EP1608803B1 - Verfahren und vorrichtung zur herstellung nachverstreckter cellulose-spinnfäden - Google Patents

Verfahren und vorrichtung zur herstellung nachverstreckter cellulose-spinnfäden Download PDF

Info

Publication number
EP1608803B1
EP1608803B1 EP04710007A EP04710007A EP1608803B1 EP 1608803 B1 EP1608803 B1 EP 1608803B1 EP 04710007 A EP04710007 A EP 04710007A EP 04710007 A EP04710007 A EP 04710007A EP 1608803 B1 EP1608803 B1 EP 1608803B1
Authority
EP
European Patent Office
Prior art keywords
spun threads
stretching
post
stretched
following step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04710007A
Other languages
English (en)
French (fr)
Other versions
EP1608803A1 (de
Inventor
Stefan Zikeli
Klaus Weidinger
Lutz Glaser
Werner Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LL Plant Engineering AG
Original Assignee
ZiAG Plant Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZiAG Plant Engineering GmbH filed Critical ZiAG Plant Engineering GmbH
Publication of EP1608803A1 publication Critical patent/EP1608803A1/de
Application granted granted Critical
Publication of EP1608803B1 publication Critical patent/EP1608803B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/12Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the invention relates to a method for the production of lyocell threads from a spinning solution containing water, cellulose and tertiary amine oxide and the spun threads produced by this method.
  • the invention relates to an apparatus for producing filaments of a spinning solution containing cellulose, water and tertiary amine oxide, with a spinneret through which the spinning solution is extrudable into filaments during operation, with a precipitating bath with a precipitant precipitating a cellulose, through which the filaments in the Operation with a first drawing means, by means of which the filaments are stretchable in operation, with a second drawing means, through which the stretched filaments drawn by the first drawing means are nachverstreckbar during operation, and with a arranged in the region of the second drawing means heating device by the Operation the spun yarns are heatable during Nachverstreckung.
  • the spinning solution is first extruded into filaments, then the filaments are drawn and passed through a precipitation bath, after which the cellulose of the filaments coagulates.
  • fibers and “filaments” are used synonymously
  • a tertiary amine oxide such as N-methyl-morpholine-N-oxide and water
  • lyocell process refers to the patents US-A-4 142 913 .
  • the filaments can be fed to further processing steps.
  • the filaments can be washed, dried and treated with additives or impregnated.
  • the filaments can be cut.
  • the advantage of the Lyocell process lies in the good environmental compatibility and in the excellent mechanical properties of the spun threads or fibers.
  • Various advances in the process developed by McCorsley have greatly improved profitability.
  • the lyocell fiber differs in terms of their structure and their textile properties of the other cellulose fibers and their production, as for example in the DE-A-100 16 307 .
  • WO-A-01/58960 DE-A-197 53 806 .
  • DE-A-197 21 609 DE-A-195 11 151 and DE-A-43 12 219 are described.
  • a particular problem of the Lyocell process compared to the processes described therein lies in the high surface tack of the freshly extruded filaments: As soon as the filaments touch the air gap, they stick together, resulting in either unsatisfactory fiber quality or even disruption of the spinning process and re-spinning leads. McCorsley himself uses this, as in the DE-A-284 41 63 described, the filaments in the air gap on a roller with Kayllbad clips. However, this arrangement is impractical at high spinning speeds. A series of further developments of the McCorsley process therefore deals with measures to reduce the surface tackiness of the spun yarns in the air gap and to improve the operational reliability, also called spin security, of the production process.
  • Lyocell fibers differ significantly from the fibers, as in the DE-A-197 53 806 .
  • DE-A-100 16 307 and the DE-A-43 12 219 are described.
  • JP-A-03-076822 a process for producing fire-resistant fibers is described. After coagulation of the undrawn fibers, the filaments are drawn for a first time, then oiled and dried, then re-stretched under steam and then dried again.
  • the invention is therefore based on the object to improve the known methods and apparatus for producing lyocell fibers in that the mechanical properties, such as the loop strength and the tensile strength of the lyocell fibers can be selectively influenced by an easy-to-control process.
  • this object is achieved in that the filaments are stretched by the first drawing means in an air gap before entering the precipitation bath.
  • the post-stretching or stretching of the filaments which have already been drawn once in the air gap and then coagulated, can considerably improve the mechanical properties, in particular the wet modulus, compared with the conventional lyocell fibers. Due to the heat treatment during the post-drawing, the wet module is lowered a little after the first attempts and the fiber becomes somewhat more elastic again.
  • lyocell fibers having a wet modulus of at least 250 cN / tex and a wet rubbing rate per 25 fibers of at least 18 can be obtained by the process of the present invention.
  • Even wet modules of at least 300 cN / tex or 350 cN / tex can be achieved with the process according to the invention.
  • the wet maximum tensile force extension can assume relatively low values, for example at most 12%.
  • the predetermined tensile stress with which the spun threads are stretched or stretched the higher the wet modulus of the finished threads and fibers seems to be.
  • a considerable increase of the wet modulus compared to conventional fibers can be achieved according to an advantageous process control if the predetermined tensile stress with which the post-stretching is carried out amounts to at least 0.8 cN / tex.
  • Higher values for the wet modulus can be achieved if, according to a further embodiment, the predetermined tensile stress during the post-drawing is at least 3.5 cN / tex.
  • the heat treatment can be carried out subsequent to a washing or impregnation process as a drying process, so-called tension drying.
  • the heat treatment may also take place in a steam or dry steam atmosphere.
  • the steam or dry steam may contain impregnating agents which act on the filaments and lead to a chemical aftertreatment.
  • the heat treatment is preferably carried out in an oven in which the drawn and coagulated filaments are post-stretched between two godets with a predetermined tensile stress.
  • a hot inert gas such as hot air, or steam or dry steam may be passed through the surfaces of the godets and the filaments lying thereon.
  • the spun threads can be crimped, since the natural crimp of the spun threads is substantially reduced due to the post-stretching. At the same time a treatment with dry steam is possible simultaneously with the crimping.
  • the filaments can finally be cut.
  • a plant 1 for the production of lyocell fibers on the basis of the schematic representation of Fig. 1 described.
  • the plant 1 of Fig. 1 is used to produce staple fibers from Lyocell.
  • a high-viscosity spinning solution containing water, cellulose and tertiary amine oxide, for example N-methyl-morpholine-N-oxide passed.
  • the line system 2 is modularly constructed from fluid line pieces 2a of predetermined length, which are connected to each other via standard flanges 2b.
  • the fluid line pieces 2a are provided with an internal temperature control device 3, which is mounted in the fluid line pieces 2 instead of the core flow of the spinning solution and is regulated by the temperature of the spinning solution in the pipeline system 2.
  • a temperature-controlled fluid is passed through the inner temperature control device via feed modules 4 arranged between two adjacent fluid line sections, as indicated by the arrows 5.
  • the feed modules 4 essentially have the dimension of the standard flanges and are designed to be connectable with these.
  • the feed modules 4 At predetermined intervals, also replace by the arranged between the fluid line sections 2a Berstmodule 6, the feed modules 4.
  • the bursting modules 6 have essentially the same configuration as the feed modules 4. You are in the Fig. 1 Not shown Berstkörpem provided that break when exceeding a predetermined pressure in the piping system 2, in case of bursting, and allow a pressure discharge to the outside.
  • the bursting event may be especially at a spontaneous exothermic Reaction of the spinning solution due to overaging or overheating occur.
  • the spinning solution which escapes in the event of a burst is collected in collecting containers 7, from where it can be recycled or disposed of.
  • the spinning solution is fed to a spinner 8.
  • the spinner head 8 is provided with a spinneret 9 having a large number of extrusion orifices (not shown), usually several thousand extrusion orifices. Through the extrusion openings, the spinning solution is extruded into filaments 10.
  • the arrangement of the extrusion openings in the spinneret 9 may be circular, circular or rectangular; In the following, reference will be made, by way of example only, to a rectangular arrangement.
  • baffles can be provided, which can also be connected via the standard flanges, simply with the fluid line pieces 2a or with the feed modules 4 or bursting modules 6.
  • a surge tank 11 a may be arranged, which compensates for pressure fluctuations and volume flow fluctuations of the spinning solution in the pipe 2 via a change in its internal volume and ensures a uniform extrusion pressure at the extrusion openings of the spinner head 8.
  • a mechanical filter device 11b with a backwashable filter element may be provided in the pipeline system 2.
  • the filter element has a fineness between 5 microns and 25 microns.
  • the extrusion openings adjoin an air gap 12 which the freshly extruded spun threads 10 pass through and in which the spun threads are hidden by a tensile stress.
  • a cooling gas flow 13 is directed to the spun yarns 10, which is generated by a blowing device 14.
  • Temperature, humidity and composition of the cooling gas flow 13 can be regulated by an air conditioning device 15 to predetermined or variably predeterminable values.
  • the cooling gas stream 13 acts at a distance from the spinneret 9, on the spun yarns 10 and has a velocity component in the extrusion direction E, so that the spun yarns are mitverstreckt by the cooling gas stream 13. In order to allow a good heat transfer, the cooling gas flow 13 is turbulent.
  • the spun threads 10 After passing through the air gap 12, the spun threads 10 enter a precipitation bath 16.
  • the cooling gas flow 13 is sufficiently spaced from the surface 17 of the precipitation bath, so that it does not impinge on the surface.
  • the spun threads 10 are deflected by a substantially roller-shaped deflecting member 18 to a bundling member 19 above the precipitation bath, so that they again pass through the Klallbadober Structure 17.
  • the deflection can be rigid or fixed, or rotate with the threads.
  • the bundling member 19 is rotatably driven and exerts as the first drawing means via the deflection member 18 a back to the extrusion openings of the spinneret 9 retrospective tensile stress on the spun yarns 10, which stretches the spun yarns 10.
  • the stretching means and the deflecting member 18 may be driven.
  • the tensile stress can also be generated only by the cooling gas stream 13 as the first drawing agent. This has the advantage that the tensile stress is introduced into the spun threads 10 by a friction stress acting on the surface of the spun threads.
  • the filaments 10 are combined to form a bundle of fibers 20. Subsequently, the still wetted with the Klallbadans 16, combined to form the bundle of fibers 20 spun yarns 10 are placed without tension on a conveyor 21 and transported largely tensionless on this. During the transport of the filaments on the conveyor 21, the complete or almost complete coagulation of the cellulose filaments can take place under the lowest possible voltage influence.
  • the conveyor 21 may, as in Fig. 1 is shown to be configured as a vibrating conveyor, which transports the bundle of fibers 20, or optionally a plurality of bundles of fibers 20 at the same time, by vibrations in the conveying direction F.
  • the vibrations of the conveyor 21 are indicated by the double arrow 22.
  • the spun-thread bundle 20 is deposited in an orderly manner on the conveyor.
  • other conveying devices such as a plurality of godets arranged one behind the other, can be used with almost the same or peripheral speed decreasing in the conveying direction.
  • various treatments of the bundle of fibers 20 can be carried out, for example, the bundle of fibers 20 washed once or more times, dried and aviviert, for example by a sprinkler 23 from a treatment medium 24 is sprayed onto the filament bundle 20.
  • the bundle of fibers 20 is received by a godet 25 of the conveyor 21 and fed to a second Nachverstreckungsstoff 26 through which the effetkoagul functioning filaments 10 are nachverstreckt.
  • the second Nachverstreckungsstoff 26 may also be provided immediately after the bundling means 19, ie between the conveyor 21 and the precipitation bath 16, so that only the nachverstreckten filaments are subjected to further treatment steps.
  • the post-stretching means 26 in the entry region of the spun yarn 20 may have a heating device 27 which brings the spun-fiber bundle 20 to a predetermined temperature and at the same time dries the spun-fiber bundle 20 at least superficially.
  • the spun yarns are guided over two godets 28, 29, which are driven so that the spun yarn bundle 20 between them with a predetermined Nachverstreckungs tensile stress Z N is applied.
  • the spunbond bundle charged with this tension is maintained at a predetermined high temperature and can be impregnated during post-stretching, in particular by a hot inert gas, such as air, or by steam, for example dry steam, and swelling agents or other chemical fiber treatment means, such as Arrows 30 is indicated.
  • a hot inert gas such as air
  • steam for example dry steam
  • swelling agents or other chemical fiber treatment means such as Arrows 30 is indicated.
  • the godets 28, 29 may also be heated.
  • the spun-thread bundle 20 has a reduced crimp compared with conventional fibers, so that it is crimped over a stuffer box 31. Subsequently, the fiber bundle 20 is cut by a cutting device 32. If an endless fiber to be generated, of course, can be dispensed with the crimping and / or cutting.
  • the crimped staple fibers can be transported in random orientation in the form of a crimped endless cable 33 on a conveyor 34 for further method steps.
  • a post-stretching means 26 is shown schematically.
  • a post-stretching takes place in the form of a voltage drying.
  • the Nachverstreckungsstoff 26 two godets 28, 29, which are driven so that the thread bundle 20 between them with a predetermined tensile stress Z N of at least 0.8 cN / tex, preferably at least 3.5 cN / tex stretched or stretched.
  • a predetermined tensile stress Z N of at least 0.8 cN / tex, preferably at least 3.5 cN / tex stretched or stretched.
  • the following in the conveying direction F godet 29 with a predetermined, higher speed to be rotated as the galette 28 located in the conveying direction F; wherein between the godet 29 and the looped around the godet thread bundle 20, a slip can prevail, which essentially determines the tensile stress Z N.
  • One or both godets 28, 29 can be provided with an at least gas-permeable surface 30, through which a hot inert gas, steam or dry steam from the interior of the godet 28, 29 is pressed by the spun-thread bundle 20 looped around the godet 28, 29.
  • each Galette 28, 29 may also be associated with a steam-permeable, actively or passively co-rotating roller 28a, 29a in opposition, as shown schematically in FIG Fig. 3 is shown.
  • the rollers 28a, 29a also have permeable surfaces through which the inert gas or the vapor is sucked off. Instead of rollers and large drums can be provided.
  • godets 28, 29 and larger drums or suction drums can be used with perforated surface, through which the hot gas is sucked.
  • the bundle of fibers was dried without tension, remoistened and dried under tension.
  • the bundle of fibers was passed through two eyelets at a distance of 50 cm and was weighted during drying on both sides with 19 kg each.
  • the bundle of fibers was dried without tension, remoistened and dried under tension.
  • the bundle of fibers was passed through two eyelets at a distance of 50 cm and weighted on both sides with 38 kg each.
  • experiment 5 the bundle of fibers was dried wet under tension.
  • the thread bundle was guided through two eyelets at a distance of 50 cm and weighted on both sides, each with a weight of 9 kg.
  • experiment 6 the bundle of fibers was dried wet under tension.
  • the thread bundle was guided through two eyelets at a distance of 50 cm and weighted on both sides, each with a weight of 19 kg.
  • experiment 7 the bundle of fibers was dried wet under tension.
  • the thread bundle was guided through two eyelets at a distance of 50 cm and weighted on both sides, each with a weight of 38 kg.
  • the bundle of fibers was subjected to treatment with sodium hydroxide solution (NaOH) before drying.
  • NaOH sodium hydroxide solution
  • the filament bundle was treated with 5% NaOH solution for 5 minutes and then washed with completely deionized water.
  • the NaOH solution was neutralized with 1% formic acid and washed again with deionized water.
  • the spunbond bundle was then dried in the dryer at 73 ° C for 30 minutes.
  • the bundle of fibers was dried without tension, remoistened and dried under tension.
  • the bundle of fibers was guided through two eyelets at a distance of 50 cm and weighted on both sides with 19 kg each.
  • the bundle of fibers was dried without tension, remoistened and dried under tension.
  • the bundle of fibers was passed through two eyelets at a distance of 50 cm and weighted on both sides with 38 kg each.
  • experiment 12 the bundle of fibers was dried wet under tension.
  • the thread bundle was guided through two eyelets at a distance of 50 cm and weighted on both sides, each with a weight of 9 kg.
  • experiment 13 the bundle of fibers was dried wet under tension.
  • the thread bundle was guided through two eyelets at a distance of 50 cm and weighted on both sides, each with a weight of 19 kg.
  • experiment 14 the bundle of fibers was dried wet under tension.
  • the thread bundle was guided through two eyelets at a distance of 50 cm and weighted on both sides, each with a weight of 38 kg.
  • the titer For the dried bundles of fibers, the titer, the tenacity, the maximum tenacity, the wet denier, the wet maximum tenacity, the tenacity at break, the wet modulus, and the wet abrasion number were then determined. The procedure was as follows.
  • the titer was determined according to DIN EN ISO 1973.
  • the (wet) maximum tensile strength and the (wet) maximum tensile elongation were determined in accordance with DIN EN ISO 5079.
  • the maximum loop tension was determined in accordance with DIN 53843 Part 2.
  • the wet modulus was determined on a fiber bundle, which is usable according to DIN EN 1973. The procedure is based on the test specification ASG N 211 of Alceru Schwarza GmbH. The tests for determining the wet modulus were carried out on a tensile testing machine with constant strain rate and low-path electronic force measurement.
  • the gripping length of the thread bundle was 10.0 mm ⁇ 0.1 mm.
  • the fineness biasing force was 2.5 mN / tex ⁇ 0.5 mN / tex for a titer greater than 2.4 dtex. At a titer of up to 2.4 dtex, a biasing mass of 50 mg was used.
  • the elongation rates were 2.5 mm / min with an average wet elongation at break up to 10%, 5.0 mm / min with an average wet elongation at break of more than 10 to 2% and 7.5 mm / min with a mean wet elongation at break of over 20%.
  • the spun yarn bundle to be clamped is clamped with its end opposite the biasing mass piece in the tensile testing machine, then the lower clamping clamp is closed and the submerged vessel with the wetting agent solution is raised so that the liquid level reaches as far as possible to the upper clamping clamp without them however, to touch.
  • the distance between the grips is at the strain rate indicated above to increase steadily until an elongation of 5% is reached. At this moment, stop the movement of the lower clamp and determine the wet pull force in mN down to one decimal.
  • the wet scrubbing number was determined using a Fasemassscheuerprüf réelle FNP SMK Complexing/Samples.
  • the wet scrub number is the number of revolutions of the scrubbing shaft until the breakage of the fiber clamped under defined pretension in the wet scrub tester.
  • the pretensioning weight is 70 mg at a titer between 1.2 and 1.8 dtex.
  • the speed of the scouring shaft was 400 rpm, the wrap angle 45 °.
  • the scouring shaft is provided with a fabric hose.
  • the maximum tensile force measured both wet and dry, is essentially unchanged from the non-post-stretched fibers of Experiment 1.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Lyocell-Fäden aus einer Spinnlösung enthaltend Wasser, Cellulose und tertiäres Aminoxid sowie die durch dieses Verfahren hergestellten Spinnfäden.
  • Ferner betrifft die Erfindung eine Vorrichtung zur Herstellung von Spinnfäden aus einer Spinnlösung enthaltend Cellulose, Wasser und tertiäres Aminoxid, mit einer Spinndüse, durch welche die Spinnlösung im Betrieb zu Spinnfäden extrudierbar ist, mit einem Fällbad mit einem Cellulose ausfällendem Fällmittel, durch das die Spinnfäden im Betrieb geleitet sind, mit einem ersten Verstreckungsmittel, durch das die Spinnfäden im Betrieb verstreckbar sind, mit einem zweiten Verstreckungsmittel, durch das die vom ersten Verstreckungsmittel verstreckten Spinnfäden im Betrieb nachverstreckbar sind, und mit einer im Bereich des zweiten Verstreckungsmittel angeordnete Heizvorrichtung, durch die im Betrieb die Spinnfäden während der Nachverstreckung aufheizbar sind.
  • Bei dem Herstellungsverfahren wird die Spinnlösung zunächst zu Spinnfäden extrudiert, dann werden die Spinnfäden verstreckt und durch ein Fällbad geleitet, wonach die Cellulose der Spinnfäden koaguliert.
  • Das Herstellverfahren von Fasern (im Folgenden werden die Begriffe "Fasern" und "Fäden" synonym gebraucht) aus in einem tertiären Aminoxid wie N-Methyl-Morpholin-N-Oxid und Wasser gelöster Cellulose, auch Lyocell-Verfahren genannt, geht auf die Patentschriften US-A-4 142 913 , US-A-4 144 080 , US-A-4 211 574 , US-A-4 246 221 . US-A-4 261 943 und US-A-4 416 698 zurück. In diesen auf McCorsley zurückgehenden Patentveröffentlichungen ist das Grundprinzip der Herstellung von Lyocell-Fasern mit den drei Verfahrensschritten Extrudieren der Spinnlösung zu Spinnfäden in einen Luftspalt, Verstrecken der extrudierten Spinnfäden im Luftspalt und Ausfällen der Cellulose in einem Fällbad erstmalig beschrieben.
  • Nach dem Ausfällen und Koagulieren der Cellulose können die Spinnfäden weiteren Bearbeitungsschritten zugeführt werden. So können die Spinnfäden gewaschen, getrocknet und mit Zusatzstoffen behandelt oder imprägniert werden. Zur Erzeugung von Stapelfasern können die Spinnfäden geschnitten werden.
  • Der Vorteil des Lyocell-Verfahrens liegt in der guten Umweltverträglichkeit und in den hervorragenden mechanischen Eigenschaften der ersponnen Fäden bzw. Fasern. Durch verschiedene Weiterentwicklungen des von McCorsley entwickelten Verfahrens konnte die Wirtschaftlichkeit stark verbessert werden.
  • Die Lyocell-Faser unterscheidet sich hinsichtlich ihres Aufbaus und ihrer textilen Eigenschaften von den übrigen Cellulosefasern und deren Herstellung, wie sie beispielsweise in der DE-A-100 16 307 , WO-A-01/58960 , DE-A-197 53 806 , DE-A-197 21 609 , DE-A-195 11 151 und DE-A-43 12 219 beschrieben sind.
  • Ein spezielles Problem des Lyocell-Verfahrens gegenüber den dort beschriebenen Verfahren liegt in der hohen Oberflächenklebrigkeit der frisch extrudierten Spinnfäden: Sobald sich die Spinnfäden im Luftspalt berühren, verkleben sie, was entweder zu einer unbefriedigenden Faserqualität oder gar zu einer Unterbrechung des Spinnverfahrens und einem neuen Anspinnen führt. McCorsley selbst benutzt hierzu, wie in der DE-A-284 41 63 beschrieben ist, die Spinnfäden im Luftspalt über eine Walze mit Fällbadlösung. Diese Anordnung ist jedoch bei hohen Spinngeschwindigkeiten nicht praktikabel. Eine Reihe von Weiterentwicklungen des McCorsley-Verfahrens beschäftigt sich daher mit Maßnahmen, um die Oberflächenklebrigkeit der Spinnfäden im Luftspalt zu verringern und die Betriebssicherheit, auch Spinnsicherheit genannt, des Herstellverfahrens zu verbessern.
  • Eine im Stand der Technik bei der Herstellung von Lyocell-Fasern oder -Fäden weit verbreitete Maßnahme besteht darin, die Spinnfäden im Luftspalt mit einem Kühlgas zu beblasen, um die Oberflächen der frisch extrudierten Spinnfäden zu kühlen und deren Klebrigkeit herabzusetzen. Derartige Kühlbeblasungen sind beispielsweise in der WO-A-93 19230 , WO-A-94 28218 , WO-A-95 01470 und in der WO-A-95 04173 beschrieben. Wie aus diesen Druckschriften hervorgeht, werden je nach Anordnung der Extrusionsöffnungen, durch welche die Spinnlösung extrudiert werden, unterschiedliche Arten und Ausgestaltungen der Beblasung verwendet.
  • Ein weiteres Problem bei der Herstellung von Lyocell-Fasern stellt die Ausgestaltung des Fällbades dar. Aufgrund der hohen Extrusionsgeschwindigkeiten tauchen die Spinnfäden mit hoher Geschwindigkeit in die Fällbadlösung ein und reißen die Fällbadlösung in ihrer Umgebung mit. Dadurch wird im Fällbad eine Strömung erzeugt, welche die Oberfläche des Fällbades aufwühlt und die Spinnfäden beim Eintauchen in das Fällbad bis hin zu Fadenrissen mechanisch belastet.
  • Um bei kreisringförmig angeordneten Extrusionsöffnungen die Fällbadoberfläche möglichst ruhig zu halten, werden in der DE-A-100 60 877 und in der DE-A-100 60 879 die Spinnfäden durch speziell ausgestaltete, mit Fällbad gefüllte Spinntrichter geleitet. Bei den Spinntrichtem strömt die Fällbadlösung mit samt den Spinnfäden am unteren Ende heraus. Diese von der Schwerkraft angetriebene Strömung kann, wie in der DE-A-44 09 609 beschrieben ist, zur Verstreckung der Spinnfäden ausgenutzt werden.
  • Bei auf einer Rechtecksfläche angeordneten Extrusionsöffnungen wurden gemäß der DE-A-100 37 923 gute Ergebnisse erzielt, wenn die Spinnfäden einen im wesentlichen ebenen Vorhang bilden und als ebener Vorhang im Fällbad zur Fällbadoberfläche hin umgelenkt werden. Bei dieser Ausgestaltung ist im Fällbad ein Umlenkkörper angeordnet.
  • Die Nachverarbeitung von Lyocell-Fäden nach der Extrusion und der Koagulation der Cellulose zur Erzielung bestimmter mechanischer Eigenschaften der Spinnfäden ist in der Patentliteratur weniger gut dokumentiert.
  • In dem Grundlagenartikel "Was ist neu an den neuen Fasern der Gattung Lyocell?", Lenzinger Berichte 9/94, S. 37-40, wird davon ausgegangen, das die Faserstruktur und die Fasereigenschaften durch die Molekülausrichtung während der Extrusion und die sich unmittelbar an die Extrusion anschließende Verstreckung bestimmt werden. Hierin unterscheiden sich die Lyocell-Fasern entscheidend von den Fasern, wie sie in der DE-A-197 53 806 , DE-A-197 21 609 , DE-A-195 11 151 , DE-A-100 16 307 und der DE-A-43 12 219 beschrieben sind.
  • Dieser Gedanke wird in der neuen Patentliteratur aufgegriffen und in die Praxis umgesetzt. So sind in der EP-A-823 945 , in der EP-A-853 146 und in der DE-A-100 23 391 Vorrichtungen beschrieben, in denen nach Verstreckung der extrudierten Spinnfäden und nach der Koagulation der Cellulose in den verstreckten Spinnfäden diese bei der Weiterverarbeitung spannungslos gehalten werden. Diesen Entwicklungen liegt die Idee zugrunde, dass sich die mechanischen Eigenschaften der verstreckten und koagulierten Spinnfäden nicht mehr verändern lassen.
  • Ein nur auf den ersten Blick entgegengesetzter Weg wird alleine in der EP-A-494 851 beschritten: In dieser Druckschrift ist ein Verfahren beschrieben, bei dem die im wesentlichen spannungslos extrudierte und koagulierte Cellulose verstreckt wird. Wesentlich bei diesem Verfahren ist, dass keine Verstreckung der frisch extrudierten Spinnfäden stattfindet. Durch diese, für die Lyocell-Verarbeitung ungewöhnlichen Methode der EP-A-494 851 , die scheinbar auch nicht weiterentwickelt wurde, soll eine nachträgliche Formgebung der Spinnfäden ermöglicht werden. Das Verfahren der EP-A-494 851 ähnelt also einem plastischen Verformungsprozess, wobei das Ausgangsmaterial, die unverstreckten Lyocell-Fäden, eine gummiartige Konsistenz aufweist. Die mechanischen Eigenschaften der gemäß dem Verfahren der EP-A-494 851 hergestellten Fasern werden den heutigen Erfordernissen jedoch nicht gerecht.
  • In der DE-A-102 23 268 ist beschrieben, dass eine mehrstufige Ausfällung und gleichzeitig eine mehrstufige Verstreckung der Spinnfäden realisiert werden kann, wenn die Benetzungseinrichtung gleichzeitig zum Verstrecken der Spinnfäden eingesetzt wird. Durch diese Maßnahme kann zwar der Bedarf an Behandlungsmedium verringert und die Kontrolle des Ausfallprozesses verbessert werden, allerdings bleiben die textilen Eigenschaften durch diese Art der Nachverstreckung im Wesentlichen unbeeinflusst.
  • In der JP-A-03-076822 ist ein Verfahren zur Herstellung feuerbeständiger Fasern beschrieben. Nach einer Koagulation der unverstreckten Fasern werden die Filamente ein erstes Mal verstreckt, anschließend eingeölt sowie getrocknet, dann unter Wasserdampf nachverstreckt und anschließend erneut getrocknet.
  • Zur Veränderung der mechanischen Eigenschaften, wie der Schlingenfestigkeit, der Fibrillationsneigung und der Zugfestigkeit von Lyocell-Fasern wird derzeit im Wesentlichen auf das Repertoire zurückgegriffen, wie es in dem Artikel "Strukturbildung von Cellulosefasern aus Aminoxidiösungen". Lenzinger Berichte 9/94, S. 31-35, beschrieben ist. Danach werden die textilphysikalischen Eigenschaften von Lyocell-Fasern durch Veränderungen der Cellulosekonzentration in der Spinnlösung (vgl. WO-A-96 18760 ), durch Variation der Abzugsbedingungen (vgl. DE-A-42 19 658 ) und den Einsatz von Zusätzen (vgl. DE-A-44 26 966 , DD-A-218 121 , WO-A-94 20656 ) sowie durch Veränderung der Fällbedingungen (vgl. AT-B-395 724 ) eingestellt. Alle diese Verfahren lassen jedoch nur eine indirekte und in der Prozessführung nur sehr ungenaue Steuerung der mechanischen Eigenschaften der Lyocell-Fäden oder -Fasern zu.
  • Der Erfindung liegt daher die Aufgabe zugrunde, die bekannten Verfahren und Vorrichtungen zur Herstellung von Lyocell-Fasern dahingehend zu verbessern, dass die mechanischen Eigenschaften, wie die Schlingenfestigkeit und die Zugfestigkeit der Lyocell-Fasern durch einen leicht zu steuernden Prozess gezielt beeinflusst werden können.
  • Diese Aufgabe wird für das eingangs genannte Herstellverfahren erfindungsgemäß dadurch gelöst, dass die verstreckten Spinnfäden nachverstreckt und gleichzeitig wärmebehandelt werden.
  • Für die eingangs genannten Vorrichtung wird diese Aufgabe dadurch gelöst, dass die Spinnfäden durch das erste Verstreckungsmittel in einem Luftspalt vor dem Eintritt in das Fällbad verstreckbar sind.
  • Überraschenderweise lassen sich durch die Nachverstreckung bzw. Dehnung der bereits einmal im Luftspalt verstreckten und danach koagulierten Spinnfäden die mechanischen Eigenschaften, hier insbesondere das Nassmodul, gegenüber den herkömmlichen Lyocell-Fasern erheblich verbessern. Durch die Wärmebehandlung während der Nachverstreckung wird nach ersten Versuchen der Nassmodul etwas abgesenkt und die Faser wird wieder etwas elastischer.
  • Im Gegensatz zum Verfahren und zur Vorrichtung der DE-A-102 23 268 ermöglicht die während der Nachverstreckung durchgeführte Wärmebehandlung eine entscheidende Verbesserung der textilen Eigenschaften der Lyocell-Fasem.
  • So lassen sich mit dem erfindungsgemäßen Verfahren hergestellte Lyocell-Fasern mit einem Nassmodul von wenigstens 250 cN/tex und einer Nassscheuerzahl pro 25 Fasern von wenigstens 18 erreichen. Mit dem erfindungsgemäßen Verfahren lassen sich sogar Nassmodule von wenigstens 300 cN/tex bzw. 350 cN/tex erreichen. Die Nass-Höchstzugkraftdehnung kann dabei relativ geringe Werte annehmen, beispielsweise höchstens 12 %.
  • Je höher die vorbestimmte Zugspannung ist, mit der die Spinnfäden nachverstreckt bzw. gedehnt werden, desto höher scheint der Nassmodul der fertigen Fäden und Fasern zu sein. Eine erhebliche Steigerung des Nassmoduls gegenüber herkömmlichen Fasern lässt sich gemäß einer vorteilhaften Verfahrensführung erreichen, wenn die vorbestimmte Zugspannung, mit der die Nachverstreckung durchgeführt wird, mindestens 0,8 cN/tex beträgt. Höhere Werte für den Nassmodul lassen sich erreichen, wenn gemäß einer weiteren Ausgestaltung die vorbestimmte Zugspannung bei der Nachverstreckung mindestens 3,5 cN/tex beträgt.
  • Generell ergeben sich höhere Werte für den Nassmodul, wenn die Spinnfäden vor der Nachverstreckung koaguliert sind.
  • Die Wärmebehandlung kann im Nachgang zu einem Wasch- oder Imprägnierverfahren als Trocknungsprozess, also sogenanntes Spannungstrocknen, durchgeführt werden. Alternativ kann die Wärmebehandlung auch in einer Dampf- bzw. Trockendampfatmosphäre stattfinden. Der Dampf bzw. Trockendampf kann Imprägnierungsmittel enthalten, die auf die Spinnfäden einwirken und zu einer chemischen Nachbehandlung führen.
  • Vorzugsweise wird die Wärmebehandlung in einem Ofen durchgeführt, in dem die verstreckten und koagulierten Spinnfäden zwischen zwei Galetten mit einer vorbestimmten Zugspannung nachverstreckt werden. Dabei kann ein heißes Inertgas, wie Heißluft, oder Dampf bzw. Trockendampf durch die Oberflächen der Galetten und die darauf liegenden Spinnfäden hindurch geleitet sein.
  • Nach der Nachverstreckung können die Spinnfäden gecrimpt werden, da die natürliche Kräuselung der Spinnfäden aufgrund der Nachverstreckung wesentlich verringert ist. Dabei ist auch gleichzeitig mit dem Crimpen eine Behandlung mit Trockendampf möglich.
  • Zur Herstellung von Stapelfaser können die Spinnfäden schließlich geschnitten werden.
  • Im Folgenden wird die Erfindung anhand einer Ausführungsform und anhand von Versuchsergebnissen und Versuchsbeispielen mit Bezug auf die Zeichnungen genauer erläutert.
  • Es zeigen:
  • Fig. 1
    eine schematische Übersicht über eine Anlage zur Herstellung von nachverstreckten Lyocell-Fasem;
    Fig. 2
    eine Ausführungsform eines Mittels zur Nachverstreckung in einer schematischen Ansicht;
    Fig. 3
    eine weitere Ausführungsform eines Mittels zur Nachverstreckung in einer schematischen Ansicht.
  • Zunächst wird der Grundaufbau einer Anlage 1 zur Herstellung von Lyocell-Fasern anhand der schematischen Darstellung der Fig. 1 beschrieben. Die Anlage 1 der Fig. 1 dient zur Herstellung von Stapelfasern aus Lyocell.
  • Über ein Rohrleitungssystem 2 wird eine hochviskose Spinnlösung enthaltend Wasser, Cellulose und tertiäres Aminoxid, beispielsweise N-Methyl-Morpholin-N-Oxid, geleitet. Das Leitungssystem 2 ist modular aus Fluidleitungsstücken 2a vorbestimmter Länge aufgebaut, die über Normflansche 2b miteinander verbunden sind.
  • Die Fluidleitungsstücke 2a sind mit einer Innentemperierungseinrichtung 3 versehen, die anstelle der Kernströmung der Spinnlösung in den Fluidleitungsstücken 2 angebracht ist und durch die Temperatur der Spinnlösung im Rohrleitungssystem 2 geregelt wird.
  • Über zwischen zwei benachbarten Fluidleitungsstücken angeordnete Speisemodule 4 wird ein temperaturgeregeltes Fluid durch die Innentemperierungseinrichtung geleitet, wie durch die Pfeile 5 angedeutet ist. Die Speisemodule 4 weisen im wesentlichen die Abmessung der Normflansche auf und sind mit diesen verbindbar ausgestaltet.
    In vorbestimmten Abständen ersetzen ebenfalls durch zwischen den Fluidleitungsstücken 2a angeordnete Berstmodule 6 die Speisemodule 4. Die Berstmodule 6 weisen im wesentliechen dieselbe Ausgestaltung wie die Speisemodule 4 auf. Sie sind mit in der Fig. 1 nicht gezeigten Berstkörpem versehen, die bei Überschreiten eines vorbestimmten Druckes im Rohrleitungssystem 2, im Berstfall, brechen und eine Druckableitung nach außen ermöglichen. Der Berstfall kann insbesondere bei einer spontanen exothermen Reaktion der Spinnlösung aufgrund von Überalterung oder Überhitzung auftreten. Die im Berstfall nach außen tretende Spinnlösung wird in Auffangbehältern 7 aufgefangen, von wo sie recycelt oder entsorgt werden kann.
  • Durch das Rohrleitungssystem 2 wird die Spinnlösung bis zu einem Spinnkopf 8 geführt. Der Spinnkopf 8 ist mit einer Spinndüse 9 versehen, die eine große Anzahl von (nicht gezeigten) Extrusionsöffnungen, üblicherweise mehrere tausend Extrusionsöffnungen, aufweist. Durch die Extrusionsöffnungen wird die Spinnlösung zu Spinnfäden 10 extrudiert. Die Anordnung der Extrusionsöffnungen in der Spinndüse 9 kann kreisförmig, kreisringförmig oder rechteckig sein; im Folgenden wird lediglich beispielhaft auf eine rechteckige Anordnung Bezug genommen.
  • Damit an den Extrusionsöffnungen optimale Spinnbedingungen herrschen, können neben der Temperierungseinrichtung 3 im Rohrleitungssystem 2 weitere Einbauten vorgesehen sein, die, ebenfalls über die Normflansche, einfach mit den Fluidleitungsstücken 2a oder mit den Speisemodulen 4 oder Berstmodulen 6 verbunden werden können. So kann im Rohrleitungssystem 2 ein Druckausgleichsbehälter 11 a angeordnet sein, der Druckschwankungen und Volumenstromschwankungen der Spinnlösung in der Rohrleitung 2 über eine Änderung seines Innenvolumens ausgleicht und an den Extrusionsöffnungen des Spinnkopfes 8 einen gleichmäßigen Extrusionsdruck sicherstellt.
  • Ferner kann im Rohrleitungssystem 2 eine mechanische Filtereinrichtung 11b mit einem rückspülbaren Filterelement (nicht gezeigt) vorgesehen sein. Das Filterelement weist eine Feinheit zwischen 5 µm und 25 µm auf. Durch die Filtereinrichtung 11 b findet während des Transports der Spinnlösung eine kontinuierliche oder - unter Verwendung abwechselnd betriebener Zwischenspeicher (nicht gezeigt) - eine diskontinuierliche Filterung der Spinnlösung statt.
  • Die Extrusionsöffnungen grenzen an einen Luftspalt 12, den die frisch extrudierten Spinnfäden 10 durchqueren und in dem die Spinnfäden durch eine Zugspannung versteckt werden. In dem Luftspalt 12 ist ein Kühlgasstrom 13 auf die Spinnfäden 10 gerichtet, der von einer Beblasungseinrichtung 14 erzeugt wird. Temperatur, Feuchte und Zusammensetzung des Kühlgasstromes 13 können durch eine Klimatisierungseinrichtung 15 auf vorbestimmte oder variabel vorgebbare Werte geregelt werden.
  • Der Kühlgasstrom 13 wirkt in einem Abstand von der Spinndüse 9,auf die Spinnfäden 10 ein und weist eine Geschwindigkeitskomponente in Extrusionsrichtung E auf, so dass die Spinnfäden durch den Kühlgasstrom 13 mitverstreckt werden. Um einen guten Wärmetransport zu ermöglichen, ist der Kühlgasstrom 13 turbulent.
  • Nach Durchquerung des Luftspaltes 12 treten die Spinnfäden 10 in ein Fällbad 16 ein. Um eine Beunruhigung der Oberfläche des Fällbades 16 zu vermeiden, ist der Kühlgasstrom 13 ausreichend von der Oberfläche 17 des Fällbades beabstandet, so dass er nicht auf der Oberfläche auftrifft.
  • Im Fällbad 16 werden die Spinnfäden 10 durch ein im Wesentlichen walzenförmiges Umlenkorgan 18 zu einem Bündelungsorgan 19 oberhalb des Fällbades umgelenkt, so dass sie wieder durch die Fällbadoberfläche 17 treten. Das Umlenkorgan kann starr bzw. feststehend ausgebildet sein, oder sich mit den Fäden mitdrehen. Das Bündelungsorgan 19 ist drehbar angetrieben und übt als erstes Verstreckungsmittel über das Umlenkorgan 18 eine bis zu den Extrusionsöffnungen der Spinndüse 9 rückwirkende Zugspannung auf die Spinnfäden 10 aus, welche die Spinnfäden 10 verstreckt. Natürlich kann als Verstreckungsmittel auch das Umlenkorgan 18 angetrieben sein.
  • Um die Spinnfäden 10 möglichst schonend zu verstrecken, kann die Zugspannung auch lediglich durch den Kühlgasstrom 13 als erstem Verstreckungsmittel erzeugt werden. Dies hat den Vorteil, dass die Zugspannung durch eine verteilt auf die Oberfläche der Spinnfäden wirkende Reibspannung in die Spinnfäden 10 eingeleitet wird.
  • Vom Bündelungsorgan 19 werden die Spinnfäden 10 zu einem Fadenbündel 20 zusammengefasst. Anschließend werden die noch immer mit der Fällbadlösung 16 benetzten, zum Fadenbündel 20 zusammengefassten Spinnfäden 10 spannungslos auf einer Fördereinrichtung 21 abgelegt und auf dieser weitgehend zugspannungsfrei transportiert. Während des Transports der Spinnfäden auf der Fördereinrichtung 21 kann die vollständige oder nahezu vollständige Koagulation der Cellulose der Spinfäden unter möglichst geringem Spannungseinfluss stattfinden.
  • Die Fördereinrichtung 21 kann, wie in Fig. 1 gezeigt ist, als ein Vibrationsförderer ausgestaltet sein, der das Fadenbündel 20, oder gegebenenfalls mehrere Fadenbündel 20 gleichzeitig, durch Schwingungen in Förderrichtung F transportiert. Die Schwingungen der Fördereinrichtung 21 sind durch den Doppelpfeil 22 angedeutet. Durch die hin und her gehende Bewegung 21 wird das Spinnfadenbündel 20 geordnet auf der Fördereinrichtung abgelegt. Anstelle des Vibrationsförderers 22 können auch andere Fördereinrichtungen wie mehrere hintereinander angeordnete Galetten mit nahezu gleicher oder in Förderrichtung abnehmender Umfangsgeschwindigkeit eingesetzt werden.
  • Während des Transports auf der Fördereinrichtung 21 können verschiedene Behandlungen des Fadenbündels 20 erfolgen, beispielsweise kann das Fadenbündel 20 einmal oder mehrmals gewaschen, getrocknet und aviviert werden, beispielsweise durch eine Berieselungsanlage 23 aus der ein Behandlungsmedium 24 auf das Fadenbündel 20 gesprüht wird.
  • Das Fadenbündel 20 wird durch eine Galette 25 von der Fördereinrichtung 21 aufgenommen und einem zweiten Nachverstreckungsmittel 26 zugeführt, durch das die durchkoagulierten Spinnfäden 10 nachverstreckt werden.
  • Beim Ausführungsbeispiel der Fig. 1 findet die Nachverstreckung während einer gleichzeitigen Wärmebehandlung bzw. Trocknung in Form eines Spannungstrocknens statt, da hierdurch die mechanischen Eigenschaften der Spinnfäden 10 am günstigsten beeinflusst werden. Geringfügig schlechtere Eigenschaften, die sich jedoch immer noch gegenüber dem Stand der Technik auszeichnen, werden erreicht, wenn man auf die Wärmebehandlung während des Nachverstreckens verzichtet.
  • Das zweite Nachverstreckungsmittel 26 kann auch unmittelbar im Anschluss an das Bündelungsmittel 19 vorgesehen sein, also zwischen der Fördereinrichtung 21 und dem Fällbad 16, so dass erst die nachverstreckten Spinnfäden weiteren Behandlungsschritten unterworfen werden.
  • Zur Durchführung der Wärmebehandlung kann das Nachverstreckungsmittel 26 im Eintrittsbereich des Spinnfadens 20 eine Heizvorrichtung 27 aufweisen, welche das Spinnfadenbündel 20 auf eine vorbestimmte Temperatur bringt und gleichzeitig das Spinnfadenbündel 20 zumindest oberflächlich trocknet.
  • Im Nachverstreckungsmittel 26 werden die Spinnfäden über zwei Galetten 28, 29 geführt, die so angetrieben sind, dass das Spinnfadenbündel 20 zwischen ihnen mit einer vorbestimmten Nachverstreckungs-Zugspannung ZN beaufschlagt ist. Das mit dieser Zugspannung beaufschlagte Spinnfadenbündel wird auf einer vorbestimmten hohen Temperatur gehalten und kann während der Nachverstreckung insbesondere durch ein heißes Inertgas, wie Luft, oder auch durch Dampf, beispielsweise Trockendampf, und mit Quellmitteln oder anderen Mitteln zur chemischen Faserbehandlung imprägniert werden, wie durch die Pfeile 30 angedeutet ist. Um die Trocknungswirkung zu unterstützen, können die Galetten 28, 29 auch beheizt sein.
  • Das Spinnfadenbündel 20 weist aufgrund der Nachverstreckung eine gegenüber herkömmlichen Fasern verringerte Kräuselung auf, so dass es über eine Stuffer Box 31 gecrimpt wird. Anschließend wird das Faserbündel 20 durch eine Schneidvorrichtung 32 geschnitten. Falls eine Endlosfaser erzeugt werden soll, kann natürlich auf das Crimpen und/oder Schneiden verzichtet werden.
  • Nach dem Crimpen und Schneiden können die gecrimpten Stapelfasern in Wirrlage in Form eines gecrimpten Endloskabels 33 auf einer Fördereinrichtung 34 zu weiteren Verfahrensschritten transportiert werden.
  • In Fig. 2 ist eine Ausführungsform eines Nachverstreckungsmittels 26 schematisch gezeigt. Bei dieser Ausführungsform findet eine Nachverstreckung in Form eines Spannungstrocknens statt.
  • Wie bereits bei Fig. 1 beschrieben wurde, weist das Nachverstreckungsmittel 26 zwei Galetten 28, 29 auf, die so angetrieben werden, dass das Fadenbündel 20 zwischen ihnen mit einer vorbestimmten Zugspannung ZN von mindestens 0,8 cN/tex, vorzugsweise von mindestens 3,5 cN/tex gespannt bzw. gedehnt wird. Hierzu kann beispielsweise die in Förderrichtung F nachfolgende Galette 29 mit einer vorbestimmten, höheren Geschwindigkeit gedreht werden als die in Förderrichtung F davor liegende Galette 28; wobei zwischen der Galette 29 und dem um die Galette geschlungenen Fadenbündel 20 ein Schlupf herrschen kann, der im Wesentlichen die Zugspannung ZN bestimmt.
  • Zur Verstreckung des Fadenbündels 20 kann auch dessen Schrumpfung während des Trocknens ausgenutzt werden: Da sich das Fadenbündel während des Trocknungsprozesses verkürzt, findet eine Dehnung bzw. Nachverstreckung auch bereits dann statt, wenn diese Verkürzung nicht durch die Drehgeschwindigkeiten der Galetten 28, 29 ausgeglichen wird. Auf diese Weise kann eine Nachverstreckung auch erfolgen, wenn sich die Galetten 28, 29 mit im Wesentlichen gleicher oder nur geringfügig unterschiedlicher Geschwindigkeit drehen.
  • Eine oder beide Galetten 28, 29 können mit einer wenigstens gasdurchlässigen Oberfläche 30 versehen sein, durch die hindurch ein heißes Inertgas, Dampf oder Trockendampf aus dem Innenraum der Galette 28, 29 durch das um die Galette 28, 29 geschlungene Spinnfadenbündel 20 gedrückt wird.
  • Alternativ oder zusätzlich zu einer Umschlingung, wie sie in der Fig. 2 dargestellt ist, kann auch jeder Galette 28, 29 eine ebenfalls dampfdurchlässige, aktiv oder passiv mitdrehende Walze 28a, 29a in Gegenüberlage zugeordnet sein, wie schematisch in Fig. 3 dargestellt ist. Die Walzen 28a, 29a weisen ebenfalls durchlässige Oberflächen auf, durch die das Inertgas oder der Dampf abgesaugt wird. Anstelle von Walzen können auch große Trommeln vorgesehen sein.
  • Anstelle der Galetten 28, 29 können auch größere Trommeln oder Saugtrommeln mit perforierter Oberfläche verwendet werden, durch die das Heißgas abgesaugt wird.
  • Im Bereich zwischen den Galetten 28, 29 wird ebenfalls Heißluft oder ein anderes intertes Heißgas, Dampf bzw. Trockendampf durch Gas oder die Fadenbündel 20 geleitet. Die Wirksamkeit der Nachverstreckung wurde in einer Reihe von Versuchen nachgewiesen.
  • Die Versuche wurden an einem Fadenbündel aus 79.270 Einzelfäden und einem Gesamttiter von 110.978 dtex, entsprechend einem Einzeltiter von 1,4 dtex durchgeführt. Tabelle I gibt einen Überblick über die Versuchsergebnisse.
  • In einer ersten Versuchsreihe (Versuche 1 bis 7) wurde das Fadenbündel bei 73° C während 15 min unter verschiedenen Bedingungen getrocknet.
  • In Versuch 1 wurde das Fadenbündel ohne Spannung getrocknet.
  • In Versuch 2 wurde das Fadenbündel ohne Spannung getrocknet, wiederbefeuchtet und unter Spannung getrocknet. Dazu wurde das Fadenbündel durch zwei Ösen im Abstand von 50 cm geführt und war während des Trocknens an beiden Seiten mit jeweils 19 kg beschwert.
  • In Versuch 3 wurde das Fadenbündel ohne Spannung getrocknet, wiederbefeuchtet und unter Spannung getrocknet. Dazu wurde das Fadenbündel durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils 38 kg beschwert.
  • In Versuch 4 wurde das Fadenbündel zwischen zwei Klemmen im Abstand von 38 cm gespannt und anschließend getrocknet.
  • In Versuch 5 wurde das Fadenbündel feucht unter Spannung getrocknet. Das Fadenbündel wurde durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils einem Gewicht von 9 kg beschwert.
  • In Versuch 6 wurde das Fadenbündel feucht unter Spannung getrocknet. Das Fadenbündel wurde durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils einem Gewicht von 19 kg beschwert.
  • In Versuch 7 wurde das Fadenbündel feucht unter Spannung getrocknet. Das Fadenbündel wurde durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils einem Gewicht von 38 kg beschwert.
  • In einer zweiten Versuchsreihe wurde das Fadenbündel vor der Trocknung einer Be- , handlung mit Natronlauge (NaOH) unterzogen: Zunächst wurde das Spinnfadenbüdel mit 5 %-iger NaOH-Lösung 5 min behandelt und anschließend mit vollentionisiertem Wasser gewaschen. Die NaOH-Lösung wurde mit 1 %-iger Ameisensäure neutralisiert und wiederum mit vollentionisiertem Wasser gewaschen.
  • Das Spinnfadenbündel wurde dann im Trockner bei 73°C über 30 min getrocknet.
  • In Versuch 8 wurde das Fadenbündel ohne Spannung getrocknet.
  • In Versuch 9 wurde das Fadenbündel ohne Spannung getrocknet, wiederbefeuchtet und unter Spannung getrocknet. Dazu wurde das Fadenbündel durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils 19 kg beschwert.
  • In Versuch 10 wurde das Fadenbündel ohne Spannung getrocknet, wiederbefeuchtet und unter Spannung getrocknet. Dazu wurde das Fadenbündel durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils 38 kg beschwert.
  • In Versuch 11 wurde das Fadenbündel zwischen zwei Klemmen im Abstand von 38 cm gespannt und anschließend getrocknet.
  • In Versuch 12 wurde das Fadenbündel feucht unter Spannung getrocknet. Das Fadenbündel wurde durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils einem Gewicht von 9 kg beschwert.
  • In Versuch 13 wurde das Fadenbündel feucht unter Spannung getrocknet. Das Fadenbündel wurde durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils einem Gewicht von 19 kg beschwert.
  • In Versuch 14 wurde das Fadenbündel feucht unter Spannung getrocknet. Das Fadenbündel wurde durch zwei Ösen im Abstand von 50 cm geführt und an beiden Seiten mit jeweils einem Gewicht von 38 kg beschwert.
  • Bei den getrockneten Fadenbündeln wurden dann der Titer, die feinheitsbezogene Höchstzugkraft, die Höchstzugkraftdehnung, feinheitsbezogene Nass-Höchstzugkraft, die Nass-Höchstzugkraftdehnung, die feinheitsbezogene Schlingenhöchstzugkraft, der Nassmodul und die Nassscheuerzahl bestimmt. Dabei wurden nach folgenden Prüfvorschriften vorgegangen.
  • Der Titer wurde gemäß der DIN EN ISO 1973 bestimmt. Die (Nass-)Höchstzugkraft und die (Nass-)Höchstzugkraftdehnung wurden gemäß der DIN EN ISO 5079 bestimmt. Die Schlingenhöchstzugkraft wurde gemäß DIN 53843 Teil2 bestimmt.
  • Der Nassmodul wurde an einem Faserbündel bestimmt, das gemäß DIN EN 1973 verwendbar ist. Die Vorgehensweise richtet sich nach der Prüfvorschrift ASG N 211 der Alceru Schwarza GmbH. Die Versuche zur Bestimmung des Nassmoduls wurden an einer Zugprüfmaschine mit konstanter Dehnungsgeschwindigkeit und wegarmer elektronischer Kraftmessung durchgeführt. Die Einspannlänge des Fadenbündels betrug 10,0 mm ± 0,1 mm. Die feinheitsbezogene Vorspannkraft betrug bei einem Titer von über 2,4 dtex 2,5 mN/tex ± 0,5 mN/tex. Bei einem Titer bis 2,4 dtex wurde ein Vorspannmassestück von 50 mg verwendet. Die Dehnungsgeschwindigkeiten betrugen 2,5 mm/min bei einer mittleren Nass-Reißdehnung bis 10 %, 5,0 mm/min bei einer mittleren Nass-Reißdehnung von über 10 bis 2 % und 7,5 mm/min bei einer mittleren Nass-Reißdehnung von über 20 %.
  • Fünf Spinnfadenbündel wurden mindestens 10 sec in eine flache Schale mit Netzmittellösung eingelegt, wobei vorher das Vorspannmassestück an ein Ende eines jeden Spinnfadenbündels angeklemmt ist. Der jeweils am längsten eingelegte Prüfling wird aus der Schale entnommen und zum Zugversuch benutzt, nach jedem Versuch ist auch ein neuer Prüfling zum Netzen einzulegen.
  • Das einzuspannende Spinnfadenbündel wird mit seinem dem Vorspannmassenstück gegenüberliegenden Ende in die Zugprüfmaschine eingespannt, während die Vorspannung wirkt, anschließend wird die untere Einspannklemme geschlossen und das Tauchgefäß mit der Netzmittellösung wird so angehoben, dass der Flüssigkeitsspiegel soweit wie möglich an die obere Einspannklemme heranreicht, ohne sie jedoch zu berühren. Der Abstand zwischen den Einspannklemmen ist mit der oben angegebenen Dehnungsgeschwindigkeit stetig zu vergrößern, bis eine Dehnung von 5 % erreicht ist. I diesem Moment ist die Bewegung der unteren Klemme zu stoppen und die Nass-Zugkraft in mN bis auf eine Dezimale zu bestimmen.
  • Der Nassmodul M wird aus dem arithmetischen Mittelwert der Nass-Zugkraft F in Millinewton und der mittleren Feinheit T in tex der geprüften Spinnfasern berechnet und in Millinewton pro tex auf ganze Zahlen gerundet angegeben: M = F/(T · 0,05).
  • Die Nassscheueranzahl wurde mit einem Fasemassscheuerprüfgerät FNP der Firma SMK Präzisionsmechanik Gera GmbH bestimmt. Die Nassscheueranzahl ist die Anzahl der Umdrehungen der Scheuerwelle bis zum Bruch der unter definierter Vorspannung im Nassscheuerprüfgerät eingespannt Faser. Das Vorspanngewicht beträt bei einem Titer zwischen 1,2 bis 1,8 dtex 70 mg Die Drehzahl der Scheuerwelle betrug 400 U/min, der Umschlingungswinkel 45°. Die Scheuerwelle ist mit einem Gewebeschlauch versehen.
  • Aus den Versuchen gemäß Tabelle 1 ergibt sich eine überraschende Steigerung des Nassmoduls sowie der Nassscheueranzahl der nachverstreckten Fasern gegenüber den herkömmlichen, nicht nachverstreckten Fasern (Versuch 1). Bei spannungsfrei getrockneten Fadenbündeln, die anschließend wieder befeuchtet und unter Spannung getrocknet werden (Versuche 2, 3 und 9, 10) wird bei der Belastung mit 38 kg (entspricht 3,12 cN/tex) gegenüber der Belastung mit 19 kg (entspricht 1,6 cN/tex) eine Steigerung des Nassmoduls bei einem leichten Abfall der Nassscheuerzahl erreicht. Es lassen sich bei der starken Belastung höhere Nassmodule erreichen als bei den feucht unter Spannung getrockneten Fadenbündel der Versuche 5 bis 7 und 12 bis 14.
  • Die Höchstzugkraft, sowohl nass als auch trocken gemessen, ist gegenüber den nicht nachverstreckten Fasern nach Versuch 1 im Wesentlichen unverändert. Die verringerte Höchstzugkraftdehnung und die verringerte Schlingenhöchstzugkraft lassen in Verbindung mit dem Nassmodul und der Nassscheuerzahl darauf schließen, dass die nachverstreckten Fasern spröder und duktiler als die nicht nachverstreckten Fasern sind.
  • Folglich belegen die Versuche, dass durch das Nachverstrecken bzw. das Spannungstrocknen Fasern mit einer verbesserten Nassmodul und einer verbesserten Nassscheuerzahl erzeugt werden können.
    Figure imgb0001

Claims (17)

  1. Verfahren zum Herstellen von Lyocell-Fasern aus einer Spinnlösung enthaltend Wasser, Cellulose und tertiäres Aminoxid, wobei die folgenden Verfahrensschritte ausgeführt werden:
    - Extrudieren der Spinnlösung zu Spinnfäden (10),
    - Verstrecken der Spinnfäden (10),
    - Durchleiten der Spinnfäden durch ein Fällbad (16),
    gekennzeichnet durch folgenden Verfahrensschritt:
    - Nachverstrecken und gleichzeitiges Wärmebehandeln der verstreckten Spinnfäden (10) nach dem Durchleiten durch das Fällbad (16).
  2. Verfahren nach Anspruch 1, gekennzeichnet durch folgenden Verfahrensschritt:
    - Koagulieren der Cellulose der Spinnfäden (10) vor dem Verstrecken.
  3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch folgende Verfahrensschritte:
    - Nachverstrecken bei einer Zugspannung von mindestens 0,8 cN/tex.
  4. Verfahren nach Anspruch 3, gekennzeichnet durch folgenden Verfahrensschritt:
    - Nachverstrecken bei einer Zugspannung von mindestens 3,5 cN/tex.
  5. Verfahren nach einem der oben genannten Ansprüche, gekennzeichnet durch folgenden Verfahrensschritt:
    - Behandeln der Spinnfäden während der Wärmebehandlung mit heißem Inertgas.
  6. Verfahren nach einem der oben genannten Ansprüche, gekennzeichnet durch folgenden Verfahrensschritt:
    - Behandeln der Spinnfäden während der Wärmebehandlung mit Dampf.
  7. Verfahren nach einem der oben genannten Ansprüche, gekennzeichnet durch folgenden Verfahrensschritt:
    - Durchleiten der Spinnfäden (10) vor dem Fällbad (16) durch einen Luftspalt (12).
  8. Verfahren nach Anspruch 7, gekennzeichnet durch folgenden Verfahrensschritt:
    - Beblasen der Spinnfäden (10) in Luftspalt (12) mit einem Kühlgasstrom (13).
  9. Verfahren nach einem der oben genannten Ansprüche, gekennzeichnet durch folgenden Verfahrensschritt:
    - zugspannungsfreies Fördern der Spinnfäden zwischen der Verstreckung und der Nachverstreckung.
  10. Verfahren nach einem der oben genannten Ansprüche, gekennzeichnet durch folgenden Verfahrensschritt:
    - Crimpen der nachverstreckten Spinnfäden (10).
  11. Verfahren nach einem der oben genannten Ansprüche, gekennzeichnet durch folgenden Verfahrensschritt:
    - Schneiden der nachverstreckten Spinnfäden zu Stapelfaser.
  12. Vorrichtung (1) zur Herstellung von Spinnfäden (10) aus einer Spinnlösung enthaltend Cellulose, Wasser und tertiäres Aminoxid, mit einer Spinndüse (9), durch welche die Spinnlösung im Betrieb zu Spinnfäden (10) extrudierbar ist, mit einem Fällbad (16) mit einem Cellulose ausfällendem Fällmittel, durch das die Spinnfäden (10) im Betrieb geleitet sind, mit einem ersten Verstreckungsmittel (13, 18, 19), durch das die Spinnfäden im Betrieb verstreckbar sind, mit einem zweiten Verstreckungsmittel (28, 29), durch das die vom ersten Verstreckungsmittel (13, 18, 19) verstreckten Spinnfäden (10) im Betrieb nachverstreckbar sind, und mit einer im Bereich des zweiten Verstreckungsmittel (28, 29) angeordnete Heizvorrichtung (27, 30), durch die im Betrieb die Spinnfäden (10) während der Nachverstreckung aufheizbar sind, dadurch gekennzeichnet, dass die Spinnfäden (10) durch das erste Verstreckungsmittel (13, 18, 19) in einem Luftspalt (12) vor dem Eintritt in das Fällbad (16) verstreckbar sind.
  13. Lyocell-Faser, insbesondere hergestellt nach dem Verfahren gemäß einem der Ansprüche 1 bis 11, gekennzeichnet durch ein Nassmodul von wenigstens 250 cN/tex und durch eine Nassscheuerzahl pro 25 Fasern von wenigstens 18.
  14. Lyocell-Faser nach Anspruch 13, gekennzeichnet durch ein Nassmodul von wenigstens 300 cN/tex.
  15. Lyocell-Faser nach Anspruch 14, gekennzeichnet durch ein Nassmodul von wenigstens 350 cN/tex.
  16. Cellulosefasern nach einem der Ansprüche 13 bis 15, gekennzeichnet durch eine Nasszugkraftdehnung von höchstens 12 %.
  17. Cellulosefasern nach einem der Ansprüche 13 bis 16, gekennzeichnet durch eine Nassscheuerzahl pro 25 Fasern von wenigstens 25.
EP04710007A 2003-04-01 2004-02-11 Verfahren und vorrichtung zur herstellung nachverstreckter cellulose-spinnfäden Expired - Lifetime EP1608803B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10314878 2003-04-01
DE10314878A DE10314878A1 (de) 2003-04-01 2003-04-01 Verfahren und Vorrichtung zur Herstellung nachverstreckter Cellulose-Spinnfäden
PCT/EP2004/001268 WO2004088010A1 (de) 2003-04-01 2004-02-11 Verfahren und vorrichtung zur herstellung nachverstreckter cellulose-spinnfäden

Publications (2)

Publication Number Publication Date
EP1608803A1 EP1608803A1 (de) 2005-12-28
EP1608803B1 true EP1608803B1 (de) 2008-07-09

Family

ID=33038843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04710007A Expired - Lifetime EP1608803B1 (de) 2003-04-01 2004-02-11 Verfahren und vorrichtung zur herstellung nachverstreckter cellulose-spinnfäden

Country Status (10)

Country Link
US (1) US20060083918A1 (de)
EP (1) EP1608803B1 (de)
KR (1) KR100691913B1 (de)
CN (1) CN100410430C (de)
AT (1) ATE400677T1 (de)
BR (1) BRPI0409544B1 (de)
DE (2) DE10314878A1 (de)
TW (1) TWI278541B (de)
WO (1) WO2004088010A1 (de)
ZA (1) ZA200507946B (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200406A1 (de) * 2002-01-08 2003-07-24 Zimmer Ag Spinnvorrichtung und -verfahren mit turbulenter Kühlbeblasung
DE10200405A1 (de) 2002-01-08 2002-08-01 Zimmer Ag Spinnvorrichtung und -verfahren mit Kühlbeblasung
DE10204381A1 (de) 2002-01-28 2003-08-07 Zimmer Ag Ergonomische Spinnanlage
DE10206089A1 (de) 2002-02-13 2002-08-14 Zimmer Ag Bersteinsatz
DE10213007A1 (de) * 2002-03-22 2003-10-09 Zimmer Ag Verfahren und Vorrichtung zur Regelung des Raumklimas bei einem Spinnprozess
DE10223268B4 (de) * 2002-05-24 2006-06-01 Zimmer Ag Benetzungseinrichtung und Spinnanlage mit Benetzungseinrichtung
DE102004024029A1 (de) * 2004-05-13 2005-12-08 Zimmer Ag Lyocell-Verfahren und -Vorrichtung mit Steuerung des Metallionen-Gehalts
DE102004024030A1 (de) 2004-05-13 2005-12-08 Zimmer Ag Lyocell-Verfahren mit polymerisationsgradabhängiger Einstellung der Verarbeitungsdauer
DE102004024028B4 (de) * 2004-05-13 2010-04-08 Lenzing Ag Lyocell-Verfahren und -Vorrichtung mit Presswasserrückführung
DE102005024433A1 (de) * 2005-05-24 2006-02-16 Zimmer Ag Verfahren und Vorrichtung zum Schneiden von NMMO-haltigen Spinnfäden sowie für Zellulose-Stapelfasern
AT503803B1 (de) * 2006-06-14 2008-01-15 Chemiefaser Lenzing Ag Lyocell-stapelfaser
AT504144B1 (de) * 2006-08-17 2013-04-15 Chemiefaser Lenzing Ag Verfahren zur herstellung von zellulosefasern aus einer lösung von zellulose in einem tertiären aminoxid und vorrichtung zur durchführung des verfahrens
ES2434019T3 (es) * 2006-12-22 2013-12-13 Reifenhäuser GmbH & Co. KG Maschinenfabrik Procedimiento y dispositivo para la fabricación de una tela hilada por adhesión a partir de filamentos de celulosa
KR101205940B1 (ko) * 2007-06-11 2012-11-28 코오롱인더스트리 주식회사 라이오셀 번들 및 이를 포함하는 타이어 코드
AT505511B1 (de) * 2007-07-11 2014-03-15 Chemiefaser Lenzing Ag Füllfaser mit verbessertem öffnungsverhalten, verfahren zu deren herstellung und deren verwendung
PT2235240E (pt) * 2008-01-16 2012-05-18 Chemiefaser Lenzing Ag Mistura de fibras, fios e tecidos fabricados a partir da mesma
CN106894114A (zh) * 2017-04-18 2017-06-27 广东洪兴实业有限公司 一种具有服装用的高韧性天丝纤维的制备工艺
JP2020536186A (ja) * 2017-10-06 2020-12-10 レンチング アクチエンゲゼルシャフト 難燃性リヨセルフィラメント
EP3505659A1 (de) * 2018-08-30 2019-07-03 Aurotec GmbH Verfahren und vorrichtung zum filamentspinnen mit umlenkung
CN112442775A (zh) * 2019-09-02 2021-03-05 连津格股份公司 在莫代尔纺丝方法中施加拉伸
CN114351316B (zh) * 2022-01-13 2023-09-19 碧菲分离膜(大连)有限公司 一种纳米细菌纤维素超细纤维加工设备
CN115386991A (zh) * 2022-06-14 2022-11-25 青纺联(枣庄)纤维科技有限公司 一种仿麻型莱赛尔花式纱及其制备方法

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1655433A (en) * 1924-08-23 1928-01-10 Int Paper Co Vacuum relief means for water-pipe lines
US1765883A (en) * 1926-07-14 1930-06-24 Ruschke Ewald Safety device for boiler feed and delivery pipings
US2518827A (en) * 1945-02-23 1950-08-15 Dryco Corp Protected metal water confining means
US3061402A (en) * 1960-11-15 1962-10-30 Dow Chemical Co Wet spinning synthetic fibers
US3404698A (en) * 1965-05-26 1968-10-08 Navy Usa Fluid charging valve
IT987063B (it) * 1973-04-06 1975-02-20 Smia Viscosa Soc Nazionale Ind Macchina perfezionata per la fila tura ed il trattamento in continuo di filamenti e filati di rayon viscosa
FI752732A (de) * 1974-10-03 1976-04-04 Teijin Ltd
US3932576A (en) * 1974-12-23 1976-01-13 Concorde Fibers, Inc. Apparatus for and method of melt spinning
US4033742A (en) * 1976-02-13 1977-07-05 Kaiser Glass Fiber Corporation Method for producing glass fibers
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
US4416698A (en) * 1977-07-26 1983-11-22 Akzona Incorporated Shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent and a process for making the article
US4144080A (en) * 1977-07-26 1979-03-13 Akzona Incorporated Process for making amine oxide solution of cellulose
US4142913A (en) * 1977-07-26 1979-03-06 Akzona Incorporated Process for making a precursor of a solution of cellulose
US4211574A (en) * 1977-07-26 1980-07-08 Akzona Incorporated Process for making a solid impregnated precursor of a solution of cellulose
US4219040A (en) * 1978-02-15 1980-08-26 Draft Systems, Inc. Rupture disc safety valve
US4193962A (en) * 1978-08-11 1980-03-18 Kling-Tecs, Inc. Melt spinning process
US4477951A (en) * 1978-12-15 1984-10-23 Fiber Associates, Inc. Viscose rayon spinning machine
US4263929A (en) * 1979-01-08 1981-04-28 Kearney John G Electropneumatic pressure relief indicator
US4261941A (en) * 1979-06-26 1981-04-14 Union Carbide Corporation Process for preparing zeolite-containing detergent agglomerates
US4261943A (en) * 1979-07-02 1981-04-14 Akzona Incorporated Process for surface treating cellulose products
US4425293A (en) * 1982-03-18 1984-01-10 E. I. Du Pont De Nemours And Company Preparation of amorphous ultra-high-speed-spun polyethylene terephthalate yarn for texturing
US4713290A (en) * 1982-09-30 1987-12-15 Allied Corporation High strength and modulus polyvinyl alcohol fibers and method of their preparation
US4529368A (en) * 1983-12-27 1985-07-16 E. I. Du Pont De Nemours & Company Apparatus for quenching melt-spun filaments
US4869860A (en) * 1984-08-09 1989-09-26 E. I. Du Pont De Nemours And Company Spinning process for aromatic polyamide filaments
JPH0376822A (ja) * 1989-03-17 1991-04-02 Toray Ind Inc アクリル系耐炎化繊維の製造方法
AT395863B (de) * 1991-01-09 1993-03-25 Chemiefaser Lenzing Ag Verfahren zur herstellung eines cellulosischen formkoerpers
AT395862B (de) * 1991-01-09 1993-03-25 Chemiefaser Lenzing Ag Verfahren zur herstellung eines cellulosischen formkoerpers
US5191990A (en) * 1991-06-24 1993-03-09 Bs&B Safety Systems, Inc. Flash gas venting and flame arresting apparatus
JP3076822B2 (ja) * 1991-07-18 2000-08-14 ウェルファイド株式会社 イソチオシアン酸アリル噴霧剤
US5658524A (en) * 1992-01-17 1997-08-19 Viskase Corporation Cellulose article manufacturing method
US5275545A (en) * 1992-02-26 1994-01-04 Kabushiki Kaisha San-Al Vacuum cast molding apparatus
ATA53792A (de) * 1992-03-17 1995-02-15 Chemiefaser Lenzing Ag Verfahren zur herstellung cellulosischer formkörper, vorrichtung zur durchführung des verfahrens sowie verwendung einer spinnvorrichtung
US5262099A (en) * 1992-04-01 1993-11-16 E. I. Du Pont De Nemours And Company Process of making high tenacity polyamide monofilaments
DE4312219C2 (de) * 1993-04-14 2002-05-08 Thueringisches Inst Textil Verfahren zur Reduzierung der Fibrillierbarkeit von lösungsgesponnenen Cellulosefasern
TR28441A (tr) * 1993-05-24 1996-07-04 Courtaulds Fibres Holdings Ltd Liyosel filamentlerinin pihtilastirilmasinda kullanilabilen egirme hücreleri.
US5362430A (en) * 1993-07-16 1994-11-08 E. I. Du Pont De Nemours And Company Aqueous-quench spinning of polyamides
AT403584B (de) * 1993-09-13 1998-03-25 Chemiefaser Lenzing Ag Verfahren und vorrichtung zur herstellung cellulosischer flach- oder schlauchfolien
DE4336097A1 (de) * 1993-10-22 1995-04-27 Bayer Ag Kontinuierliches Verfahren zum Schmelzspinnen von monofilen Fäden
DE4444140A1 (de) * 1994-12-12 1996-06-13 Akzo Nobel Nv Lösungsmittelgesponnene cellulosische Filamente
US5984655A (en) * 1994-12-22 1999-11-16 Lenzing Aktiengesellschaft Spinning process and apparatus
DE19511151A1 (de) * 1995-03-27 1996-10-02 Alfred Steinforth Verfahren und Vorrichtung zum multifilen Spinnen semipermiabeler Hohlfäden aus Cellulose
DE19512053C1 (de) * 1995-03-31 1996-10-24 Akzo Nobel Nv Verfahren zum Herstellen von cellulosischen Fasern
DE19600090A1 (de) * 1996-01-03 1997-07-10 Bayer Faser Gmbh Verfahren und Vorrichtung zur Herstellung von schmelzgesponnenen Monofilen
US6173767B1 (en) * 1996-10-11 2001-01-16 Sgcm Partnership, L.P. Pressure release device for cooling coils
DE19753806A1 (de) * 1996-12-12 1998-06-18 Barmag Barmer Maschf Verfahren und Vorrichtung zum kontinuierlichen Herstellen von einem Viskose-Faden
DE19721609A1 (de) * 1997-05-23 1998-11-26 Zimmer Ag Verfahren und Vorrichtung zum Verspinnen von Cellulosecarbamat-Lösungen
AT406386B (de) * 1998-07-28 2000-04-25 Chemiefaser Lenzing Ag Verfahren und vorrichtung zur herstellung cellulosischer formkörper
US6117379A (en) * 1998-07-29 2000-09-12 Kimberly-Clark Worldwide, Inc. Method and apparatus for improved quenching of nonwoven filaments
US6692687B2 (en) * 2000-01-20 2004-02-17 E. I. Du Pont De Nemours And Company Method for high-speed spinning of bicomponent fibers
DE10005163A1 (de) * 2000-02-08 2001-08-16 Thueringisches Inst Textil Verfahren zur Herstellung und Verarbeitung einer Celluloselösung
DE10016307C2 (de) * 2000-03-31 2002-05-08 Thueringisches Inst Textil Verfahren zur Herstellung und Verarbeitung einer Celluloselösung
DE10200406A1 (de) * 2002-01-08 2003-07-24 Zimmer Ag Spinnvorrichtung und -verfahren mit turbulenter Kühlbeblasung
DE10200405A1 (de) * 2002-01-08 2002-08-01 Zimmer Ag Spinnvorrichtung und -verfahren mit Kühlbeblasung
DE10204381A1 (de) * 2002-01-28 2003-08-07 Zimmer Ag Ergonomische Spinnanlage
US6890435B2 (en) * 2002-01-28 2005-05-10 Koch Membrane Systems Hollow fiber microfiltration membranes and a method of making these membranes
DE10206089A1 (de) * 2002-02-13 2002-08-14 Zimmer Ag Bersteinsatz
DE10213007A1 (de) * 2002-03-22 2003-10-09 Zimmer Ag Verfahren und Vorrichtung zur Regelung des Raumklimas bei einem Spinnprozess
DE10223268B4 (de) * 2002-05-24 2006-06-01 Zimmer Ag Benetzungseinrichtung und Spinnanlage mit Benetzungseinrichtung

Also Published As

Publication number Publication date
CN1774527A (zh) 2006-05-17
BRPI0409544B1 (pt) 2014-07-22
TW200422447A (en) 2004-11-01
DE502004007553D1 (de) 2008-08-21
ZA200507946B (en) 2009-01-28
US20060083918A1 (en) 2006-04-20
KR20050119675A (ko) 2005-12-21
BRPI0409544A (pt) 2006-04-18
CN100410430C (zh) 2008-08-13
TWI278541B (en) 2007-04-11
EP1608803A1 (de) 2005-12-28
WO2004088010A1 (de) 2004-10-14
DE10314878A1 (de) 2004-10-28
KR100691913B1 (ko) 2007-03-09
ATE400677T1 (de) 2008-07-15

Similar Documents

Publication Publication Date Title
EP1608803B1 (de) Verfahren und vorrichtung zur herstellung nachverstreckter cellulose-spinnfäden
EP0494852B1 (de) Verfahren zur Herstellung eines cellulosischen Formkörpers
EP0574870A1 (de) Verfahren zur Herstellung von Cellulose-Formkörpern
WO2006125484A1 (de) Verfahren und vorrichtung zum schneiden von nmmo-haltigen spinnfäden sowie für zellulose-stapelfasern
DE2801164C2 (de)
EP0797696B1 (de) Verfahren zur herstellung cellulosischer fasern
EP1315856B1 (de) Verfahren zur herstellung von cellulosefasern und cellulose-filamentgarnen
EP1280946B1 (de) Verfahren und vorrichtung zur zugspannungsfreien förderung von endlosformkörpern
EP1520065B1 (de) Verfahren und vorrichtung zum schmelzspinnen und zerschneiden eines spinnkabels
DE10132214A1 (de) Verfahren und Vorrichtung zum Behandeln einer Fasermasse
AT405531B (de) Verfahren zur herstellung cellulosischer fasern
EP3844328B1 (de) Verfahren und vorrichtung zum filamentspinnen mit umlenkung
DE102010047703A1 (de) Verfahren und Vorrichtung zum Schmelzspinnen, Behandeln und Aufwickeln eines synthetischen Fadens
EP1352114A1 (de) Verfahren zum spinnstrecken von schmelzgesponnenen garnen
WO2019034488A1 (de) Verfahren und vorrichtung zur herstellung eines multifilen vollverstreckten fadens aus einer polyamidschmelze
EP1268888B1 (de) Verfahren und vorrichtung zur herstellung von cellulosefasern und cellulosefilamentgarnen
DE3036683C2 (de) Verfahren zum Schmelzspinnen von synthetischen Polymeren
DE1286684B (de) Verfahren zur Herstellung von Faeden, Fasern oder Folien durch Nass- oder Trockenverspinnen einer Acrylnitrilpolymerisatmischung
DE10062083B4 (de) Verfahren zur Herstellung von Celluloseendlosformkörpern
DE102016217048B4 (de) Verfahren zu Herstellung von Cellulose-Filamenten, damit hergestellte Spinnvliese sowie deren Verwendung
DE1760755C3 (de) Verfahren zum Kräuseln von Fadenkabeln
EP0519927A1 (de) Verfahren zur herstellung eines präadhärisierten polyesterfilaments und reifenkord aus diesem polyesterfilament
DE1660373A1 (de) Schmelzspinnverfahren zur Herstellung von fadenfoermigen Materialien
DE1760755B2 (de) Verfahren zum kraeuseln von fadenkabeln
WO2006048035A1 (de) Verfahren und vorrichtung zum spinnen und texturieren eines synthetischen fadens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004007553

Country of ref document: DE

Date of ref document: 20080821

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090219

Year of fee payment: 6

26N No opposition filed

Effective date: 20090414

BERE Be: lapsed

Owner name: ZIMMER A.G.

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20090128

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100211