EP1853647A1 - Leitfähige polymere aus teilchen mit anisotroper morphologie - Google Patents

Leitfähige polymere aus teilchen mit anisotroper morphologie

Info

Publication number
EP1853647A1
EP1853647A1 EP06723164A EP06723164A EP1853647A1 EP 1853647 A1 EP1853647 A1 EP 1853647A1 EP 06723164 A EP06723164 A EP 06723164A EP 06723164 A EP06723164 A EP 06723164A EP 1853647 A1 EP1853647 A1 EP 1853647A1
Authority
EP
European Patent Office
Prior art keywords
polymer
dispersion
conductive polymer
conductivity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06723164A
Other languages
English (en)
French (fr)
Inventor
Bernhard Wessling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDermid Enthone GmbH
Original Assignee
Ormecon GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ormecon GmbH filed Critical Ormecon GmbH
Publication of EP1853647A1 publication Critical patent/EP1853647A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to conductive polymers of particles having anisotropic morphology, a process for producing the same and their use for the production of moldings, films or coatings.
  • Conductive polymers which are also called "intrinsically conductive polymers” or “organic metals” are substances which are composed of low molecular weight compounds (monomers) which are at least oligomerized by polymerization, that is to say contain at least 3 monomer units which are bonded by chemical bonding in the neutral (nonconductive) state have a conjugated ⁇ -electron system and by oxidation, reduction or protonation (which is often referred to as “doping”) can be converted into an ionic form which is conductive.
  • the conductivity is at least 10 "7 S / cm.
  • doping by oxidation for example, iodine, peroxides, Lewis and protic acids or, in the case of doping by reduction, for example, sodium, potassium, calcium are used as dopants.
  • Conductive polymers can be chemically very different composition.
  • monomers e.g. Acetylene, benzene, naphthalene, pyrrole, aniline, thiophene, phenylene sulfide, peri-naphthalene and others, and their derivatives, such as sulfo-aniline, ethylenedioxythiophene, thienothiophene and others, and their alkyl or alkoxy derivatives or derivatives with other side groups , such as sulfonate, phenyl and other side groups, proven. It is also possible to use combinations of the abovementioned monomers as monomer. In doing so, e.g.
  • Aniline and phenylene sulfide linked and these A-B dimers then used as monomers.
  • e.g. Pyrrole, thiophene or alkylthiophenes, ethylenedioxythiophene, thieno-thiophene, aniline, phenylene sulfide and others are joined together to A-B structures and these are then converted into oligomers or polymers.
  • two or more, for. B. three different monomers are polymerized together.
  • the transition from the state of a non-metallic to an at least partially metallic conductor was effected by a one-stage rubbing or dispersion process after complete synthesis of the intrinsically conductive polymer.
  • the conductivity is increased by the dispersion process, without the chemical composition of the conductive polymer used was significantly changed.
  • aniline is polymerized in aqueous hydrochloric acid to give the chloride salt of the protonated polyaniline.
  • This is neutralized by means of a strong base, eg ammonia, to remove HCl.
  • a strong base eg ammonia
  • This gives the so-called emeraldine base.
  • camphorsulfonic acid is dissolved with camphorsulfonic acid in the presence of the toxic m-cresol in xylene or chloroform.
  • a film is poured from this solution, which is then stretched. After stretching, a conductivity of a few 10 2 S / cm is obtained.
  • Mattes et al. US Pat. No. 6,123,883 have produced in further variants of this process fibers which, after drawing, likewise have a conductivity of a few 10 2 S / cm. Further work in this direction is reported by Mattes et al. be in synth. Metals 84, 45-49 (1997); US 5,981,695 and WO 2004/042743 Al.
  • the polymer particles are generally spherical, i. in an isotropic structure (morphology).
  • morphology In case of agglomeration of these particles, in particular on removal of the dispersion medium in the case of formation of layers from the dispersion, a likewise isotropic secondary morphology then forms.
  • nanofibers nanofibers, nanofibrils
  • these nanofibers are presented in the specialist literature, with which, in principle, perhaps an orientation and stretching would be conceivable.
  • a closer examination of these nanofibers shows that they in turn consist of spherical primary particles and on the one hand are not stretchable, on the other hand have no particularly high output conductivity (only a few S / cm).
  • the dimensions of the fibers (diameter 100-200 nm) by no means justify their classification in the "nanoworld”.
  • Real nanofibers with dimensions similar to those of carbon nanofibers, let alone with sufficiently high conductivity) based on conductive polymers are not yet known.
  • an intrinsically conductive polymer or organic metal which is characterized in that nanoscopic particles formed from the polymer with a particle size of less than 100 nm have an anisotropic morphology, which is characterized by being derived from the Ball morphology deviates and has a length-to-diameter ratio ("L / D") of greater than 1.2.
  • the polymer particles according to the invention are generally obtained in the form of a stable dispersion containing particles of at least one intrinsically conductive polymer, the average particle size (weight) being less than 1 .mu.m, the dispersant being at Room temperature is a liquid.
  • a layer formed from this dispersion, Film or plate generally has a conductivity of> 100 s / cm after removal of the dispersant.
  • the invention further provides a process for the preparation of the abovementioned polymer particles, in which they are obtained in the form of a dispersion and in which order
  • (a) is produced an intrinsically conductive polymer of monomers, the temperature is controlled during the polymerization so that it does not exceed a value of more than 1 0 C above the starting temperature,
  • step (B) the product of step (a) in the presence of a non-electrically conductive, non-polymeric polar substance which is inert to the conductive polymer, if appropriate additionally in the presence of a nonconductive polymer, rubbed and / or dispersed using sufficient shearing forces is, wherein the weight ratio between the conductive polymer and the polar material is 2: 1 to 1:10, the product of step (b) optionally in a further dispersing agent at a temperature of below 250 0 C, preferably below 180 0 C and is more preferably dispersed at temperatures below 100 0 C, wherein the weight ratio between the conductive polymer and the dispersant is less than 1: 10, wherein in the event that the dispersion is carried out in the presence of a non-conductive polymer, the temperature is not exceeds the limits mentioned and at the same time 5 to a maximum of 80 0 C above the glass transition temperature of the non-conductive polymer is located.
  • the process is conducted in such a way that the particles obtain the desired morphology according to the invention, which can be determined by analytical Methods such as scanning tunneling or atomic force microscopy and transmission electron microscopy can be checked.
  • optically active counterions examples include D- or L-camphorsulfonic acid, amino acids or e.g. optically active substituted aromatic sulfonic acids (such as para-sulfo-phenylalanine).
  • the invention also provides the use of a dispersion as mentioned above or as obtained by the abovementioned process for the production of moldings, self-supporting films or coatings with electrical conductivity.
  • Figure 1 is a scanning tunneling micrograph showing agglomerated spherical primary particles of polyaniline, the size of which is about 10 ⁇ m.
  • Figure 2 is a transmission electron micrograph showing the structure of polyaniline secondary particles about 100 to 150 ⁇ m in size, with a fine structure of spherical primary particles about 10 ⁇ m in size.
  • Figure 3 is a scanning electron micrograph of a foie cast from a polyaniline dispersion and then dried consisting of spherical primary particles. It can be seen that even after drying, a spherical secondary or tertiary morphology is present.
  • FIG. 4 is a transmission electron micrograph of polyaniline particles deposited from a dispersion based on xylene, which shows spherical primary and secondary particles in addition to amorphous drying residues.
  • FIG. 5 is a high-resolution transmission electron micrograph showing polyaniline spherical primary particles precipitated from a dispersion.
  • FIG. 6 shows an atomic force microscope image of lined-up polyaniline primary particles with morphology according to the invention.
  • conductive polymer as used in the present application covers both intrinsically conductive polymers and the so-called organic metals, as discussed above.
  • primary particles is understood to mean the smallest morphological unit occurring in dispersion or detectable in a scanning or transmission electron microscope, ie. H. supermolecular structural unit, a conductive polymer understood.
  • second particles or “secondary structure” is meant the higher structures (secondary and also tertiary structures) which result from the attachment (agglomeration) of primary particles to one another.
  • aggregate is meant the coalescence of primary particles caused by coalescence and stabilized by material bridges.
  • agglomerate is understood to mean only the addition of primary particles consisting essentially of punctiform contacts. Agglomerates can be destroyed again in a substrate and dispersed as primary particles, with aggregates this is no longer possible without breaking up of chemical bonds. This distinction is common in pigment technology (see Herbst / Hunger, “Industrielle Organische Pigmente", VCH 1987). It is also used here. It should be noted that prior art in this technical field has the abovementioned not always observed, but indiscriminately speaks of "agglomerates”.
  • the success achieved according to the invention is to be regarded as surprising in particular because the dispersion processes per se have no preferred direction and therefore it is not to be expected that one of the spherical morphology (which is still present in the raw state directly after the polymerization, before the first dispersion step) Morphology yields. Also, it is extremely surprising that optically active counterions used during the polymerization favor the production of anisotropic primary particles. Even though conductive polymers with optically active counterions have already been described, no deviating primary morphology has been observed.
  • the success achieved according to the invention is surprising, because in general a dispersing process is considered detrimental to the conductivity of the polymer. Because most experts suspect that the chains of conductive polymers are broken during dispersion, so that electron conduction (along these chains) is degraded. Therefore, as stated above with respect to the prior art, they are intended to produce true solutions of conductive polymers. In addition, the use of dispersants and additives is generally considered disadvantageous because they could increase and enhance the barriers to electron transport. In the process according to the invention, even two dispersion steps are now preferred.
  • the particle morphology according to the invention results from the fact that the dispersion processes result in minimal differences in the direction of flow as a result of the execution at the lowest possible temperature and thereby give preferential directions of the force of the particles, which could lead to anisotropic deformation of the primary particles.
  • the temperature control proposed according to the invention in the polymerization could be helpful insofar as there may be some internal order of the chains, which is advantageous for the later anisotropic deformation.
  • the use of optically active counterions could lead to the same direction.
  • the dispersions of the conductive polymers according to the invention also have the advantage that they are stable. Stable dispersions according to the invention therefore do not have to be processed immediately after their preparation, or at least after a short time, but can be left over a prolonged period, for. B. over several hours, z. B. 5 - 10 hours, or days, z. B. 1 - 3 days or 4 - 6 days, or weeks, z. B. more than a week to several months, z. B. more than 1 month, preferably more than 3 months are stored.
  • the above storage information refers to ambient conditions.
  • ambient conditions is meant in particular that the temperature is about room temperature, ie about 5 to 25 0 C, and the pressure is about normal pressure, ie 1013 kPa.
  • the skilled person is, however, clear that depending on the location of storage itself The above information also refers to slightly different typical ambient conditions.
  • Examples of intrinsically conductive polymers or organic metals according to the invention are those mentioned at the beginning of this description.
  • polyaniline PAni
  • polythiophene PTh
  • PEDT poly (3,4-ethylenedioxythiophene)
  • PTT polythiophene-thiophene
  • Preferred binary mixtures of the intrinsically conductive polymers are mixtures of PAni and PTh, PAni and PEDT, PAni and PPy, PEDT and PPy, and PEDT and PTh. Most preferred is polyaniline.
  • dispersible intrinsically conductive polymer preferably polyaniline
  • EP-A-0 329 768 the specifications of EP-A-0 329 768.
  • definitions used in EP-A-0 329 768 are also apply herein in connection with the implementation of step (a) of the method according to the invention.
  • the control of the temperature in step (a) of the process according to the invention ie during the polymerization, so that, in contrast to the process of EP-AO 329 768, the temperature during the polymerization does not exceed a value of more than 1 0 C above Start temperature rises, and the rate of temperature rise at any time during the polymerization is more than 1 K / minute.
  • the leadership of the reaction is such that the temperature rise ⁇ 0.5 ° C. is, wherein the rate of temperature increase at any time more than 0.2 ° K / min. is.
  • the cooling necessary for temperature control can generally be obtained with cooling rates of at least 0.02 K / min, preferably 0.05 K / min. Cooling rates are determined by measuring the temperature change with cooling enabled on the reactors used, without initiating the reaction.
  • the (intermediate) products obtained according to the invention after stage (a) generally have a conductivity of about 5 S / cm.
  • the intermediates of step (a) generally accumulate as powders, wherein 80% by weight of the primary particles are smaller than 500 nm and these are aggregated to not more than 20% by weight to give aggregates of more than 1 ⁇ m. This can be taken from scanning electron micrographs on the dried solid and light microscopic investigations of dispersions in polymer blends. Their primary particle morphology is still essentially spherical.
  • the light microscopic examination is carried out by the solid according to the invention is dispersed directly or as a concentrate with the aid of an internal mixer in a test polymer.
  • Suitable test polymers are PCL or PVC.
  • the concentration of the substance to be dispersed is usually 0.5% by weight.
  • the mixture is squeezed out into a thin film. It can be seen in raw materials according to the invention a uniformly colored, semi-transparent substance; the color stems from the dispersed primary particles. In addition, in some cases undispersed particles of 0.5-1 ⁇ m as well as individual coarser particles can be seen.
  • step (b) of is dry or not - the polymer is dispersed in step (b) of the process according to the invention in the presence of a non-polymeric polar substance or triturated with this.
  • the polar substance (which could also be called a "dispersion adjuvant”) has the following properties:
  • inert solvents water, DMF, DMSO, ⁇ -butyrolactone, NMP and other pyrrolidone derivatives, e.g. n-methyl-2-pyrrolidone, dioxane, THF;
  • Dispersing or rubbing with the polar substance can generally be carried out in dispersing devices such as high-speed mixers (for example so-called fluid mixers) or under ultrasound, in a ball mill, bead mill, a two- or three-roller mill or a high-pressure dispersing device (Microfluidics type). be performed.
  • high-speed mixers or under ultrasound
  • the processing time is at least 3 minutes.
  • ball mills on two or three-roll chairs or in other high-shear units, a longer treatment time, eg of at least 30 minutes, is required.
  • the simultaneous application of an electric field, in particular a rectified electric field may be advantageous; In this case, it usually takes more than 24 hours.
  • the polar, non-conductive and inert to the intrinsically conductive polymer inert material is added in such an amount that results in a weight ratio of 2: 1 to 1:10 between the conductive polymer powder and the polar material.
  • At least one non-conductive polymer in particular a thermoplastic polymer
  • a thermoplastic polymer for example, polyethylene terephthalate copolymer, commercially available from Eastman Kodak or Degussa, or a polymethylmethacrylate (PMMA) from Degussa may be used.
  • PMMA polymethylmethacrylate
  • the presence of the thermoplastic polymer requires the implementation of the dispersion under high shear and at temperatures below 250 0 C, preferably below 180 0 C and more preferably at temperatures below 100 0 C, at the same time 5 to a maximum of 8O 0 C above the glass transition temperature of non-conductive polymers.
  • a solid mixture is then obtained, a polymer blend which contains between 20 and 60% by weight, preferably about 35% by weight, of conductive polymer, based on the solid components of the product composition from stage (b) which are solid at room temperature the conductive polymer, the polar substance and optionally further non-conductive polymer.
  • the conductive polymer generally has conductivities of about 60 S / cm after performing step (b).
  • step (b) the added polar, inert and non-conductive substance or the non-conductive polymer likewise present can be partially or almost completely removed by washing or extraction.
  • this post-treatment step is performed after completion of step (b) as described in the preceding paragraph. Alternatively, however, the after-treatment can also be used during stage (b).
  • the aftertreatment which could also be termed conditioning of the product of step (b) for the optional further subsequent dispersing step, has the purpose of preparing (conditioning) the product of step (b) for the optionally subsequent dispersing step.
  • the most different substances can be used, e.g. Aromatics, alcohols, esters, ethers, ketones, e.g. Xylene, toluene, ethanol, isopropanol, chlorobenzene, diisopropyl ether and the like.
  • solvents and auxiliaries which assist the subsequent dispersion stage. This can e.g. Xylene or chlorobenzene and dodecylbenzenesulfonic acid (DBSH).
  • the proportion of the conductive polymer in the product is at least 5% by weight, preferably 10% by weight, in particular 20% by weight. % elevated.
  • work can continue without reduction or removal of the polar or thermoplastic polymer, e.g. if the further processing and the application of the conductive polymer is not disturbed by the presence of the added substance.
  • the conductivity of the polymer powder is not affected by the presence of the polar substance or of the thermoplastic polymer.
  • Preferred levels of conductive polymer obtained after step (b) and after-treatment are between 45 and 99% by weight, preferably 55 to 70% by weight, based on the entire composition.
  • the product of step (b) may be a wet paste with a relatively high level of solvent or adjuvant used in the aftertreatment. It is therefore not essential to the invention to remove substances used during the aftertreatment as far as possible before carrying out the further dispersion stage of the process according to the invention, but this may be advantageous in industrial practice.
  • the further dispersion stage of the process according to the invention is a dispersion which takes place in an organic or aqueous medium (dispersion medium) and is generally carried out at room temperature or at a temperature of only slightly different temperatures.
  • dispersion units are in particular those machines in question, which are able to bring high dispersion energy in the system. This can z.
  • systems such as Ultraturrax, Disolver, bead mills, ball mills, high-pressure dispersion apparatus such as those of the micro-fluidics type, or ultrasound systems.
  • the dispersion time may be several minutes, e.g. 20 minutes, up to several hours, e.g. 1 to 3 hours, e.g. 2.5 hours.
  • Suitable dispersants are, in particular, those solvents which have a surface tension of at least 25 mN / m.
  • the dispersants of the invention are liquid at room temperature and have in particular relative viscosities of ⁇ 10,000, e.g. ⁇ 5,000, and especially ⁇ 1,000.
  • dispersants according to the invention are xylene, chlorophenol, dichloroacetic acid, N-methylpyrrolidone, dimethyl sulfoxide, octanol, or benzyl alcohol or higher alcohols, eg. B. C 9 - C 2 o-alcohols of paraffinic or aromatic nature, or mixtures thereof.
  • the dispersion medium (s) are added to the product from stage (b) of the process according to the invention in an amount which, based on the intrinsically conductive polymer, an excess (weight ratio) of dispersant is present.
  • the weight ratio between the conductive polymer and the dispersant is less than 1:10, preferably less than 1:15, eg 1:18.
  • a high-viscosity paste or a liquid, low-viscosity dispersion having a concentration of the conductive polymer of generally not more than about 10% by weight based on the entire dispersion is generally obtained.
  • the dispersion obtained after this disintegration step contains minor amounts of the polar species and non-conductive polymers used in step (b), depending on the extent of conditioning.
  • self-supporting films or coatings with electrical conductivity, adjuvants and additives can be added after the dispersing stage described last, or alternatively during this dispersing stage.
  • This can e.g. Viscosity regulators, wetting aids, matrix polymers such as paint binders, film-forming substances, stabilizers, crosslinking aids, evaporation regulators such as evaporation accelerators or evaporation inhibitors or other auxiliaries and additives.
  • a stable dispersion is then obtained which contains all the components which are helpful or decisive for the further shaping and the properties of the product.
  • the dispersion obtained after the dispersion including aftertreatment and formulation can then be used, if appropriate after carrying out further further dispersion and aftertreatment steps, for the production of moldings, self-supporting films or coatings of very different layer thickness with electrical conductivity (shaping).
  • Shaping can be accomplished by a variety of techniques such as dipping, wetting by dropping, spraying, spincoating, printing (eg screen printing, offset printing, inkjet, etc.), extrusion, casting, knife coating, electrospinning, and others. Particularly preferred is the shaping by dipping, pouring, drip wetting, spincoating or printing.
  • the layers, coatings, films, plates or other form or components thus obtained exhibit, after removal of the dispersant, a conductivity of> 100 S / cm, preferably at least 200 S / cm or greater, eg. B. greater than 250 S / cm, in particular at least 500 S / cm, z. 200 to 200,000 S / cm, 200 to 20,000 S / cm or 500 to 10,000 S / cm, e.g. 300 to 3,000 or 500 to 1000 S / cm.
  • the "raw" powder from step (a) normally shows there no peak or only very weak intensity
  • the polyaniline after the first rubbing / dispersing process according to step (b) shows at least a clear reflection, but this is in comparison to the peak at about 19 ° lower.
  • the primary particles are clearly no longer spherical, but have an L / D ratio of about 2 with a length of about 8 - 11 nm and a width of about 4 ran (see Figure 6).
  • anisotropic media such as liquid-crystalline (low or high molecular weight) substances or under the influence of anisotropic electrical and / or magnetic fields or on oriented or oriented pre-structured substrates ( like HOPG oriented oriented polypropylene or other plastic films, preferably uniaxially stretched films) makes sense and allows the production of moldings and surface coatings with anisotropic properties.
  • polymer particles of the invention on an oriented substrate (eg oriented polypropylene), conductivities of about 1000 S / cm and above were achieved. In comparison, when deposited from the same dispersion on an isotropic substrate (eg, glass), a conductivity of about 300 S / cm was achieved.
  • an oriented substrate eg, oriented polypropylene
  • the shaping or further processing can be used to produce antistatic or conductive coatings, transparent and non-transparent electrodes, paints which are suitable for EMI shielding, contacts in the electronics or "source”, “drain” or “gate” in field-effect transistors, Likewise, antennas, resonant circuits, logic circuits, conductors or opposing poles in capacitors, electrolytic capacitors or so-called “supercapacitors” and many functions such as those in the conventional electrical engineering and electronics of conventional metals, highly doped semiconductors of the electrodes or redox-active layers be fulfilled.
  • the articles which are accessible by drying or by performing any of the molding processes described above and which contain the conductive polymer obtainable from the dispersion of the invention are one embodiment of the invention.
  • the above-mentioned articles consist essentially of the conductive polymer.
  • interesting advantages arise from the new primary particle morphology, generally because of the higher conductivity, it being no disadvantage that this is higher than usual, if appropriate only in a preferred direction (eg in the EMI shielding, it does not matter if the conductivity isotropic or anisotropically high is the conductivity as such for the efficiency of the shield).
  • the new morphology first allows the use of conductive polymers, such as in polymer electronics, where current conductivity, "source”, “drain” and “gate” conductivities are possible, and the interconnects to the organic ones Field effect transistors and their wiring but with vapor-deposited metals is performed. Due to increased conductivity in the direction of the "interconnects", the use of the conductive polymers / organic metals also results for the first time.

