EP1728752B1 - Aufzugssteuersystem - Google Patents

Aufzugssteuersystem Download PDF

Info

Publication number
EP1728752B1
EP1728752B1 EP04723705A EP04723705A EP1728752B1 EP 1728752 B1 EP1728752 B1 EP 1728752B1 EP 04723705 A EP04723705 A EP 04723705A EP 04723705 A EP04723705 A EP 04723705A EP 1728752 B1 EP1728752 B1 EP 1728752B1
Authority
EP
European Patent Office
Prior art keywords
car
abnormal condition
abnormal
unit
detecting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04723705A
Other languages
English (en)
French (fr)
Japanese (ja)
Other versions
EP1728752A4 (de
EP1728752A1 (de
Inventor
Y. Mitsubishi Denki Kabushiki Kaisha KARIYA
Masaya Mitsubishi Denki Kabushiki Kaisha SAKAI
Takaharu Mitsubishi Denki Kabushiki Kaisha UEDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP1728752A1 publication Critical patent/EP1728752A1/de
Publication of EP1728752A4 publication Critical patent/EP1728752A4/de
Application granted granted Critical
Publication of EP1728752B1 publication Critical patent/EP1728752B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices

Definitions

  • the present invention relates to an elevator control apparatus capable of varying a maximum speed and acceleration of a car in response to loads given to the car.
  • a maximum speed and acceleration (including deceleration) of a car are changed in response to a load (hereinafter referred to as "car load") given by loaded weight in the car within driving ranges for a motor and an electric appliance which drives the motor.
  • a capacity of the motor available is utilized, so an operating efficiency of the car can be improved.
  • JP 07-228444 an elevator monitoring device that issues a stop command to an elevator control device based on a comparison of a received speed signal with a so-called ordinary pattern.
  • the present invention has been made to solve the above-explained problems, and has an object to achieve an elevator control apparatus capable of preventing a secondary failure of an appliance when an elevator is operated under abnormal condition, and capable of improving reliability.
  • an elevator control apparatus for driving a car by increasing a maximum speed and acceleration of the car when a difference between weight on a side of the car and weight of a counterweight is small instead of when there is a large difference therebetween, comprising a motor control unit for controlling operation of a motor unit that raises/lowers the car in response to weight loaded in the car; and an abnormal condition detecting unit for detecting an abnormal condition of the elevator; wherein: in a case where the car travels while the maximum speed and acceleration are increased, when an abnormal condition is detected by the abnormal condition detecting unit, the operation mode of the motor control unit is switched from a normal condition mode to an abnormal condition mode, wherein the abnormal condition detecting unit calculates a difference ⁇ ⁇ between a motor torque value ⁇ 1 while the car travels at a constant speed and a torque value ⁇ 0 which is calculated from an output signal of a car load detecting unit, and then judges that the abnormal condition occurs when the difference ⁇ ⁇ is equal to or larger than
  • an elevator control apparatus for driving a car by increasing a maximum speed and acceleration of the car when a difference between weight on a side of the car and weight of a counterweight is small instead of when there is a large difference therebetween, comprising a motor control unit for controlling operation of a motor unit that raises/lowers the car in response to weight loaded in the car; and an abnormal condition detecting unit for detecting an abnormal condition of the elevator; wherein in a case where the car travels while the maximum speed and acceleration are increased, when an abnormal condition is detected by the abnormal condition detecting unit, the operation mode of the motor control unit is switched from a normal condition mode to an abnormal condition mode, wherein the abnormal condition detecting unit judges that the abnormal condition occurs when a temperature detected by a temperature detecting unit for detecting a temperature of at least one of the motor unit and an inverter which drives the motor unit is equal to or larger than preset abnormal levels A and B, in a case that the temperature detected by the temperature detecting unit exceeds the abnormal level B
  • an elevator control apparatus for driving a car by increasing a maximum speed and acceleration of the car when a difference between weight on a side of the car and weight of a counterweight is small instead of when there is a large difference therebetween, comprising a motor control unit for controlling operation of a motor unit that raises/lowers the car in response to weight loaded in the car; and an abnormal condition detecting unit for detecting an abnormal condition of the elevator; wherein in a case where the car travels while the maximum speed and acceleration are increased, when an abnormal condition is detected by the abnormal condition detecting unit, the operation mode of the motor control unit is switched from a normal condition mode to an abnormal condition mode, wherein the abnormal condition detecting unit judges that the abnormal condition occurs when a temperature detected by a temperature detecting unit for detecting a temperature of at least one of the motor unit and an inverter which drives the motor unit is equal to or larger than preset abnormal levels A and B, in a case that the temperature detected by the temperature detecting unit exceeds the abnormal level
