特徴である。
 <既存のISDB―T受信装置及び受信方法>
 図61は、既存のISDB―T受信装置3300の構成を示す図である。図61のISDB―T受信装置3300は、図75の送信装置5000に対応し、送信装置5000の機能を反映するものである。
 ISDB―T受信装置3300は、チューナ部3305と、A/D変換部3308と、復調部3311と、周波数デインターリーブ部3315、時間デインターリーブ部3321と、複数階層TS再生部3331と、FEC復号化部3333と、TMCC信号復号部3335を備える。
 以下、ISDB―T受信装置3300の動作について説明する。図75の送信装置5000から送信された信号に対して、受信アンテナRx-1よりアナログRF送信信号が入力されると、チューナ部3305は選局された周波数チャンネル(CH-Y)の信号を選択受信し、所定の帯域にダウンコンバートする。A/D変換部3308はA/D変換して、デジタル受信信号を出力する。復調部3311はOFDM復調を行い、等化後のI・Q座標のマッピングデータ(cell)と伝送路推定値を周波数デインターリーブ部3315に出力するとともに、等化前のFFT出力をTMCC信号復号部3335に出力する。
 TMCC信号復号部3335は復調部3311から出力された等化前のFFT出力に対して、図59に示すTMCC信号が配置されている各キャリアに対して差動BPSK復調を行い、セグメント毎に集まった復調結果を多数決復号して、TMCC信号を復号する。復号されたTMCC信号は復調部3311と、周波数デインターリーブ部3315と、時間デインターリーブ部3321と、複数階層TS再生部3331と、FEC復号化部3333に出力され、各部で復号されたTMCC信号に基づいた動作が行われる。
 周波数デインターリーブ部3315は復調部3311から出力された等化後のI・Q座標のマッピングデータと伝送路推定値に対して、部分受信部、差動変調部、同期変調部それぞれに対して周波数デインターリーブを行う。時間デインターリーブ部3321は周波数デインターリーブ部3315からの出力に対して、時間デインターリーブを行う。
 図62は、複数階層TS再生部3331の構成を示す図である。複数階層TS再生部3331は、SISO(Single Input Single Output)デマッピング部3401と、ビットデインターリーブ部3411と、デパンクチャ部3421と、TS再生部3431を備える。SISOデマッピング部3401は周波数デインターリーブ部3315と時間デインターリーブ部3321で並び替えが行われた等化後のI・Q座標のマッピングデータと伝送路推定値に基づき、デマッピング処理を行う。ビットデインターリーブ部3411はビットデインターリーブを行い、デパンクチャ部3421はデパンクチャ処理を行う。TS再生部3431はデパンクチャ部3421の出力に対して階層毎にTS再生を行う。
 図63は、FEC復号化部3333の構成を示す図である。FEC復号化部3333は、ビタビ復号部3441と、バイトデインターリーブ部3451と、エネルギー逆拡散部3461と、RS復号部3471を備える。複数階層TS再生部3331からの出力に対して、ビタビ復号部3441はビタビ復号を行い、バイトデインターリーブ部3451はバイトデインターリーブを行い、エネルギー逆拡散部3461はエネルギー逆拡散を行い、RS復号部3471はRS復号を行う。
 以上の動作により、図61のISDB―T受信装置3300は、図75の送信装置5000から送信された信号に対して、誤り訂正復号まで行った各階層のTSを出力する。なお、図61のISDB―T受信装置3300の内、チューナ部3305を除く構成要素を含んで集積回路3341としてもよい。
 次に、図57の送信装置3000から送信された信号に対する図61のISDB―T受信装置3300の動作について、前述した図75の送信装置5000から送信された信号に対する動作と異なる点のみ説明する。
 図57の送信装置3000から送信された信号に対して、受信アンテナRx-1よりアナログRF送信信号が入力されると、チューナ部3305と、A/D変換部3308は前述と同じ動作を行う。
 TMCC信号復号部3335は前述の動作と同じく、セグメント毎に集まった復調結果を多数決復号して、TMCC信号を復号する。なおMISO伝送またはMIMO伝送の階層が割り当てられたセグメントにおいて、図57の送信装置3000はTMCC信号に対してMIMO/MISO符号化を行わずに、両送信アンテナ(Tx-1、Tx-2)から同一信号を送信する。よって、TMCC復号部3335はMISO伝送またはMIMO伝送の階層が割り当てられたセグメントのTMCC信号を復号可能であり、図60に示すTMCC信号の定義により、受信不可能なセグメントと判定する。
 この判定結果は復調部3311と、周波数デインターリーブ部3315と、時間デインターリーブ部3321と、複数階層TS再生部3331と、FEC復号化部3333に出力され、各部はISDB―T方式の階層が割り当てられたセグメントのみ処理を行う。
 以上の動作により、図61のISDB―T受信装置3300は、図57の送信装置3000から送信された信号に対して、誤り訂正復号まで行ったISDB―T方式の階層のTSを出力する。
 <受信装置及び受信方法>
 図64は、本発明の実施の形態9における受信装置3500の構成を示す図である。図64の受信装置3500は、図57の送信装置3000に対応し、送信装置3000の機能を反映するものである。既存のISDB―T受信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 受信装置3500は、図61に示すISDB―T受信装置3300と比較して、複数階層TS再生部3331とTMCC信号復号部3335をそれぞれ、複数階層TS再生部3531とTMCC信号復号部3535に置き換えた構成である。更に、復調部3311を復調部3511に置き換え、送信アンテナ毎に備えた構成である。また受信装置3500では、送信アンテナ毎にチューナ部3305と、A/D変換部3308と、周波数デインターリーブ部3315、時間デインターリーブ部3321を備える。
 以下、受信装置3500の動作について説明する。図57の送信装置3000から送信された信号に対して、両受信アンテナ(Rx-1、Rx-2)よりアナログRF送信信号が入力されると、各受信アンテナのチューナ部3305とA/D変換部3308は、図61に示すISDB―T受信装置3300と同様の動作を行う。
 各受信アンテナの復調部3511はOFDM復調を行う。但しMISO伝送またはMIMO伝送の階層が割り当てられたセグメントに対しては等化を行わず、図59に示すSP信号に基づいて、MISO/MIMO用伝送路推定を行う。よって各受信アンテナの復調部3511は、MISO伝送またはMIMO伝送の階層が割り当てられたセグメントに対しては、等化前のFFT出力を周波数デインターリーブ部3315及びTMCC信号復号部3535に出力するとともに、伝送路推定値を周波数デインターリーブ部3315に出力する。
 TMCC信号復号部3535は復調部3511から出力された等化前のFFT出力に対して、図61におけるTMCC信号復号部3335と同様に差動BPSK復調と多数決復号を行って、TMCC信号を復号する。但し、両受信アンテナ(Rx-1、Rx-2)の復調部3511からの出力を用いて多数決復号を行うことにより、更に復号性能が向上する。またTMCC信号復号部3535は、図60に示すTMCC信号の定義を認識し、MISO伝送またはMIMO伝送の階層が割り当てられたセグメントに対しても、MISO伝送であるかMIMO伝送であるかを検出するとともに、キャリア変調マッピング方式(QPSK、16QAM、64QAM)も検出する。
 この検出結果は各受信アンテナの復調部3511と、周波数デインターリーブ部3315と、時間デインターリーブ部3321と、複数階層TS再生部3531と、FEC復号化部3333に出力され、各部はISDB―T方式の階層が割り当てられたセグメント及びMISO伝送及びMIMO伝送の階層が割り当てられたセグメントの処理を行う。
 各受信アンテナの周波数デインターリーブ部3315及び時間デインターリーブ部3321の動作は、図61における動作と同様である。但し周波数デインターリーブ部3315は図60(f)に示す通り、MISO/MIMO同期変調部が割り当てられたISDB-T同期変調部またはISDB-T差動変調部の各受信アンテナにおける周波数デインターリーブ機能を用いて、周波数デインターリーブが可能である。またISDB―T方式の階層が割り当てられたセグメントに対しては、一方の受信アンテナ(Rx-1またはRx-2)の周波数デインターリーブ部3315及び時間デインターリーブ部3321の動作を停止することができる。あるいは両受信アンテナ(Rx-1、Rx-2)とも動作を行い、ダイバーシティ受信を行うことで更に受信性能を向上可能である。
 図65は、複数階層TS再生部3531の構成を示す図である。複数階層TS再生部3531は図62に示す複数階層TS再生部3331と比較して、SISOデマッピング部3401をSISO/MISO/MIMOデマッピング部3501に置き換えた構成である。SISO/MISO/MIMOデマッピング部3501は入力されるTMCC信号に基づき、ISDB―T方式の階層が割り当てられたセグメントに対してはSISOデマッピング部3401と同様の動作を行い、MISO伝送またはMIMO伝送の階層が割り当てられたセグメントに対しては、MISOまたはMIMO用デマッピング処理を行う。図65の複数階層TS再生部3531のその他の動作は、図62の複数階層TS再生部3331と同様である。
 図64において、FEC復号化部3333は図61における動作と同様である。
 以下、SISO/MISO/MIMOデマッピング部3501におけるMIMO用デマッピング処理について説明する。MIMOデマッピング部3501への入力ベクトルy=(y1_k,y2_k)Tは式(39)のように表される。
Figure JPOXMLDOC01-appb-M000039
 但し、yP_kは受信アンテナPに対する入力データ、Hは式(40)で表される伝送路行列、n=(n1_k,n2_k)Tはノイズベクトルであり、nP_kは平均値0、分散σ2のi.i.d.複素ガウス雑音である。
Figure JPOXMLDOC01-appb-M000040
 式(39)と式(40)を用いて、SISO/MISO/MIMOデマッピング部3501は最尤復号(MLD:Maximum Likelihood Decoding)を行い、ベクトル推定値s’=(s’2k+1,s’2k+2)Tを算出して、出力する。なお最尤復号に限らず、ZF(Zero Forcing)など他の方法を用いてもよい。
 以上の構成により、偏波MIMO伝送技術において、マッピングデータをそれぞれの偏波アンテナに分散させて送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。
 また、図64の受信装置3500の内、チューナ部3305を除く構成要素を含んで集積回路3541としてもよい。
 (実施の形態10)
 <送信装置及び送信方法>
 図66は、本発明の実施の形態10における送信装置3600の構成を示す図である。従来の送信装置、及び実施の形態9の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 図66の送信装置3600は図57に示す実施の形態9における送信装置3000と比較して、TS再多重部5011及び階層分割部5031及びTMCC/AC信号生成部3091を、TS再多重部3611及び階層分割部3631及びTMCC/AC信号生成部3691にそれぞれ置き換えた構成である。そして更に、LDPC階層割当部3635及びLDPC階層処理部3645を追加した構成である。本実施の形態10では、C階層のみLDPC符号化を行う構成としたがこれに限らず、他の階層に対してLDPC符号化を行ってもよく、また複数の階層に対してLDPC符号化を行ってもよい。
 以下、送信装置3600の動作について説明する。TS再多重部3611は図示しないMPEG-2多重部から出力された3つのTSの内、2つのTSを入力として、単一のTSに変換する。但し、残り1つのTSが入力されないことによる空き時間に対してはヌルパケットを挿入する。階層分割部3631は階層情報の指定に沿って最大2系統(A階層、B階層)の階層分割を行う。
 一方LDPC階層割当部3635は残り1つのTSを入力として、そのTSにLDPC符号化を行うC階層を割り当て、各TSパケットのタイミング情報を生成して、各TSパケットとともにLDPC階層処理部3645に出力する。
 図67は、LDPC階層処理部3645の構成を示す図である。LDPC階層処理部3645は図58に示す実施の形態10における階層処理部3041と比較して、バイトインターリーブ部5211及び畳込符号化部5221を削除し、BCH符号化部3711及びLDPC符号化部3721を追加した構成である。更にLDPC階層処理部3645は、ビットインターリーブ部5231をビットインターリーブ部3731に置き換えた構成である。
 LDPC階層処理部3645において、BCH符号化部3711はLDPC階層割当部3635から出力される1つ以上のTSパケットに含まれるデータを集めるとともに、タイミング情報をヘッダに格納して情報ビットとし、BCH符号化を行う。エネルギー拡散部5201は図76における動作と同様である。LDPC符号化部3721はLDPC符号化を行い、ビットインターリーブ部3731はLDPC符号化の能力を引き出すため、一般的には図58におけるISDB-T方式のビットインターリーブ部5231とは異なるビットインターリーブを行う。マッピング部5241以降の動作は、図58に示す階層処理部3041における動作と同様である。
 図66の送信装置3600において、階層合成部5051は階層処理部3041-A~BとLDPC階層処理部3645-Cからの出力データに対して、図58に示す階層処理部3041と同様の動作を行う。
 TMCC/AC信号生成部3691は制御情報であるTMCC信号と、付加情報であるAC信号を生成する。但し、MIMO伝送及びMISO伝送の階層に属するセグメントに対しては、それぞれMIMO用、MISO用のTMCC信号を生成するとともに、LDPC階層に属するセグメントに対しては、LDPC符号化に関するTMCC信号を生成する。
 図68に、LDPC符号化に関するTMCC信号の定義を示す。図68(a)(b)はそれぞれ、ISDB-T方式及び本実施の形態10における畳込符号化率の定義を示す。図68(b)に示す通り、本実施の形態10ではISDB-T方式で未定義であった“101”に、LDPC符号化を割り当てる。これにより、LDPC符号化を行うセグメントを、既存のISDB-T受信機は「受信不可」と認識することができ、LDPC符号化に対応した受信機はLDPC符号化のセグメントと認識することができる。
 図68(c)は、本実施の形態10におけるB110~B121の定義を示す。図60(c)に示す通り、本実施の形態10ではISDB-T方式で未定義であったB113~B115の“000”~“100”にそれぞれ、1/2(LDPC符号化率)、2/3(LDPC符号化率)、3/4(LDPC符号化率)、5/6(LDPC符号化率)、7/8(LDPC符号化率)を割り当てる。これにより、既存のISDB-T受信機に悪影響を与えることなく、LDPC符号化に対応した受信機はLDPC符号化率を認識することができる。
 その他の動作は、図57に示す実施の形態9における送信装置3000と同様である。
 以上の構成により、偏波MIMO伝送技術において、既存のISDB―T方式と偏波MIMO伝送技術を用いた新方式を混在可能とし、新方式の導入を容易にする送信装置、送信方法、及びプログラムを提供することができる。新方式における誤り訂正符号化方式としてBCH符号 + LDPC符号を用いることにより、誤り訂正能力を向上することができる。更に偏波MIMO伝送技術を用いた新方式において、偏波ダイバーシティ効果を十分発揮させることができ、特に既存のISDB―T方式と親和性の高い処理方法(ISDB―T方式と同一の時間インターリーブ、周波数インターリーブなど)を用いて実現していることが特徴である。