Abstract

Die vorliegende Erfindung betrifft ein leitfähiges Polymer bzw. Organisches Metall, das dadurch gekennzeichnet ist, dass daraus gebildete nanoskopische Teilchen mit einer Teilchengröße von weniger als 100 nm eine anisotrope Morphologie aufweisen, die nicht kugelförmig ist und ein Länge- zu-Durchmesser-Verhältnis (,,L/DW") von größer als 1,2 aufweist. Ferner betrifft die Erfindung ein Verfahren zur Herstellung derartiger Polymere und deren Verwendung Herstellung von Formteilen, selbsttragenden Folien oder Beschichtungen mit elektrischer Leitfähigkeit, insbesondere auf anisotropen Substraten oder in anisotropen Medien und Feldern.

Description

Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
Die vorliegende Erfindung betrifft leitfähige Polymere aus Teilchen mit anisotroper Morphologie, ein Verfahren zur Herstellung derselben sowie deren Verwendung zur Herstellung von Formteilen, Folien oder BeSchichtungen.
Als leitfähige Polymere, die auch "intrinsisch leitfähige Polymere" bzw. "organische Metalle" genannt werden, bezeichnet man Stoffe, die aus niedermolekularen Verbindungen (Monomeren) aufgebaut sind, durch Polymerisation mindestens oligomer sind, also mindestens 3 Monomereinheiten enthalten, die durch chemische Bindung verknüpft sind, im neutralen (nicht leitfähigen) Zustand ein konjugiertes π-Elektronensystem aufweisen und durch Oxidation, Reduktion oder Protonierung (was oftmals als "dotieren" bezeichnet wird) in eine ionische Form überführt werden können, die leitfähig ist. Die Leitfähigkeit beträgt mindestens 10"7 S/cm. Als Dotierungsmittel werden im Falle der Dotierung durch Oxidation z.B. Jod, Peroxide, Lewis- und Protonensäuren oder im Falle der Dotierung durch Reduktion z.B. Natrium, Kalium, Calcium eingesetzt.
Leitfähige Polymere können chemisch außerordentlich unterschiedlich zusammengesetzt sein. Als Monomere haben sich z.B. Acetylen, Benzol, Napthalin, Pyrrol, Anilin, Thiophen, Phenylensulfid, peri-Naphthalin und andere, sowie deren Derivate, wie Sulfo-Anilin, Ethylendioxythiophen, Thieno- thiophen und andere, sowie deren Alkyl- oder Alkoxy-Derivate oder Derivate mit anderen Seitengruppen, wie SuIfonat-, Phenyl- und andere Seitengruppen, bewährt. Es können auch Kombinationen der oben genannten Monomere als Monomer eingesetzt werden. Dabei werden z.B. Anilin und Phenylensulfid verknüpft und diese A-B-Dimere dann als Monomere eingesetzt. Je nach Zielsetzung können z.B. Pyrrol, Thiophen oder Alkylthiophene, Ethylendioxythiophen, Thieno-thiophen, Anilin, Phenylensulfid und andere miteinander zu A-B-Strukturen verbunden und diese dann zu Oligomeren oder Polymeren umgesetzt werden. Alternativ können auch zwei oder mehr, z. B. drei verschiedene Monomere gemeinsam polymerisiert werden.
Die meisten leitfähigen Polymere weisen einen mehr oder weniger starken Anstieg der Leitfähigkeit mit steigender Temperatur auf, was sie als nicht-metallische Leiter ausweist. Einige wenige Vertreter dieser Stoffklasse zeigen zumindest in einem Temperaturbereich nahe Raumtemperatur ein metallisches Verhalten insofern, als die Leitfähigkeit mit steigender Temperatur sinkt. Eine weitere Methode, metallisches Verhalten zu erkennen, besteht in der Auftragung der sogenannten "reduzierten Aktivierungsenergie" der Leitfähigkeit gegen die Temperatur bei niedrigen Temperaturen (bis nahe 0 K) . Leiter mit einem metallischen Beitrag zur Leitfähigkeit zeigen eine positive Steigung der Kurve bei niedriger Temperatur. Solche Stoffe bezeichnet man als "organische Metalle". Ein solches organisches Metall ist von Weßling et al. in Eur. Phys. J. E 2, 2000, 207-210 beschrieben worden. Dabei wurde der Übergang vom Zustand eines nicht-metallischen zu einem zumindest teilweise metallischen Leiter durch einen einstufigen Reib- bzw. Dispersionsvorgang nach vollendeter Synthese des intrinsisch leitfähigen Polymers bewirkt. Hierbei wird durch den DispersionsVorgang auch die Leitfähigkeit erhöht, ohne dass die chemische Zusammensetzung des verwendeten leitfähigen Polymeren wesentlich verändert wurde.
Dem Stand der Technik sind zahlreiche Bemühungen zu entnehmen, die Leitfähigkeit deutlich zu erhöhen. Dabei wird besonders die Strategie eingesetzt, Lösungen der leitfähigen Polymere (gegebenenfalls unter Verwendung spezieller Dotierungsmittel) zu erzeugen, und die nach Gießen oder anderer Verarbeitung und anschließendem Trocknen erhaltenen Produkte (Filme, Fasern) anschließend zu verstrecken.
Einen guten Überblick über diese Verfahren geben neben Synthetic Metal (Special Issue, Vol. 65, Nos . 2-3, August 1994) auch die Beiträge von Epstein et al . und Heeger et al . (Handbook of Conductive Polymers, Skotheim, Eisenbanner, Reynolds (Hrsg.), M. Dekker, N. Y. 1998).
Während normalerweise ein Leitfähigkeitsbereich von um und unter 5 S/cm nach der Synthese erreicht wird, erzielt man durch verschiedene Vorgehensweisen Werte von einigen 10, gelegentlich auch einigen 100 S/cm. Leitfähigkeitswerte von einigen 1.000 oder 10.000 S/cm, wie sie von Naarmann und Theophilou in Synthet. Met., 22, 1 (1987) vor 15 Jahren mit Polyacetylen aufgrund eines speziellen Polymerisationsverfahrens und anschließendem Verstrecken erreicht wurden, konnten mit anderen leitfähigen Polymersystemen bisher nicht erreicht werden. Das Verfahren von Naarmann et al . weist allerdings den Nachteil auf, dass es schwer durchzuführen und schwer zu reproduzieren ist. Außerdem führt es zu einem Produkt, das nicht luft- und oxidationsstabil und außerdem nicht weiterverarbeitbar ist. Fig 3.2 in Kohlman und Epstein im oben genannten Handbuch gibt einen sehr guten überblick über die bisher erzielten Leitfähigkeitswerte, wobei die höheren Werte um 102 S/cm generell erst nach Verstrecken einer aus dem intrinsich leitfähigen Polymer hergestellten Folie oder Faser erreicht werden.
Im Falle des Polyanilins geht man dabei z.B. so vor, daß man Anilin in wäßriger Salzsäure polymerisiert, wobei das Chlorid- Salz des protonierten Polyanilins entsteht. Dieses wird mittels einer starken Base, z.B. Ammoniak, zur Entfernung von HCl neutralisiert. Man erhält dadurch die sogenannte Emeraldinbase . Diese wird mit Kamphersulfonsäure in Gegenwart des giftigen m- Kresols in Xylol oder Chloroform gelöst. Anschließend wird aus dieser Lösung ein Film gegossen, der danach verstreckt wird. Nach dem Verstrecken erhält man eine Leitfähigkeit von einigen 102 S/cm.
Dieses als Sekundär-Dotierung ("secondary doping") bezeichnete Verfahren, siehe Mac Diarmid und Epstein, Synth. Met. (Special Issue) Vol. 65, Nos . 2-3, August 1994, S. 103-116, wird in zahlreichen Varianten durchgeführt, u.a. in Arbeiten von Holland, Monkman et al. J. Phys. Condens. Matter £ (1996), 2991- 3002 oder Dufour, Pron et al . , Synth. Met. (2003), No. 133-136, S. 63-68, wobei die Säure und das Sekundär-Dotierungsmittel ("secondary dopant") variiert werden. Weitere Arbeiten von Monkman et al. werden in: Polymer 41, 2265 (2000) ; J. Mater. Sei. 36(13), 3089-3095 (2001), Synth. Met. (102), 685 (1999); P N Adams et al J. Phys.: Condens. Matter 10 8293-8303 (1998) mit dem Titel "A new aeid-processing route to polyaniline films which exhibit metallic conduetivity and electrical transport strongly dependent upon intrachain molecular dynamics " offenbart .
Mattes et al., US-A-6 123 883, haben in weiteren Varianten dieses Verfahrens Fasern erzeugt, die nach Verstrecken ebenfalls eine Leitfähigkeit von einigen 102 S/cm aufweisen. Weitere Arbeiten in dieser Richtung werden in von Mattes et al. werden in Synth. Metals 84, 45-49 (1997); US 5,981,695 und WO 2004/042743 Al offenbart.
Allen diesen Arbeiten ist gemeinsam, daß man von einer molekularen Lösung der leitfähigen Polymere ausgeht und nach dem Verdunsten des Lösemittels versucht, die Ketten des Polymers zu verstrecken und dadurch (parallel) zu orientieren, d.h. auszurichten. Ganz offensichtlich kann man auf diese Weise die Leitfähigkeit um etwa den Faktor 100 erhöhen- und dabei auch Anisotropieeffekte (d.h., eine Vorzugsrichtung der Leitfähigkeit oder auch einiger optischer Eigenschaften, was für manche Anwendungen von Vorteil, für andere nicht nachteilig ist) ermöglichen.
Wenn man im Gegensatz hierzu jedoch unlösliche leitfähige Polymere bzw. organische Metalle verwendet, und diese daher nicht aus Lösung verarbeitet, sondern aus einer Dispersion, kann eine Verstreckung keine Orientierung der dispergierten Nanoteilchen mit nachfolgender Erhöhung der Leitfähigkeit ergeben, schon gar nicht eine Orientierung von Ketten. Denn in der Dispersion liegen die Polymerteilchen (Primärteilchen) im Allgemeinen kugelförmig vor, d.h. in einer isotropen Struktur (Morphologie) . Bei bei Agglomeration dieser Teilchen, insbesondere bei Entfernung des Dispersionsmittels bei Bildung von Schichten aus der Dispersion, bildet sich dann eine ebenfalls isotrope Sekundärmorphologie.
Seit kurzem werden in der Fachliteratur sog. „Nanofasern" (engl.: „nanofibres, nanofibrils") aus Polyanilin vorgestellt, mit denen prinzipiell vielleicht eine Orientierung und VerStreckung denkbar wäre. Jedoch zeigt eine nähere Untersuchung dieser Nanofasern, daß diese ihrerseits aus kugelförmigen Primärpartikeln bestehen und einerseits nicht verstreckbar sind, andererseits keine besonders hohe Ausgangsleitfähigkeit (nur wenige S/cm) aufweisen. Zudem rechtfertigen die Ausmaße der Fasern (Durchmesser 100 - 200 nm) keineswegs bereits ihre Einordnung in die „Nanowelt". Echte Nanofasern (mit Dimensionen ähnlich denen der Kohlenstoff-Nanofasern, geschweige denn mit ausreichend hoher Leitfähigkeit) auf Basis leitfähiger Polymere sind bisher nicht bekannt.
Eine Erhöhung der Leitfähigkeit durch Verstrecken von aus Dispersionen abgeschiedenen Filmen, Folien oder Fasern ist daher bislang nicht möglich (und somit auch keine Leitfähigkeitserhöhung durch Verstrecken solcher Produkte) , ebensowenig wie die von vornherein in einer Vorzugsrichtung orientierte Anordnung von Primärteilchen, da die bisher verfügbaren Primärteilchen (Nanoteilchen) leitfähiger Polymer und organischer Metalle im wesentlichen isotrop sind.