  • Fig. 1 is a structural diagram for indicating an elevator apparatus according to Embodiment 1 of the present invention.
  • a driving machine (hoisting machine) 1 is installed on an upper portion of a hoistway.
  • the hoisting machine 1 contains a motor unit 2 and a drive sheave 3 which is driven by the motor unit 2.
  • a brake device (not shown) for breaking rotations of the drive sheave 3 is provided on the motor unit 2.
  • a deflector sheave 4 is rotatably provided on the upper portion of the hoistway.
  • a plurality of main ropes 5 (only one rope is shown in the drawing) are wrapped around the drive sheave 3 and the deflector sheave 4.
  • a car 6 is suspended on one ends of the main ropes 5.
  • a counterweight 7 is set to the other ends of the mail ropes 5.
  • Weight of the counterweight 7 is set to a balancing condition when loaded weight of the car 6 is approximately equal to a half value (half load) of maximum loaded weight (full load).
  • the motor unit 2 is energized by an inverter 8 so as to be driven.
  • Loaded weight of the car 6 is detected by a car load detecting unit 9.
  • a known weighting apparatus may be employed.
  • An elevator control apparatus which controls the inverter 8 is equipped with a motor control unit 10 and an abnormal condition detecting unit 11.
  • a detection signal derived from the car load detecting unit 9 is supplied to the motor control unit 10.
  • the motor control unit 10 is provided with a speed pattern producing unit 12 which calculates a speed pattern of the car 6 and a speed control unit 13 which controls driving operations of the motor unit 2 in accordance with speed patterns produced by the speed pattern producing unit 12.
  • the speed control unit 13 is provided with a means for executing a control program of the inverter 8.
  • the speed pattern producing unit 12 produces such a speed pattern that the car 6 may reach a target floor within the shortest time in response to loaded weight of the car 6.
  • the speed pattern producing unit 12 contains an unbalance amount calculating unit which calculates a difference between weight loaded on the car 6 and the weight of the counterweight 7 (unbalance amount) based on information as to a car load obtained from the car load detecting unit 9.
  • the speed pattern producing unit 12 produces a speed pattern in such a manner that when the above-described unbalance amount is small, both a maximum speed and acceleration (including deceleration) are increased within allowable drive ranges of the motor unit 2 and of the inverter 8, as compared with such a case that the unbalance amount is large.
  • the above-described maximum speed corresponds to a maximum speed within one speed pattern, and normally, a constant speed that the car 6 travels in this constant speed.
  • the abnormal condition detecting unit 11 detects an abnormal condition of an elevator in response to a sensor signal such as a temperature sensor or a signal from the car load detecting unit 9.
  • a sensor signal such as a temperature sensor or a signal from the car load detecting unit 9.
  • this information is transmitted to at least one of the speed pattern producing unit 12 and the speed control unit 13.
  • the operation mode of the motor control unit 10 is switched from a normal condition mode to an abnormal condition mode.
  • the motor control unit 10 suddenly stops the car 8, for example.
  • the motor control unit 10 decreases the maximum speed of the car 6.
  • the motor control unit 10 sets both the maximum speed and acceleration of the car 6 to be the same as the values set in the case of the large amount unbalance for the subsequent drive operations of the car 6.
  • Fig. 2 is a block diagram for indicating a concrete structural example of the elevator control apparatus of Fig. 1 .
  • the elevator control apparatus is provided with an input/output unit 14, a CPU (processing unit) 15, and a storage unit 16, which have the same functions as both of the motor control unit 10 and the abnormal condition detecting unit 11.
  • a sensor signal derived which senses an abnormal condition of the elevator and a detection signal derived from the car load detecting unit 9 are inputted via the input/output unit 14 to the CPU 15.
  • An instruction signal to the inverter 8 is outputted from the input/output unit 14.
  • the storage unit 16 contains a ROM for storing programs and the like thereinto and a RAM which temporarily stores data used in calculations executed in the CPU 15 thereinto.
  • a program for producing speed patterns a program for judging whether or not an abnormal condition of the elevator is present, a program for switching operation modes in response to conditions of the elevator, information as to operating methods for each of the operation modes, and the like are stored in advance.
  • the CPU 15 executes a calculating operation process for every calculation time period based on programs stored in the storage unit 16.
  • Fig. 3 is a timing chart for indicating a control method for a car speed based on a first example of the abnormal condition mode in Embodiment 1.
  • this information is sent to the speed control unit 13 and an instruction signal for sudden stop of the car 6 is outputted from the speed control unit 13 to the inverter 8.
