EP1843976A2 - Verfahren zur herstellung von trichlorsilan mittels thermischer hydrierung von siliciumtetrachlorid - Google Patents

Verfahren zur herstellung von trichlorsilan mittels thermischer hydrierung von siliciumtetrachlorid

Info

Publication number
EP1843976A2
EP1843976A2 EP06704560A EP06704560A EP1843976A2 EP 1843976 A2 EP1843976 A2 EP 1843976A2 EP 06704560 A EP06704560 A EP 06704560A EP 06704560 A EP06704560 A EP 06704560A EP 1843976 A2 EP1843976 A2 EP 1843976A2
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
gas
tetrachlorosilane
reaction
product mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06704560A
Other languages
English (en)
French (fr)
Inventor
Nuria Garcia-Alonso
Christoph RÜDINGER
Hans-Jürgen EBERLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP1843976A2 publication Critical patent/EP1843976A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/10Compounds containing silicon, fluorine, and other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to a process for the preparation of trichlorosilane by means of thermal hydrogenation of silicon tetrachloride.
  • tetrachlorosilane (Tetra) on.
  • the tetrachlorosilane can be converted by the silane conversion, a catalytic or thermal dehydrohalogenation of tetrachlorosilane with hydrogen, again to Sitri and hydrogen chloride.
  • Two variants of the process are known in the art for this purpose:
  • JP 60081010 (Denki Kagaku Kogyo KK / 1985) also describes a quenching process (at lower H2: tetra ratios) to increase the trichlorosilane content in the product gas.
  • the object of the present invention is to provide a process for the preparation of trichlorosilane by means of thermal hydrogenation of a reactant gas containing silicon tetrachloride which enables a high yield of trichlorosilane with an increased cost-effectiveness compared with the prior art.
  • the object is achieved by a method in which a silicon tetrachloride educt gas and a hydrogen-containing educt gas are reacted at a temperature of 700 0 C to 1500 0 C, wherein a trichlorosilane-containing product mixture is formed, characterized in that a cooling of the product mixture by means of a heat exchanger takes place, wherein the cooling of the product mixture to a temperature TAb kü hi u ng during a residence time of the reaction gases in the heat exchanger ⁇ [ms] is carried out, where applicable
  • the production costs for trichlorosilane are reduced by the better energy integration, the increase in the space-time yield and the improvement of the conversion rate of the tetrachlorosilane conversion.
  • a heat exchanger consisting of a material which is inert under the reaction conditions and whose construction allows a very short residence time of the product gas, a backreaction becomes extensive prevented and greatly improved by the heating of the educt gases, the energy balance.
  • silicon tetrachloride is reacted with hydrogen at egg ner temperature of 900 0 C to HOO 0 C to the reaction.
  • 7 ⁇ B ⁇ 30 applies for the temperature of the cooled product mixture preferably applies: 200 0 C ⁇ Abkühiung ⁇ 800 0 C. Particularly preferably 28O 0 C ⁇ T ⁇ ü ⁇ ung ⁇ 700 0 C applies.
  • Reactor less than 0.5 s.
  • a suitable for the process according to the invention heat exchanger for cooling the product gas or. for the simultaneous heating of the educt gases preferably consists of a material selected from the group consisting of silicon carbide, silicon nitride, quartz glass, graphite, SiC-coated graphite and a combination of these materials.
  • the heat exchanger consists of silicon carbide.
  • the heat exchanger is preferably a plate or shell and tube heat exchanger with the plates with channels or capillaries arranged in stacks (Fig. Ia-If).
  • the arrangement of the plates is preferably designed so that only product gas flows in one part of the capillaries or channels and only educt gas in the other part. Mixing of the gas streams must be avoided.
  • the various gas streams can be conducted in countercurrent or also in direct current.
  • the construction of the heat exchanger is chosen so that the released energy is used at the same time for heating the educt gas with the cooling of the product gas.
  • the capillaries can also be arranged in the form of a shell-and-tube heat exchanger. In this case, one gas flow flows through the tubes (capillaries) while the other gas flow flows around the tubes.
  • heat exchangers that satisfy at least one, preferably more, of the following design features are particularly preferred:
  • the hydraulic diameter (Dh) of the channels or capillaries defined as 4 ⁇ cross-sectional area / circumference, is less than 5 mm, preferably less than 3 mm.
  • the exchange surface to volume ratio is> 400 rrf 1 '
  • the heat transfer coefficient is greater than 300 watts / m 2 K.
  • the heat exchanger 3 can be arranged immediately after the reaction zone (FIG. 2), but it can also be connected to the reactor 2 via a heated line, which is preferably kept at the reaction temperature. After the reaction mixture (product gas) within 50 ms to below 700 0 C Stand- Is cooled, the reaction gas can be forwarded in a conventional cooler.
  • Fig. Ia-If show by way of example the design of two embodiments of heat exchanger internals suitable for the method according to the invention.
  • Fig. 2 schematically shows the structure of an apparatus for carrying out the process according to the invention (1 silane pump, 2 reactors, 3 heat exchangers).
  • Fig. 3 shows the temperature profile in the heat exchanger according to Example 5.
  • the experiments were carried out in a quartz glass reactor.
  • the reactor is designed to be divided into different zones, which zones can be heated to different temperatures.
  • a heat exchanger is connected in direct connection to the last heating zone.
  • the gas residence time in the individual zones can be varied within a wide range by the installation of corresponding displacers.
  • the gas mixture leaving the reactor as well as the heat exchanger can be analyzed for its composition via a sampling point both online and offline (gas chromatography).
  • Tetrachlorosilane 79 50% trichlorosilane 20, 05%
  • This example shows that the Sitri yield remains high when cooled to 700 ° C. within 25 ms.
  • the temperature in the reaction zone was 1100 0 C, the pressure was 28.5 kPa.
  • the residence time of the gas in the reaction zone was 0.30 s.
  • the product mixture showed the following composition after condensation [wt. %]: Tetrachlorosilane 81, 8% trichlorosilane 19, 1% dichlorosilane 0, 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren, bei dem ein silicium-tetrachloridhaltiges Eduktgas und ein wasserstoffhaltiges Eduktgas bei einer Temperatur von 700°C bis 1500°C zur Reaktion gebracht werden, wobei eine trichlorsilanhaltige Produktmischung entsteht, dadurch gekennzeichnet, dass eine Abkühlung der Produktmischung mittels eines Wärmeaustauschers erfolgt, wobei die Abkühlung der Produktmischung auf eine Temperatur TAbkühlung während einer Verweilzeit der Reaktionsgase im Wärmetauscher τ [ms] erfolgt, wobei gilt (Gleichung 1) mit A = 4000, 6 ≤ B ≤ 50, und 100°C ≤ TAbkühlung ≤ 900 °C und die über den Wärmeaustauscher abgeführte Energie des Produktgases zu einer Erwärmung der Eduktgase verwendet wird.