Es ist deshalb eine Aufgabe der vorliegenden Erfindung, die Möglichkeit zur Orientierung (Ausrichtung) der Primärteilchen von leitfähigen Polymeren bzw. Organischen Metallen zu schaffen, d.h. leitfähige Polymere bzw. Organische Metalle mit dafür geeigneter Morphologie bereitzustellen.
Die obige Aufgabe wird erfindungsgemäß durch ein intrinsisch leitfähiges Polymer bzw. organisches Metall gelöst, das dadurch gekennzeichnet ist, dass aus dem Polymer gebildete nanoskopische Teilchen mit einer Teilchengröße von weniger als 100 nm eine anisotrope Morphologie aufweisen, die dadurch gekennzeichnet ist, dass sie von der Kugelmorphologie abweicht und ein Länge-zu-Durchmesser-Verhältnis („L/D") von größer als 1,2 aufweist.
Vor ihrer Weiterverarbeitung zu Schichten, Folien oder Platten werden die erfindungsgemäßen Polymerteilchen in der Regel in Form einer stabilen Dispersion erhalten, die Teilchen mindestens eines intrinsisch leitfähigen Polymers enthält, wobei die Teilchengröße im Mittel (Gewicht) weniger als 1 μm beträgt, wobei das Dispersionsmittel bei Raumtemperatur eine Flüssigkeit ist. Eine aus dieser Dispersion gebildete Schicht, Folie oder Platte weist nach Entfernen des Dispersionsmittels im Allgemeinen eine Leitfähigkeit von > 100 s/cm auf.
Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung der vorstehend genannten Polymerteilchen, bei dem diese in Form einer Dispersion erhalten werden und bei dem in dieser Reihenfolge
(a) aus Monomeren ein intrinsisch leitfähiges Polymer hergestellt wird, wobei die Temperatur während der Polymerisation so geregelt wird, dass sie nicht über einen Wert von mehr als 1 0C oberhalb der Starttemperatur ansteigt,
(b) das Produkt aus Stufe (a) in Gegenwart eines gegenüber dem leitfähigen Polymer inerten, nicht elektrisch leitfähigen, nicht-polymeren polaren Stoffes, gegebenenfalls zusätzlich in Gegenwart eines nicht-leitfähigen Polymers, unter Anwendung ausreichender Scherkräfte aufgerieben und/oder disper- giert wird, wobei das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem polaren Stoff 2:1 bis 1:10 beträgt, das Produkt aus Stufe (b) gegebenenfalls in einem weiteren Dispersionsmittel bei einer Temperatur von unter 250 0C, vorzugsweise unterhalb von 180 0C und besonders bevorzugt bei Temperaturen unterhalb von 100 0C dispergiert wird, wobei das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem Dispersionsmittel kleiner als 1 : 10 ist, wobei für den Fall, daß die Dispergierung in Gegenwart eines nicht-leitfähigen Polymeren ausgeführt wird, die Temperatur nicht die erwähnten Grenzen überschreitet und zugleich 5 bis maximal 800C über der Glastemperatur des nicht-leitfähigen Polymeren liegt.
Das Verfahren wird so geführt, dass die Teilchen die gewünschte erfindungsgemäße Morphologie erhalten, was mittels analytischer Methoden wie Rastertunnel- bzw. Rasterkraftmikroskopie und Transmissionselektronenmikroskopie überprüft werden kann.
Bei der Polymerisation kann man überraschenderweise auch optisch aktive Gegenionen einsetzen. Beispiele für solche Gegenionen sind D- oder L-Kamphersulfonsäure, Aminosäuren oder z.B. optisch aktiv substituierte aromatische Sulfonsäuren (wie z.B. para-Sulfo-Phenylalanin) .
Gegenstand der Erfindung ist auch die Verwendung einer Dispersion wie vorstehend genannt bzw. wie nach dem vorstehend genannten Verfahren erhalten zur Herstellung von Formteilen, selbsttragenden Folien oder Beschichtungen mit elektrischer Leitfähigkeit .
Weitere bevorzugte Ausführungsformen der vorliegenden Erfindung ergeben sich aus den abhängigen Patentansprüchen.
Kurze Beschreibung der Figuren
Figur 1 ist eine Rastertunnelmikroskopaufnahme, die Agglomeate kugelförmiger Primärteilchen aus Polyanilin zeigt, deren Größe etwa 10 μm beträgt.
Figur 2 ist eine Transmissionselektronenmikroskopaufnahme, die die Struktur von Polyanilin-Sekundärteilchen einer Größe von etwa 100 bis 150 μm zeigt, mit einer Feinstruktur von kugelförmigen Primärteilchen einer Größe von etwa 10 μm.
Figur 3 ist eine Rasterelektronenmikroskopaufnahme einer Foie, die aus einer Polyanilin-Dispersion gegossen und dann getrocknet wurde, die aus kugelförmigen Primärteilchen bestand. Man erkennt, dass auch nach dem Trocknen eine kugelförmige Sekundär- bzw. Tertiärmorphologie vorhanden ist.
Figur 4 ist eine Transmissionselektronenmikroskopaufnahme von Polyanilin-Teilchen abgeschieden aus einer Dispersion basie- rend auf Xylol, die neben amorphen Trocknungsrückständen kugelförmige Primär- und Sekundärteilchen zeigt.
Figur 5 ist eine hochaufgelöste Transmissionselektronenmikroskopaufnahme, die aus einer Dispersion abgeschiedene, überein- anderliegende kugelförmige Primärteilchen von Polyanilin zeigt.
Figur 6 zeigt eine Rasterkraftmikroskopaufnahme von aneinandergereihten Polyanilin-Primärteilchen mit erfindungsgemäßer Morphologie .
Der Begriff "leitfähiges Polymer" wie in der vorliegenden Anmeldung verwendet erfasst sowohl intrinsisch leitfähige Polymere als auch die sogenannten organischen Metalle, wie eingangs erörtert .
In der vorliegenden Anmeldung wird unter "Primärteilchen" die kleinste in Dispersion vereinzelt vorkommende bzw. im Rasteroder Transmissionselektronenmikroskop erkennbare morphologische Einheit, d. h. übermolekulare Struktureinheit, eines leitfähigen Polymeren verstanden.
Unter "Sekundärteilchen" bzw. "Sekundärstruktur" versteht man die höheren Strukturen (Sekundär- und auch Tertiärstrukturen) , die sich aus der Anlagerung (Agglomeration) von Primärteilchen untereinander ergeben. Unter "Aggregat" versteht man die durch Zusammenwachsen hervorgerufene und durch Materialbrücken stabilisierte Zusammenlagerung von Primärteilchen. Unter "Ag- glomerat" wird also nur die im wesentlichen aus punktförmigen Kontakten bestehende Zusaπimenlagerung von Primärteilchen verstanden. Agglσmerate lassen sich in einem Substrat wieder zerstören und als Primärteilchen dispergieren, bei Aggregaten gelingt dies nicht mehr ohne Aufbrechen von chemischen Bindungen. Diese Abgrenzung ist in der Pigmenttechnologie üblich (vergleiche Herbst/Hunger, "Industrielle Organische Pigmente", VCH 1987) . Sie wird hier ebenfalls verwendet. Es sollte dabei besonders beachtet werden, dass älterer Stand der Technik auf diesem technischen Gebiet die vorstehend beschriebene Ab- grenzung nicht immer beachtet, sondern unterschiedslos von "Agglomeraten" spricht.
Der erfindungsgemäß erreichte Erfolg ist insbesondere deshalb als überraschend anzusehen, weil die Dispersionsvorgänge an sich keine Vorzugsrichtung aufweisen und deshalb nicht zu erwarten ist, daß sich eine von der Kugelmorphologie (die im rohen Zustand direkt nach der Polymerisation, vor dem ersten Dispersionsschritt noch vorliegt) abweichende Morphologie ergibt. Auch daß optisch aktive Gegenionen, die während der Polymerisation verwendet werden, die Erzeugung anisotroper Pri- märteilchen begünstigen, ist außerordentlich überraschend. Denn obwohl leitfähige Polymere mit optisch aktiven Gegenionen schon beschrieben wurden, ist keinerlei abweichende Primärmorphologie beobachtet worden.
Ferner ist der erfindungsgemäß erreichte Erfolg überraschend, weil im Allgemeinen ein Dispergiervorgang als schädlich für die Leitfähigkeit des Polymers angesehen wird. Denn die meisten Fachleute vermuten, dass die Ketten der leitfähigen Polymere bei der Dispergierung zerrissen werden, sodass die Elektronenleitung (entlang dieser Ketten) verschlechtert wird. Deshalb wird von ihnen wie oben zum Stand der Technik ausgeführt angestrebt, echte Lösungen von leitfähigen Polymeren herzustellen. Daneben wird auch die Verwendung von Dispergiermitteln und Zusatzstoffen im Allgemeinen als nachteilig angesehen, da sie die Barrieren für den Transport der Elektronen erhöhen und verstärken könnten. Bei dem erfindungsgemäßen Verfahren werden nun sogar zwei Dispergierschritte bevorzugt.
Schließlich ist es als überraschend anzusehen, dass bei dem erfindungsgemäßen Verfahren nach der ersten Dispergierstufe (Stufe (b) ) , vor der gegebenenfalls durchzuführenden zweiten Dispergierstufe nicht unbedingt eine vollständige Entfernung des gegebenenfalls vorhandenen nicht-leitenden Polymers notwendig ist, wie nachstehend näher erläutert wird. Durch diese Erfindung ergeben sich eine Reihe von Vorteilen, wie z.B. die Möglichkeit, eine Vorzugsrichtung der Leitfähigkeit, oder anderer (u. a. optischer oder mechanischer) Eigenschaften zu erzielen, verstreckte Folien und Fasern mit erhöhter Leitfähigkeit (und ggf . auch erhöhter mechanischer Belastbarkeit) herzustellen oder auch leitfähige Polymere in anisotroper Umgebung (also z. B. in elektrischen oder magnetischen Feldern oder auf anisotrop strukturierten Substraten) abzuscheiden und dabei Eigenschaftsverbesserungen zu erzielen.
Ohne die Erfindung durch Festlegung auf eine bestimmte Theorie einschränken zu wollen, wird angenommen, dass sich die erfindungsgemäße Teilchenmorphologie dadurch ergibt, dass die Dispersionsvorgänge durch die Ausführung bei möglichst niedriger Temperatur minimale Unterschiede in der Fließrichtung ergeben und dadurch Vorzugsrichtungen der Krafteinwirkung auf die Teilchen ergeben, die zu einer anisotropen Verformung der Primärteilchen führen könnte. Hierbei könnte die bei der Polymerisation vorgeschlagene erfindungsgemäße Temperaturführung insofern hilfreich sein, als sich vielleicht eine gewisse innere Ordnung der Ketten ergibt, die für die spätere anisotrope Verformung vorteilhaft ist. In die gleiche Richtung könnte die Verwendung optisch aktiver Gegenionen führen.
Die Dispersionen aus den erfindungsgemäßen leitfähigen Polymeren weisen ferner den Vorteil auf, dass sie stabil sind. Stabile erfindungsgemäße Dispersionen müssen daher nach ihrer Herstellung nicht sofort oder zumindest nach kurzer Zeit wieter- verarbeitet werden, sondern können über längere Zeit, z. B. über mehrere Stunden, z. B. 5 - 10 Stunden, oder Tage, z. B. 1 - 3 Tage oder 4 - 6 Tage, oder Wochen, z. B. mehr als eine Woche bis zu mehreren Monaten, z. B. mehr als 1 Monat, vorzugsweise mehr als 3 Monate gelagert werden. Die vorstehenden Angaben zur Lagerung beziehen sich auf Umgebungsbedingungen. Mit "Umgebungsbedingungen" ist insbesondere gemeint, dass die Temperatur etwa Raumtemperatur, d. h. etwa 5 bis 250C beträgt, und der Druck etwa Normaldruck, d. h. 1013 kPa, beträgt. Dem Fachmann ist jedoch klar, dass je nach Ort der Lagerung sich die obigen Angaben auch auf geringfügig abweichende typische Umgebungsbedingungen beziehen.