  • the supply of electric power to the motor unit 2 is stopped, and the rotation of the drive sheave 3 is braked by the braking apparatus of the motor unit 2, so that the car 6 is suddenly stopped.
  • Fig. 4 is a timing chart for indicating a control method for a car speed based on a second example of the abnormal condition mode in Embodiment 1.
  • this information is sent to the speed control unit 13, so that the maximum speed of the car 6 is decreased.
  • Such a decreasing operation of the maximum speed is rapidly carried out in order that either the motor unit 2 or the inverter 8 is not brought into malfunction, and furthermore, is smoothly carried out in order that vibrations are not produced in the car 6.
  • Fig. 5 is a timing chart for indicating a control method for a car speed based on a third example of the abnormal condition mode in Embodiment 1.
  • this information is sent to the speed control unit 13, so that, for the subsequent operations of the car 6, both the maximum speed and acceleration of the car 6 are limited to the same values set in the case of the difference between the weight on the side of the car 6 and the weight of the counterweight is large.
  • both the maximum speed and acceleration may not be again increased until a confirmation is made by, for example, a maintenance staff member.
  • a reset switch may be manipulated so that both the maximum speed and acceleration may be again increased in response to the manipulation of the reset switch.
  • Fig. 6 is a structural diagram for showing an elevator apparatus according to Embodiment 2 of the present invention.
  • a temperature of the motor unit 2 and a temperature of the inverter 8 are detected by a temperature detecting unit 17.
  • An abnormal condition judging unit 18 for judging an abnormal condition of the elevator is provided with the abnormal condition detecting unit 11.
  • the abnormal condition judging unit 18 judges an abnormal condition based on a signal from the car load detecting unit 9, a signal from the speed control unit 13, and a signal from the temperature detecting unit 17, and transmits the information as to the abnormal condition to both the speed pattern producing unit 12 and the speed control unit 13.
  • the other structure of the elevator control apparatus are similar to those of Embodiment 1.
  • Fig. 7 is an explanatory diagram for indicating a first example as to the abnormal condition judging method executed by the abnormal condition judging unit 18 of Fig. 6 .
  • the abnormal condition judging unit 18 calculates, for instance, a difference ⁇ ⁇ between a motor torque value ⁇ 1 while the car 6 travels at a constant speed and a torque value ⁇ 0 which is calculated from an output signal of the car load detecting unit 9, and then judges that an abnormal condition occurs when the difference ⁇ ⁇ is equal to or larger than a preset threshold value.
  • the motor torque value ⁇ 1 while the car 6 travels in the constant speed may be directly measured by way of, for instance, a torque meter or the like. Alternatively, this motor torque value 1 may be obtained by employing a torque instruction value corresponding to the internal signal of the speed control unit 13.
  • the abnormal condition judging unit 18 may similarly detect the above-explained large travel losses and mechanical loss as abnormal conditions.
  • An abnormal condition may be detected even while the car 6 is stopped. For instance, even in such a case that a change amount of output signals from the car load detecting unit 9 is not defined within a preset setting range but is continuously changed, this condition may be detected as an abnormal condition of the car load detecting unit 9.
  • an abnormal condition for example, it is possible to set that the maximum speed and acceleration of the next drive operation are not increased.
  • Fig. 8 is an explanatory diagram for indicating a second example as to the abnormal condition judging method executed by the abnormal condition judging unit 18 of Fig. 6 .
  • the abnormal condition judging unit 18 judges abnormal degrees of the elevator in a stepwise manner based on a motor temperature detected by the temperature detecting unit 17. That is, in such a case that a motor temperature is equal to or lower than a preset abnormal level A, both the maximum speed and acceleration are increased so as to be brought into drivable operations.
  • a motor temperature is equal to or higher than the abnormal level A and is equal to or lower than an abnormal level B
  • the maximum speed is decreased ((a) of Fig. 8 )
  • both the maximum speed and acceleration are not increased in the next drive operation.
  • a motor temperature is lower than the abnormal level A ((b) of Fig. 8 )
  • both the maximum speed and acceleration are again increased so as to be brought into drivable operations.
  • the abnormal level is divided into the 3 stages in advance and the corresponding methods are changed accordingly.
  • the abnormal level may be divided into 2 stages, 4 stages, or more stages.
  • an abnormal portion which is equal to or higher than the abnormal level A and is equal to or lower than the abnormal level B may be divided in either a stepwise manner or a continuous manner, the upper limit values of both the maximum speed and acceleration may be limited, or any one of these upper limit values may be limited.
  • the motor temperatures are detected.