 <既存のISDB―T受信装置及び受信方法>
 図66の送信装置3600から送信された信号に対する図61のISDB―T受信装置3300の動作について、実施の形態9における図57の送信装置3000から送信された信号に対する動作と異なる点のみ説明する。
 TMCC信号復号部3335は実施の形態9での動作と同じく、セグメント毎に集まった復調結果を多数決復号して、TMCC信号を復号する。よって、TMCC信号復号部3335はLDPC符号化を行うセグメントのTMCC信号も復号可能であり、図68に示すTMCC信号の定義により、受信不可能なセグメントと判定する。
 この判定結果は復調部3311と、周波数デインターリーブ部3315と、時間デインターリーブ部3321と、複数階層TS再生部3331と、FEC復号化部3333に出力され、各部はISDB―T方式の階層が割り当てられたセグメントのみ処理を行う。
 以上の動作により、図61のISDB―T受信装置3300は、図66の送信装置3600から送信された信号に対して、誤り訂正復号まで行ったISDB―T方式の階層のTSを出力する。
 <受信装置及び受信方法>
 図69は、本発明の実施の形態10における受信装置3800の構成を示す図である。図69の受信装置3800は、図66の送信装置3600に対応し、送信装置3600の機能を反映するものである。既存のISDB―T受信装置、及び実施の形態9の受信装置と同じ構成要素は、同じ符号を用い、説明を省略する。
 受信装置3800は、図64に示す実施の形態9における受信装置3500と比較して、複数階層TS再生部3531及びFEC復号化部3333及びTMCC信号復号部3535をそれぞれ、複数階層TS再生部3831及びFEC復号化部3833及びTMCC信号復号部3835に置き換えた構成である。
 以下、受信装置3800の動作について説明する。TMCC信号復号部3835は図68に示すTMCC信号の定義を認識し、LDPC符号化を行うセグメントに対しても、LDPC符号化を行っていることを検出するとともに、LDPC符号化率も検出する。
 TMCC信号の内、特にLDPC符号化に関する検出結果は複数階層TS再生部3831及びFEC復号化部3833に出力される。
 図70は、複数階層TS再生部3831の構成を示す図である。複数階層TS再生部3831は図65に示す複数階層TS再生部3531と比較して、SISO/MISO/MIMOデマッピング部3501をSISO/MISO/MIMOデマッピング部3801に置き換えた構成である。SISO/MISO/MIMOデマッピング部3801は入力されるTMCC信号に基づき、LDPC符号化を行うセグメントのデータに対してはデマッピング処理後のデータをLDPC階層データとして出力する。LDPC符号化を行っていないセグメントのデータに対しては、図62での動作と同様にデマッピング処理後のデータをビットデインターリーブ部3411に出力し、ビットデインターリーブ部3411以降の動作は図62と同様であり、非LDPC階層データとして出力する。
 図71は、FEC復号化部3833の構成を示す図である。FEC復号化部3833は図63に示すFEC復号化部3333と比較して、ビットデインターリーブ部3911と、LDPC復号化部3941と、BCH復号化部3971と、LDPC階層・非LDPC階層合成部3981を追加し、エネルギー逆拡散部3461を更に1つ追加した構成である。
 図71において、FEC復号化部3833は非LDPC階層データに対して、ビタビ復号化部3441~RS復号化部3471において、図63と同様の動作を行う。またFEC復号化部3833はLDPC階層データに対して、ビットデインターリーブ部3911でビットデインターリーブを行い、LDPC復号化部3941でLDPC復号を行い、エネルギー逆拡散部3461でエネルギー逆拡散を行い、BCH復号化部3971でBCH復号を行う。
 LDPC階層・非LDPC階層合成部3981は、BCH復号化部3971から出力されるLDPC階層復号データのヘッダに含まれるタイミング情報に基づき、RS復号化部3471から出力される非LDPC階層復号データの間に、LDPC階層復号データを挿入することで、両階層の復号データを合成して、誤り訂正復号まで行ったTSを出力する。
 以上の構成により、偏波MIMO伝送技術において、マッピングデータをそれぞれの偏波アンテナに分散させて送信された信号を受信する受信装置、受信方法、及びプログラムを提供することができる。特に、新方式における誤り訂正符号化方式としてBCH符号 + LDPC符号を用いる場合にも対応できる。
 また、図69の受信装置3800の内、チューナ部3305を除く構成要素を含んで集積回路3841としてもよい。
 (実施の形態11)
 <送信装置及び送信方法>
 図72は、本発明の実施の形態11における送信装置4000の構成を示す図である。従来の送信装置、及び実施の形態9の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。本実施の形態11では、TS(Transport Stream)生成部において、SVC(Scalable Video Coding)を用いて映像コンポーネントとして映像B(Base layer)と映像E(Enhancement layer)の2つを生成する。これにより、音声、映像B、映像Eのコンポーネント毎に階層への割当を可能とし、階層毎に既存のISDB―T方式、MISO伝送、MIMO伝送から選択することを可能とする。
 図72の送信装置4000は図57に示す実施の形態9における送信装置3000と比較して、TS再多重部5011をTS再多重部4011に置き換えた構成である。更に図72の送信装置4000は、階層割当部4005を追加した構成である。
 図73は、TS生成部4210の構成を示す図である。図73のTS生成部4210は一例としてTS中に1つのプログラムを生成する場合を示し、音声符号化部4221と映像符号化部4222を1つずつ備える。またTS生成部4210は、各プログラム中における音声・映像B・映像Eのサービス・コンポーネント毎にパケット化部4223を備える。またTS生成部4210は、パケット化ストリーム多重化部4224とL2情報処理部4225を備える。
 TS生成部4210において、音声符号化部4221は音声の情報源符号化を行う。映像符号化部4222はSVCを用いた映像の情報源符号化を行い、映像Bと映像Eの2つのコンポーネントを生成する。情報源符号化の一例としては、H.264やHEVC(H.265)などが挙げられる。
 パケット化部4223は音声符号化部4221、または映像符号化部4222の出力をパケット化する。L2情報処理部4225は、PSI(Program-Specific Information)やSI(System Information)などのL2情報を生成する。パケット化ストリーム多重化部4224は、パケット化部4223の出力とL2情報処理部4225の出力を多重化してTSを生成して、図72に示す送信装置4000に出力する。
 図72に示す送信装置4000において、階層割当部4005は、TS生成部4210から出力されるTSのプログラムに含まれる音声・映像B・映像Eのサービス・コンポーネント毎、及びL2情報に階層を割り当てる。図72では一例として、以下のように割り当てる。
   A階層:プログラム-1の音声、映像B、L2情報
   B階層:プログラム-1の映像E
 図72において、TS再多重部4011への音声、映像B、L2情報パケットは実際には多重化されて、1つの入力となる。TS再多重部4011の動作は、多重化された音声、映像B、L2情報パケットで構成されたストリームと、映像Eパケットで構成されたストリームをそれぞれ1つのTSとして扱う以外は、図57での動作と同様である。
 階層分割部5031は、階層割当部4005が割り当てた通りに階層分割を行う。
 図72に示す送信装置4000において、階層処理部3041-Aは既存のISDB―T方式として動作し、階層処理部3041-BはMISO伝送またはMIMO伝送として動作するものとする。
 図72の送信装置4000におけるその他の動作は、図57に示す実施の形態9における送信装置3000と同様である。
 以上の構成により、音声、映像B、映像Eのコンポーネント毎に階層への割当を可能とし、階層毎に既存のISDB―T方式、MISO伝送、MIMO伝送から選択することを可能とする。特に、音声、映像Bに対して既存のISDB―T方式を選択することにより、既存のISDB―T受信装置において、基本情報の階層は受信可能となり、その番組の基本情報部分、例えば標準画質でその番組を楽しむことができる。
 <既存のISDB―T受信装置及び受信方法>
 図72の送信装置4000から送信された信号に対する図61のISDB―T受信装置3300の動作について、実施の形態9における図57の送信装置3000から送信された信号に対する動作と異なる点のみ説明する。
 TMCC信号復号部3335は実施の形態9での動作と同じく、セグメント毎に集まった復調結果を多数決復号して、TMCC信号を復号し、MISO伝送またはMIMO伝送のB階層(プログラム-1の映像E)が割り当てられたセグメントを、受信不可能と判定する。
 この判定結果は復調部3311と、周波数デインターリーブ部3315と、時間デインターリーブ部3321と、複数階層TS再生部3331と、FEC復号化部3333に出力され、各部はISDB―T方式のA階層(プログラム-1の音声、映像B、L2情報)が割り当てられたセグメントのみ処理を行う。
 以上の動作により、図61のISDB―T受信装置3300は、図72の送信装置4000から送信された信号に対して、誤り訂正復号まで行ったISDB―T方式の階層のTSを出力する。すなわち、プログラム-1の音声、映像B、L2情報を出力する。
 <受信装置及び受信方法>
 図72の送信装置4000から送信された信号に対する図64の受信装置3500の動作について、実施の形態9における図57の送信装置3000から送信された信号に対する動作と異なる点のみ説明する。
 TMCC信号復号部3535は実施の形態9での動作と同じく、MISO伝送またはMIMO伝送のB階層(プログラム-1の映像E)が割り当てられたセグメントに対して、MISO伝送であるかMIMO伝送であるかを検出するとともに、キャリア変調マッピング方式(QPSK、16QAM、64QAM)も検出する。
 この検出結果は各受信アンテナの復調部3511と周波数デインターリーブ部3315と時間デインターリーブ部3321と、複数階層TS再生部3531及びFEC復号化部3333に出力され、各部はISDB―T方式のA階層(プログラム-1の音声、映像B、L2情報)が割り当てられたセグメント及びMISO伝送またはMIMO伝送のB階層(プログラム-1の映像E)が割り当てられたセグメントの処理を行う。
 以上の動作により、図64の受信装置3500は、図72の送信装置4000から送信された信号に対して、誤り訂正復号まで行ったISDB―T方式のA階層及びMISO伝送またはMIMO伝送のB階層のTSを出力する。すなわち、プログラム-1の全コンポーネント(音声、映像B、映像E、L2情報)を出力する。
 (実施の形態12)
 <送信装置及び送信方法>
 図74は、本発明の実施の形態12における送信装置4300の構成を示す図である。従来の送信装置、及び実施の形態9~11の送信装置と同じ構成要素は、同じ符号を用い、説明を省略する。本実施の形態11では、TS生成部において、SVCを用いて映像コンポーネントとして映像Bと映像Eの2つを生成する。これにより、音声、映像B、映像Eのコンポーネント毎に階層への割当を可能とし、階層毎に既存のISDB―T方式、MISO伝送、MIMO伝送から選択することを可能とするとともに、新方式であるMISO伝送及びMIMO伝送における誤り訂正符号化方式としてBCH符号 + LDPC符号を用いる。
 図74の送信装置4300は図66に示す実施の形態10における送信装置3600と比較して、TS再多重部3611をTS再多重部4311に置き換えた構成である。更に図74の送信装置4300は、階層割当部4005を追加した構成である。
 図74に示す送信装置4300において、階層割当部4005は実施の形態11と同様にして、図73に示すTS生成部4210から出力されるTSのプログラムに含まれる音声・映像B・映像Eのサービス・コンポーネント毎、及びL2情報に階層を割り当てる。図74では一例として、以下のように割り当てる。
   A階層:プログラム-1の音声、映像B、L2情報
   C階層:プログラム-1の映像E
 図74において、TS再多重部4311への音声、映像B、L2情報パケットは実際には多重化されて、1つの入力となる。TS再多重部4311の動作は、多重化された音声、映像B、L2情報パケットで構成されたストリームを1つのTSとして扱い、残り1つのコンポーネント(映像E)が入力されないことによる空き時間に対してはヌルパケットを挿入する以外は、図66での動作と同様である。
 階層分割部3631は、階層割当部4005が割り当てた通りに、多重化された音声、映像B、L2情報パケットで構成されたストリームをA階層に階層分割を行う。
 LDPC階層割当部3635は、階層割当部4005が割り当てた通りに、残り1つのコンポーネント(映像E)で構成されたストリームを入力として、そのTSにLDPC符号化を行うC階層を割り当て、各TSパケットのタイミング情報を生成して、各TSパケットとともにLDPC階層処理部3645に出力する。
 図74の送信装置4300において、階層処理部3041-Aは既存のISDB―T方式として動作し、LDPC階層処理部3645-CはMISO伝送またはMIMO伝送として動作するものとする。
 図74の送信装置4300におけるその他の動作は、図66に示す実施の形態10における送信装置3600と同様である。
 以上の構成により、音声、映像B、映像Eのコンポーネント毎に階層への割当を可能とし、階層毎に既存のISDB―T方式、MISO伝送、MIMO伝送から選択することを可能とするとともに、新方式であるMISO伝送及びMIMO伝送における誤り訂正符号化方式としてBCH符号 + LDPC符号を用いる。特に、音声、映像Bに対して既存のISDB―T方式を選択することにより、既存のISDB―T受信装置において、基本情報の階層は受信可能となり、その番組の基本情報部分、例えば標準画質でその番組を楽しむことができる。
 <既存のISDB―T受信装置及び受信方法>
 図74の送信装置4300から送信された信号に対する図61のISDB―T受信装置3300の動作について、実施の形態9における図57の送信装置3000から送信された信号に対する動作と異なる点のみ説明する。
 TMCC信号復号部3335は実施の形態9での動作と同じく、セグメント毎に集まった復調結果を多数決復号して、TMCC信号を復号し、MISO伝送またはMIMO伝送のC階層(プログラム-1の映像E)が割り当てられたセグメントを、受信不可能と判定する。
 この判定結果は復調部3311と、周波数デインターリーブ部3315と、時間デインターリーブ部3321と、複数階層TS再生部3331と、FEC復号化部3333に出力され、各部はISDB―T方式のA階層(プログラム-1の音声、映像B、L2情報)が割り当てられたセグメントのみ処理を行う。
 以上の動作により、図61のISDB―T受信装置3300は、図74の送信装置4300から送信された信号に対して、誤り訂正復号まで行ったISDB―T方式の階層のTSを出力する。すなわち、プログラム-1の音声、映像B、L2情報を出力する。
 <受信装置及び受信方法>