Beispiele für erfindungsgemäß intrinsisch leitfähige Polymere bzw. organische Metalle sind die eingangs dieser Beschreibung genannten. Insbesondere können als Beispiele genannt werden: Polyanilin (PAni) , Polythiophen (PTh), PoIy (3,4-ethylendioxy- thiphene) (PEDT) , Polydiacetylen, Polyacetylen (PAc) , Polypyrrol (PPy) , Polyisothianaphthen (PITN) , Polyhetero- arylenvinylen (PArV), wobei die Heteroarylen-Gruppe z.B. Thiophen, Furan oder Pyrrol sein kann, Poly-p-phenylen (PpP) , Polyphenylensulfid (PPS) , Polyperinaphthalin (PPN) , Polyphthalocyanin (PPc) u. a., sowie deren Derivate (die z.B. aus mit Seitenketten oder -gruppen substituierten Monomeren gebildet werden) , deren Copolymere und deren physikalische Mischungen. Besonders bevorzugt sind Polyanilin (PAni) , Polythiophen (PTh), Poly(3,4-ethylendioxythiophene) (PEDT), PoIy- thieno-thiophen (PTT) und deren Derivate. Bevorzugte binäre Mischungen der intrinsisch leitfähigen Polymere sind Mischungen aus PAni und PTh, PAni und PEDT, PAni und PPy, PEDT und PPy sowie PEDT und PTh. Am meisten bevorzugt ist Polyanilin.
In Stufe (a) des erfindungsgemäßen Verfahrens wird im Allgemeinen nach den Vorschriften der EP-A-O 329 768 disper- gierbares, intrinsisch leitfähiges Polymer, vorzugsweise Polyanilin, hergestellt. Insbesondere wird auf die in der EP-A-O 329 768 verwendeten Definitionen Bezug genommen. Diese gelten auch hierin im Zusammenhang mit der Durchführung von Stufe (a) des erfindungsgemäßen Verfahrens.
Vorzugsweise erfolgt die Steuerung der Temperatur in Stufe (a) des erfindungsgemäßen Verfahrens, also während der Polymerisation, so, dass im Unterschied zum Verfahren der EP-A-O 329 768 die Temperatur während der Polymerisation nicht über einen Wert von mehr als 1 0C oberhalb der Starttemperatur ansteigt, und die Geschwindigkeit des Temperaturanstiegs zu keiner Zeit während der Polymerisation mehr als 1 K/Minute beträgt. Bevorzugt ist die Führung der Reaktion so, dass der Temperaturanstieg <0,5°C ist, wobei die Geschwindigkeit des Temperaturanstieges zu keiner Zeit mehr als 0,2 °K/min. beträgt.
Die zur Temperatursteuerung notwendige Kühlung kann in der Regel mit Kühlraten von mindestens 0,02 K/min, vorzugsweise 0,05 K/min erhalten. Die Kühlraten werden duch Messung der Temperaturänderung bei aktivierter Kühlung an den jeweils verwendeten Reaktoren bestimmt, ohne dass die Reaktion in Gang gesetzt wird.
Die erfindungsgemäß nach Stufe (a) erhaltenen (Zwischen-) Produkte weisen im Allgemeinen eine Leitfähigkeit von etwa 5 S/cm auf.
Die Zwischenprodukte aus Stufe (a) fallen im Allgemeinen als Pulver an, wobei 80 Gew.-% der Primärteilchen kleiner als 500 nm sind und wobei diese zu nicht mehr als 20 Gew.-% zu Aggregaten von mehr als 1 μm aggregiert sind. Dies kann man rasterelektronenmikroskopischen Aufnahmen am getrockneten Feststoff und lichtmikroskopischen Untersuchungen von Dispersionen in Polymerblends entnehmen. Ihre Primärteilchenmorphologie ist nach wie vor im wesentlichen kugelförmig.
Die lichtmikroskopische Untersuchung erfolgt, indem der erfindungsgemäße Feststoff direkt oder als Konzentrat mit Hilfe eines Innenmischers in einem Testpolymer dispergiert wird. Als Testpolymere eignen sich PCL oder PVC. Die Konzentration des zu dispergierenden Stoffs beträgt üblicherweise 0,5 Gew.-%. Die Mischung wird zu einem dünnen Film ausgepreßt . Man erkennt bei erfindungsgemäßen Rohstoffen eine gleichmäßig stark gefärbte, semi-transparente Substanz; die Färbung rührt von den disper- gierten Primärteilchen her. Zusätzlich erkennt man in einigen Fällen undispergierte Teilchen von 0,5-1 μm sowie einzelne gröbere Teilchen.
Nach Polymerisation und Aufarbeitung - wobei es nicht wesentlich ist, ob das erhaltene Polymer bereits vollständig trocken ist oder nicht - wird das Polymer in Stufe (b) des trocken ist oder nicht - wird das Polymer in Stufe (b) des erfindungsgemäßen Verfahrens in Gegenwart eines nicht-polymeren polaren Stoffes dispergiert bzw. mit diesem verrieben. Dabei hat der polare Stoff (der auch als "Dispersionshilfsstoff" bezeichnet werden könnte) folgende Eigenschaften:
^ er hat eine Oberflächenspannung von mehr als 30 dyn/cm,
> er ist nicht elektrisch leitfähig (d.h. er weist eine elektrische Leitfähigkeit von weniger als 10"s S/cm auf) ,
> er kann flüssig oder fest sein, y er wirkt gegenüber dem eingesetzten leitfähigen Polymer inert, d.h. geht keine nennenswerten chemischen Reaktionen mit ihm ein; vor allem sind oxidative oder reduktive sowie Säure-Base-Reaktionen nicht erwünscht,
> er ist unter gewöhnlichen Bedingungen nicht unbedingt ein Dispersionshilfsmittel und fällt nicht unter die Stoff- klasse der Tenside.
Beispiele für solche polaren Stoffe sind
a) Festkörper: Bariumsulfat; Titandioxid, insbesondere ultrafeines Titandioxid mit einer Korngröße von weniger als 300 nm; organische Pigmente wie Pigment Gelb 18;
b) inerte Lösungsmittel: Wasser, DMF, DMSO, γ-Butyrolacton, NMP und andere Pyrrolidon-Derivate, z.B. n-Methyl-2- pyrrolidon, Dioxan, THF;
wobei diese Aufzählung beispielhaft und keineswegs limitierend ist.
Die Dispergierung bzw. das Aufreiben mit dem polaren Stoff kann im Allgemeinen in Dispergiervorrichtungen wie Schnellmischern (z. B. sog. Fluid-Mischern) oder unter Ultraschall, in einer Kugelmühle, Perlmühle, einem Zwei- oder Dreiwalzenstuhl oder einer Hochdruckdispergiervorrichtung (Typ Microfluidics) durchgeführt werden. In Schnellmischern, oder unter Ultraschall beträgt die Verarbeitungszeit mindestens 3 Minuten. In Kugelmühlen, auf Zweioder Dreiwalzen-Stühlen oder in anderen Aggregaten hoher Scherkraft wird eine längere Behandlungszeit, z.B. von mindestens 30 Minuten benötigt. Die gleichzeitige Anwendung eines elektrischen Feldes, insbesondere eines gleichgerichteten elektrischen Feldes, kann von Vorteil sein; in diesem Fall werden meist mehr als 24 Stunden benötigt .
Der polare, nicht-leitfähige und gegenüber dem intrinsisch leitfähigen Polymer inerte Stoff wird in einer solchen Menge zugesetzt, daß sich zwischen dem leitfähigen Polymerpulver und dem polaren Stoff ein Gewichts-Verhältnis von 2:1 bis 1:10 ergibt .
Vorzugsweise ist bei der Durchführung von Stufe (b) ferner mindestens ein nicht-leitfähiges Polymer, insbesondere ein thermoplastisches Polymer vorhanden. Zum Beispiel kann PoIy- ethylenterephthalat-Copolymer, kommerziell erhältlich von der Firma Eastman Kodak oder von der Degussa, oder ein Polyme- thylmethacrylat (PMMA) der Fa. Degussa verwendet werden. Die Anwesenheit des thermoplastischen Polymers erfordert die Durchführung der Dispergierung unter hoher Scherung und bei Temperaturen von unter 250 0C, vorzugsweise unterhalb von 180 0C und besonders bevorzugt bei Temperaturen unterhalb von 100 0C, zugleich 5 bis maximal 8O0C über der Glastemperatur des nicht leitenden Polymeren.
Nach dem Abkühlen erhält man dann eine feste Mischung, ein Polymerblend, das zwischen 20 und 60 Gew.-%, vorzugsweise etwa 35 Gew.-% leitfähiges Polymer enthält, bezogen auf die bei Raumtemperatur festen Bestandteile der Produktzusammensetzung aus Stufe (b) , die das leitfähige Polymer, den polaren Stoff sowie gegebenenfalls weiteres nicht-leitfähiges Polymer um- fasst. Das leitfähige Polymer weist nach Durchführung von Stufe (b) im Allgemeinen Leitfähigkeiten um etwa 60 S/cm auf. Nach Stufe (b) kann der zugesetzte polare, inerte und nicht- leitfähige Stoff bzw. das ebenfalls vorhandene nicht-leitfähige Polymer durch Waschen oder Extrahieren teilweise oder nahezu vollständig entfernt werden. Vorzugsweise wird dieser Nachbehandlungsschritt nach dem Abschluss von Stufe (b) wie im vorstehenden Absatz beschrieben durchgeführt. Alternativ kann die Nachbehandlung aber auch schon während Stufe (b) einsetzen.
Die Nachbehandlung, die man auch als Konditionierung des Produkts aus Stufe (b) für die gegebenenfalls weitere nachfolgende Dispergierstufe bezeichnen könnte, hat den Zweck, das Produkt aus Stufe (b) für die gegebenenfalls nachfolgende Dispergierstufe vorzubereiten (zu konditionieren) . Zum Waschen bzw. Extrahieren können die unterschiedlichsten Stoffe verwendet werden, z.B. Aromaten, Alkohole, Ester, Ether, Ketone, z.B. Xylol, Toluol, Ethanol, Isopropanol, Chlorbenzol, Diiso- propylether und dergleichen. Es können auch Lösemittel und Hilfsstoffe zugesetzt werden, die die nachfolgende Dispergierstufe unterstützen. Dies können z.B. Xylol oder Chlorbenzol sowie Dodecylbenzolsulfonsäure (DBSH) sein.
Vorzugsweise wird während der Nachbehandlung des Produkts aus Stufe (b) der Anteil des leitfähigen Polymers in dem Produkt, bezogen auf die bei Raumtemperatur festen Bestandteile desselben, um mindestens 5 Gew.-%, vorzugsweise 10 Gew.-%, insbesondere 20 Gew.-% erhöht.
Alternativ kann ohne Reduzierung oder Entfernung des polaren Stoffes bzw. des thermoplastischen Polymers weitergearbeitet werden, z.B. wenn die weitere Verarbeitung und die Anwendung des leitfähigen Polymeren nicht durch die Anwesenheit des zugesetzten Stoffes gestört wird. Die Leitfähigkeit des Polymerpulvers wird durch die Anwesenheit des polaren Stoffes bzw. des thermoplastischen Polymers nicht beeinträchtigt.
Bevorzugte Konzentrationen an leitfähigem Polymer, die nach Stufe (b) und Nachbehandlung erreicht werden, liegen zwischen 45 und 99 Gew.-%, vorzugsweise 55 bis 70 Gew.-%, bezogen auf die gesamte Zusammensetzung. Zum Beispiel kann das Produkt aus Stufe (b) eine feuchte Paste mit einem relativ hohen Anteil an Lösemittel bzw. Hilfsstoff sein, der in der Nachbehandlung verwendet wurde. Es ist also nicht erfindungswesentlich, während der Nachbehandlung verwendete Stoffe vor der Durchführung von der weiteren Dispergierstufe des erfindungsgemäßen Verfahrens weitestgehend zu entfernen, jedoch kann dies in der industriellen Praxis von Vorteil sein.