Description

Verfahren zur Herstellung von Trichlorsilan mittels thermischer Hydrierung von Siliciumtetrachlorid
Die Erfindung betrifft ein Verfahren zur Herstellung von Trichlorsilan mittels thermischer Hydrierung von Siliciumtetrachlorid.
Bei der Herstellung von polykristallinem Silicium durch Umset- zung von Trichlorsilan (Sitri) mit Wasserstoff fallen große
Mengen an Tetrachlorsilan (Tetra) an . Das Tetrachlorsilan kann durch die Silankonvertierung, eine katalytische bzw. thermische Dehydrohalogenierungsreaktion von Tetrachlorsilan mit Wasserstoff, wieder zu Sitri und Chlorwasserstoff umgesetzt werden. In der Technik sind hierzu zwei Verfahrensvarianten bekannt :
Im Niedertemperaturverfahren erfolgt eine partielle Hydrierung in Anwesenheit von Silicium und Katalysator ( z . B . metallische Chloride) bei Temperaturen im Bereich 4000C bis 700 °C . Siehe beispielsweise US 2595620 A, US 2657114 A (Union Carbide and Carbon Corporation / Wagner 1952 ) oder US 294398 (Compagnie de Produits Chimiques et electrometallurgiques / Pauls 1956) .
Da die Anwesenheit von Katalysatoren, z . B . Kupfer, die Rein- heit des Sitri und des daraus hergestellten Siliciums stören kann, wurde ein zweites Verfahren, das so genannte Hochtemperaturverfahren, entwickelt . Bei diesem Verfahren werden die Edukte Tetrachlorsilan und Wasserstoff bei höheren Temperaturen ohne Katalysator umgesetzt . Die Tetrachlorsilankonver- tierung ist ein endothermer Prozess, wobei die Bildung der Produkte gleichgewichtslimitiert ist . Um überhaupt zu einer signifikanten Sitri-Erzeugung zu gelangen, müssen im Reaktor sehr hohe Temperaturen angewendet werden (> 9000C) . So be- schreibt US-A 3933985 (Motorola INC / Rodgers 1976) die Umsetzung von Tetrachlorsilan mit Wasserstoff zu Trichlorsilan bei Temperaturen im Bereich von 9000C bis 12000C und mit einem Molverhältnis H2 : SiCl4 von 1 : 1 bis 3 : 1. Es werden Ausbeuten von 12 - 13 % beschrieben .
In dem Patent US-A 4217334 (Degussa / Weigert 1980) wird über ein optimiertes Verfahren zur Umwandlung von Tetrachlorsilan in Trichlorsilan mittels der Hydrierung von Tetrachlorsilan mit Wasserstoff in einem Temperaturbereich von 9000C bis
12000C berichtet . Durch ein hohes Molverhältnis H2 I SiCl4 (bis 50 : 1 ) und einer Flüssigkeitsquenche des heißen Produktgases unter 3000C werden deutlich höhere Trichlorsilanausbeuten erzielt (bis ca . 35 % bei H2 : Tetra 5 : 1) . Nachteil dieses Verfahrens ist der deutlich höhere Wasserstoffanteil im Reaktionsgas sowie die angewendete Quenche mittels einer Flüssigkeit, was beides den energetischen Aufwand des Verfahrens und damit die Kosten stark erhöht .
JP 60081010 (Denki Kagaku Kogyo K. K. / 1985 ) beschreibt ebenfalls ein Quench-Verfahren (bei niedrigeren H2 : Tetra- Verhältnissen) zur Erhöhung des Trichlorsilangehaltes im Produktgas . Die Temperaturen im Reaktor liegen bei 12000C bis 14000C und die Verweildauer im Reaktor beträgt 1 - 30 Sekun- den; das Reaktionsgemisch wird innerhalb einer Sekunde bis auf weniger als 6000C rasch abgekühlt . (SiCl4-Flüssigkeitsquenche, Molverhältnis H2 : Tetra = 2 , Sitri-Ausbeute bei 12500C : 27 % ) . Aber auch bei diesem Quench-Verfahren ist von Nachteil, dass die Energie des Reaktionsgases zum Großteil verloren geht, was sich stark negativ auf die Wirtschaftlichkeit der Verfahren auswirkt . Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von Trichlorsilan mittels thermischer Hydrierung eines Eduktgases enthaltend Siliciumtetrachlorid zur Verfügung zu stellen, welches eine hohe Trichlorsilan-Ausbeute mit einer im Vergleich zum Stand der Technik erhöhten Wirtschaftlichkeit ermöglicht .
Die Aufgabe wird gelöst durch ein Verfahren, bei dem ein sili- ciumtetrachloridhaltiges Eduktgas und ein wasserstoffhaltiges Eduktgas bei einer Temperatur von 7000C bis 15000C zur Reaktion gebracht werden, wobei eine trichlorsilanhaltige Produktmischung entsteht, dadurch gekennzeichnet, dass eine Abkühlung der Produktmischung mittels eines Wärmeaustauschers erfolgt, wobei die Abkühlung der Produktmischung auf eine Temperatur TAbhiung während einer Verweilzeit der Reaktionsgase im Wärmetauscher τ [ms] erfolgt, wobei gilt
Bχl Abkühlung
1Ooo (Gleichung 1 ) τ ≤ Axe