 図74の送信装置4300から送信された信号に対する図69の受信装置3800の動作について、実施の形態9における図57の送信装置3000から送信された信号に対する動作と異なる点のみ説明する。
 TMCC信号復号部3835は実施の形態10での動作と同じく、LDPC符号化を行い、MISO伝送またはMIMO伝送のC階層(プログラム-1の映像E)が割り当てられたセグメントに対しても、MISO伝送かMIMO伝送であるか、キャリア変調マッピング方式(QPSK、16QAM、64QAM)を検出するとともに、LDPC符号化を行っていることと、LDPC符号化率も検出する。
 この検出結果は各受信アンテナの復調部3511と周波数デインターリーブ部3315と時間デインターリーブ部3321と、複数階層TS再生部3831及びFEC復号化部3833に出力され、各部はISDB―T方式のA階層(プログラム-1の音声、映像B、L2情報)が割り当てられたセグメント、及びLDPC符号化を行い、MISO伝送またはMIMO伝送のC階層(プログラム-1の映像E)が割り当てられたセグメントの処理を行う。
 以上の動作により、図69の受信装置3800は、図74の送信装置4300から送信された信号に対して、誤り訂正復号まで行ったISDB―T方式の階層、及びLDPC符号化を行い、MISO伝送またはMIMO伝送の階層のTSを出力する。すなわち、プログラム-1の全コンポーネント(音声、映像B、映像E、L2情報)を出力する。
 (補足)
 本発明は上記の実施の形態9~12で説明した内容に限定されず、本発明の目的とそれに関連又は付随する目的を達成するためのいかなる形態においても実施可能であり、例えば、以下であってもよい。
 (1)実施の形態9~12において、TMCC信号とAC信号にはMIMO/MISO符号化を行わずに両送信アンテナ(Tx-1、Tx-2)から同一信号として伝送するとしたが、これに限らず、MIMO/MISO符号化を行わずに一方の送信アンテナからのみ伝送してもよい。
 (2)実施の形態9~12において、ISDB-T方式、MIMO、MISOの3つを混在させることができるとしたがこれに限らず、その内のいずれか2つを混在させてもよく、またMIMOのみ、MISOのみを送受信可能としてもよい。
 (3)実施の形態9~12において、周波数帯域の中央セグメント(データセグメント番号0)に優先的にISDB-T方式を割り当てても良い。特に優先的に、ISDB-T方式の部分受信部に割り当てても良い。
 (4)実施の形態9~12において、MISO伝送及びMIMO伝送における送受信アンテナ数がいずれも2の場合を示したがこれに限らず、3以上であってもよい。また、送受信アンテナ数が異なってもよい。
 (5)実施の形態9~12において、MISO伝送及びMIMO伝送における2つの送信アンテナ(Tx-1、Tx-2)に対して異なる偏波を適用するとしたが、同一偏波を用いてもよい。
 (6)実施の形態11~12において、A階層をISDB―T方式で、B階層またはC階層をMISOまたはMIMOで伝送するとしたが、これに限らず、例えば、A階層をMISOで、B階層またはC階層をMIMOで伝送してもよい。
 (7)実施の形態9~12において、送信アンテナ2(Tx-2)に対して位相変更を施したがこれに限らず、送信アンテナ1(Tx-1)対して位相変更を施してもよい。
 (8)実施の形態9~12において、MIMOまたはMISOに対して同期変調を適用したが、差動変調を適用してもよい。
 (9)実施の形態11~12において、TS数を1つとしたが、これに限らない。またTSのプログラム数を1としたが、これに限らない。
 (10)実施の形態11~12において、サービス・コンポーネントを音声と映像としたが、これに限らない。他に、データ・コンポーネントなどが挙げられる。また実施の形態11~12において、映像に対してscalable codingを行う構成としたが、これに限らず、音声やデータ・コンポーネントに対してscalable codingを行ってもよい。
 (11)実施の形態11~12において、SVCにより映像Bと映像Eを生成するとしたがこれに限らず、例えばMVC(Multi-view Video Coding)によりMVC_B(Base view)とMVC_D(Dependent view)を生成してもよい。この場合、MVC_Bをある階層に割り当てて既存のISDB―T方式とし、MVC_Dを別の階層に割り当ててMISO伝送またはMIMO伝送とすれば、既存ISDB―T受信装置において、基本情報の階層は受信可能となり、その番組の基本情報部分、例えば2Dでその番組を楽しむことができる。更にMISO伝送またはMIMO伝送に対応した受信装置において、基本情報と拡張情報の階層を受信可能となり、例えば3Dでその番組を楽しむことができる。
 (12)実施の形態11~12において、音声、映像B、L2情報を既存のISDB―T方式、映像EをMISO伝送またはMIMO伝送としたが、これに限らない。例えば、音声とL2情報を既存のISDB―T方式、映像BをMISO伝送、映像EをMIMO伝送としてもよい。
 (13)実施の形態9~12において、時間インターリーブ部5061、及び周波数インターリーブ部5071は、図75に示す従来の送信装置5000と同様の動作を行うとした。MISO伝送またはMIMO伝送の階層が割り当てられたセグメントに対しては、図59に示すMIMO伝送及びMISO伝送のセグメント構成とした。MIMO伝送及びMISO伝送のセグメントにおける1シンボル当たりのデータキャリア数をISDB-T方式と合わせるため、例えばACキャリア数を削減してもよい。あるいはデータキャリア数がISDB-T方式と異なった場合には、時間インターリーブ部5061、及び周波数インターリーブ部5071は、少なくなったデータキャリア数分だけヌルキャリアとして動作し、出力段でヌルキャリアを削除してもよく、これに限らないが、時間インターリーブ部5061、及び周波数インターリーブ部5071は引き続きISDB-T方式と親和性の高い方法を維持できる。また図59に示すMIMO伝送及びMISO伝送のセグメント構成において、MIMO/MISO用の同期再生用パイロット信号のキャリア方向密度を例えば2倍に高めてもよい。この場合にも、前述の通りに時間インターリーブ部5061、及び周波数インターリーブ部5071は引き続きISDB-T方式と親和性の高い方法を維持できる。
 (14)上記の実施の形態9~12は、ハードウェアとソフトウェアを使った実装に関するものであってもよい。上記の実施の形態はコンピューティングデバイス(プロセッサ)を使って実装又は実行されてもよい。コンピューティングデバイスまたはプロセッサは、例えば、メインプロセッサ/汎用プロセッサ(general purpose processor)、デジタル信号プロセッサ(DSP)、ASIC(application specific integrated circuit)、FPGA(field programmable gate array)、他のプロラマブル論理デバイスなどであってよい。上記の実施の形態は、これらのデバイスの結合によって実行され、あるいは、実現されてもよい。
 (15)上記の実施の形態9~12は、プロセッサによって、または、直接ハードウェアによって実行される、ソフトウェアモジュールの仕組みによって実現されてもよい。また、ソフトウェアモジュールとハードウェア実装の組み合わせも可能である。ソフトウェアモジュールは、様々な種類のコンピュータ読み取り可能なストレージメディア、例えば、RAM、EPROM、EEPROM、フラッシュメモリ、レジスタ、ハードディスク、CD-ROM、DVDなど、に保存されてもよい。
 ≪まとめ≫
 実施の形態等に係る送信装置、送信方法、受信装置、及び受信方法とその効果についてまとめる。
 送信装置(1)は、複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送を行う送信装置であって、所定長のデータブロック毎に、誤り訂正符号化して誤り訂正符号化フレームを生成する誤り訂正符号化部と、前記誤り訂正符号化フレームを所定数のビットずつシンボルにマッピングして誤り訂正符号化ブロックを生成するマッピング部と、前記誤り訂正符号化ブロックに対してMIMO符号化を行うMIMO符号化部と、を有し、前記誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内2以上の基本帯域に振り分けて送信を行うことを特徴とする。
 送信装置(1)によれば、複数の基本帯域を用いたMIMO伝送において、誤り訂正符号化ブロック中に含まれるデータの成分を、複数の基本帯域の内2以上の基本帯域に振り分けて送信を行うことにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(2)は、送信装置(1)において、送信データの基本情報に対して、前記複数の基本帯域を用いたMIMO伝送で送信し、前記送信データの拡張情報に対して、単一の基本帯域を用いて送信し、前記基本情報は単独で復号可能な情報であり、前記拡張情報は前記基本情報と組み合わせて復号可能な情報であるとしてもよい。
 送信装置(2)によれば、送信データの基本情報に対して、複数の基本帯域を用いたMIMO伝送で送信し、送信データの拡張情報に対して、単一の基本帯域を用いて送信を行うことにより、PLP毎に複数の基本帯域を用いたMIMO伝送と単一の基本帯域を用いたMIMO伝送を選択することを可能とする送信装置を提供することができる。
 送信装置(3)は、送信装置(1)において、前記MIMO伝送に用いる送信アンテナ数を2とし、前記各送信アンテナの偏波極性が異なるとしてもよい。
 送信装置(3)によれば、複数の基本帯域を用いたMIMO伝送において、MIMO伝送に用いる送信アンテナ数を2とし、各送信アンテナの偏波極性が異なることにより、複数の基本帯域に関する周波数ダイバーシティ効果に加えて、偏波ダイバーシティ効果も発揮する送信装置を提供することができる。
 送信装置(4)は、送信装置(1)において、前記誤り訂正符号化ブロック中に含まれるデータの成分を、更に前記MIMO伝送に用いる複数の送信アンテナの内2以上の送信アンテナに振り分けて送信を行うとしてもよい。
 送信装置(4)によれば、複数の基本帯域を用いたMIMO伝送において、誤り訂正符号化ブロック中に含まれるデータの成分を、更にMIMO伝送に用いる複数の送信アンテナの内2以上の送信アンテナに振り分けて送信を行うことにより、複数の基本帯域に関する周波数ダイバーシティ効果に加えて、空間(アンテナ)ダイバーシティ効果も発揮する送信装置を提供することができる。
 送信装置(5)は、送信装置(1)又は(4)において、前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、前記MIMO符号化部はK×M個の出力ポートを有し、各出力ポートは各基本帯域の各送信アンテナに対応し、前記誤り訂正符号化ブロックに含まれる各データの成分を前記K×M個の全ての出力ポートに出力するとしてもよい。
 送信装置(5)によれば、複数の基本帯域を用いたMIMO伝送において、MIMO符号化部が誤り訂正符号化ブロックに含まれる各データの成分を、全基本帯域の全送信アンテナに対応する出力ポートに出力することにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(6)は、送信装置(5)において、前記MIMO符号化部は、(K×M)行(K×M)列のプリコーディング行列を用いてMIMO符号化を行うとしてもよい。
 送信装置(6)によれば、複数の基本帯域を用いたMIMO伝送において、MIMO符号化部がプリコーディング行列を用いて誤り訂正符号化ブロックに含まれる各データの成分を、全基本帯域の全送信アンテナに対応する出力ポートに出力することにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(7)は、送信装置(1)又は(4)において、前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、K個の出力ポートを有し、各出力ポートは各基本帯域に対応し、前記誤り訂正符号化ブロックに含まれるマッピングデータを前記K個の出力ポートに振り分ける直並列(S/P:Serial to Parallel)変換部を更に有し、前記基本帯域毎に前記MIMO符号化部を有し、前記基本帯域毎の前記MIMO符号化部はM個の出力ポートを有し、各出力ポートは各送信アンテナに対応し、前記直並列変換部の出力データに対してMIMO符号化を行うとしてもよい。
 送信装置(7)によれば、複数の基本帯域を用いたMIMO伝送において、直並列変換部が誤り訂正符号化ブロックに含まれるマッピングデータを全基本帯域に対応する出力ポートに振り分けることにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(8)は、送信装置(1)又は(4)において、前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、K個の出力ポートを有し、各出力ポートは各基本帯域に対応し、前記誤り訂正符号化フレームに含まれるデータを前記K個の出力ポートに振り分ける直並列(S/P:Serial to Parallel)変換部を更に有し、前記基本帯域毎に前記マッピング部と前記MIMO符号化部と、を有し、前記基本帯域毎の前記マッピング部は、前記直並列変換部の出力データに対して所定数のビットずつシンボルにマッピングし、前記基本帯域毎の前記MIMO符号化部はM個の出力ポートを有し、各出力ポートは各送信アンテナに対応し、前記基本帯域毎のマッピング部の出力データに対してMIMO符号化を行うとしてもよい。
 送信装置(8)によれば、複数の基本帯域を用いたMIMO伝送において、直並列変換部が誤り訂正符号化フレームに含まれるデータを全基本帯域に対応する出力ポートに振り分けることにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(9)は、送信装置(7)又は(8)において、前記基本帯域毎のMIMO符号化部は、M行M列のプリコーディング行列を用いてMIMO符号化を行うとしてもよい。
 送信装置(9)によれば、複数の基本帯域を用いたMIMO伝送において、直並列変換部が誤り訂正符号化ブロックに含まれるマッピングデータまたは誤り訂正符号化フレームに含まれるデータを全基本帯域に対応する出力ポートに振り分け、MIMO符号化部がプリコーディング行列を用いてMIMO符号化を行うことにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(10)は、送信装置(1)又は(4)において、前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、K個の出力ポートを有し、各出力ポートは各基本帯域に対応し、前記所定長のデータブロック毎に前記K個の出力ポートに振り分ける直並列(S/P:Serial to Parallel)変換部を更に有し、前記基本帯域毎に前記誤り訂正符号化部と前記マッピング部と前記MIMO符号化部と、を有し、前記基本帯域毎の前記誤り訂正符号化部は、前記直並列変換部の出力データに対して誤り訂正符号化して誤り訂正符号化フレームを生成し、前記基本帯域毎の前記誤り訂正符号化部の出力データ、前記マッピング部の出力データ、および前記MIMO符号化部の出力データの内の何れかに対して、所定数の単位ずつ基本帯域間で入替を行う基本帯域間入替部、を更に有する、としてもよい。