  • an inverter temperature may be detected.
  • temperatures of the regenerative resistor may be similarly considered.
  • abnormal condition detection levels with respect to the motor temperatures, the inverter temperatures, and the regenerative resistor temperatures may be made equal to each other. However, it is preferable to separately set these abnormal condition detecting levels.
  • the temperature detecting unit 17 may directly measure temperatures by employing a temperature detector (temperature sensor) such as a thermistor, or by way of calculations based on a motor current value or a motor torque instruction value which corresponds to the internal signal of the speed control unit 13. Also, as to temperatures of the regenerative resistor, the temperature detecting unit 17 may directly measure by employing a temperature detector, and alternatively measure by calculating an amount of regenerative electric power so as to predict a temperature increase.
  • a temperature detector temperature sensor
  • the temperature detecting unit 17 may directly measure by employing a temperature detector, and alternatively measure by calculating an amount of regenerative electric power so as to predict a temperature increase.
  • Fig. 9 is a flow chart for indicating operations while the car 6 of the elevator control apparatus of Fig. 6 travels.
  • This judging algorithm is realized by such a computer as shown in Fig. 2 .
  • the CPU 15 judges as to whether or not a temperature detected by the temperature detecting unit 17 is equal to or lower than the abnormal level B (step S1). Then, in the case where the detected temperature exceeds the abnormal level B, the car 9 is suddenly stopped (step S2).
  • the CPU 15 judges as to whether or not the detected temperature is equal to or higher than the abnormal level A (step S3). Then, in such a case that the detected temperature is equal to or higher than the abnormal level A, the CPU 15 judges as to whether or not both the maximum speed and acceleration have been increased (step S4). In the case where the car 6 travels while the maximum speed and acceleration are increased, the maximum speed is decreased (step S5).
  • the present condition is maintained.
  • the CPU 15 checks as to whether or not a detection of a car load is abnormal. In other words, the CPU 15 judges as to whether or not a difference ⁇ ⁇ between motor torque ⁇ 1 while the car 6 travels in the constant speed and a torque value ⁇ 0 which is calculated from an output signal of the car load detecting apparatus is equal to or larger than a threshold value ⁇ 1 which has been previously set (step S6).
  • the CPU 15 judges as an abnormal condition of the car load detecting unit 9, abnormal travel losses of both the car 6 and the counterweight 7, or an abnormal mechanical loss of the driving machine 1, and the CPU 15 turns ON a car load abnormal condition detection signal (step S7).
  • step S8 the CPU 15 turns OFF the car load abnormal condition detection signal (step S8).
  • This car load abnormal condition detection signal is used to judge an abnormal condition while the car 6 is stopped, which is described in the below-mentioned description.
  • Fig. 10 is a flow chart for indicating operations while the car 6 of the elevator control apparatus of Fig. 6 is stopped. It is apparent that this judging algorithm is realized by such a computer as shown in Fig. 2 .
  • the CPU 15 judges as to whether or not a temperature detected by the temperature detecting unit 17 is equal to or lower than the abnormal level B (step S11). Then, in the case where the detected temperature exceeds the abnormal level B, the initiation of the elevator is prohibited (step S12).
  • the CPU 15 judges as to whether or not the detected temperature is equal to or higher than the abnormal level A (step S13). Then, in such a case that the detected temperature is equal to or higher than the abnormal level A, the CPU 15 sets that both the maximum speed and acceleration of the car 6 are not increased for the subsequent operations of the car 6 (step S14).
  • the maximum speed and acceleration of the car 6 are set in a similar to those in the case where the difference between the weight on the side of the car 6 and the weight of the counterweight 7 is large.
  • the CPU 15 judges as to whether or not a car load abnormal condition detection signal is under ON state (step S15) . In the case where the car load abnormal condition detection signal is under the ON state, the CPU 15 sets that both the maximum speed and acceleration of the car 6 are not increased for the subsequent operations of the car 6 (step S14).
  • the CPU 15 judges as to whether or not a change amount ⁇ x of an output signal from the car load detecting unit 9 is larger than a preset threshold value ⁇ 2 (step S16).
  • the CPU 15 judges as an abnormal condition of the car load detecting unit 9 and sets that the maximum speed and acceleration of the car 6 are not increased for the subsequent operations of the car 6(step S14).
  • the CPU 15 judges as a normal condition and sets that while the maximum speed and acceleration of the car 6 are increased, the car 6 can be driven (step S17).
  • both the ROM and the RAM are exemplified as the storage units.
  • a hard disk device and the like may be employed as the storage unit.
  • a storage medium such as a CD-ROM may be alternatively employed as the ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Claims (5)