Die weitere Dispergierstufe des erfindungsgemäßen Verfahrens ist eine Dispergierung, die in einem organischen oder wässrigen Medium (Dispersionsmittel) stattfindet und im Allgemeinen bei Raumtemperatur oder davon nur unwesentlich verschiedener Temperatur durchgeführt wird. Als Dispersionsaggregate kommen insbesondere solche Maschinen in Frage, die in der Lage sind, hohe Dispersionsenergie in das System einzubringen. Dies können z. B. Anlagen wie Ultraturrax, Disolver, Perlmühlen, Kugelmühlen, Hochdruckdispersionsapparate wie solche vom Typ Micro- fluidics, oder Ultraschallanlagen sein. Die Dispergierdauer kann mehrere Minuten, z.B. 20 Minuten, bis zu mehreren Stunden, z.B. 1 bis 3 h, z.B. 2,5 h betragen.
Als Dispersionsmittel sind insbesondere solche Lösemittel geeignet, die eine Oberflächenspannung von mindestens 25 mN/m aufweisen. Die erfindungsgemäßen Dispersionsmittel sind bei Raumtemperatur flüssig und weisen insbesondere relative Viskositäten von < 10.000, z.B. < 5.000, und insbesondere < 1.000 auf.
Beispiele für erfindungsgemäße Dispersionsmittel sind Xylol, Chlorphenol, Dichloressigsäure, N-Methylpyrrolidon, Dirnethyl- sulfoxid, Octanol, oder Benzylalkohol oder höhere Alkohole, z. B. C9 - C2o-Alkohole paraffinischer oder aromatischer Natur, bzw. Mischungen derselben.
Das bzw. die Dispersionsmittel werden dem Produkt aus Stufe (b) des erfindungsgemäßen Verfahrens in einer solche Menge zugesetzt, das, bezogen auf das intrinsisch leitfähige Polymer, ein Überschuss (Gewichtsverhältnis) von Dispergiermittel vorliegt. Insbesondere ist das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem Dispergiermittel kleiner als 1 : 10, vorzugsweise kleiner als 1 : 15, z.B. 1 : 18.
Als Produkt dieser Dispergierstufe wird im Allgemeinen eine hochviskose Paste oder eine flüssige, niederviskose Dispersion mit einer Konzentration des leitfähigen Polymeren von im Allgemeinen nicht mehr als etwa 10 Gew.-%, bezogen auf die gesamte Dispersion, erhalten. Vorzugsweise enthält die nach dieser Disergierstufe erhaltene Dispersion geringe Anteile der in Stufe (b) verwendeten polaren Stoffe und nicht-leitfähigen Polymere, je nach dem Umfang der Konditionierung.
Zur Vorbereitung der Verwendung der erfindungsgemäßen Dispersion bei der Herstellung von Formteilen, selbsttragenden Folien oder BeSchichtungen mit elektrischer Leitfähigkeit können nach der zuletzt beschriebenen Dispergierstufe oder alternativ während dieser Dispergierstufe Hilfs- und Zusatzstoffe zugesetzt werden. Dies können z.B. Viskositätsregler, Benetzungshilfen, Matrixpolymere wie Lackbindemittel, filmbildende Stoffe, Stabilisatoren, Vernetzungshilfsmittel, Verdunstungsregler wie Verdunstungsbeschleuniger oder Verdunstungs- hemmer oder weitere Hilfs- und Zusatzstoffe sein. Man erhält dann eine stabile Dispersion, die alle Komponenten enthält, die für die weitere Formgebung und die Eigenschaften des Produktes hilfreich oder entscheidend sind.
Die nach der Dispergierung einschließlich Nachbehandlung und Formulierung erhaltene Dispersion kann dann, gegebenenfalls nach Durchführung weiterer weiterer Dispersions- und Nachbehandlungsschritte, zur Herstellung von Formteilen, selbsttragenden Folien oder BeSchichtungen unterschiedlichster Schichtdicke mit elektrischer Leitfähigkeit verwendet werden (Formgebung) .
Die Formgebung kann durch eine Reihe von Verfahren, wie Tauchen, Benetzung durch Tropfen, Sprühen, Spincoaten, Drucken (z.B. Siebdruck, Offsetdruck, Ink-Jet u. a.), Extrudieren, Gießen, Rakeln, Elektrospinnen, und andere erfolgen. Besonders bevorzugt ist die Formgebung durch Tauchen, Gießen, Tropfbenetzung, Spincoaten oder Drucken.
Die so erhaltenen Schichten, Beschichtungen, Folien, Platten oder anderen Form- oder Bauteile weisen nach Entfernen des Dispersionsmittels eine Leitfähigkeit von > 100 S/cm auf, vorzugsweise mindestens 200 S/cm oder größer, z. B. größer als 250 S/cm, insbesondere mindestens 500 S/cm, z. B. 200 bis 200.000 S/cm, 200 bis 20.000 S/cm oder 500 bis 10.000 S/cm, z.B. 300 bis 3.000 oder 500 bis 1000 S/cm.
Daneben sind die Teilchen der erfindungsgemäßen Dispersion dadurch gekennzeichnet, dass das Röntgendiffraktogramm z.B. für Polyanilin ("dotiert" mit p-Toluolsulfonsäure) keine scharfen Reflexe aufweist und daß bei 2θ = ca 3° ein Reflex sichtbar ist, die bei Polyanilin aus erfindungsgemäßen Dispersionen eine verglichen mit der breiten Reflektion bei 2Θ = ca 19° mindestens ebenso hohe Intensität aufweist. Im Vergleich dazu zeigt das "rohe" Pulver aus Stufe (a) normalerweise dort keinen Peak bzw. nur sehr schwache Intensität, das Polyanilin nach dem ersten Reib-/Dispergiervorgang gemäß Stufe (b) zeigt immerhin eine deutliche Reflektion, diese ist aber im Vergleich zum Peak bei ca 19° schwächer.
Nach der zweiten Dispergierung und nur für solche Dispersionen, die erfindungsgemäß ausgeführt werden und dementsprechend eine Leitfähigkeit von > 100 S/cm erlauben, wird dieser Reflex der eindeutig stärkste, und die anderen Reflexe werden mit steigender Leitfähigkeit zunehmend schwächer.
Zudem findet man in rasterkraftmikroskopischen Untersuchungen, dass die Primärteilchen eindeutig nicht mehr kugelförmig sind, sondern ein L/D-Verhältnis von etwa 2 aufweisen mit einer Länge von ca 8 - 11 nm und einer Breite von etwa 4 ran (vgl. Figur 6) . Im Unterschied zu leitfähigen Polymeren / Organischen Metallen mit isotroper Partikelmorphologie ist nun die Formgebung aus anisotropen Medien wie z.B. flüssigkristallinen (nieder- oder hochmolekularen) Stoffen oder unter dem Einfluß von anisotropen elektrischen und / oder magnetischen Feldern bzw. auf orientierten bzw. orientiert vorstrukturierten Substraten (wie HOPG, orientiert verstreckte Polypropylen- oder andere Kunststofffolien, vorzugsweise uniaxial verstreckte Folien) sinnvoll möglich und erlaubt die Erzeugung von Formteilen und Oberflächenbeschichtungen mit anisotropen Eigenschaften. So wurden durch Abscheidung erfindungsgemäßer Polymerteilchen auf ein orientiertes Substrat (z.B. orientiertes Polypropylen) Leitfähigkeiten von etwa 1000 S/cm und darüber erzielt. Im Vergleich dazu wurde bei Abscheidung aus der gleichen Dispersion auf einem isotropen Substrat (z.B. Glas) eine Leitfähigkeit von etwa 300 S/cm erzielt.
Durch die Formgebung bzw. Weiterverarbeitung können antistatische oder leitfähige Beschichtungen, transparente und nicht transparente Elektroden, Lacke, die für die EMI- Abschirmung geeignet sind, Kontakte in der Elektronik oder "Source", "Drain" oder "Gate" in Feldeffekttransistoren hergestellt werden, ebenso Antennen, Schwingkreise, logische Schaltungen, Leiter bzw. Gegenpole in Kondensatoren, Elektrolytkondensatoren oder sogenannte "Supercapacitors" und viele Funktionen wie die, die in der konventionellen Elektrotechnik und Elektronik von konventionellen Metallen, hoch dotierten Halbleitern der Elektroden bzw. redox-aktiven Schichten erfüllt werden, erfüllen.
Die Gegenstände, die das durch Trocknung oder durch Durchführung eines der oben beschriebenen Formgebungsverfahren zugänglich sind und das aus der erfindungsgemäßen Dispersion erhältliche leitfähige Polymer enthalten, sind eine Ausführungsform der Erfindung. Vorzugsweise bestehen die oben genannten Gegenstände im wesentlichen aus dem leitfähigen Polymer. Für zahlreiche Anwendungen ergeben sich aus der neuen Primärpartikelmorphologie interessante Vorteile, im allgemeinen aufgrund der höheren Leitfähigkeit, wobei es kein Nachteil ist, daß diese gegebenenfalls nur in einer Vorzugsrichtung höher als üblich ist (z.B. in der EMI-Abschirmung ist es unerheblich, ob die Leitfähigkeit isotrop oder anisotrop hoch ist entscheidend ist die Leitfähigkeit als solche für die Effizienz der Abschirmung) .
Für manche Anwendungen ermöglicht die neue Morphologie erst den Einsatz der leitfähigen Polymere, so in der Polymerelektronik, in der auch mit bisher üblichen Leitfähigkeiten „source", „drain" und „gate" möglich sind, die Zuleitungen („interconnects") zu den organischen Feldeffekttransistoren und ihre Verdrahtung aber mit aufgedampften Metallen durchgeführt wird. Hier ergibt sich durch erhöhte Leitfähigkeit in Richtung der „interconnects" erstmalig auch der Einsatz der leitfähigen Polymere / organischen Metalle .
Beispielhaft seien folgende Anwendungen genannt:
als elektrische Leiter (z.B. elektrischer Kontakt, elektrische Zuleitung, als Druckschalter, Elektroden etc.) oder Halbleiter, als Schutz vor statischen Aufladungen, zur Abschirmung von elektromagnetischen Wellen (EMI-Abschirmung) , zur Absorption von Mikrowellen (für Abschirmungs- oder Erwärmungszwecke) , zur Herstellung von Kondensatoren oder als Ersatz der Elektrolyte in Elektrolytkondensatoren, als Elektrode oder Elektrodenbestandteil in sogenannten "Supercapacitors" (dieser Typ Kondensator wird auch als Doppelschichtkondensator (DLK) bezeichnet und ist durch die Ausbildung einer elektrischen Doppelschicht, oft auf Basis von Ruß und/oder Graphit gekennzeichnet. Im Englischen wird häufig auch von "electrochemical double layer capacitors" gesprochen. ) , zur Herstellung von Halbleiterbauelementen wie Dioden, Transistoren u.a., als Photoleiter oder in der photovoltaischen Energieumwandlung, in Zusammensetzungen mit Metallen oder Halbmetallen oder in Zusammensetzungen mit verschiedenen leitfähigen Polymeren unter Ausnutzung des thermoelektrischen Effektes als Temperaturfühler (IR-Absorption) oder in der thermovoltaischen Energieumwandlung, als Sensoren, als Indikatoren, z.B. durch Elektrochromismus, Mikrowellenabsorption, thermoelektrische Kraft etc., in Elektrolyse- oder Elektrosyntheseprozessen als elektro- katalytische Elektroden (z.B. in Brennstoffzellen), in der Photoelektrokatalyse oder -synthese und bei photovoltaischen Effekten, im Korrosionsschutz, z.B. beim anodischen Korrosionsschutz, als Elektroden in Akkumulatoren, als UV- und lichtstabile Pigmente. als Elektrode oder Zuleitung in Elektrolumiszenz- Anordnungen
(z. B. als nicht-transparente sog. "Back-" oder als transparente sog. "Front-Elektrode") als Lochinjektionsschicht bzw. anodische Pufferschicht oder als transparente Anoden in organischen/polymeren Leuchtdioden oder Solarzellen