 送信装置(10)によれば、複数の基本帯域を用いたMIMO伝送において、直並列変換部が所定長のデータブロック毎に全基本帯域に対応する出力ポートに振り分け、基本帯域毎の前記誤り訂正符号化部の出力データ、前記マッピング部の出力データ、および前記MIMO符号化部の出力データの内の何れかに対して、所定数の単位ずつ基本帯域間で入替を行うことにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(11)は、送信装置(1)又は(4)において、前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、K個の出力ポートを有し、各出力ポートは各基本帯域に対応し、前記所定長のデータブロック毎に前記K個の出力ポートに振り分ける直並列(S/P:Serial to Parallel)変換部を更に有し、前記基本帯域毎に前記誤り訂正符号化部と前記マッピング部と前記MIMO符号化部と、を有し、前記基本帯域毎の前記誤り訂正符号化部は、前記直並列変換部の出力データに対して誤り訂正符号化して誤り訂正符号化フレームを生成し、前記基本帯域毎の前記MIMO符号化部に設けられるM個の出力ポートそれぞれから出力されるデータに対して並べ替えを行うM個のインターリーブ部と、前記基本帯域毎の前記誤り訂正符号化部の出力データ、前記マッピング部の出力データ、前記MIMO符号化部の出力データ、および前記インターリーブ部の出力データの内の何れかに対して、所定数の単位ずつ基本帯域間で入替を行う基本帯域間入替部と、を更に有する、としてもよい。
 送信装置(11)によれば、複数の基本帯域を用いたMIMO伝送において、直並列変換部が所定長のデータブロック毎に全基本帯域に対応する出力ポートに振り分け、基本帯域毎にインターリーブ部がMIMO符号化部の出力データに対して並べ替えを行い、基本帯域毎の前記誤り訂正符号化部の出力データ、前記マッピング部の出力データ、前記MIMO符号化部の出力データ、および前記インターリーブ部の出力データの内の何れかに対して、所定数の単位ずつ基本帯域間で入替を行うことにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(12)は、送信装置(10)又は(11)において、前記基本帯域毎の前記MIMO符号化部は、M行M列のプリコーディング行列を用いてMIMO符号化を行うとしてもよい。
 送信装置(12)によれば、複数の基本帯域を用いたMIMO伝送において、直並列変換部が所定長のデータブロック毎に全基本帯域に対応する出力ポートに振り分け、基本帯域毎のデータを所定数の単位ずつ基本帯域間で入替を行い、MIMO符号化部がプリコーディング行列を用いてMIMO符号化を行うことにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(13)は、送信装置(1)又は(4)において、前記MIMO符号化部は、前記基本帯域毎に少なくとも1つのアンテナから送信される信号の位相を規則的に変更する位相変更部を備えるとしてもよい。
 送信装置(13)によれば、複数の基本帯域を用いたMIMO伝送において、MIMO符号化部が基本帯域毎に少なくとも1つのアンテナから送信される信号の位相を規則的に変更し、誤り訂正符号化ブロック中に含まれるデータの成分を、複数の基本帯域の内2以上の基本帯域に振り分けて送信を行うことにより、複数の基本帯域に関する周波数ダイバーシティ効果に加えて、直接波が支配的なLOS(Line Of Sight)環境におけるデータの受信品質向上効果を発揮する送信装置を提供することができる。
 送信装置(14)は、送信装置(7)又は(8)又は(10)において、前記MIMO符号化部において、前記基本帯域毎に異なるMIMO符号化を行う、前記MIMO符号化部において、前記基本帯域毎に異なるM行M列のプリコーディング行列を用いてMIMO符号化を行う、前記MIMO符号化部において、前記基本帯域毎に信号の位相を規則的に変更し、前記位相変更を前記基本帯域毎に異ならせる、前記マッピング部において、前記基本帯域毎に異なるパターンのマッピングを行う、前記誤り訂正符号化部において、前記基本帯域毎に異なるパターンの誤り訂正符号化を行う、ことの内少なくとも1つを行う、としてもよい。
 送信装置(14)によれば、複数の基本帯域を用いたMIMO伝送において、複数の基本帯域に関する周波数ダイバーシティ効果に加えて、基本帯域間の伝送路特性に関する相関性低減による受信品質向上効果を発揮する送信装置を提供することができる。
 送信装置(15)は、送信装置(11)において、前記インターリーブ部において、前記基本帯域毎に異なるパターンの並び替えを行う、前記MIMO符号化部において、前記基本帯域毎に異なるMIMO符号化を行う、前記MIMO符号化部において、前記基本帯域毎に異なるM行M列のプリコーディング行列を用いてMIMO符号化を行う、前記MIMO符号化部において、前記基本帯域毎に信号の位相を規則的に変更し、前記位相変更を前記基本帯域毎に異ならせる、前記マッピング部において、前記基本帯域毎に異なるパターンのマッピングを行う、前記誤り訂正符号化部において、前記基本帯域毎に異なるパターンの誤り訂正符号化を行う、ことの内少なくとも1つを行う、としてもよい。
 送信装置(15)によれば、複数の基本帯域を用いたMIMO伝送において、複数の基本帯域に関する周波数ダイバーシティ効果に加えて、基本帯域間の伝送路特性に関する相関性低減による受信品質向上効果を発揮する送信装置を提供することができる。
 送信装置(16)は、送信装置(11)において、前記インターリーブ部は、前記基本帯域毎に異なるパターンの並べ替えを行い、且つ前記基本帯域内のM個のインターリーブ部が同じパターンの並べ替えを行うとしてもよい。
 送信装置(16)によれば、インターリーブ部が基本帯域毎に異なるパターンの並べ替えを行いかつ基本帯域内の送信アンテナ毎に同じパターンの並べ替えを行うことにより、MIMOデマッピングにおける演算量を増加させることなく、複数の基本帯域に関する周波数ダイバーシティ効果に加えて、基本帯域間の伝送路特性に関する相関性低減による受信品質向上効果を発揮する送信装置を提供することができる。
 受信装置(17)は、複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送により、誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内の2以上の基本帯域に振り分けて送信された信号を受信する受信装置であって、前記基本帯域毎に復調を行う復調部と、復調されたデータに対してMIMOデマッピングを行うMIMOデマッピング部と、MIMOデマッピングの出力に対して誤り訂正復号を行う誤り訂正復号化部と、を有することを特徴とする。
 受信装置(17)又は後述する受信方法(19)によれば、復調部(復調ステップ)が基本帯域毎に復調を行い、MIMOデマッピング部(MIMOデマッピングステップ)が復調されたデータに対してMIMOデマッピングを行い、誤り訂正復号化部(誤り訂正復号ステップ)がMIMOデマッピングの出力に対して誤り訂正復号を行うことにより、複数の基本帯域を用いたMIMO伝送により送信された信号を受信する受信装置(受信方法)を提供することができる。
 送信方法(18)は、複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送を行う送信方法であって、所定長のデータブロック毎に、誤り訂正符号化して誤り訂正符号化フレームを生成する誤り訂正符号化ステップと、前記誤り訂正符号化フレームを所定数のビットずつシンボルにマッピングして誤り訂正符号化ブロックを生成するマッピングステップと、前記誤り訂正符号化ブロックに対してMIMO符号化を行うMIMO符号化ステップと、を含み、前記誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内の2以上の基本帯域に振り分けて送信を行うことを特徴とする。
 送信方法(18)によれば、複数の基本帯域を用いたMIMO伝送において、誤り訂正符号化ブロック中に含まれるデータの成分を、複数の基本帯域の内2以上の基本帯域に振り分けて送信を行うことにより、複数の基本帯域に関する周波数ダイバーシティ効果を発揮する送信方法を提供することができる。
 受信方法(19)は、複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送により、誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内の2以上の基本帯域に振り分けて送信された信号を受信する受信方法であって、前記基本帯域毎に復調を行う復調ステップと、復調されたデータに対してMIMOデマッピングを行うMIMOデマッピングステップと、MIMOデマッピングの出力に対して誤り訂正復号を行う誤り訂正復号化ステップと、を含むことを特徴とする。
 送信装置(20)は、MIMO(Multiple Input Multiple Output)での通信を実行する機能を有する送信装置であって、送信データに対して誤り訂正符号化する誤り訂正符号化部と、前記誤り訂正符号化されたデータを所定数のビットずつ変調シンボルにマッピングしてマッピングデータを生成するマッピング部と、前記マッピングデータに対してMIMO符号化を行うMIMO符号化部と、伝送パラメータを含んだ制御情報を生成する制御情報生成部と、前記MIMO符号化部から出力されるMIMO符号化データと、前記制御情報を、同一OFDMシンボル内に混在させて送信フレームを構成するフレーム構成部と、前記送信フレームに対して、OFDM(Orthogonal Frequency Division Multiplexing)方式を適用するOFDM信号生成部と、を有し、前記制御情報に対してはMIMO符号化を行わず、複数の送信アンテナから同一内容として送信を行うか、または1つの送信アンテナからのみ送信を行うことを特徴とする。
 送信装置(20)によれば、MIMO符号化データと伝送パラメータを含んだ制御情報を同一OFDMシンボル内に混在させて送信フレームを構成し、制御情報に対してはMIMO符号化を行わず、複数の送信アンテナから同一内容として送信を行うか、または1つの送信アンテナからのみ送信を行うことにより、SISO方式の受信機に悪影響を与えずにMIMO伝送技術を用いた新方式の導入を可能とする送信装置を提供することができる。
 送信装置(21)は、送信装置(20)において、前記MIMOに用いる送信アンテナの数をM(Mは2以上の自然数)とすると、前記MIMO符号化部はM個の出力ポートを有し、各出力ポートは各送信アンテナに対応し、前記M個の出力ポートからのデータそれぞれに対して並べ替えを行うM個のインターリーブ部を更に有するとしてもよい。
 送信装置(21)によれば、MIMO符号化部の各出力ポートが各送信アンテナに対応し、出力ポートからのデータそれぞれに対してインターリーブ部を設けることにより、SISO方式の受信機に悪影響を与えずにMIMO伝送技術を用いた新方式の導入を可能とする送信装置を提供することができる。
 送信装置(22)は、送信装置(21)において、前記M個のインターリーブ部が同じパターンの並べ替えを行うとしてもよい。
 送信装置(22)によれば、MIMO符号化部の各出力ポートが各送信アンテナに対応し、出力ポートからのデータそれぞれに対して同じパターンの並べ替えを行うインターリーブ部を設けることにより、SISO方式と親和性の高いインターリーブを用いて、SISO方式の受信機に悪影響を与えずにMIMO伝送技術を用いた新方式の導入を可能とする送信装置を提供することができる。
 送信装置(23)は、送信装置(20)において、前記MIMOに用いる送信アンテナ数を2とし、前記各送信アンテナの偏波極性が異なるとしてもよい。
 送信装置(23)によれば、MIMOに用いる送信アンテナ数を2とし、各送信アンテナの偏波極性が異なることにより、MIMO伝送技術を用いた新方式において、偏波ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(24)は、送信装置(20)において、前記マッピングデータに含まれるデータの成分を、全ての送信アンテナに振り分けて送信を行うとしてもよい。
 送信装置(24)によれば、マッピングデータに含まれるデータの成分を、全ての送信アンテナに振り分けて送信を行うことにより、MIMO伝送技術を用いた新方式において、空間(アンテナ)ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(25)は、送信装置(20)又は(24)において、送信アンテナの数をM(Mは2以上の自然数)とすると、前記MIMO符号化部はM個の出力ポートを有し、各出力ポートは各送信アンテナに対応し、前記マッピングデータに含まれる各データの成分を前記M個の全ての出力ポートに出力するとしてもよい。
 送信装置(25)によれば、MIMO符号化部がマッピングデータに含まれる各データの成分を、全送信アンテナに対応する出力ポートに出力することにより、MIMO伝送技術を用いた新方式において、空間(アンテナ)ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(26)は、送信装置(25)において、前記MIMO符号化部は、M行M列のプリコーディング行列を用いてMIMO符号化を行うとしてもよい。
 送信装置(26)によれば、MIMO符号化部がプリコーディング行列を用いて、マッピングデータに含まれる各データの成分を全送信アンテナに対応する出力ポートに出力することにより、MIMO伝送技術を用いた新方式において、空間(アンテナ)ダイバーシティ効果を発揮する送信装置を提供することができる。
 送信装置(27)は、送信装置(20)又は(24)において、前記MIMO符号化部は、少なくとも1つのアンテナから送信される信号の位相を規則的に変更する位相変更部を備えるとしてもよい。
 送信装置(27)によれば、MIMO符号化部が少なくとも1つのアンテナから送信される信号の位相を規則的に変更し、マッピングデータに含まれるデータの成分を、全ての送信アンテナに振り分けて送信を行うことにより、MIMO伝送技術を用いた新方式において、空間(アンテナ)ダイバーシティ効果に加えて、直接波が支配的なLOS環境におけるデータの受信品質向上効果を発揮する送信装置を提供することができる。
 送信装置(28)は、送信装置(20)において、送信データをL個(Lは2以上の自然数)の階層に分割する階層分割部を更に有し、前記階層毎に前記MIMO符号化部を有し、送信帯域をQ個(Qは2以上の自然数)のセグメントに分割し、前記各階層の前記MIMO符号化データをいずれかのセグメントに割り当てるセグメント分割部を更に有し、前記フレーム構成部は、前記セグメント分割部から出力されるデータと、前記制御情報を、同一セグメント内に混在させて送信フレームを構成するとしてもよい。
 送信装置(28)によれば、階層化、セグメント化し、MIMO符号化データと制御情報を同一セグメント内に混在させて送信フレームを構成することにより、階層化及びセグメント化に対応したSISO方式の受信機に悪影響を与えずにMIMO伝送技術を用いた新方式の導入を可能とする送信装置を提供することができる。
 送信装置(29)は、送信装置(20)において、SISO(Single Input Single Output)での通信を実行する機能を更に有し、送信データをL個(Lは2以上の自然数)の階層に分割する階層分割部を更に有し、前記階層毎に前記マッピングデータに対してMIMOまたはSISO符号化を行うMIMO/SISO符号化部を有し、送信帯域をQ個(Qは2以上の自然数)のセグメントに分割し、前記各階層の前記MIMOまたはSISO符号化データを異なるセグメントに割り当てるセグメント分割部を更に有し、前記フレーム構成部は、前記セグメント分割部から出力されるデータと、前記制御情報を、同一セグメント内に混在させて送信フレームを構成するとしてもよい。
 送信装置(29)によれば、階層毎にMIMOまたはSISO符号化を行い、セグメント分割部が各階層のMIMOまたはSISO符号化データを異なるセグメントに割り当て、フレーム構成部がセグメント分割部から出力されるデータと制御情報を同一セグメント内に混在させて送信フレームを構成することにより、SISO方式とMIMO伝送技術を用いた新方式を混在可能とし、新方式の導入を容易にする送信装置を提供することができる。