  1. Aufzugssteuerungsgerät zum Ansteuern einer Kabine (6) durch Erhöhen einer maximalen Geschwindigkeit und Beschleunigung der Kabine (6), wenn eine Differenz zwischen einem Gewicht auf einer Seite der Kabine (6) und einem Gewicht eines Gegengewichts (7) klein ist, anstatt wenn es eine große Differenz dazwischen gibt, umfassend:
    eine Motorsteuereinheit (10) zum Steuern eines Betriebs einer Motoreinheit (2), welche die Kabine anhebt/absenkt, ansprechend auf Gewicht, welches in der Kabine (6) geladen ist; und
    eine Abnormaler-Zustand-Erfassungseinheit (11), zum Erfassen eines abnormalen Zustands des Aufzugs; wobei:
    in einem Fall, in welchem die Kabine (6) fährt, während die maximale Geschwindigkeit und Beschleunigung erhöht sind, wenn ein abnormaler Zustand von der Abnormaler-Zustand-Erfassungseinheit (11) erfasst wird, der Betriebsmodus der Motorsteuereinheit (10) von einem Normaler-Zustand-Modus zu einem Abnormaler-Zustand-Modus geschaltet wird
    dadurch gekennzeichnet, dass
    die Abnormaler-Zustand-Erfassungseinheit (11) eine Differenz Δ τ zwischen einem Motordrehmomentswert τ 1 während die Kabine (6) mit einer konstanten Geschwindigkeit fährt und einem Drehmomentswert τ 0, welcher aus einem Ausgabesignal einer Kabinenladungs-Erfassungseinheit (9) berechnet wird, berechnet, und dann beurteilt, dass der abnormale Zustand auftritt, wenn die Differenz Δ τ gleich oder größer als ein voreingestellter Schwellenwert ist.
  2. Aufzugssteuerungsgerät zum Ansteuern einer Kabine (6) durch Erhöhen einer maximalen Geschwindigkeit und Beschleunigung der Kabine (6), wenn eine Differenz zwischen einem Gewicht auf einer Seite der Kabine (6) und einem Gewicht eines Gegengewichts (7) klein ist, anstatt wenn es eine große Differenz dazwischen gibt, umfassend:
    eine Motorsteuereinheit (10) zum Steuern eines Betriebs einer Motoreinheit (2), welche die Kabine anhebt/absenkt, ansprechend auf Gewicht, welches in der Kabine (6) geladen ist; und
    eine Abnormaler-Zustand-Erfassungseinheit (11), zum Erfassen eines abnormalen Zustands des Aufzugs; wobei:
    in einem Fall, in welchem die Kabine (6) fährt, während die maximale Geschwindigkeit und Beschleunigung erhöht sind, wenn ein abnormaler Zustand von der Abnormaler-Zustand-Erfassungseinheit (11) erfasst wird, der Betriebsmodus der Motorsteuereinheit (10) von einem Normaler-Zustand-Modus zu einem Abnormaler-Zustand-Modus geschaltet wird
    dadurch gekennzeichnet, dass
    die Abnormaler-Zustand-Erfassungseinheit (11) beurteilt, dass der abnormale Zustand auftritt, wenn eine Temperatur, welche durch eine Temperatur-Erfassungseinheit (17) zum Erfassen einer Temperatur von wenigstens einem aus der Motoreinheit (2) und einem Wechselrichter (8), welcher die Motoreinheit (2) ansteuert, erfasst wird, gleich oder größer als voreingestellte Abnormal-Pegel A und B ist,
    in einem Fall, in welchem die Temperatur, welche durch die Temperatur-Erfassungseinheit (17) erfasst wird, den Abnormal-Pegel B überschreitet, während die Kabine (6) sich in einem Fahr-Zustand befindet, die Kabine (6) unvermittelt angehalten wird, und