Claims

Patentansprüche
1. Leitfähiges Polymer, dadurch gekennzeichnet, dass aus dem Polymer gebildete nanoskopische Teilchen mit einer Teilchengröße von weniger als 100 nm eine anisotrope Morphologie aufweisen, die nicht kugelförmig ist und ein Länge-zu-Durchmesser-Verhältnis („L/D") von größer als 1,2 aufweist.
2. Polymer nach Anspruch 1, dadurch gekennzeichnet, dass eine aus einer Dispersion des Polymers gebildete Schicht, Folie oder Platte nach Entfernen des Dispersionsmittels eine Leitfähigkeit von > 100 S/cm aufweist.
3. Polymer nach Anspruch 2, dadurch gekennzeichnet, dass die Leitfähigkeit größer oder gleich 200 S/cm beträgt.
4. Polymer nach Anspruch 3, dadurch gekennzeichnet, dass die Leitfähigkeit 300 S/cm bis 3000 S/cm beträgt.
5. Polymer nach einem der vorhergehenden Ansprüche 1 bis 4 , dadurch gekennzeichnet, dass das Polymer ausgewählt ist aus der Gruppe bestehend aus Polyanilin, Polythiophen, Polythieno-thiophen, Polypyrrol, Copolymeren aus den Monomeren dieser Polymere und Polymeren oder Copolymeren aus den Derivaten dieser Monomeren.
6. Polymer nach einem der vorhergehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es in einer Dispersion vorliegt und das Dispersionsmittel eine relative Viskosität von < 10.000 aufweist.
7. Verfahren zur Herstellung eines Polymers gemäß einem der Ansprüche 1 bis 6, bei dem in dieser Reihenfolge
(a) aus Monomeren ein intrinsisch leitfähiges Polymer hergestellt wird, wobei die Temperatur während der Polymerisation so geregelt wird, dass sie nicht über einen Wert von mehr als 5 0C oberhalb der Starttemperatur ansteigt,
(b) das Produkt aus Stufe (a) in Gegenwart eines gegenüber dem leitfähigen Polymer inerten, nicht elektrisch leitfähigen, nicht-polymeren polaren Stoffes, gegebenenfalls zusätzlich in Gegenwart eines nicht-leitfähigen Polymers, unter Anwendung ausreichender Scherkräfte aufgerieben und/oder disper- giert wird, wobei das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem polaren Stoff 2:1 bis 1:10 beträgt, das Produkt aus Stufe (b) gegebenenfalls in einem weiteren Dispersionsmittel bei einer Temperatur von unter 250 0C dispergiert wird, wobei das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem Dispersionsmittel kleiner als 1 : 10 ist.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass in Stufe (a) bei der Polymerisation ein optisch aktives Gegenion verwendet wird.
9. Verfahren nach Anspruch 7 oder Anspruch 8 , dadurch gekennzeichnet, dass das Produkt aus Stufe (b) bei einer Temperatur unterhalb von 180 0C, inbesondere unterhalb von 100 0C weiter dispergiert wird.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Dispergierung in Gegenwart eines nicht-leitfähigen Polymeren ausgeführt wird und die Temperatur 5 bis maximal 800C über der Glastemperatur des nicht-leitfähigen Polymeren liegt.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Geschwindigkeit des Temperaturanstiegs während Stufe (a) zu keiner Zeit während der Polymerisation mehr als 1 K/Minute beträgt.
12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass das nicht-leitfähige Polymer ein thermoplastisches Polymer ist.
13. Verfahren nach einem der Ansprüche 7 bis 12 , dadurch gekennzeichnet, dass das Produkt aus Stufe (b) einer Nachbehandlung unterworfen wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Anteil des polaren Stoffes oder des nicht-leitfähigen Polymers im Produkt aus Stufe (b) während der Nachbehandlung durch Waschen oder Extrahieren vermindert wird.
15. Verfahren nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass Lösemittel und/oder Hilfsstoffe zugesetzt werden, die die nachfolgende optionale Dispergierstufe unterstützen.
16. Verfahren nach einem der Ansprüche 7 bis 15, dadurch gekennzeichnet, dass das Produkt der zweiten Dispergierung einer Nachbehandlung unterworfen wird.
17. Verfahren nach einem der Ansprüche 7 bis 16, dadurch gekennzeichnet, dass Viskositätsregler, Benetzungshilfen, Matrixpolymere, Stabilisatoren, Vernetzungshilfsmittel, Verdunstungsregler und/oder andere Hilfs- und Zusatzstoffe, die ein sich gegebenenfalls anschließendes Formgebungsverfahren unterstützen, zugesetzt werden.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass der Zusatz vor oder während der zweiten Dispergierstufe erfolgt.
19. Verfahren nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass bei der Nachbehandlung des Produkts aus Stufe (b) und/oder während der zweiten Dispergier- stufe ein organisches Lösemittel verwendet wird, das eine Oberflächenspannung von mehr als 25 mN/m aufweist.
20. Verwendung einer Dispersion gemäß einem der Ansprüche 1 bis 6 oder hergestellt gemäß dem Verfahren gemäß einem der Ansprüche 7 bis 19 zur Herstellung von Formteilen, selbsttragenden Folien oder Beschichtungen mit elektrischer Leitfähigkeit .
21. Verwendung nach Anspruch 20, dadurch gekennzeichnet, dass die Formteile, selbsttragenden Folien oder Beschichtungen Elektroden, Antennen, polymere Elektronikbauteile, Kondensatoren und DoppelSchichtkondensatoren (DLK) sind.
22. Verwendung nach Anspruch 20 oder Anspruch 21, dadurch gekennzeichnet, dass die Formgebung in anisotropen Materialien und/oder anisotropen Feldern oder die Abscheidung auf anisotrope Substrate erfolgt .
EP06723164A 2005-03-02 2006-03-01 Leitfähige polymere aus teilchen mit anisotroper morphologie Ceased EP1853647A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005010162A DE102005010162B4 (de) 2005-03-02 2005-03-02 Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
PCT/EP2006/001872 WO2006092292A1 (de) 2005-03-02 2006-03-01 Leitfähige polymere aus teilchen mit anisotroper morphologie

Publications (1)

Publication Number Publication Date
EP1853647A1 true EP1853647A1 (de) 2007-11-14

Family

ID=36649663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06723164A Ceased EP1853647A1 (de) 2005-03-02 2006-03-01 Leitfähige polymere aus teilchen mit anisotroper morphologie

Country Status (8)

Country Link
US (1) US7947199B2 (de)
EP (1) EP1853647A1 (de)
JP (1) JP5139088B2 (de)
KR (1) KR101135934B1 (de)
CN (1) CN101133104B (de)
CA (1) CA2599655A1 (de)
DE (1) DE102005010162B4 (de)
WO (1) WO2006092292A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518304B1 (en) 2003-03-31 2013-08-27 The Research Foundation Of State University Of New York Nano-structure enhancements for anisotropic conductive material and thermal interposers
DE102004003784B4 (de) 2004-01-23 2011-01-13 Ormecon Gmbh Dispersion intrinsisch leitfähigen Polyanilins und deren Verwendung
KR20070004736A (ko) * 2004-03-18 2007-01-09 오르메콘 게엠베하. 콜로이드 형태의 전도성 중합체와 탄소를 포함하는 조성물
DE102004030388A1 (de) * 2004-06-23 2006-01-26 Ormecon Gmbh Artikel mit einer Beschichtung von elektrisch leitfähigem Polymer und Verfahren zu deren Herstellung
DE102005010162B4 (de) 2005-03-02 2007-06-14 Ormecon Gmbh Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
DE102005039608A1 (de) * 2005-08-19 2007-03-01 Ormecon Gmbh Zusammensetzung mit intrinsisch leitfähigem Polymer
KR20090024695A (ko) * 2006-06-12 2009-03-09 요코하마 고무 가부시키가이샤 도전성 폴리머 분산액의 제조 방법 및 도전성 폴리머 분산액
CA2662851A1 (en) * 2006-09-13 2008-03-20 Ormecon Gmbh Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof
WO2009084418A1 (ja) * 2007-12-27 2009-07-09 Idemitsu Kosan Co., Ltd. ポリアニリン複合体、その組成物及び成形体
CN101983257B (zh) * 2008-04-30 2013-05-15 阿基里斯株式会社 成型品的镀敷物和其制造方法
DE102008024805A1 (de) * 2008-05-23 2009-12-03 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
US20100208413A1 (en) * 2008-12-04 2010-08-19 Lumimove, Inc., D/B/A Crosslink Intrinsically conductive polymers
EP2371909A1 (de) 2010-03-31 2011-10-05 Nissan Motor Co., Ltd. Korrosionsschutz-Wachszusammensetzung mit Polyanilin in dotierter Form und Flüssigparaffin
DE102010025938A1 (de) 2010-07-02 2012-01-05 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Trennfolie mit dauerhaft antistatischer Wirkung
US9169601B2 (en) * 2010-12-15 2015-10-27 Condalign As Method for forming an anisotropic conductive paper and a paper thus formed
US8692722B2 (en) 2011-02-01 2014-04-08 Phoenix Contact Development and Manufacturing, Inc. Wireless field device or wireless field device adapter with removable antenna module
CN104364292B (zh) * 2012-04-13 2018-02-02 韦克森林大学 低带隙结合聚合组合物及其应用
TW201426777A (zh) * 2012-12-22 2014-07-01 Univ Nat Pingtung Sci & Tech 以磁力控制大型超級電容池充放電之方法及該超級電容池
US10850016B2 (en) 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
US9570751B2 (en) * 2013-02-26 2017-02-14 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
US20150274924A1 (en) * 2014-04-01 2015-10-01 Council Of Scientific & Industrial Research Electrostatic dissipative foams and process for the preparation thereof
US10347423B2 (en) 2014-05-12 2019-07-09 Capacitor Sciences Incorporated Solid multilayer structure as semiproduct for meta-capacitor
US10340082B2 (en) 2015-05-12 2019-07-02 Capacitor Sciences Incorporated Capacitor and method of production thereof
TW201618140A (zh) 2014-05-12 2016-05-16 柯帕瑟特科學有限責任公司 能量儲存裝置及其製造方法
DE102014210175A1 (de) * 2014-05-28 2015-12-17 Bayerische Motoren Werke Aktiengesellschaft Fügeelement, korrosionsresistente, elektrisch leitfähige Anordnung von metallischen Werkstücken und Verfahren zum Herstellen einer korrosionsresistenten elektrisch leitfähigen Verbindung
KR102461254B1 (ko) 2014-11-04 2022-10-31 캐패시터 사이언시스 인코포레이티드 에너지 저장 디바이스들 및 이의 생산 방법들
SG11201706689QA (en) 2015-02-26 2017-09-28 Capacitor Sciences Inc Self-healing capacitor and methods of production thereof
US10056167B2 (en) * 2015-04-16 2018-08-21 Postech Academy-Industry Foundation High-conductivity two-dimensional polyaniline nanosheets and method for fabricating the same
US9932358B2 (en) 2015-05-21 2018-04-03 Capacitor Science Incorporated Energy storage molecular material, crystal dielectric layer and capacitor
US9941051B2 (en) * 2015-06-26 2018-04-10 Capactor Sciences Incorporated Coiled capacitor
US10026553B2 (en) 2015-10-21 2018-07-17 Capacitor Sciences Incorporated Organic compound, crystal dielectric layer and capacitor
US10305295B2 (en) 2016-02-12 2019-05-28 Capacitor Sciences Incorporated Energy storage cell, capacitive energy storage module, and capacitive energy storage system
US10153087B2 (en) 2016-04-04 2018-12-11 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US9978517B2 (en) 2016-04-04 2018-05-22 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10395841B2 (en) 2016-12-02 2019-08-27 Capacitor Sciences Incorporated Multilayered electrode and film energy storage device

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977756A (en) * 1975-09-22 1976-08-31 General Motors Corporation Transitional connector for printed circuits
US4394498A (en) * 1981-08-24 1983-07-19 Celanese Corporation Method for providing particulates of liquid crystal polymers and particulates produced therefrom
AT378008B (de) 1982-09-07 1985-06-10 Neumayer Karl Gmbh Verfahren zur herstellung von mit einer zinnlegierung ueberzogenen draehten
US4585695A (en) * 1983-10-11 1986-04-29 Agency Of Industrial Science And Technology Electrically conductive polypyrrole article
DE3440617C1 (de) * 1984-11-07 1986-06-26 Zipperling Kessler & Co (Gmbh & Co), 2070 Ahrensburg Antistatische bzw. elektrisch halbleitende thermoplastische Polymerblends,Verfahren zu deren Herstellung und deren Verwendung
US4657632A (en) * 1985-08-29 1987-04-14 Techno Instruments Investments 1983 Ltd. Use of immersion tin coating as etch resist
US5104599A (en) * 1987-03-05 1992-04-14 Allied-Signal Inc. Method of forming short fibers composed of anisotropic polymers
DE3729566A1 (de) * 1987-09-04 1989-03-16 Zipperling Kessler & Co Intrinsisch leitfaehiges polymer in form eines dispergierbaren feststoffes, dessen herstellung und dessen verwendung
KR960001314B1 (ko) 1988-10-11 1996-01-25 지페르링 케슬러 게엠베하 운트 코 전도성 중합체의 박층형성방법
US5498761A (en) * 1988-10-11 1996-03-12 Wessling; Bernhard Process for producing thin layers of conductive polymers
US4959180A (en) * 1989-02-03 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Colloidal polyaniline
EP0466943A4 (en) 1990-02-05 1992-07-01 Vsesojuzny Nauchno-Issledovatelsky Instrumentalny Institut Liquid pulverizer
US5135682A (en) * 1990-03-15 1992-08-04 E. I. Du Pont De Nemours And Company Stable solutions of polyaniline and shaped articles therefrom
US5192835A (en) * 1990-10-09 1993-03-09 Eastman Kodak Company Bonding of solid state device to terminal board
US5281363A (en) * 1991-04-22 1994-01-25 Allied-Signal Inc. Polyaniline compositions having a surface/core dopant arrangement
US5278213A (en) * 1991-04-22 1994-01-11 Allied Signal Inc. Method of processing neutral polyanilines in solvent and solvent mixtures
DE4238765A1 (de) 1992-11-10 1994-05-11 Stuebing Gmbh Verfahren zur stromlosen Verzinnung von Leiterplatten und deren Verwendung
DE4317010A1 (de) * 1993-05-17 1994-11-24 Zipperling Kessler & Co Dispergierbares intrinsisch leitfähiges Polymer und Verfahren zu dessen Herstellung
EP0656958B1 (de) 1993-06-25 1999-04-07 Zipperling Kessler &amp; Co (GmbH &amp; Co) Verfahren zur herstellung korrosionsgeschützter metallischer werkstoffe
US5532025A (en) * 1993-07-23 1996-07-02 Kinlen; Patrick J. Corrosion inhibiting compositions
US5403913A (en) * 1993-08-12 1995-04-04 The Trustees Of The University Of Pennsylvania Methods for preparing conductive polyanilines
DE4333127A1 (de) 1993-09-29 1995-03-30 Basf Ag Verfahren zum Schutz von lötfähigen Kupfer- und Kupferlegierungsoberflächen vor Korrosion
US5682043A (en) 1994-06-28 1997-10-28 Uniax Corporation Electrochemical light-emitting devices
US5595689A (en) * 1994-07-21 1997-01-21 Americhem, Inc. Highly conductive polymer blends with intrinsically conductive polymers
US5700398A (en) * 1994-12-14 1997-12-23 International Business Machines Corporation Composition containing a polymer and conductive filler and use thereof
US5645890A (en) * 1995-02-14 1997-07-08 The Trustess Of The University Of Pennsylvania Prevention of corrosion with polyaniline
US5846606A (en) * 1995-11-29 1998-12-08 Zipperling Kessler & Co. (Gmbh&Co.) Process for the production of metallized materials
US5733599A (en) 1996-03-22 1998-03-31 Macdermid, Incorporated Method for enhancing the solderability of a surface
CA2295223C (en) 1997-06-27 2009-09-22 University Of Southampton Porous film and method of preparation thereof
WO1999005687A1 (de) 1997-07-25 1999-02-04 Zipperling Kessler & Co. (Gmbh & Co.) Chemische verbindungen von intrinsisch leitfähigen polymeren mit metallen
KR20010031137A (ko) * 1997-10-15 2001-04-16 그래햄 이. 테일러 전자 전도성 중합체
DE19754221A1 (de) * 1997-12-06 1999-06-17 Federal Mogul Wiesbaden Gmbh Schichtverbundwerkstoff für Gleitlager mit bleifreier Gleitschicht
US6015482A (en) * 1997-12-18 2000-01-18 Circuit Research Corp. Printed circuit manufacturing process using tin-nickel plating
US6123995A (en) * 1998-03-06 2000-09-26 Shipley Company, L.L.C. Method of manufacture of multilayer circuit boards
DE19812258A1 (de) * 1998-03-20 1999-09-23 Bayer Ag Elektrolumineszierende Anordnungen unter Verwendung von Blendsystemen
JP3937113B2 (ja) 1998-06-05 2007-06-27 日産化学工業株式会社 有機−無機複合導電性ゾル及びその製造法
DE69913605T2 (de) 1998-06-05 2004-09-23 Teijin Ltd. Antistatische Polyesterfolie und Verfahren zu ihrer Herstellung
JP2000191906A (ja) * 1998-12-25 2000-07-11 Hitachi Chem Co Ltd ポリアニリン系ペ―スト、これを用いた固体電解コンデンサの製造法及び固体電解コンデンサ
JP3796381B2 (ja) * 1999-01-26 2006-07-12 株式会社エスアイアイ・マイクロパーツ 電気二重層キャパシタ
US6593399B1 (en) 1999-06-04 2003-07-15 Rohm And Haas Company Preparing conductive polymers in the presence of emulsion latexes
US6821323B1 (en) * 1999-11-12 2004-11-23 Enthone Inc. Process for the non-galvanic tin plating of copper or copper alloys
US6361823B1 (en) * 1999-12-03 2002-03-26 Atotech Deutschland Gmbh Process for whisker-free aqueous electroless tin plating
DE60113333T2 (de) * 2000-07-01 2006-07-06 Shipley Co., L.L.C., Marlborough Metalllegierungszusammensetzungen und damit verbundene Plattierungsmethoden
US20020187364A1 (en) * 2001-03-16 2002-12-12 Shipley Company, L.L.C. Tin plating
US6730401B2 (en) 2001-03-16 2004-05-04 Eastman Chemical Company Multilayered packaging materials for electrostatic applications
JP2002289653A (ja) 2001-03-26 2002-10-04 Hitachi Cable Ltd 半導体装置用テープキャリアおよびその製造方法
CN100579332C (zh) * 2001-07-19 2010-01-06 东丽株式会社 电路基板、电路基板用构件及其制造方法和柔性薄膜的层压方法
WO2003020000A1 (en) * 2001-08-22 2003-03-06 World Properties Inc. Method for improving bonding of circuit substrates to metal and articles formed thereby
GB2380964B (en) * 2001-09-04 2005-01-12 Multicore Solders Ltd Lead-free solder paste
JP3513709B2 (ja) 2001-10-16 2004-03-31 石原薬品株式会社 前処理によるスズホイスカーの防止方法
TW200302685A (en) * 2002-01-23 2003-08-01 Matsushita Electric Ind Co Ltd Circuit component built-in module and method of manufacturing the same
CN1639246A (zh) * 2002-03-01 2005-07-13 纳幕尔杜邦公司 包含添加剂的有机导电聚合物的印刷
JP3940620B2 (ja) * 2002-03-22 2007-07-04 ガンツ化成株式会社 非球塊状ポリマー微粒子の製造法
JP3855161B2 (ja) 2002-05-10 2006-12-06 石原薬品株式会社 電子部品のスズホイスカーの防止方法
DE10234363A1 (de) 2002-07-27 2004-02-12 Robert Bosch Gmbh Korrosionsschutzlack für metallische Oberflächen
EP1549696A1 (de) 2002-09-24 2005-07-06 E.I. Du Pont De Nemours And Company Mit polymersüurekolloiden hergestellte wasserdispergierbare polyaniline für elektronikanwendungen
US7431866B2 (en) 2002-09-24 2008-10-07 E. I. Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
EP2341118A1 (de) 2002-09-24 2011-07-06 E. I. du Pont de Nemours and Company Elektrisch leitfähige Kompositwerkstoffe basierend auf organischen Polymeren und Nanoteilchen sowie deren Verwendung
US6962642B2 (en) * 2002-09-26 2005-11-08 International Business Machines Corporation Treating copper surfaces for electronic applications
AU2003297783A1 (en) * 2002-12-27 2004-07-29 Foamex L.P. Gas diffusion layer containing inherently conductive polymer for fuel cells
KR100858839B1 (ko) * 2003-03-20 2008-09-17 주식회사 동진쎄미켐 초저온 마이크로에멀젼 중합을 이용한 고전도성 막대형폴리아닐린 나노 입자의 제조 방법
JP4603812B2 (ja) 2003-05-12 2010-12-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 改良されたスズめっき方法
DE102004003784B4 (de) * 2004-01-23 2011-01-13 Ormecon Gmbh Dispersion intrinsisch leitfähigen Polyanilins und deren Verwendung
JP5245188B2 (ja) * 2004-03-03 2013-07-24 日清紡ホールディングス株式会社 楕円球状有機ポリマー粒子およびその製造方法
KR20070004736A (ko) * 2004-03-18 2007-01-09 오르메콘 게엠베하. 콜로이드 형태의 전도성 중합체와 탄소를 포함하는 조성물
US20050269555A1 (en) * 2004-05-11 2005-12-08 Suck-Hyun Lee Conductive polymers having highly enhanced solubility in organic solvent and electrical conductivity and synthesizing process thereof
DE102004030388A1 (de) * 2004-06-23 2006-01-26 Ormecon Gmbh Artikel mit einer Beschichtung von elektrisch leitfähigem Polymer und Verfahren zu deren Herstellung
DE102004030930A1 (de) 2004-06-25 2006-02-23 Ormecon Gmbh Zinnbeschichtete Leiterplatten mit geringer Neigung zur Whiskerbildung
US7087441B2 (en) * 2004-10-21 2006-08-08 Endicott Interconnect Technologies, Inc. Method of making a circuitized substrate having a plurality of solder connection sites thereon
DE102005010162B4 (de) 2005-03-02 2007-06-14 Ormecon Gmbh Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
DE202005010364U1 (de) 2005-07-01 2005-09-08 Ormecon Gmbh Zinnbeschichtete flexible Leiterplatten mit geringer Neigung zur Whiskerbildung
DE102005039608A1 (de) * 2005-08-19 2007-03-01 Ormecon Gmbh Zusammensetzung mit intrinsisch leitfähigem Polymer
CA2662851A1 (en) * 2006-09-13 2008-03-20 Ormecon Gmbh Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof
DE102007040065A1 (de) 2007-08-24 2009-02-26 Ormecon Gmbh Artikel mit einer nanoskopischen Beschichtung aus Edel-/Halbedelmetall sowie Verfahren zu deren Herstellung

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Surface tension values of some common test liquids for surface energy analysis", INTERNET CITATION, 16 September 2009 (2009-09-16), XP007909796, Retrieved from the Internet <URL:http://www.surface-tension.de/> [retrieved on 20090916] *
"Thermische Analyse UserCom 18", INTERNET CITATION, 1 February 2003 (2003-02-01), pages 1 - 20, XP007912927, Retrieved from the Internet <URL:http://de.mt.com/global/de/home/supportive_content/usercom/TA_UserCom 18.z2vUzxjPy0vKAxrVCMLHBfbHCI45nZa0nG--.TA_UserCom18.MediaFileCompone nt.html/tauserc18d.pdf> [retrieved on 20100504] *
BOWEN P: "Particle Size Distribution Measurement from Millimeters to Nanometers and from Rods to Platelets", JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, TAYLOR AND FRANCIS GROUP, NEW YORK, NY, US, vol. 23, no. 5, 1 January 2002 (2002-01-01), pages 631 - 662, XP009102859, ISSN: 0193-2691, DOI: 10.1081/DIS-120015368 *
See also references of WO2006092292A1 *
SHACKLETTE L W ET AL: "Polyaniline blends in thermoplastics", SYNTHETIC METALS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 57, no. 1, 12 April 1993 (1993-04-12), pages 3532 - 3537, XP024171093, ISSN: 0379-6779, [retrieved on 19930412], DOI: DOI:10.1016/0379-6779(93)90471-8 *

Also Published As

Publication number Publication date
CA2599655A1 (en) 2006-09-08
DE102005010162A1 (de) 2006-09-07
US7947199B2 (en) 2011-05-24
US20080265215A1 (en) 2008-10-30
CN101133104A (zh) 2008-02-27
WO2006092292A1 (de) 2006-09-08
KR20070117587A (ko) 2007-12-12
DE102005010162B4 (de) 2007-06-14
JP2008531797A (ja) 2008-08-14
CN101133104B (zh) 2011-06-29
JP5139088B2 (ja) 2013-02-06
KR101135934B1 (ko) 2012-04-18

Similar Documents

Publication Publication Date Title
DE102005010162B4 (de) Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
EP1706431B1 (de) Dispersionen intrinsisch leitfähiger polymere und verfahren zu deren herstellung
DE102009012660A1 (de) Polymerbeschichtungen mit verbesserter Temperaturstabilität
EP1779392A1 (de) Verfahren zum beschichten von feinen partikeln mit leitfähigen polymeren
DE102013002855A1 (de) Formulierungen aus gewaschenen Silberdrähten und PEDOT
DE102012111937A1 (de) Elektrisch leitende polymerzusammensetzung, elektrisch leitendes polymermaterial, elektrisch leitendes substrat, elektrode und festelektrolytkondensator
DE102009014856A1 (de) Polymerbeschichtungen mit verbesserter UV- und Temperaturstabilität
DE102010012180A1 (de) Sulfonierte Polyketone als Gegenion leitfähiger Polymere
DE112012001014T5 (de) Elektrisch leitende Polymerlösung und Verfahren zur Herstellung derselben, elektrisch leitendes Polymermaterial und dieses verwendender Festelektrolytkondensator und Verfahren zur Herstellung desselben
EP1516375A2 (de) Material für eine dünne und niedrig leitfähige funktionsschicht für eine oled und herstellungsverfahren dazu
WO2003107453A2 (de) Material für eine funktionsschicht eines organischen elektronikbauteils herstellungsverfahren und verwendung dazu
EP2206170A1 (de) Verfahren zur beschichtung von unpolaren polyaromaten enthaltenden schichten
DE102005030489B4 (de) Verfahren zum Beschichten von Partikeln mit leitfähigen Polymeren, Gemisch zum Beschichten, beschichtete Partikel, die Verwendung derart beschichteter Partikel und Zusammensetzung einer Beschichtung
DE102009031677A1 (de) Neue Polyelektrolyt-Komplexe und deren Verwendung
DE102008003251A1 (de) Verfahren zur Herstellung von erhöhte Leitfähigkeit aufweisenden Beschichtungen auf Basis von Polythiophen und dessen Derivaten
DE202018002723U1 (de) Zusammensetzungen beinhaltend PEDOT/PSS und Urethan-(Meth)Acrylate
DE102008059389A1 (de) Verfahren zur Herstellung von erhöhte Leitfähigkeit aufweisenden Beschichtungen auf Basis von Polythiophen und dessen Derivaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20120123