 送信装置(30)は、送信装置(29)において、前記階層分割部は、送信データの基本情報と拡張情報を別の階層に分割し、前記基本情報が割り当てられた階層のMIMO/SISO符号化部は、SISO符号化を行い、前記拡張情報が割り当てられた階層のMIMO/SISO符号化部は、MIMO符号化を行い、前記基本情報は単独で復号可能な情報であり、前記拡張情報は前記基本情報と組み合わせて復号可能な情報であるとしてもよい。
 送信装置(30)によれば、送信データの基本情報の階層に対してSISO符号化を行い、送信データの拡張情報の階層に対してMIMO符号化を行うことにより、SISO方式の受信機は基本情報の階層は受信可能であり、MIMO伝送技術を用いた新方式にも対応した受信機は基本情報と拡張情報の階層を受信可能である送信装置を提供することができる。
 送信装置(31)は、送信装置(29)において、前記制御情報生成部は、階層毎にMIMOまたはSISOを示す制御情報を生成するとしてもよい。
 送信装置(31)によれば、階層毎にMIMOまたはSISOを示す制御情報を生成することにより、SISO方式とMIMO伝送技術を用いた新方式を混在可能とし、新方式の導入を容易にする送信装置を提供することができる。
 送信装置(32)は、送信装置(29)において、前記MIMO符号化データが割り当てられたセグメントと、前記SISO符号化データが割り当てられたセグメントとに対して適用するパイロット信号パターンを異ならせて生成するパイロット信号生成部を更に有するとしてもよい。
 送信装置(32)によれば、MIMO符号化データが割り当てられたセグメントとSISO符号化データが割り当てられたセグメントとに対して適用するパイロット信号パターンを異ならせて生成することにより、SISO方式とMIMO伝送技術を用いた新方式を混在可能とし、新方式の導入を容易にする送信装置を提供することができる。
 送信装置(33)は、送信装置(32)において、前記パイロット信号生成部は、前記MIMO符号化データが割り当てられたセグメントの最も周波数が低いサブキャリアに対して、1つの送信アンテナのみにCP(Continual Pilot)信号を配置し、残り全ての送信アンテナにヌル信号を配置するとしてもよい。
 送信装置(33)によれば、MIMO符号化データが割り当てられたセグメントの最も周波数が低いサブキャリアに対して、1つの送信アンテナのみにCP信号を配置し、残り全ての送信アンテナにヌル信号を配置することにより、SISO方式とMIMO伝送技術を用いた新方式を混在可能とし、新方式の導入を容易にする送信装置を提供することができる。
 送信装置(34)は、送信装置(28)又は(29)において、前記送信データの少なくとも一部を、他の階層とは異なる誤り訂正符号化を行う階層に割り当て、タイミング情報を生成して、割り当てたデータとともに出力する異訂正符号化階層割当部を更に有し、前記誤り訂正符号化部は前記異訂正符号化階層割当部の出力データを集めるとともに、前記タイミング情報をヘッダに格納して情報ビットとし、誤り訂正符号化するとしてもよい。
 送信装置(34)によれば、階層化、セグメント化し、異訂正符号化階層割当部が少なくとも送信データの一部を他の階層とは異なる誤り訂正符号化を行う階層に割り当て、タイミング情報を生成して、割り当てたデータとともに出力することにより、SISO伝送とは異なる誤り訂正符号化方式を用いたMIMO及び/またはMISO伝送技術を用いた新方式の導入を可能とする送信装置を提供することができる。
 送信装置(35)は、送信装置(28)又は(29)において、前記フレーム構成部は、前記制御情報のサブキャリア配置パターンが全てのセグメントで同一とするとしてもよい。
 送信装置(35)によれば、制御情報のサブキャリア配置パターンが全てのセグメントで同一とすることにより、階層化及びセグメント化に対応したSISO方式の受信機に悪影響を与えずにMIMO及び/またはMISOを用いた新方式の導入を可能とする送信装置を提供することができる。
 受信装置(36)は、MIMO(Multiple Input Multiple Output)での通信を実行する機能を有する受信装置であって、MIMO符号化データと伝送パラメータを含んだ制御情報が同一OFDMシンボル内に混在する送信フレームを受信する受信部と、前記制御情報を復号し、伝送パラメータを取得する制御情報復号部と、前記伝送パラメータに基づき、MIMO符号化データを復調する送信データ復調部と、を有し、前記制御情報に対してはMIMO符号化が行われず、複数の送信アンテナから同一内容として送信が行われるか、または1つの送信アンテナからのみ送信が行われることを特徴とする。
 受信装置(36)又は後述する受信方法(38)によれば、制御情報復号部(制御情報復調ステップ)が制御情報を復号して伝送パラメータを取得し、送信データ復調部(送信データ復調ステップ)が伝送パラメータに基づきMIMO符号化データを復調することにより、MIMO符号化データと伝送パラメータを含んだ制御情報を同一OFDMシンボル内に混在させるMIMO伝送により送信された信号を受信する受信装置(受信方法)を提供することができる。
 送信方法(37)は、MIMO(Multiple Input Multiple Output)での通信を実行する機能を有する送信装置における送信方法であって、送信データに対して誤り訂正符号化する誤り訂正符号化ステップと、前記誤り訂正符号化されたデータを所定数のビットずつ変調シンボルにマッピングしてマッピングデータを生成するマッピングステップと、前記マッピングデータに対してMIMO符号化を行うMIMO符号化ステップと、伝送パラメータを含んだ制御情報を生成する制御情報生成ステップと、前記MIMO符号化ステップで生成されたMIMO符号化データと、前記制御情報を、同一OFDMシンボル内に混在させて送信フレームを構成するフレーム構成ステップと、前記送信フレームに対して、OFDM(Orthogonal Frequency Division Multiplexing)方式を適用するOFDM信号生成ステップと、を含み、前記制御情報に対してはMIMO符号化を行わず、複数の送信アンテナから同一内容として送信を行うか、または1つの送信アンテナからのみ送信を行うことを特徴とする。
 送信方法(37)によれば、MIMO符号化データと伝送パラメータを含んだ制御情報を同一OFDMシンボル内に混在させて送信フレームを構成し、制御情報に対してはMIMO符号化を行わず、複数の送信アンテナから同一内容として送信を行うか、または1つの送信アンテナからのみ送信を行うことにより、SISO方式の受信機に悪影響を与えずにMIMO伝送技術を用いた新方式の導入を可能とする送信方法を提供することができる。
 受信方法(38)は、MIMO(Multiple Input Multiple Output)での通信を実行する機能を有する受信装置における受信方法であって、MIMO符号化データと前記制御情報が同一OFDMシンボル内に混在する送信フレームを受信する受信ステップと、前記制御情報を復号し、伝送パラメータを取得する制御情報復号ステップと、前記伝送パラメータに基づき、MIMO符号化データを復調する送信データ復調ステップと、を含み、前記制御情報に対してはMIMO符号化が行われず、複数の送信アンテナから同一内容として送信が行われるか、または1つの送信アンテナからのみ送信が行われることを特徴とする。
 本発明に係る送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラムは、MIMO伝送方式に適用することができる。
 100、150、300、500、700、900、1100、1300、2000、3000、3600、4000、4300、5000 送信装置
 200、250、270、400、450、600、650、800、850、1000、1050、1400、1450、3500、3800 受信装置
 240、241、242、440、441、640、641、840、841、1040、1041、1440、1441、3341、3541、3841 集積回路
 131、132、331、332、333、334、531、532、731、732、931、932、1131、1132、2031 MIMO-PLP処理部
 141、142、341、342、343、344、541、542、941、942、1141、1142、1341、2041 L1情報処理部
 151、1351、2051、3101、5101 フレーム構成部
 161、2061、5111 OFDM信号生成部
 191、2091、5121 D/A変換部
 196、198、2096、5131 周波数変換部
 2071 入力処理部
 572、582、2072、2082 FEC符号化部
 233、633、3333、3833 FEC復号化部
 373、383、2073、2083、5241 マッピング部
 176、177、376、377、2076、3261 MIMO符号化部
 232、235、432、434 MIMOデマッピング部
 174、2074 インターリーブ部
 181、1381、2081 L1情報生成部
 205、206、3305 チューナ部
 208、209、3308 A/D変換部
 211、212、3311、3511 復調部
 215 周波数デインターリーブ・L1情報デインターリーブ部
 591、991、1191 周波数チャンネル間入替部
 637、1037 周波数チャンネル間逆入替部
 221、222、 PLP用デインターリーブ部
 231 選択部
 214、378、379、581 S/P変換部
 435、635、1435 P/S変換部
 595、1195、3271 セレクタ
 1210、4210 TS生成部
 1321 PLP割当部
 1221、4221 音声符号化部
 1222、4222 映像符号化部
 1223、4223 パケット化部
 1224、4224 パケット化ストリーム多重化部
 1225、4225 L2情報処理部
 3300 ISDB-T受信装置
 3611、4011、4311、5011 TS再多重部
 5021 RS符号化部
 3631、5031 階層分割部
 3041、5041 階層処理部
 5051 階層合成部
 5061 時間インターリーブ部
 5071 周波数インターリーブ部
 3081、5081 パイロット信号生成部
 3091、3691、5091 TMCC/AC信号生成部
 5201 エネルギー拡散部
 5211 バイトインターリーブ部
 5221 畳込符号化部
 3731、5231 ビットインターリーブ部
 3251 MISO符号化部
 3315 周波数デインターリーブ部
 3321 時間デインターリーブ部
 3331、3531、3831 複数階層TS再生部
 3335、3535 TMCC信号復号部
 3401 SISOデマッピング部
 3411、3911 ビットデインターリーブ部
 3421 デパンクチャ部
 3431 TS再生部
 3441 ビタビ復号化部
 3451 バイトデインターリーブ部
 3461 エネルギー逆拡散部
 3471 RS復号化部
 3501、3801 SISO/MISO/MIMOデマッピング部
 3635 LDPC階層割当部
 3645 LDPC階層処理部
 3711 BCH符号化部
 3721 LDPC符号化部
 3941 LDPC復号化部
 3971 BCH復号化部
 3981 LDPC階層・非LDPC階層合成部
 4005 階層割当部
 5301 セグメント分割部
 5311 セグメント間インターリーブ部
 5321 セグメント内キャリアローテーション部
 5331 セグメント内キャリアランダマイズ部

Claims (38)

  1.  複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送を行う送信装置であって、
     所定長のデータブロック毎に、誤り訂正符号化して誤り訂正符号化フレームを生成する誤り訂正符号化部と、
     前記誤り訂正符号化フレームを所定数のビットずつシンボルにマッピングして誤り訂正符号化ブロックを生成するマッピング部と、
     前記誤り訂正符号化ブロックに対してMIMO符号化を行うMIMO符号化部と、
     を有し、
     前記誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内2以上の基本帯域に振り分けて送信を行う
     ことを特徴とする送信装置。
  2.  送信データの基本情報に対して、前記複数の基本帯域を用いたMIMO伝送で送信し、
     前記送信データの拡張情報に対して、単一の基本帯域を用いて送信し、
     前記基本情報は単独で復号可能な情報であり、
     前記拡張情報は前記基本情報と組み合わせて復号可能な情報である
     ことを特徴とする請求項1に記載の送信装置。
  3.  前記MIMO伝送に用いる送信アンテナ数を2とし、前記各送信アンテナの偏波極性が異なる
     ことを特徴とする請求項1に記載の送信装置。
  4.  前記誤り訂正符号化ブロック中に含まれるデータの成分を、更に前記MIMO伝送に用いる複数の送信アンテナの内2以上の送信アンテナに振り分けて送信を行う
     ことを特徴とする請求項1に記載の送信装置。
  5.  前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、
     前記MIMO符号化部はK×M個の出力ポートを有し、各出力ポートは各基本帯域の各送信アンテナに対応し、前記誤り訂正符号化ブロックに含まれる各データの成分を前記K×M個の全ての出力ポートに出力する
     ことを特徴とする請求項1または4に記載の送信装置。
  6.  前記MIMO符号化部は、(K×M)行(K×M)列のプリコーディング行列を用いてMIMO符号化を行う
     ことを特徴とする請求項5に記載の送信装置。
  7.  前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、
     K個の出力ポートを有し、各出力ポートは各基本帯域に対応し、前記誤り訂正符号化ブロックに含まれるマッピングデータを前記K個の出力ポートに振り分ける直並列(S/P:Serial to Parallel)変換部
     を更に有し、
     前記基本帯域毎に前記MIMO符号化部を有し、
     前記基本帯域毎の前記MIMO符号化部はM個の出力ポートを有し、各出力ポートは各送信アンテナに対応し、前記直並列変換部の出力データに対してMIMO符号化を行う
     ことを特徴とする請求項1または4に記載の送信装置。
  8.  前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、
     K個の出力ポートを有し、各出力ポートは各基本帯域に対応し、前記誤り訂正符号化フレームに含まれるデータを前記K個の出力ポートに振り分ける直並列(S/P:Serial to Parallel)変換部
     を更に有し、
     前記基本帯域毎に前記マッピング部と前記MIMO符号化部と、
     を有し、
     前記基本帯域毎の前記マッピング部は、前記直並列変換部の出力データに対して所定数のビットずつシンボルにマッピングし、
     前記基本帯域毎の前記MIMO符号化部はM個の出力ポートを有し、各出力ポートは各送信アンテナに対応し、前記基本帯域毎のマッピング部の出力データに対してMIMO符号化を行う
     ことを特徴とする請求項1または4に記載の送信装置。
  9.  前記基本帯域毎のMIMO符号化部は、M行M列のプリコーディング行列を用いてMIMO符号化を行う
     ことを特徴とする請求項7または8に記載の送信装置。
  10.  前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、