mit A = 4000 , 6 < B < 50 , und 1000C < Tabkuhiung < 900 °C und die über den Wärmeaustauscher abgeführte Energie des Produktgases zu einer Erwärmung der Eduktgase verwendet wird.
Mittels des erfindungsgemäßen Verfahrens werden die Produktionskosten für Trichlorsilan durch die bessere energetische Integration, die Erhöhung der Raumzeitausbeute und die Verbesserung des Konvertiergrades der Tetrachlorsilan-Konvertierung reduziert . Durch die Verwendung eines Wärmeaustauschers , der aus einem unter den Reaktionsbedingungen inertem Material besteht und dessen Konstruktion eine sehr kurze Verweilzeit des Produktgases ermöglicht, wird eine Rückreaktion weitgehend verhindert und durch die Erwärmung der Eduktgase die Energiebilanz stark verbessert .
Vorzugsweise wird Siliciumtetrachlorid mit Wasserstoff bei ei- ner Temperatur von 9000C bis HOO 0C zur Reaktion gebracht .
Vorzugsweise gilt 7 ≤ B ≤ 30. Für die Temperatur der abgekühlten Produktmischung gilt bevorzugt : 2000C < ΪAbkühiung ≤ 8000C . Besonders bevorzugt gilt 28O 0C < T^ü^ung < 7000C .
Besonders bevorzugt ist die Verweilzeit des Reaktionsgases im
Reaktor kleiner als 0, 5 s .
Überraschendweise wurde im Rahmen der vorliegenden Erfindung festgestellt, dass bei Temperaturen ≥ 10000C die Einstellung der entsprechenden gleichgewichtslimitierten Sitri- Konzentration bereits innerhalb von 0 , 5 Sekunden vollständig erfolgt ist . Überraschend wurde weiterhin gefunden, dass insbesondere bis 7000C eine deutlich schnellere Abkühlungsge- schwindigkeit als bisher angenommen, vorteilhaft ist, um das eingestellte Gleichgewicht ( z . B . HOO 0C : Sitrigehalt ca . 21 Gew. -%) zu erhalten . Der Abkühlungsvorgang auf 7000C sollte daher bevorzugt in weniger als 50 ms erfolgt sein .
Ein für das erfindungsgemäße Verfahren geeigneter Wärmeaustauscher zur Abkühlung des Produktgases bzw . zur gleichzeitigen Aufheizung der Eduktgase besteht vorzugsweise aus einem Material ausgewählt aus der Gruppe Siliciumcarbid, Siliciumnitrid, Quarzglas , Graphit, SiC-beschichteter Graphit und einer Kombi- nation dieser Materialien . Besonders bevorzugt besteht der Wärmeaustauscher aus Siliciumcarbid. Der Wärmeaustauscher ist vorzugsweise ein Platten- oder ein Rohrbündelwärmeaustauscher, wobei die Platten mit Kanälen oder Kapillaren in Stapeln angeordnet werden (Fig . Ia-If) . Die Anordnung der Platten ist dabei vorzugsweise so gestaltet, dass in einem Teil der Kapillaren oder Kanäle nur Produktgas und in dem anderen Teil nur Eduktgas fließt . Eine Vermischung der Gasströme muss vermieden werden. Die verschiedenen Gasströme können im Gegenstrom oder auch im Gleichstrom geführt werden . Die Konstruktion des Wärmeaustauschers wird dabei so gewählt, dass mit der Abkühlung des Produktgases die freiwerdende Energie gleichzeitig zur Aufheizung des Eduktgases dient . Die Kapillaren können auch in Form eines Rohrbündelwärmetauschers angeordnet werden. In diesem Fall fließt ein Gasstrom durch die Rohre (Kapillaren) , während der andere Gasstrom um die Rohre fließt .
Unabhängig davon, welche Art Wärmeaustauscher gewählt wird, sind Wärmeaustauscher, die zumindest eines , vorzugsweise mehrere, der folgenden Konstruktionsmerkmale erfüllen, besonders bevorzugt :
Der hydraulische Durchmesser (Dh) der Kanäle oder der Kapillaren, definiert als 4 x Querschnittfläche / Umfang, ist kleiner als 5 mm, bevorzugt kleiner als 3 mm. Das Verhältnis Aus- tauschfläche zu Volumen ist > 400 rrf1' Der Wärmeübergangskoeffizient ist größer als 300 Watt/m2K.
Der Wärmeaustauscher 3 kann unmittelbar nach der Reaktionszone angeordnet sein (Fig .2 ) , er kann aber auch über eine beheizte Leitung, die vorzugsweise auf Reaktionstemperatur gehalten wird, mit dem Reaktor 2 verbunden sein . Nachdem die Reaktionsmischung (Produktgas ) innerhalb 50 ms auf unter 7000C abge- kühlt ist, kann das Reaktionsgas in einen üblichen Kühler weitergeleitet werden.
Fig . Ia-If zeigen beispielhaft das Design von zweier Ausfüh- rungsformen von für das erfindungsgemäße Verfahren geeigneten Wärmetauscher-Einbauten.
Fig . 2 zeigt schematisch den Aufbau einer Apparatur zur Durchführung des erfindungsgemäßen Verfahrens ( 1 Silanpumpe, 2 Re- aktor, 3 Wärmetauscher) .
Fig . 3 zeigt das Temperaturprofil im Wärmetauscher gemäß Beispiel 5.
Im Folgenden wird die Erfindung anhand von Beispielen sowie Vergleichsbeispielen konkret erläutert .
Die Versuche wurden in einem Quarzglas-Reaktor durchgeführt . Der Reaktor ist so konstruiert, dass er in verschiedene Zonen aufgeteilt ist, wobei diese Zonen auf unterschiedliche Temperaturen geheizt werden können . In direktem Anschluss an die letzte Heizzone ist ein Wärmetauscher angeschlossen . Die Gasverweilzeit in den einzelnen Zonen kann durch den Einbau von entsprechenden Verdrängern in einem weiten Bereich variiert werden . Das den Reaktor wie auch den Wärmetauscher verlassende Gasgemisch kann über eine Probenahmestelle on- wie auch offline auf seine Zusammensetzung hin analysiert werden (Gaschromatographie) .
Beispiel 1
In einem Quarzglas-Reaktor, wurden eine Mischung aus 170g/h Tetrachlorsilan und 45Nl/h (Nl : Normliter) Wasserstoff eingespeist . In der Reaktionszone herrschte eine Temperatur von HOO 0C und einen Überdruck von 10.5 kPa . Die Verweildauer des Reaktionsgases in der Reaktionszone lag bei 0, 30 s . Das die Reaktionszone verlassende Produktgemisch (Tetra/Sitri/H2/HCl- Gemisch) wurde innerhalb von 25 ms (τ) auf 7000C gekühlt . Diese Verweilzeit liegt im durch Gleichung 1 definierten erfindungsgemäßen Bereich (TBspi 7000C, BBspi errechnet sich zu 7 , 2) . Die erfindungsgemäß maximale zulässige Verweilzeit im Wärmetauscher unter diesen Bedingungen (7000C, B = 6) wäre τ= 60ms . (Dh- des Wärmetauschers = 2 mm) Das Produktgemisch zeigte nach Kon- densation folgende Zusammensetzung [Gew. %] :
Tetrachlorsilan 79, 50 % Trichlorsilan 20 , 05 %
Dichlorsilan 0 , 45 %
Dieses Beispiel zeigt, dass die Sitri-Ausbeute hoch bleibt, wenn innerhalb 25 ms auf 7000C abgekühlt wird.
Beispiel 2 (Vergleichsbeispiel 1 ) Analog Beispiel 1 wird eine Mischung aus 103 g/h Tetrachlorsilan und 23 Nl/h Wasserstoff in den Reaktor zugespeist . In der Reaktionszone herrschte eine Temperatur von HOO 0C und ein Ü- berdruck von 3.0 kPa . Die Verweildauer in der Reaktionszone lag bei 0 , 40 s . Im nachfolgenden Abkühlschritt wird die Pro- duktmischung innerhalb von 186 ms auf 7000C abgekühlt (TBSP2 ( 7000C, BBSp2 errechnet sich zu 4 , 3 und liegt damit außerhalb des gemäß Gleichung 1 zulässigen Bereichs) . (Dh des Wärmetauschers = 15mm) . Das Produktgemisch zeigte nach Kondensation folgende Zusammensetzung [Gew . % ] :
Tetrachlorsilan 85 , 2 % Trichlorsilan 14 , 75 %
Dichlorsilan 0 , 1 % Dieses Beispiel zeigt, dass bei einer nicht erfindungsgemäßen Abkühlung die Sitri-Ausbeute verringert ist .
Beispiel 3
Analog Bsp. 1 wurden 81, 7g/h Tetrachlorsilan und 22, 8 Nl/h Wasserstoff in den Reaktor zugespeist . Die Temperatur in der Reaktionszone betrug 11000C, der Überdruck lag bei 3.0 kPa . Die Verweildauer des Gases in der Reaktionszone betrug 0 , 90 s . Die Produktinischung wurde innerhalb von 30 ms auf 6000C gekühlt Die erfindungsgemäß maximale zulässige Verweilzeit im Wärmetauscher unter diesen Bedingungen ( 6000C, B = 6) wäre τ= 109ms . (Dh des Wärmetauschers = 2 mm) . Das Produktgemisch zeigte nach Kondensation folgende Zusammensetzung [Gew . %] : Tetrachlorsilan 79, 3 % Trichlorsilan 20 , 6 %
Dichlorsilan 0 , 10 %
Dieses Beispiel zeigt, dass eine längere Reaktionszeit keine weiteren Vorteile bringt .
Beispiel 4 Analog Bsp . 1 wurden 737 g/h Tetrachlorsilan und 185 Nl/h Wasserstoff in den Reaktor zugespeist . Die Temperatur in der Reaktionszone betrug 11000C, der Überdruck lag bei 28.5 kPa . Die Verweildauer des Gases in der Reaktionszone betrug 0 , 30 s . Die Produktmischung wurde innerhalb von 60 ms auf 7000C gekühlt (TBsp4 7000C, BBsP4 errechnet sich zu 6 und entspricht damit dem erfindungsgemäß zulässigen Grenzwert ) . (Dh des Wärmetauschers = 5 mm) . Das Produktgemisch zeigte nach Kondensation folgende Zusammensetzung [Gew. %] : Tetrachlorsilan 81, 8 % Trichlorsilan 19, 1 % Dichlorsilan 0 , 10 %
Beispiel 5 : Auslegung des Wärmetauschers :
Der Wärmeübergang eines Gegenstrom-Wärmeaustauschers mit einem hydraulischen Durchmesser von ca . 1mm und ein Verhältnis Austauschfläche / Volumen von 5300 m"1 wurde für einen Gasstrom mit einer Zusammensetzung wie in Beispiele 1 bis 4 berechnet . Für eine Gasgeschwindigkeit = 15 m/s und Druck = 50OkPa ergibt sich ein K-Wert = 550 , ein ΔT = 900C und eine Energierückgewinnung = 93 % innerhalb von 15 ms . (Fig.3) .

Claims

Patentansprüche
1. Verfahren, bei dem ein siliciumtetrachloridhaltiges E- duktgas und ein wasserstoffhaltiges Eduktgas bei einer Temperatur von 7000C bis 15000C zur Reaktion gebracht werden, wobei eine trichlorsilanhaltige Produktmischung entsteht, dadurch gekennzeichnet, dass eine Abkühlung der Produktmischung mittels eines Wärmeaustauschers erfolgt, wobei die Abkühlung der Produktmischung auf eine Tempera- tur ΪAbkuhiung während einer Verweilzeit der Reaktionsgase im Wärmetauscher τ [ms] erfolgt, wobei gilt BχTΛbhihlmg 100° (Gleichung 1 ]
mit A = 4000, 6 < B < 50 , und 100 °C < TAbkύhiung ≤ 9000C und die über den Wärmeaustauscher abgeführte Energie des Produktgases zu einer Erwärmung der Eduktgase verwendet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass gilt 7 ≤ B ≤ 30 und 2000C < T^kuhiung < 8000C, bevorzugt 280 °C < Wühiung < 700 °C .
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Verweilzeit des Reaktionsgases im Reaktor kleiner als 0 , 5 s .
4. Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass die Abkühlung auf 7000C in weniger als 50 ms erfolgt .
5. Verfahren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass der Wärmeaustauscher einen Wärmeübergangskoeffizient von > 300 Watt/m2K hat .
6. Verfahren nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass der Wärmeaustauscher ein Verhältnis Austauschfläche zu Volumen von > 400m"1 aufweist .
7. Verfahren nach einem der Ansprüche 1 bis 6 dadurch ge- kennzeichnet, dass der Wärmeaustauscher einen hydraulischen Durchmesser < 5 mm aufweist .
8. Verfahren nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass aus einem Material ausgewählt aus der Gruppe Siliciumcarbid, Siliciumnitrid, Quarzglas , Graphit, SiC-beschichteter Graphit und einer Kombination dieser Materialien gefertigt ist .
9. Verfahren nach Anspruch 8 dadurch gekennzeichnet, dass der Wärmeaustauscher aus Siliciumcarbid gefertigt ist .
EP06704560A 2005-02-03 2006-01-26 Verfahren zur herstellung von trichlorsilan mittels thermischer hydrierung von siliciumtetrachlorid Withdrawn EP1843976A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005005044A DE102005005044A1 (de) 2005-02-03 2005-02-03 Verfahren zur Herstellung von Trichlorsilan mittels thermischer Hydrierung von Siliciumtetrachlorid
PCT/EP2006/000692 WO2006081980A2 (de) 2005-02-03 2006-01-26 Verfahren zur herstellung von trichlorsilan mittels thermischer hydrierung von siliciumtetrachlorid

Publications (1)

Publication Number Publication Date
EP1843976A2 true EP1843976A2 (de) 2007-10-17

Family

ID=36709637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06704560A Withdrawn EP1843976A2 (de) 2005-02-03 2006-01-26 Verfahren zur herstellung von trichlorsilan mittels thermischer hydrierung von siliciumtetrachlorid

Country Status (7)

Country Link
US (2) US20080112875A1 (de)
EP (1) EP1843976A2 (de)
JP (1) JP4819830B2 (de)
KR (1) KR100908465B1 (de)
CN (1) CN101107197B (de)
DE (1) DE102005005044A1 (de)
WO (1) WO2006081980A2 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046703A1 (de) * 2005-09-29 2007-04-05 Wacker Chemie Ag Verfahren und Vorrichtung zur Hydrierung von Chlorsilanen
DE102006050329B3 (de) * 2006-10-25 2007-12-13 Wacker Chemie Ag Verfahren zur Herstellung von Trichlorsilan
JP5205906B2 (ja) 2006-10-31 2013-06-05 三菱マテリアル株式会社 トリクロロシラン製造装置
JP5601438B2 (ja) * 2006-11-07 2014-10-08 三菱マテリアル株式会社 トリクロロシランの製造方法およびトリクロロシラン製造装置
JP5488777B2 (ja) * 2006-11-30 2014-05-14 三菱マテリアル株式会社 トリクロロシランの製造方法およびトリクロロシランの製造装置
JP5397580B2 (ja) * 2007-05-25 2014-01-22 三菱マテリアル株式会社 トリクロロシランの製造方法と製造装置および多結晶シリコンの製造方法
KR101573933B1 (ko) 2008-02-29 2015-12-02 미쓰비시 마테리알 가부시키가이샤 트리클로로실란의 제조 방법 및 제조 장치
TW201031591A (en) * 2008-10-30 2010-09-01 Mitsubishi Materials Corp Process for production of trichlorosilane and method for use thereof
US20100124525A1 (en) * 2008-11-19 2010-05-20 Kuyen Li ZERO-HEAT-BURDEN FLUIDIZED BED REACTOR FOR HYDRO-CHLORINATION OF SiCl4 and M.G.-Si
WO2010108065A1 (en) * 2009-03-19 2010-09-23 Ae Polysilicon Corporation Silicide - coated metal surfaces and methods of utilizing same
KR20120005522A (ko) * 2009-04-20 2012-01-16 에이이 폴리실리콘 코포레이션 규화물 코팅된 금속 표면을 갖는 반응기
KR101117290B1 (ko) * 2009-04-20 2012-03-20 에이디알엠테크놀로지 주식회사 삼염화실란가스 제조용 반응장치
TWI454309B (zh) * 2009-04-20 2014-10-01 Jiangsu Zhongneng Polysilicon Technology Dev Co Ltd 用於將反應排出氣體冷卻之方法及系統
KR20100117025A (ko) * 2009-04-23 2010-11-02 스미또모 가가꾸 가부시키가이샤 포토레지스트 패턴 형성 방법
US8298490B2 (en) * 2009-11-06 2012-10-30 Gtat Corporation Systems and methods of producing trichlorosilane
DE102010000979A1 (de) * 2010-01-18 2011-07-21 Evonik Degussa GmbH, 45128 Verwendung eines druckbetriebenen keramischen Wärmetauschers als integraler Bestandteil einer Anlage zur Umsetzung von Siliciumtetrachlorid zu Trichlorsilan
DE102010000978A1 (de) * 2010-01-18 2011-07-21 Evonik Degussa GmbH, 45128 Strömungsrohrreaktor zur Umsetzung von Siliciumtetrachlorid zu Trichlorsilan
DE102010000981A1 (de) * 2010-01-18 2011-07-21 Evonik Degussa GmbH, 45128 Closed loop-Verfahren zur Herstellung von Trichlorsilan aus metallurgischem Silicium
DE102010000980A1 (de) * 2010-01-18 2011-07-21 Evonik Degussa GmbH, 45128 Katalytische Systeme zur kontinuierlichen Umsetzung von Siliciumtetrachlorid zu Trichlorsilan
DE102010007916B4 (de) * 2010-02-12 2013-11-28 Centrotherm Sitec Gmbh Verfahren zur Hydrierung von Chlorsilanen und Verwendung eines Konverters zur Durchführung des Verfahrens
DE102010039267A1 (de) * 2010-08-12 2012-02-16 Evonik Degussa Gmbh Verwendung eines Reaktors mit integriertem Wärmetauscher in einem Verfahren zur Hydrodechlorierung von Siliziumtetrachlorid
US20120107216A1 (en) * 2010-10-27 2012-05-03 Gt Solar Incorporated Hydrochlorination heater and related methods therefor
DE102011002436A1 (de) * 2011-01-04 2012-07-05 Evonik Degussa Gmbh Hydrierung von Organochlorsilanen und Siliciumtetrachlorid
DE102011002749A1 (de) 2011-01-17 2012-07-19 Wacker Chemie Ag Verfahren und Vorrichtung zur Konvertierung von Siliciumtetrachlorid in Trichlorsilan
US20120199323A1 (en) 2011-02-03 2012-08-09 Memc Electronic Materials Spa Shell and tube heat exchangers and methods of using such heat exchangers
WO2012130547A1 (de) * 2011-03-25 2012-10-04 Evonik Degussa Gmbh Verwendung von siliziumcarbidrohren mit flansch- oder bördelende
JP5819521B2 (ja) * 2011-06-21 2015-11-24 ジーティーエイティー・コーポレーション 四塩化ケイ素の三塩化シランへの変換のための装置および方法
DE102011077970A1 (de) 2011-06-22 2012-12-27 Wacker Chemie Ag Vorrichtung und Verfahren zur Temperaturbehandlung von korrosiven Gasen
JP5708332B2 (ja) * 2011-07-19 2015-04-30 三菱マテリアル株式会社 トリクロロシラン製造装置
CN102502656A (zh) * 2011-11-01 2012-06-20 赵新征 四氯化硅转化三氯氢硅的方法
CN104039699A (zh) * 2011-11-14 2014-09-10 森特瑟姆光伏美国有限公司 用于非平衡三氯氢硅制备的方法和系统
DE102012218741A1 (de) * 2012-10-15 2014-04-17 Wacker Chemie Ag Verfahren zur Hydrierung von Siliciumtetrachlorid in Trichlorsilan
DE102012218941A1 (de) 2012-10-17 2014-04-17 Wacker Chemie Ag Reaktor und Verfahren zur endothermen Gasphasenreaktion in einem Reaktor
DE102012223784A1 (de) * 2012-12-19 2014-06-26 Wacker Chemie Ag Verfahren zur Konvertierung von Siliciumtetrachlorid in Trichlorsilan
KR101816339B1 (ko) * 2014-05-13 2018-01-08 주식회사 엘지화학 연속식 관형반응기를 이용한 클로로실란가스 제조방법
EP3620436A1 (de) 2018-09-10 2020-03-11 Momentive Performance Materials Inc. Synthese von trichlorsilan aus tetrachlorsilan und hydridosilanen
US20220089449A1 (en) * 2018-12-19 2022-03-24 Wacker Chemie Ag Method for producing chlorosilanes

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2595620A (en) * 1948-11-27 1952-05-06 Union Carbide & Carbon Corp Hydrogenation of halogenosilanes
US2657114A (en) * 1949-06-21 1953-10-27 Union Carbide & Carbon Corp Chlorosilanes
BE554836A (de) * 1956-02-11
US3928529A (en) * 1971-08-13 1975-12-23 Union Carbide Corp Process for recovering HCl and Fe{hd 2{b O{HD 3 {L from pickle liquor
US3933985A (en) * 1971-09-24 1976-01-20 Motorola, Inc. Process for production of polycrystalline silicon
US4217334A (en) * 1972-02-26 1980-08-12 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for the production of chlorosilanes
BE795913A (fr) * 1972-02-26 1973-06-18 Degussa Procede de preparation de chlorosilanes
US3901182A (en) * 1972-05-18 1975-08-26 Harris Corp Silicon source feed process
DE2623290A1 (de) * 1976-05-25 1977-12-08 Wacker Chemitronic Verfahren zur herstellung von trichlorsilan und/oder siliciumtetrachlorid
DE3024320A1 (de) * 1980-06-27 1982-04-01 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Vorrichtung zur hochtemperaturbehandlung von gasen
FR2530638A1 (fr) * 1982-07-26 1984-01-27 Rhone Poulenc Spec Chim Procede de preparation d'un melange a base de trichlorosilane utilisable pour la preparation de silicium de haute purete
JPS6078707A (ja) * 1983-10-07 1985-05-04 日本碍子株式会社 セラミツクハニカム構造体およびその製法ならびにこれを利用した回転蓄熱式セラミツク熱交換体およびその押出し成形金型
JPS6081010A (ja) * 1983-10-13 1985-05-09 Denki Kagaku Kogyo Kk トリクロルシランの製造法
FR2584733B1 (fr) * 1985-07-12 1987-11-13 Inst Francais Du Petrole Procede ameliore de vapocraquage d'hydrocarbures
US5029638A (en) * 1989-07-24 1991-07-09 Creare Incorporated High heat flux compact heat exchanger having a permeable heat transfer element
US5906799A (en) * 1992-06-01 1999-05-25 Hemlock Semiconductor Corporation Chlorosilane and hydrogen reactor
US5422088A (en) * 1994-01-28 1995-06-06 Hemlock Semiconductor Corporation Process for hydrogenation of tetrachlorosilane
CN1153138A (zh) * 1995-09-21 1997-07-02 瓦克化学有限公司 制备三氯硅烷的方法
DE19654154A1 (de) * 1995-12-25 1997-06-26 Tokuyama Corp Verfahren zur Herstellung von Trichlorsilan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006081980A2 *

Also Published As

Publication number Publication date
JP2008528433A (ja) 2008-07-31
CN101107197A (zh) 2008-01-16
CN101107197B (zh) 2011-04-20
JP4819830B2 (ja) 2011-11-24
KR20070094854A (ko) 2007-09-21
WO2006081980A2 (de) 2006-08-10
WO2006081980A3 (de) 2007-01-04
US20080112875A1 (en) 2008-05-15
US20120308465A1 (en) 2012-12-06
DE102005005044A1 (de) 2006-08-10
KR100908465B1 (ko) 2009-07-21

Similar Documents

Publication Publication Date Title
EP1843976A2 (de) Verfahren zur herstellung von trichlorsilan mittels thermischer hydrierung von siliciumtetrachlorid
EP1737790B1 (de) VERFAHREN ZUR HERSTELLUNG VON HSiCl3 DURCH KATALYTISCHE HYDRODEHALOGENIERUNG VON SiCl4
EP2086879B1 (de) Verfahren zur herstellung von trichlorsilan
DE602005006406T2 (de) Verfahren zur herstellung von hsicl3 durch katalytische hydrodehalogenierung von sicl4
DE3024319C2 (de) Kontinuierliches Verfahren zur Herstellung von Trichlorsilan
EP1775263B1 (de) Verfahren und Vorrichtung zur Hydrierung von Chlorsilanen
EP2526056A2 (de) Strömungsrohrreaktor zur umsetzung von siliziumtetrachlorid zu trichlorsilan
WO2006013079A2 (de) Hochdruckverfahren zur herstellung von reinem melamin
EP2603455A1 (de) Verwendung eines reaktors mit integriertem wärmetauscher in einem verfahren zur hydrodechlorierung von siliziumtetrachlorid
DE102008013544A1 (de) Verfahren zur Herstellung von Silizium mit hoher Reinheit
EP0355337B1 (de) Verfahren zur Herstellung von Solarsilicium
DE19918114C2 (de) Verfahren und Vorrichtung zur Herstellung von Vinylchlorsilanen
EP2526052A1 (de) Verwendung eines druckbetriebenen keramischen wärmetauschers als integraler bestandteil einer anlage zur umsetzung von siliciumtetrachlorid zu trichlorsilan
EP2746222B1 (de) Verfahren zur konvertierung von siliciumtetrachlorid in trichlorsilan
EP3277628A1 (de) Wirbelschichtreaktor zur herstellung von chlorsilanen
EP1046645A2 (de) Verfahren zur Herstellung von Vinylchlorsilanen
EP2373637B1 (de) Verfahren zur herstellung von delta-valerolacton in der gasphase
DE102014205001A1 (de) Verfahren zur Herstellung von Trichlorsilan
DE2434186C2 (de) Verfahren zur Abtrennung von Terephthalsäurenitril
EP0019863A1 (de) Verfahren zur Herstellung von 1,2-Dichlorethan
EP3075707A1 (de) Verfahren zur hydrierung von siliciumtetrachlorid zu trichlorsilan durch ein gasgemisch von wasserstoff und chlorwasserstoff
DE112022004239T5 (de) Verfahren zur Herstellung von Trichlorsilan und Verfahren zur Herstellung von Polykristallinem Siliciumstab

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070718

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100720

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160528