    in einem Fall, in welchem die Temperatur, welche durch die Temperatur-Erfassungseinheit (17) erfasst wird, gleich oder größer als der Abnormal-Pegel A und gleich oder niedriger als der Abnormal-Pegel B ist, wenn die Kabine (6) fährt, während die maximale Geschwindigkeit und Beschleunigung erhöht sind, die maximale Geschwindigkeit verringert wird.
  3. Aufzugssteuerungsgerät zum Ansteuern einer Kabine (6) durch Erhöhen einer maximalen Geschwindigkeit und Beschleunigung der Kabine (6), wenn eine Differenz zwischen einem Gewicht auf einer Seite der Kabine (6) und einem Gewicht eines Gegengewichts (7) klein ist, anstatt wenn es eine große Differenz dazwischen gibt, umfassend:
    eine Motorsteuereinheit (10) zum Steuern eines Betriebs einer Motoreinheit (2), welche die Kabine anhebt/absenkt, ansprechend auf Gewicht, welches in der Kabine (6) geladen ist; und
    eine Abnormaler-Zustand-Erfassungseinheit (11), zum Erfassen eines abnormalen Zustands des Aufzugs; wobei:
    in einem Fall, in welchem die Kabine (6) fährt, während die maximale Geschwindigkeit und Beschleunigung erhöht sind, wenn ein abnormaler Zustand von der Abnormaler-Zustand-Erfassungseinheit (11) erfasst wird, der Betriebsmodus der Motorsteuereinheit (10) von einem Normaler-Zustand-Modus zu einem Abnormaler-Zustand-Modus geschaltet wird
    dadurch gekennzeichnet, dass
    die Abnormaler-Zustand-Erfassungseinheit (11) beurteilt, dass der abnormale Zustand auftritt, wenn eine Temperatur, welche durch eine Temperatur-Erfassungseinheit (17) zum Erfassen einer Temperatur von wenigstens einem aus der Motoreinheit (2) und einem Wechselrichter (8), welcher die Motoreinheit (2) ansteuert, erfasst wird, gleich oder größer als voreingestellte Abnormal-Pegel A und B ist,
    in einem Fall, in welchem die Temperatur, welche durch die Temperatur-Erfassungseinheit (17) erfasst wird, den Abnormal-Pegel B überschreitet, während die Kabine (6) sich in einem Anhalte-Zustand befindet, ein Initiieren des Aufzugs verhindert wird, und
    in einem Fall, in welchem die Temperatur, welche durch die Temperatur-Erfassungseinheit (17) erfasst wird, gleich oder größer als der Abnormal-Pegel A und gleich oder niedriger als der Abnormal-Pegel B ist, während die Kabine (6) sich in einem Anhalte-Zustand befindet, das Aufzugssteuergerät einstellt, dass die maximale Geschwindigkeit und Beschleunigung der Kabine (6) für den anschließenden Betrieb der Kabine (6) nicht erhöht sind.
  4. Aufzugssteuergerät nach Anspruch 3, wobei, in dem Abnormaler-Zustand-Modus, die Motorsteuereinheit (10) sowohl die maximale Geschwindigkeit als auch Beschleunigung der Kabine (6) für den anschließenden Betrieb der Kabine (6) in einer ähnlichen Weise setzt, wie wenn die Differenz zwischen dem Gewicht auf der Seite der Kabine (6) und dem Gewicht des Gegengewichts (7) groß ist.
  5. Aufzugssteuergerät nach einem der Ansprüche 1 bis 4, wobei die Abnormaler-Zustand-Erfassungseinheit (11) eine Abnormal-Grad-Beurteilungseinheit (18) umfasst, um einen Abnormal-Grad des Aufzugs schrittweise zu beurteilen.
EP04723705A 2004-03-26 2004-03-26 Aufzugssteuersystem Expired - Lifetime EP1728752B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/004256 WO2005092769A1 (ja) 2004-03-26 2004-03-26 エレベータ制御装置

Publications (3)

Publication Number Publication Date
EP1728752A1 EP1728752A1 (de) 2006-12-06
EP1728752A4 EP1728752A4 (de) 2009-11-11
EP1728752B1 true EP1728752B1 (de) 2011-06-01

Family

ID=35056102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04723705A Expired - Lifetime EP1728752B1 (de) 2004-03-26 2004-03-26 Aufzugssteuersystem

Country Status (4)

Country Link
EP (1) EP1728752B1 (de)
JP (1) JP4896711B2 (de)
CN (1) CN1918061B (de)
WO (1) WO2005092769A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2526431T3 (es) * 2005-08-25 2015-01-12 Mitsubishi Denki Kabushiki Kaisha Dispositivo de control del funcionamiento de un ascensor
JP5055772B2 (ja) * 2006-01-26 2012-10-24 三菱電機株式会社 エレベータの診断運転装置
JP4949779B2 (ja) * 2006-08-31 2012-06-13 東芝エレベータ株式会社 エレベータ
ES2546622T3 (es) * 2007-07-17 2015-09-25 Inventio Ag Instalación de ascensor con una cabina de ascensor y un dispositivo de freno para detener la cabina de ascensor en un modo de funcionamiento especial y procedimiento para detener una cabina de ascensor en el modo de funcionamiento especial
JP5196369B2 (ja) * 2008-03-05 2013-05-15 東芝エレベータ株式会社 エレベータのメンテナンスシステム
JP4588773B2 (ja) * 2008-03-13 2010-12-01 三菱電機株式会社 エレベータの異常検出装置
CN101683946B (zh) * 2008-09-27 2013-07-10 三菱电机大楼技术服务株式会社 电梯的诊断运转装置及诊断运转方法
JP2011042480A (ja) * 2009-08-24 2011-03-03 Mitsubishi Electric Corp エレベータ装置
EP2292546A1 (de) * 2009-09-04 2011-03-09 Inventio AG Vorrichtung und Verfahren zur Detektion, ob ein Aufzugskorb auf seinem Fahrweg eingeklemmt wurde
CN102408050B (zh) * 2010-09-25 2015-05-06 倪建军 一种抗冲击载荷的施工升降机超载保护装置
CN103754718B (zh) * 2014-02-12 2016-03-09 大连奥远电子股份有限公司 电梯运行安全监测系统及其方法
JP6302363B2 (ja) * 2014-06-16 2018-03-28 株式会社日立製作所 エレベーター装置、及びエレベーター装置の制御装置
WO2016091198A1 (zh) * 2014-12-11 2016-06-16 冯春魁 电梯参数的获取、控制、运行和载荷监控的方法及系统
JP6521730B2 (ja) * 2015-05-15 2019-05-29 三菱電機株式会社 エレベーター制御装置
CN110785367B (zh) * 2017-06-27 2021-01-29 三菱电机大楼技术服务株式会社 异常检测装置
JP7042184B2 (ja) * 2018-07-26 2022-03-25 株式会社日立ビルシステム エレベーター、エレベーター保守点検システムおよびエレベーター異常診断装置
JP6812506B2 (ja) * 2019-06-27 2021-01-13 東芝エレベータ株式会社 昇降機監視方法、及び昇降機監視装置
JP7432394B2 (ja) * 2020-03-04 2024-02-16 日本発條株式会社 駐車装置
JP7208425B1 (ja) 2022-02-09 2023-01-18 Dmg森精機株式会社 異常検出装置
CN117211735B (zh) * 2023-09-12 2024-04-19 大庆石油管理局有限公司 塔架式抽油机平衡重缓释装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495440A (en) * 1978-01-12 1979-07-27 Mitsubishi Electric Corp Protector for motor of elevator
JPS58100073A (ja) * 1981-12-08 1983-06-14 三菱電機株式会社 エレベ−タの制御装置
JPS6231682A (ja) * 1985-07-31 1987-02-10 株式会社東芝 エレベ−タの運転方法
JPH07228444A (ja) * 1994-02-15 1995-08-29 Hitachi Ltd エレベーターの監視装置及び制御装置
JPH07330231A (ja) * 1994-06-09 1995-12-19 Hitachi Ltd エレベータの制御装置
JP3251844B2 (ja) * 1996-03-29 2002-01-28 三菱電機株式会社 エレベータの制御装置
JP4107728B2 (ja) * 1998-09-07 2008-06-25 東芝エレベータ株式会社 エレベータ装置
JP2002003091A (ja) * 2000-06-22 2002-01-09 Toshiba Fa Syst Eng Corp エレベーター制御システム
JP4158883B2 (ja) * 2001-12-10 2008-10-01 三菱電機株式会社 エレベータおよびその制御装置
JP4405122B2 (ja) * 2001-12-26 2010-01-27 東芝エレベータ株式会社 エレベータの速度制御装置及び速度制御方法、並びに速度制御プログラム

Also Published As

Publication number Publication date
JPWO2005092769A1 (ja) 2008-02-14
EP1728752A4 (de) 2009-11-11
WO2005092769A1 (ja) 2005-10-06
CN1918061B (zh) 2011-07-20
JP4896711B2 (ja) 2012-03-14
EP1728752A1 (de) 2006-12-06
CN1918061A (zh) 2007-02-21

Similar Documents

Publication Publication Date Title
EP1728752B1 (de) Aufzugssteuersystem
JP4907097B2 (ja) エレベータ装置
US7681697B2 (en) Elevator operation control device which controls the elevator based on a sensed temperature
EP2347985A1 (de) Aufzugsvorrichtung
CN109789993B (zh) 带有具有例如乘客自主撤离的选择的两个单元的电梯安全监督实体
JP5355543B2 (ja) エレベータ装置
WO2006120737A1 (ja) エレベータの制御装置
JP2009215057A (ja) エレベータの強制減速制御システム
JP4412175B2 (ja) エレベーター用調速器
EP2147883B1 (de) Aufzugsvorrichtung
EP1958911B1 (de) Aufzugsvorrichtung
EP2474495B1 (de) Aufzugsteuerungsvorrichtung
CN109689558B (zh) 用于电梯的轿厢安全监督单元和实体安全监督单元
KR101250735B1 (ko) 엘리베이터 장치
CN109195897A (zh) 电梯
KR100905750B1 (ko) 엘리베이터 제어 장치
KR20060129506A (ko) 엘리베이터 제어 장치
CN109476450B (zh) 电梯的控制装置
JPH07330231A (ja) エレベータの制御装置
CN102126656B (zh) 电梯控制装置
JP2009263109A (ja) エレベータのブレーキ制御装置
JP4698863B2 (ja) エレベータにおける速度検出器の異常検出装置
JP4901446B2 (ja) エレベータ制御システム
KR100785179B1 (ko) 엘리베이터용 조속기
CN105460723A (zh) 电梯平衡系数侦测方法、设备、系统及工程机械

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

A4 Supplementary search report drawn up and despatched

Effective date: 20090911

17Q First examination report despatched

Effective date: 20100406

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004032926

Country of ref document: DE

Effective date: 20110714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004032926

Country of ref document: DE

Effective date: 20120302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602004032926

Country of ref document: DE

Effective date: 20140326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230131

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004032926

Country of ref document: DE