     K個の出力ポートを有し、各出力ポートは各基本帯域に対応し、前記所定長のデータブロック毎に前記K個の出力ポートに振り分ける直並列(S/P:Serial to Parallel)変換部
     を更に有し、
     前記基本帯域毎に前記誤り訂正符号化部と前記マッピング部と前記MIMO符号化部と、
     を有し、
     前記基本帯域毎の前記誤り訂正符号化部は、前記直並列変換部の出力データに対して誤り訂正符号化して誤り訂正符号化フレームを生成し、
     前記基本帯域毎の前記誤り訂正符号化部の出力データ、前記マッピング部の出力データ、および前記MIMO符号化部の出力データの内の何れかに対して、所定数の単位ずつ基本帯域間で入替を行う基本帯域間入替部、
     を更に有する、
     ことを特徴とする請求項1または4に記載の送信装置。
  11.  前記基本帯域の数をK(Kは2以上の自然数)、送信アンテナの数をM(Mは2以上の自然数)とすると、
     K個の出力ポートを有し、各出力ポートは各基本帯域に対応し、前記所定長のデータブロック毎に前記K個の出力ポートに振り分ける直並列(S/P:Serial to Parallel)変換部
     を更に有し、
     前記基本帯域毎に前記誤り訂正符号化部と前記マッピング部と前記MIMO符号化部と、
     を有し、
     前記基本帯域毎の前記誤り訂正符号化部は、前記直並列変換部の出力データに対して誤り訂正符号化して誤り訂正符号化フレームを生成し、
     前記基本帯域毎の前記MIMO符号化部に設けられるM個の出力ポートそれぞれから出力されるデータに対して並べ替えを行うM個のインターリーブ部と、
     前記基本帯域毎の前記誤り訂正符号化部の出力データ、前記マッピング部の出力データ、前記MIMO符号化部の出力データ、および前記インターリーブ部の出力データの内の何れかに対して、所定数の単位ずつ基本帯域間で入替を行う基本帯域間入替部と、
     を更に有する、
     ことを特徴とする請求項1または4に記載の送信装置。
  12.  前記基本帯域毎の前記MIMO符号化部は、M行M列のプリコーディング行列を用いてMIMO符号化を行う
     ことを特徴とする請求項10または11に記載の送信装置。
  13.  前記MIMO符号化部は、前記基本帯域毎に少なくとも1つのアンテナから送信される信号の位相を規則的に変更する位相変更部を備える
     ことを特徴とする請求項1または4に記載の送信装置。
  14.  前記MIMO符号化部において、前記基本帯域毎に異なるMIMO符号化を行う、
     前記MIMO符号化部において、前記基本帯域毎に異なるM行M列のプリコーディング行列を用いてMIMO符号化を行う、
     前記MIMO符号化部において、前記基本帯域毎に信号の位相を規則的に変更し、前記位相変更を前記基本帯域毎に異ならせる、
     前記マッピング部において、前記基本帯域毎に異なるパターンのマッピングを行う、
     前記誤り訂正符号化部において、前記基本帯域毎に異なるパターンの誤り訂正符号化を行う、
     ことの内少なくとも1つを行う、
     ことを特徴とする請求項7または8または10記載の送信装置。
  15.  前記インターリーブ部において、前記基本帯域毎に異なるパターンの並び替えを行う、
     前記MIMO符号化部において、前記基本帯域毎に異なるMIMO符号化を行う、
     前記MIMO符号化部において、前記基本帯域毎に異なるM行M列のプリコーディング行列を用いてMIMO符号化を行う、
     前記MIMO符号化部において、前記基本帯域毎に信号の位相を規則的に変更し、前記位相変更を前記基本帯域毎に異ならせる、
     前記マッピング部において、前記基本帯域毎に異なるパターンのマッピングを行う、
     前記誤り訂正符号化部において、前記基本帯域毎に異なるパターンの誤り訂正符号化を行う、
     ことの内少なくとも1つを行う、
     ことを特徴とする請求項11記載の送信装置。
  16.  前記インターリーブ部は、前記基本帯域毎に異なるパターンの並べ替えを行い、且つ前記基本帯域内のM個のインターリーブ部が同じパターンの並べ替えを行う
     ことを特徴とする請求項11に記載の送信装置。
  17.  複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送により、誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内の2以上の基本帯域に振り分けて送信された信号を受信する受信装置であって、
     前記基本帯域毎に復調を行う復調部と、
     復調されたデータに対してMIMOデマッピングを行うMIMOデマッピング部と、
     MIMOデマッピングの出力に対して誤り訂正復号を行う誤り訂正復号化部と、
    を有する
     ことを特徴とする受信装置。
  18.  複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送を行う送信方法であって、
     所定長のデータブロック毎に、誤り訂正符号化して誤り訂正符号化フレームを生成する誤り訂正符号化ステップと、
     前記誤り訂正符号化フレームを所定数のビットずつシンボルにマッピングして誤り訂正符号化ブロックを生成するマッピングステップと、
     前記誤り訂正符号化ブロックに対してMIMO符号化を行うMIMO符号化ステップと、
     を含み、
     前記誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内の2以上の基本帯域に振り分けて送信を行う
     ことを特徴とする送信方法。
  19.  複数の基本帯域を用いたMIMO(Multiple Input Multiple Output)伝送により、誤り訂正符号化ブロック中に含まれるデータの成分を、前記複数の基本帯域の内の2以上の基本帯域に振り分けて送信された信号を受信する受信方法であって、
     前記基本帯域毎に復調を行う復調ステップと、
     復調されたデータに対してMIMOデマッピングを行うMIMOデマッピングステップと、
     MIMOデマッピングの出力に対して誤り訂正復号を行う誤り訂正復号化ステップと、
    を含む
     ことを特徴とする受信方法。
  20.  MIMO(Multiple Input Multiple Output)での通信を実行する機能を有する送信装置であって、
     送信データに対して誤り訂正符号化する誤り訂正符号化部と、
     前記誤り訂正符号化されたデータを所定数のビットずつ変調シンボルにマッピングしてマッピングデータを生成するマッピング部と、
     前記マッピングデータに対してMIMO符号化を行うMIMO符号化部と、
     伝送パラメータを含んだ制御情報を生成する制御情報生成部と、
     前記MIMO符号化部から出力されるMIMO符号化データと、前記制御情報を、同一OFDMシンボル内に混在させて送信フレームを構成するフレーム構成部と、
     前記送信フレームに対して、OFDM(Orthogonal Frequency Division Multiplexing)方式を適用するOFDM信号生成部と、
     を有し、
     前記制御情報に対してはMIMO符号化を行わず、複数の送信アンテナから同一内容として送信を行うか、または1つの送信アンテナからのみ送信を行う
     ことを特徴とする送信装置。
  21.  前記MIMOに用いる送信アンテナの数をM(Mは2以上の自然数)とすると、
     前記MIMO符号化部はM個の出力ポートを有し、各出力ポートは各送信アンテナに対応し、
     前記M個の出力ポートからのデータそれぞれに対して並べ替えを行うM個のインターリーブ部
     を更に有する
     ことを特徴とする請求項20に記載の送信装置。
  22.  前記M個のインターリーブ部が同じパターンの並べ替えを行う
     ことを特徴とする請求項21に記載の送信装置。
  23.  前記MIMOに用いる送信アンテナ数を2とし、前記各送信アンテナの偏波極性が異なる
     ことを特徴とする請求項20に記載の送信装置。
  24.  前記マッピングデータに含まれるデータの成分を、全ての送信アンテナに振り分けて送信を行う
     ことを特徴とする請求項20に記載の送信装置。
  25.  送信アンテナの数をM(Mは2以上の自然数)とすると、
     前記MIMO符号化部はM個の出力ポートを有し、各出力ポートは各送信アンテナに対応し、前記マッピングデータに含まれる各データの成分を前記M個の全ての出力ポートに出力する
     ことを特徴とする請求項20または24に記載の送信装置。
  26.  前記MIMO符号化部は、M行M列のプリコーディング行列を用いてMIMO符号化を行う
     ことを特徴とする請求項25に記載の送信装置。
  27.  前記MIMO符号化部は、少なくとも1つのアンテナから送信される信号の位相を規則的に変更する位相変更部を備える
     ことを特徴とする請求項20または24に記載の送信装置。
  28.  送信データをL個(Lは2以上の自然数)の階層に分割する階層分割部
     を更に有し、
     前記階層毎に前記MIMO符号化部
     を有し、
     送信帯域をQ個(Qは2以上の自然数)のセグメントに分割し、前記各階層の前記MIMO符号化データをいずれかのセグメントに割り当てるセグメント分割部
     を更に有し、
     前記フレーム構成部は、前記セグメント分割部から出力されるデータと、前記制御情報を、同一セグメント内に混在させて送信フレームを構成する
     ことを特徴とする請求項20に記載の送信装置。
  29.  SISO(Single Input Single Output)での通信を実行する機能
     を更に有し、
     送信データをL個(Lは2以上の自然数)の階層に分割する階層分割部
     を更に有し、
     前記階層毎に前記マッピングデータに対してMIMOまたはSISO符号化を行うMIMO/SISO符号化部
     を有し、
     送信帯域をQ個(Qは2以上の自然数)のセグメントに分割し、前記各階層の前記MIMOまたはSISO符号化データを異なるセグメントに割り当てるセグメント分割部
     を更に有し、
     前記フレーム構成部は、前記セグメント分割部から出力されるデータと、前記制御情報を、同一セグメント内に混在させて送信フレームを構成する
     ことを特徴とする請求項20に記載の送信装置。
  30.  前記階層分割部は、送信データの基本情報と拡張情報を別の階層に分割し、
     前記基本情報が割り当てられた階層のMIMO/SISO符号化部は、SISO符号化を行い、
     前記拡張情報が割り当てられた階層のMIMO/SISO符号化部は、MIMO符号化を行い、
     前記基本情報は単独で復号可能な情報であり、
     前記拡張情報は前記基本情報と組み合わせて復号可能な情報である
     ことを特徴とする請求項29に記載の送信装置。
  31.  前記制御情報生成部は、階層毎にMIMOまたはSISOを示す制御情報を生成する
     ことを特徴とする請求項29に記載の送信装置。
  32.  前記MIMO符号化データが割り当てられたセグメントと、前記SISO符号化データが割り当てられたセグメントとに対して適用するパイロット信号パターンを異ならせて生成するパイロット信号生成部
     を更に有する
     ことを特徴とする請求項29に記載の送信装置。
  33.  前記パイロット信号生成部は、前記MIMO符号化データが割り当てられたセグメントの最も周波数が低いサブキャリアに対して、1つの送信アンテナのみにCP(Continual Pilot)信号を配置し、残り全ての送信アンテナにヌル信号を配置する
     ことを特徴とする請求項32に記載の送信装置。
  34.  前記送信データの少なくとも一部を、他の階層とは異なる誤り訂正符号化を行う階層に割り当て、タイミング情報を生成して、割り当てたデータとともに出力する異訂正符号化階層割当部
     を更に有し、
     前記誤り訂正符号化部は前記異訂正符号化階層割当部の出力データを集めるとともに、前記タイミング情報をヘッダに格納して情報ビットとし、誤り訂正符号化する
     ことを特徴とする請求項28または29に記載の送信装置。
  35.  前記フレーム構成部は、前記制御情報のサブキャリア配置パターンが全てのセグメントで同一とする
     ことを特徴とする請求項28または29に記載の送信装置。
  36.  MIMO(Multiple Input Multiple Output)での通信を実行する機能を有する受信装置であって、
     MIMO符号化データと伝送パラメータを含んだ制御情報が同一OFDMシンボル内に混在する送信フレームを受信する受信部と、
     前記制御情報を復号し、伝送パラメータを取得する制御情報復号部と、
     前記伝送パラメータに基づき、MIMO符号化データを復調する送信データ復調部と、
     を有し、
     前記制御情報に対してはMIMO符号化が行われず、複数の送信アンテナから同一内容として送信が行われるか、または1つの送信アンテナからのみ送信が行われる
     ことを特徴とする受信装置。
  37.  MIMO(Multiple Input Multiple Output)での通信を実行する機能を有する送信装置における送信方法であって、
     送信データに対して誤り訂正符号化する誤り訂正符号化ステップと、
     前記誤り訂正符号化されたデータを所定数のビットずつ変調シンボルにマッピングしてマッピングデータを生成するマッピングステップと、
     前記マッピングデータに対してMIMO符号化を行うMIMO符号化ステップと、
     伝送パラメータを含んだ制御情報を生成する制御情報生成ステップと、
     前記MIMO符号化ステップで生成されたMIMO符号化データと、前記制御情報を、同一OFDMシンボル内に混在させて送信フレームを構成するフレーム構成ステップと、
     前記送信フレームに対して、OFDM(Orthogonal Frequency Division Multiplexing)方式を適用するOFDM信号生成ステップと、
     を含み、
     前記制御情報に対してはMIMO符号化を行わず、複数の送信アンテナから同一内容として送信を行うか、または1つの送信アンテナからのみ送信を行う
     ことを特徴とする送信方法。
  38.  MIMO(Multiple Input Multiple Output)での通信を実行する機能を有する受信装置における受信方法であって、
     MIMO符号化データと前記制御情報が同一OFDMシンボル内に混在する送信フレームを受信する受信ステップと、
     前記制御情報を復号し、伝送パラメータを取得する制御情報復号ステップと、
     前記伝送パラメータに基づき、MIMO符号化データを復調する送信データ復調ステップと、
     を含み、
     前記制御情報に対してはMIMO符号化が行われず、複数の送信アンテナから同一内容として送信が行われるか、または1つの送信アンテナからのみ送信が行われる
     ことを特徴とする受信方法。
PCT/JP2013/007175 2012-12-07 2013-12-06 送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラム WO2014087663A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US14/376,946 US9258083B2 (en) 2012-12-07 2013-12-06 Transmission device, transmission method, reception device, reception method, integrated circuit, and program
EP21161212.2A EP3849096A1 (en) 2012-12-07 2013-12-06 Transmission device, transmission method, reception device, reception method
JP2014550934A JP6402926B2 (ja) 2012-12-07 2013-12-06 送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラム
EP13860110.9A EP2930870B1 (en) 2012-12-07 2013-12-06 Transmission device, transmission method, reception device, reception method, integrated circuit, and program
US14/980,511 US10666385B2 (en) 2012-12-07 2015-12-28 Transmission device, transmission method, reception device, reception method, integrated circuit, and program
US16/281,270 US10693588B2 (en) 2012-12-07 2019-02-21 Transmission device, transmission method, reception device, reception method, integrated circuit, and program
US16/297,988 US10666387B2 (en) 2012-12-07 2019-03-11 Transmission device, transmission method, reception device, reception method, integrated circuit, and program
US16/866,735 US11075714B2 (en) 2012-12-07 2020-05-05 Transmission device, transmission method, reception device, reception method, integrated circuit, and program
US17/353,065 US11632192B2 (en) 2012-12-07 2021-06-21 Transmission device, transmission method, reception device, reception method, integrated circuit, and program
US18/112,654 US20230198662A1 (en) 2012-12-07 2023-02-22 Transmission device, transmission method, reception device, reception method, integrated circuit, and program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-268864 2012-12-07
JP2012268864 2012-12-07
JP2013-081217 2013-04-09
JP2013081217 2013-04-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/376,946 A-371-Of-International US9258083B2 (en) 2012-12-07 2013-12-06 Transmission device, transmission method, reception device, reception method, integrated circuit, and program
US14/980,511 Continuation US10666385B2 (en) 2012-12-07 2015-12-28 Transmission device, transmission method, reception device, reception method, integrated circuit, and program

Publications (1)

Publication Number Publication Date
WO2014087663A1 true WO2014087663A1 (ja) 2014-06-12

Family

ID=50883103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007175 WO2014087663A1 (ja) 2012-12-07 2013-12-06 送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラム

Country Status (4)

Country Link
US (7) US9258083B2 (ja)
EP (2) EP3849096A1 (ja)
JP (4) JP6402926B2 (ja)
WO (1) WO2014087663A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119603A (ja) * 2014-12-22 2016-06-30 株式会社東芝 無線通信装置、集積回路、送信信号生成方法、受信方法及び無線通信方法
JP2017192052A (ja) * 2016-04-14 2017-10-19 日本放送協会 Ofdm信号送信装置及びofdm信号受信装置
JP2018078557A (ja) * 2016-10-31 2018-05-17 日本放送協会 再多重化装置、分離装置及びチップ
JP2018198426A (ja) * 2017-05-23 2018-12-13 日本放送協会 送信装置、受信装置、及びチップ
WO2020121842A1 (ja) * 2018-12-12 2020-06-18 ソニー株式会社 送信装置、送信方法、受信装置、及び受信方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578619B2 (ja) * 2010-12-10 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および受信装置
WO2014171673A1 (ko) * 2013-04-15 2014-10-23 엘지전자 주식회사 방송 신호 송신 장치, 방송 신호 수신 방법, 방송 신호 송신 방법 및 방송 신호 수신 방법
EP3166322B1 (en) * 2014-07-03 2019-02-27 Sony Semiconductor Solutions Corporation Data processing apparatus, reception apparatus, data processing method, and program
EP3001572A1 (en) * 2014-09-29 2016-03-30 Panasonic Corporation Interleaving by concatenation of convolutional and block interleaving
KR102357881B1 (ko) 2014-09-29 2022-02-03 파나소닉 주식회사 시간 인터리버와 시간 디인터리버 및 시간 인터리빙 방법과 시간 디인터리빙 방법
GB2533308A (en) 2014-12-15 2016-06-22 Sony Corp Transmitter and method of transmitting and receiver and method of receiving
CA2972953C (en) * 2015-01-05 2020-02-18 Lg Electronics Inc. Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
JP6507047B2 (ja) * 2015-02-10 2019-04-24 日本放送協会 送信装置、受信装置、及び半導体チップ
KR102465856B1 (ko) 2015-03-27 2022-11-11 한국전자통신연구원 코어 레이어의 피지컬 레이어 파이프들의 경계를 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
WO2016159579A1 (ko) * 2015-03-27 2016-10-06 한국전자통신연구원 코어 레이어의 피지컬 레이어 파이프들의 경계를 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법
CN107667490B (zh) * 2015-07-27 2019-10-25 Lg电子株式会社 用于发送和接收广播信号的设备和方法
US20190181882A1 (en) * 2016-08-12 2019-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Determining elements of base matrices for quasi-cyclic ldpc codes having variable code lengths
JP2020022118A (ja) * 2018-08-02 2020-02-06 ソニーセミコンダクタソリューションズ株式会社 受信装置、通信システム、および、受信装置の制御方法
JP7324662B2 (ja) 2019-09-10 2023-08-10 日本放送協会 送信装置及び受信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183862A (ja) * 1993-12-22 1995-07-21 Toshiba Corp 周波数分割多重伝送の誤り訂正方法およびそれを用いた伝送システム
WO2006068344A1 (en) 2004-12-23 2006-06-29 Electronics And Telecommunications Research Institute Apparatus for transmitting and receiving data to provide high-speed data comunication and method thereof
JP2006186805A (ja) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd マルチアンテナ通信装置および多重方式決定方法
JP2007028569A (ja) * 2005-03-31 2007-02-01 Ntt Docomo Inc 無線通信装置及び無線通信方法
WO2008018468A1 (fr) * 2006-08-08 2008-02-14 Panasonic Corporation appareil de transmission radio multi-antenne et procédé de transmission radio multi-antenne
WO2008156081A1 (ja) * 2007-06-19 2008-12-24 Ntt Docomo, Inc. 送信装置及び送信方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007832A1 (en) 1988-12-24 1990-07-12 Alcatel N.V. Communication switching system
DE68928101T2 (de) * 1989-03-28 1997-12-04 Polygram Manufacturing & Distr Verfahren zur Übertragung eines Übertragungssignals und eine Übertragungsvorrichtung und eine Empfangseinrichtung zur Anwendung in dem Verfahren
JP2001022816A (ja) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd 半導体集積回路装置のレイアウト方法
JP3911401B2 (ja) 2001-10-16 2007-05-09 株式会社ケンウッド 周波数インターリーブ装置、周波数インターリーブ方法、周波数デインターリーブ装置、および、周波数デインターリーブ方法
EP2690814A1 (en) 2003-11-21 2014-01-29 Panasonic Corporation Multi-antenna apparatus using different interleaving patterns
GB2408898B (en) * 2003-12-02 2006-08-16 Toshiba Res Europ Ltd Improved communications apparatus and methods
JP4243558B2 (ja) 2004-03-09 2009-03-25 日本放送協会 Ofdm信号送信装置
US7636381B2 (en) * 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
US7852961B2 (en) 2004-05-20 2010-12-14 Samsung Electronics Co., Ltd. Digital broadcasting transmission/reception devices capable of improving a receiving performance and signal processing method thereof
JP4099592B2 (ja) * 2004-06-10 2008-06-11 ソニー株式会社 通信システム、送信装置および受信装置
US8077669B2 (en) * 2005-02-07 2011-12-13 Broadcom Corporation Method and system for adaptive modulations and signal field for closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US8995547B2 (en) * 2005-03-11 2015-03-31 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
JP2007089130A (ja) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd 無線装置
US20090316807A1 (en) * 2006-01-13 2009-12-24 Sang Gook Kim Method and apparatus for achieving transmit diversity and spatial multiplexing using antenna selection based on feedback information
JP2008167347A (ja) 2007-01-04 2008-07-17 Matsushita Electric Ind Co Ltd 無線受信装置
KR101241908B1 (ko) * 2007-01-30 2013-03-12 엘지전자 주식회사 수신 채널 환경에 따른 재전송 방법 및 이를 위한 송신기,귀환 정보 생성 방법 및 장치
JP4932555B2 (ja) * 2007-03-20 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 基地局、ユーザ装置、送信方法及び受信方法
US8099654B2 (en) * 2007-08-24 2012-01-17 Lg Electronics Inc. Digital broadcasting system and method of processing data in the digital broadcasting system
KR100917200B1 (ko) * 2007-12-12 2009-09-16 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
US8248910B2 (en) * 2008-01-29 2012-08-21 Nokia Corporation Physical layer and data link layer signalling in digital video broadcast preamble symbols
US8498262B2 (en) * 2008-02-13 2013-07-30 Nokia Corporation Digital broadcast receiver capacity signalling metadata
AU2009271588B2 (en) 2008-07-16 2014-11-27 Sartorius Stedim North America Inc. Methods and systems for manipulating particles using a fluidized bed
JP5149130B2 (ja) 2008-11-20 2013-02-20 日本放送協会 Mimo送信装置、受信装置およびシステム
JP5127689B2 (ja) 2008-12-17 2013-01-23 日本放送協会 Mimo送信装置、受信装置およびシステム
JP5276508B2 (ja) 2009-04-10 2013-08-28 日本放送協会 Mimo送信装置
US20120202504A1 (en) * 2009-10-16 2012-08-09 Bernhard Wegmann Method for Load Balancing in a Radio Communications System and Apparatus Thereof
US8958490B2 (en) * 2009-12-31 2015-02-17 Allen LeRoy Limberg COFDM broadcasting with single-time retransmission of COFDM symbols
EP3002942B1 (en) * 2010-02-23 2017-06-07 Lg Electronics Inc. Broadcasting signal transmitter/receiver and broadcasting signal transmission/reception method
US20110235619A1 (en) 2010-03-29 2011-09-29 Ntt Docomo Inc. Enhanced frequency diversity technique for systems with carrier aggregation
GB2481051B (en) * 2010-06-10 2016-06-01 Samsung Electronics Co Ltd Method for mapping and de-mapping of non-binary symbols in data communication systems
JP5564363B2 (ja) 2010-08-25 2014-07-30 日本放送協会 偏波mimo−ofdm伝送方式の送信装置及び受信装置
KR101921178B1 (ko) 2010-12-14 2018-11-22 엘지전자 주식회사 방송 신호 송/수신기 및 방송 신호 송/수신 방법
JP2014064273A (ja) * 2012-08-29 2014-04-10 Hitachi Kokusai Electric Inc 送信装置
EP2957083B1 (en) 2013-04-21 2018-10-10 LG Electronics Inc. Method and apparatus for transmitting and for receiving broadcast signals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183862A (ja) * 1993-12-22 1995-07-21 Toshiba Corp 周波数分割多重伝送の誤り訂正方法およびそれを用いた伝送システム
WO2006068344A1 (en) 2004-12-23 2006-06-29 Electronics And Telecommunications Research Institute Apparatus for transmitting and receiving data to provide high-speed data comunication and method thereof
JP2008526081A (ja) 2004-12-23 2008-07-17 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート 高速データ通信のためのデータ送受信装置及びその方法
JP2006186805A (ja) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd マルチアンテナ通信装置および多重方式決定方法
JP2007028569A (ja) * 2005-03-31 2007-02-01 Ntt Docomo Inc 無線通信装置及び無線通信方法
WO2008018468A1 (fr) * 2006-08-08 2008-02-14 Panasonic Corporation appareil de transmission radio multi-antenne et procédé de transmission radio multi-antenne
WO2008156081A1 (ja) * 2007-06-19 2008-12-24 Ntt Docomo, Inc. 送信装置及び送信方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"BER performance evaluation in 2 x 2 MIMO spatial multiplexing systems under Rician fading channels", IEICE TRANS. FUNDAMENTALS, vol. E91-A, no. 10, October 2008 (2008-10-01), pages 2798 - 2807
"Digital Video Broadcasting (DVB);Next Generation broadcasting system to Handheld, physical layer specification (DVB-NGH", DVB DOCUMENT, vol. A160, November 2012 (2012-11-01), XP055055777 *
"Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2", ETSI EN 302 755 VI.3.1, April 2012 (2012-04-01)
"Implementation guidelines for a second generation digital terrestrial television broadcasting system (DVB-T2", ETSI TS 102 831 V1.2.1, August 2012 (2012-08-01)
"Next Generation broadcasting system to Handheld, physical layer specification (DVB-NGH", DRAFT ETSI EN 303 105 V . 1, September 2012 (2012-09-01)
"Transmission system for digital terrestrial television broadcasting", ARIB STANDARD ARIB STD-B31 VERSION 2.1, December 2012 (2012-12-01)
TAKUYA SHITOMI: "Transmission Performance of Dual-polarized MIMO, Ultra-multilevel OFDM in Multipath Environment", NHK SCIENCE AND TECHNICAL RESEARCH LABORATORIES R&D REPORT, November 2012 (2012-11-01), pages 24 - 32, XP055163006 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119603A (ja) * 2014-12-22 2016-06-30 株式会社東芝 無線通信装置、集積回路、送信信号生成方法、受信方法及び無線通信方法
JP2017192052A (ja) * 2016-04-14 2017-10-19 日本放送協会 Ofdm信号送信装置及びofdm信号受信装置
JP2018078557A (ja) * 2016-10-31 2018-05-17 日本放送協会 再多重化装置、分離装置及びチップ
JP2018198426A (ja) * 2017-05-23 2018-12-13 日本放送協会 送信装置、受信装置、及びチップ
JP7137357B2 (ja) 2017-05-23 2022-09-14 日本放送協会 送信装置、受信装置、及びチップ
WO2020121842A1 (ja) * 2018-12-12 2020-06-18 ソニー株式会社 送信装置、送信方法、受信装置、及び受信方法
JP2020096343A (ja) * 2018-12-12 2020-06-18 ソニー株式会社 送信装置、送信方法、受信装置、及び受信方法
TWI768267B (zh) * 2018-12-12 2022-06-21 日商索尼股份有限公司 送訊裝置、送訊方法、收訊裝置、及收訊方法
JP7400299B2 (ja) 2018-12-12 2023-12-19 ソニーグループ株式会社 送信装置、送信方法、受信装置、及び受信方法

Also Published As

Publication number Publication date
US20190207707A1 (en) 2019-07-04
US11075714B2 (en) 2021-07-27
US10666385B2 (en) 2020-05-26
US10666387B2 (en) 2020-05-26
JP6402926B2 (ja) 2018-10-10
JP2020053980A (ja) 2020-04-02
US20210314085A1 (en) 2021-10-07
JPWO2014087663A1 (ja) 2017-01-05
US10693588B2 (en) 2020-06-23
EP3849096A1 (en) 2021-07-14
JP2018186533A (ja) 2018-11-22
US20230198662A1 (en) 2023-06-22
US20190190649A1 (en) 2019-06-20
EP2930870A4 (en) 2015-10-28
JP6631856B2 (ja) 2020-01-15
JP7220365B2 (ja) 2023-02-10
JP2022058777A (ja) 2022-04-12
EP2930870A1 (en) 2015-10-14
EP2930870B1 (en) 2021-04-28
US20200266923A1 (en) 2020-08-20
US20160119081A1 (en) 2016-04-28
US9258083B2 (en) 2016-02-09
US11632192B2 (en) 2023-04-18
JP7417909B2 (ja) 2024-01-19
US20150003544A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
JP7417909B2 (ja) 送信装置、送信方法、受信装置、受信方法、集積回路、及びプログラム
US9979578B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US10027518B2 (en) Broadcasting signal transmitter/receiver and broadcasting signal transmission/reception method
US9882731B2 (en) Broadcasting signal transmitter/receiver and broadcasting signal transmission/reception method
US9348691B2 (en) Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, and method for transmitting/receiving broadcast signal through apparatus for transmitting/receiving broadcasting signal
US10979268B2 (en) Transmitting method, receiving method, transmitting apparatus, and receiving apparatus
JP6818431B2 (ja) 送信方法、受信方法、送信装置、及び受信装置
US20240113927A1 (en) Transmitting apparatus for transmitting an ofdm signal generated by performing ifft processing on a preamble and one or more subframes into which pilot signals are inserted
US20230050434A1 (en) Transmitting method, receiving method, transmitting apparatus, and receiving apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014550934

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013860110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14376946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE