EP1584699A1 - Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure - Google Patents

Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure Download PDF

Info

Publication number
EP1584699A1
EP1584699A1 EP03780915A EP03780915A EP1584699A1 EP 1584699 A1 EP1584699 A1 EP 1584699A1 EP 03780915 A EP03780915 A EP 03780915A EP 03780915 A EP03780915 A EP 03780915A EP 1584699 A1 EP1584699 A1 EP 1584699A1
Authority
EP
European Patent Office
Prior art keywords
steel
tempering
carbon dioxide
content
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03780915A
Other languages
German (de)
English (en)
Other versions
EP1584699A4 (fr
Inventor
Hideki Sumitomo Metal Industries Ltd. TAKABE
Masakatsu Sumitomo Metal Industries Ltd. UEDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of EP1584699A1 publication Critical patent/EP1584699A1/fr
Publication of EP1584699A4 publication Critical patent/EP1584699A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel material suitable for its use in severe corrosion environment containing corrosive materials such as carbon dioxide gas, hydrogen sulfide, chlorine ions and the like.
  • the present invention relates to a steel material for a seamless steel tube and a seam welded steel tube such as an electric resistance welding steel tube, a laser welding steel tube, a spiral welding tube or the like, which is used in applications for petroleum or natural gas production facilities, facilities for eliminating carbon dioxide gas, or for geo-thermal power generation, or for a tank for liquid containing carbon dioxide gas, especially to a steel material for oil well tubes for oil wells or gas wells.
  • the SUS 420 steel has excellent corrosion resistance to carbon dioxide gas, it has poor corrosion resistance to hydrogen sulfide. Thus, the SUS 420 steel is liable to generate sulfide stress-corrosion cracking (SSCC) under the environment containing carbon dioxide gas and hydrogen sulfide simultaneously. Therefore various steel materials in place of the SUS 420 steel have been proposed.
  • SSCC sulfide stress-corrosion cracking
  • Japanese Patent No. 2861024, Japanese Patent Application Publication No. 05-287455, and Japanese Patent Application Publication No. 07-62499 disclose steel having improved corrosion resistance by reducing carbon content of the SUS 420.
  • such a low carbon-content steel described in these publications may not have the enough strength required for use in a deep well, that is proof stress of 860 MPa or more.
  • Japanese Patent Appilcation Publication No. 2000-192196 discloses steel of a martensitic single phase structure containing Co: 0.5 - 7 % and Mo: 3.1 - 7 % having high strength and excellent sulfide stress-corrosion cracking resistance.
  • the invention described in the publication is a steel containing Co in the above-mentioned range to suppress the generation of retained austenite during cooling so that the structure is made to be a martensitic single phase.
  • Co is an expensive element, it is desirable not to use.
  • the present invention was made in consideration of the above-mentioned circumstances.
  • the object of the present invention is to provide a martensitic stainless steel having sufficient strength to use for oil well tubes for a deep well, that is high strength of a proof stress of 860 MPa or more, and excellent carbon dioxide gas corrosion resistance and sulfide stress-corrosion cracking resistance whereby it can be used even under the environment containing carbon dioxide gas, hydrogen sulfide or chlorine ions or two or more of them.
  • the symbols of the respective elements in the following expression show the content (mass %) of each element.
  • the gist of the present invention is high strength martensitic stainless steels described in the following (a) and (b).
  • FIG. 1 is a view showing relationships between Mo contents of various types of steels tested in examples and the right side in the expression (1), that is "2.3 - 0.89 Si + 32. 2 C" (IM value).
  • FIG. 2 is a view for explaining tempering conditions defined in the present invention, which shows relationships between 0.2 % proof stress obtained by changing values of (20 + log t)(T + 273) while changing tempering temperatures in 400 - 650 °C after quenching steel at 920 °C, and the (20 + log t)(T + 273).
  • C carbon
  • C is an effective alloying element to enhance strength of steel
  • small C content is preferable.
  • the content of C is less than 0.005%, proof stress does not reach 860 Mpa or more.
  • the lower limit of the C content was set to 0.005 %.
  • the C content exceeds 0.04 %, the hardness of the tempered steel becomes hard excessively, the steel has high sulfide stress-corrosion cracking sensibility. Accordingly, the C content was set to 0.005 - 0.04 %.
  • Si is an alloying element necessary as a deoxidizer.
  • An amount of Si retained in the steel may be a level of impurities.
  • the Si content is set to 0.01 % or more.
  • the Si content exceeds 0.5 %, the toughness of the steel is decreased and the workability of the steel is also decreased. Accordingly, the Si content was set to 0.5 % or less.
  • Mn Manganese
  • Mn content 0.1 % or more is needed.
  • the Mn content exceeds 3.0 %, the effect is saturated resulting in an increase in cost. Accordingly, the Mn content was set to 0.1- 3.0 %.
  • P Phosphorus
  • the P content is better as low as possible. Particularly, if the P content exceeds 0.04 %, the sulfide stress-corrosion cracking resistance is remarkably decreased. Accordingly, the P content was set to 0.04 % or less.
  • S is an impurity element contained in the steel and the S content is better as low as possible. Particularly, if the S content exceeds 0.01 %, the hot workability, corrosion resistance and toughness are remarkably decreased. Accordingly, the S content was set to 0.01 % or less.
  • Cr Chromium
  • Cr Chromium
  • Ni Ni (Nickel) is an alloying element, which is necessary for making the microstructure of tempered steel a martensite phase mainly.
  • the Ni content is 4.0 % or less, a number of ferrite phases were precipitated in the microstructure of tempered steel and the microstructure of tempered steel does not become a martensite phase mainly.
  • the Ni content exceeds 8 %, the microstructure of tempered steel becomes an austenite phase mainly. Accordingly, the Ni content was set to 4.0 - 8 %. More preferably the Ni content was set to 4 - 7 %.
  • Mo Mo
  • Mo Mo
  • Mo Mo
  • Al is an alloying element, which is used as a deoxidizer in a melting process. To obtain this effect Al content of 0.001 % or more is needed. However, if the Al content exceeds 0.10 %, many inclusions are formed in the steel so that the corrosion resistance is lost. Accordingly, the Al content was set to 0.001 - 0.10 %.
  • N is an impurity element contained in the steel and the N content is better as low as possible. Particularly, if the N content exceeds 0.07 %, many inclusions are formed so that the corrosion resistance is lost. Accordingly, the N content was set to 0.07 % or less.
  • One of martensitic stainless steels according to the present invention consists the above-mentioned chemical composition as well as the balance Fe and indispensable impurities.
  • Another martensitic stainless steel according to the present invention further contains, in addition to the above-mentioned components, at least one alloying element selected from at least one group consisting of a first group, a second group and a third group shown as follows. The components (elements) of the respective groups will be described below.
  • one or more selected from these elements may be optionally contained. However, if any one of the elements is less than 0.005%, the above-mentioned effect cannot be obtained. On the other hand, if any one of the elements exceeds 0.25 %, the microstructure of the steel cannot become a martensite phase mainly so that highly strengthening of the steel with a proof stress of 860 MPa or more cannot be attained. Accordingly, the respective contents in selectively containing these elements were set to 0.005 - 0.25 %.
  • Cu is an effective element to make the microstructure of tempered steel a martensite phase mainly like Ni.
  • the Cu content may be 0.05 % or more. However, if the Cu content exceeds 1 %, the hot workability of the steel is lowered. Accordingly, when Cu is contained in the steel the Cu content was set to 0.05 - 1 %.
  • Ca, Mg, La and Ce are effective elements to enhance the hot workability of the steel, one or more selected from these elements may be optionally contained. However, if any one of the elements is less than 0.0002 %, the above-mentioned effect cannot be obtained. On the other hand, if any one of the elements exceeds 0.005 %, coarse oxide is formed in the steel whereby the corrosion resistance of the steel is decreased. Accordingly, the respective contents in selectively containing these elements were set to 0.0002 - 0.005 %. Particularly, it is preferred to contain Ca and/or La in the steel.
  • the steel according to the present invention should have the above-mentioned chemical composition and satisfy the following expression (1). This is because, if the steel satisfies the expression (1), strength of the steel can be enhanced to proof stress of 860 MPa or more without deteriorating sulfide stress-corrosion cracking resistance. Mo ⁇ 2.3 - 0.89 Si + 32.2 C wherein the symbols of the respective elements in the expression (1) show the content (mass %) of each element.
  • FIG. 1 is a view showing relationships between Mo contents of various types of steels tested in examples, which will be described later, and the right side in the expression (1), that is "2.3 - 0.89 Si + 32.2 C” (IM value).
  • the results shown in FIG. 1 are based on steels of the present invention and comparative steels (test Nos. 18 - 21).
  • the mark “o” shows an example that did not generate rupture in a sulfide stress-corrosion cracking test, and the mark “x” shows an example that generated rupture therein. Even if the Mo content exceeds 2.8 %, if the Mo content does not satisfy the expression (1), the steel has a poor sulfide stress-corrosion cracking resistance.
  • the 0.2 % proof stress of the steel is less than 860 MPa. Further, even if Mo content is in a range (that is 2.8 - 5 %) defined in the present invention, if the Mo content does not satisfy the above-mentioned expression (1), the 0.2 % proof stress of the steel is less than 860 MPa.
  • the steel according to the present invention should be in a range of said chemical composition and satisfy the above-mentioned expression (1).
  • the present inventors have checked the influences of microstructure. As a result the present inventors have found that if the microstructure is a structure mainly comprising tempered martensite, carbide precipitated during tempering, and intermetallic compounds such as Laves phase, ⁇ phase and the like finely precipitated during tempering, the strength of the steel can be enhanced without deteriorating sulfide stress-corrosion cracking resistance.
  • tempered martensite means that a 70 vol % or more of the microstructure of the steel is a tempered martensitic structure, and a retained austenitic structure and/or a ferritic structure other than a tempered martensitic structure may be present.
  • intermetallic compounds such as Laves phase, ⁇ phase and the like
  • the microstructure of the steel according to the present invention contains carbide precipitated during tempering.
  • carbide is an effective microstructure to ensure the strength of the steel, high strength of proof stress of 860 MPa or more cannot be realized by only carbide contained in the steel. Accordingly, in the present invention precipitation of carbide as well as fine precipitation of intermetallic compounds such as the above-mentioned Laves phase, ⁇ phase and the like are needed.
  • Heat treatment for the steel of the present invention is typical quenching-tempering. To precipitate fine intermetallic compounds during tempering it is necessary to sufficiently dissolve the intermetallic compounds during quenching.
  • the quenching temperature is preferably 880 - 1000 °C.
  • conditions in which intermetallic compounds such as a fine Laves phase, ⁇ phase and the like are precipitated and 0.2 % proof stress of 860 MPa or more can be obtained resides in a case where when a temperature range for tempering is 450 - 620 °C, as well as the tempering temperature is set to T(°C) and the tempering time is set to t (hour), (20 + log t)(T + 273) can satisfy 13500 - 17700.
  • FIG. 2 is a view for explaining tempering conditions defined in the present invention.
  • FIG. 2 shows relationships between 0.2 % proof stress obtained by changing values of (20 + log t)(T + 273) while changing tempering temperatures in 400 - 650 °C after quenching steel at 920 °C, and the (20 + log t)(T + 273).
  • the steel of the present invention should have the above-mentioned chemical compositions and satisfy the expression (1) and the microstructure of the steel should be mainly comprising tempered martensite, carbide precipitated during tempering, and intermetallic compounds such as a Laves phase, ⁇ phase and the like finely precipitated during tempering.
  • test pieces each having a thickness of 3 mm, a width of 20 mm and a length of 50 mm were taken from the respective testing steel plates and these testing pieces were polished with a No. 600 emery paper and degreased and dried. Then the obtained testing pieces were immersed into 25% NaCl water solution saturated with 0.973 MPa CO 2 gas and 0.0014 MPa H 2 S gas (temperature: 165 °C) for 720 hours.
  • the corrosion rate of the steel according to the present invention is 0.5 mm/year or less, and no local corrosion on its surface could be found.
  • examples Nos. 1 to 17 of the present invention each have 0.2 % proof stress of 860 MPa or more and excellent carbon dioxide gas corrosion resistance and sulfide stress-corrosion cracking resistance.
  • the martensitic stainless steel according to the present invention can have high strength of 0.2 % proof stress of 860 MPa or more and excellent carbon dioxide gas corrosion resistance and sulfide stress-corrosion cracking resistance by limiting the steel composition of specified elements and defining Mo content in the steel by relationships with IM values as well as by forming microstructure of the steel with tempered martensite mainly, carbide precipitated during tempering, and intermetallic compounds such as a Laves phase, a ⁇ phase and the like.
  • the martensitic stainless steels of the present invention can be applied to practical steels, which can be widely used in oil well tubes and the like under environment including carbon dioxide gas, hydrogen sulfide, chlorine ions or two or more of them, in wide fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
EP03780915A 2002-12-20 2003-12-18 Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure Withdrawn EP1584699A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002369595 2002-12-20
JP2002369595 2002-12-20
PCT/JP2003/016288 WO2004057050A1 (fr) 2002-12-20 2003-12-18 Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure

Publications (2)

Publication Number Publication Date
EP1584699A1 true EP1584699A1 (fr) 2005-10-12
EP1584699A4 EP1584699A4 (fr) 2009-06-03

Family

ID=32677145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03780915A Withdrawn EP1584699A4 (fr) 2002-12-20 2003-12-18 Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure

Country Status (12)

Country Link
US (1) US20050224143A1 (fr)
EP (1) EP1584699A4 (fr)
JP (1) JP4428237B2 (fr)
CN (1) CN100368579C (fr)
AR (1) AR042494A1 (fr)
AU (1) AU2003289437B2 (fr)
BR (1) BRPI0317550B1 (fr)
CA (1) CA2509581C (fr)
MX (1) MXPA05006562A (fr)
NO (1) NO337858B1 (fr)
RU (1) RU2307876C2 (fr)
WO (1) WO2004057050A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826285A1 (fr) * 2004-11-19 2007-08-29 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique
EP2172573A1 (fr) * 2007-06-29 2010-04-07 JFE Steel Corporation Tuyau sans soudure en acier inoxydable martensitique pour tuyau de puits de pétrole et son procédé de production
CN102866172A (zh) * 2012-08-31 2013-01-09 广东电网公司电力科学研究院 一种T/P92钢Laves相含量测定方法
EP2060644A4 (fr) * 2006-08-22 2016-02-17 Nippon Steel & Sumitomo Metal Corp Acier inoxydable martensitique
EP2927337A4 (fr) * 2012-09-27 2016-06-22 Hitachi Metals Ltd Acier martensitique de type à durcissement par précipitation et son procédé de fabrication
EP3604591A4 (fr) * 2017-03-28 2020-09-02 Nippon Steel Corporation Matériau en acier inoxydable martensitique
US10837073B2 (en) 2015-02-20 2020-11-17 Jfe Steel Corporation High-strength heavy-walled stainless steel seamless tube or pipe and method of manufacturing the same

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0609856A2 (pt) * 2005-04-28 2010-05-11 Jfe Steel Corp tubo de aço inoxidável tendo excelente capacidade de dilatação para produtos tubulares para campos petrolìferos
CN100453685C (zh) * 2006-07-11 2009-01-21 无锡西姆莱斯石油专用管制造有限公司 高Cr系不锈钢无缝油井管及其生产方法
BRPI0715094B1 (pt) 2006-08-31 2018-09-11 Nippon Steel & Sumitomo Metal Corp aço inoxidável martensítico para estruturas soldadas
JP4951564B2 (ja) 2008-03-25 2012-06-13 住友化学株式会社 再生硫黄回収装置
JP4577457B2 (ja) * 2008-03-28 2010-11-10 住友金属工業株式会社 油井管に用いられるステンレス鋼
US20110132501A1 (en) * 2008-09-04 2011-06-09 Jfe Steel Corporation Martensitic stainless steel seamless tube for oil country tubular goods and manufacturing method thereof
AR073884A1 (es) 2008-10-30 2010-12-09 Sumitomo Metal Ind Tubo de acero inoxidable de alta resistencia excelente en resistencia a la fisuracion bajo tension por sulfuros y a la corrosion de gas de acido carbonico en alta temperatura.
AR076669A1 (es) * 2009-05-18 2011-06-29 Sumitomo Metal Ind Acero inoxidable para pozos de petroleo, tubo de acero inoxidable para pozos de petroleo, y metodo de fabricacion de acero inoxidable para pozos de petroleo
AU2011246246B2 (en) * 2010-04-28 2013-09-05 Nippon Steel Corporation High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
IT1403689B1 (it) * 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri.
CN102534418A (zh) * 2012-02-29 2012-07-04 宝山钢铁股份有限公司 一种油套管用马氏体不锈钢及其制造方法
MX354334B (es) * 2012-03-26 2018-02-26 Nippon Steel & Sumitomo Metal Corp Acero inoxidable para pozos de petróleo y tuberías de acero inoxidable para pozos de petróleo.
BR102014005015A8 (pt) * 2014-02-28 2017-12-26 Villares Metals S/A aço inoxidável martensítico-ferrítico, produto manufaturado, processo para a produção de peças ou barras forjadas ou laminadas de aço inoxidável martensítico-ferrítico e processo para a produção de tudo sem costura de aço inoxidável martensítico-ferrítico
WO2016001705A1 (fr) 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier à haute résistance présentant une aptitude au formage et une ductilité améliorées, et tôle ainsi obtenue
WO2016001703A1 (fr) 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier à haute résistance et tôle obtenue par le procédé
WO2017200083A1 (fr) * 2016-05-20 2017-11-23 新日鐵住金株式会社 Barre d'acier pour élément de fond de trou et élément de fond de trou
CN105755393A (zh) * 2016-05-24 2016-07-13 江苏金基特钢有限公司 石油管道专用钢材及其制备方法
CN106399862B (zh) * 2016-09-28 2017-12-29 睿智钢业有限公司 一种高强防腐钢材及其制备方法和应用
BR112019007842B1 (pt) * 2016-10-25 2023-03-14 Jfe Steel Corporation Tubo sem costura de aço inoxidável martensítico para produtos tubulares do setor petrolífero e seu método de produção
RU2650353C1 (ru) * 2017-09-18 2018-04-11 Юлия Алексеевна Щепочкина Сталь
MX2020002836A (es) 2017-09-29 2020-07-22 Jfe Steel Corp Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo.
WO2019065116A1 (fr) 2017-09-29 2019-04-04 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable à base de martensite pour tubage de puits de pétrole, et procédé de fabrication de celui-ci
WO2019065115A1 (fr) 2017-09-29 2019-04-04 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable à base de martensite pour tubage de puits de pétrole, et procédé de fabrication de celui-ci
RU2659530C1 (ru) * 2017-11-27 2018-07-02 Юлия Алексеевна Щепочкина Сталь для изготовления ювелирных изделий
US11773461B2 (en) 2018-05-25 2023-10-03 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP6680409B1 (ja) 2018-05-25 2020-04-15 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
AR116495A1 (es) 2018-09-27 2021-05-12 Nippon Steel Corp Material de acero inoxidable martensítico
MX2021005256A (es) 2018-11-05 2021-06-18 Jfe Steel Corp Tubos de acero inoxidable martensitico sin costuras para productos tubulares para petroliferos y metodo para fabricar los mismos.
CN111793773B (zh) * 2019-08-09 2021-10-12 中南大学 一种通过Laves相及μ相复合强硬化的高速钢及其制备方法
EP4130317A4 (fr) * 2020-04-01 2023-05-17 Nippon Steel Corporation Matériau en acier

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243740A (ja) * 1989-03-15 1990-09-27 Sumitomo Metal Ind Ltd 油井用マルテンサイト系ステンレス鋼材とその製造方法
JPH03120337A (ja) * 1989-10-03 1991-05-22 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼と製造方法
JPH05156409A (ja) * 1991-11-29 1993-06-22 Nippon Steel Corp 耐海水性に優れた高強度マルテンサイトステンレス鋼とその製造方法
EP0798394A1 (fr) * 1996-03-27 1997-10-01 Kawasaki Steel Corporation Acier martensitique pour tubes avec une excellant résistance à la corrosion et soudabilité
JPH10130787A (ja) * 1996-10-29 1998-05-19 Kawasaki Steel Corp 耐応力腐食割れ性および高温引張り特性に優れた油井管用高強度マルテンサイト系ステンレス鋼
US5820699A (en) * 1994-07-21 1998-10-13 Nippon Steel Corp. Martensitic stainless steel having excellent hot workability and sulfide stress cracking resistance
JP2000063997A (ja) * 1998-08-25 2000-02-29 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス溶接鋼管
JP2000192203A (ja) * 1998-10-12 2000-07-11 Sumitomo Metal Ind Ltd ダウンホ―ル部材用マルテンサイト系ステンレス鋼とその製法
JP2000192196A (ja) * 1998-12-22 2000-07-11 Sumitomo Metal Ind Ltd 油井用マルテンサイト系ステンレス鋼
EP1026273A1 (fr) * 1997-07-18 2000-08-09 Sumitomo Metal Industries Limited Acier inoxydable en martensite a haute resistance a la corrosion
JP2000328201A (ja) * 1999-05-17 2000-11-28 Nippon Steel Corp 熱間加工性に優れたマルテンサイト系ステンレス鋼材
JP2001107198A (ja) * 1999-10-07 2001-04-17 Nippon Steel Corp 耐ssc性に優れたマルテンサイト系ステンレス鋼ラインパイプおよびその製造方法
JP2001279392A (ja) * 2000-03-30 2001-10-10 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼および製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133807A (en) * 1975-05-14 1976-11-19 Hitachi Ltd Turbo type impeller with high performance
MY114984A (en) * 1995-01-13 2003-03-31 Hitachi Metals Ltd High hardness martensitic stainless steel with good pitting corrosion resistance
CN1114715C (zh) * 2000-11-15 2003-07-16 浦项产业科学研究院 具有高机械强度和抗腐蚀的马氏体不锈钢

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243740A (ja) * 1989-03-15 1990-09-27 Sumitomo Metal Ind Ltd 油井用マルテンサイト系ステンレス鋼材とその製造方法
JPH03120337A (ja) * 1989-10-03 1991-05-22 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼と製造方法
JPH05156409A (ja) * 1991-11-29 1993-06-22 Nippon Steel Corp 耐海水性に優れた高強度マルテンサイトステンレス鋼とその製造方法
US5820699A (en) * 1994-07-21 1998-10-13 Nippon Steel Corp. Martensitic stainless steel having excellent hot workability and sulfide stress cracking resistance
EP0798394A1 (fr) * 1996-03-27 1997-10-01 Kawasaki Steel Corporation Acier martensitique pour tubes avec une excellant résistance à la corrosion et soudabilité
JPH10130787A (ja) * 1996-10-29 1998-05-19 Kawasaki Steel Corp 耐応力腐食割れ性および高温引張り特性に優れた油井管用高強度マルテンサイト系ステンレス鋼
EP1026273A1 (fr) * 1997-07-18 2000-08-09 Sumitomo Metal Industries Limited Acier inoxydable en martensite a haute resistance a la corrosion
JP2000063997A (ja) * 1998-08-25 2000-02-29 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス溶接鋼管
JP2000192203A (ja) * 1998-10-12 2000-07-11 Sumitomo Metal Ind Ltd ダウンホ―ル部材用マルテンサイト系ステンレス鋼とその製法
JP2000192196A (ja) * 1998-12-22 2000-07-11 Sumitomo Metal Ind Ltd 油井用マルテンサイト系ステンレス鋼
JP2000328201A (ja) * 1999-05-17 2000-11-28 Nippon Steel Corp 熱間加工性に優れたマルテンサイト系ステンレス鋼材
JP2001107198A (ja) * 1999-10-07 2001-04-17 Nippon Steel Corp 耐ssc性に優れたマルテンサイト系ステンレス鋼ラインパイプおよびその製造方法
JP2001279392A (ja) * 2000-03-30 2001-10-10 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2004057050A1 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826285A1 (fr) * 2004-11-19 2007-08-29 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique
EP1826285A4 (fr) * 2004-11-19 2009-04-08 Sumitomo Metal Ind Acier inoxydable martensitique
EP2060644A4 (fr) * 2006-08-22 2016-02-17 Nippon Steel & Sumitomo Metal Corp Acier inoxydable martensitique
EP2172573A1 (fr) * 2007-06-29 2010-04-07 JFE Steel Corporation Tuyau sans soudure en acier inoxydable martensitique pour tuyau de puits de pétrole et son procédé de production
EP2172573A4 (fr) * 2007-06-29 2011-05-18 Jfe Steel Corp Tuyau sans soudure en acier inoxydable martensitique pour tuyau de puits de pétrole et son procédé de production
CN102866172A (zh) * 2012-08-31 2013-01-09 广东电网公司电力科学研究院 一种T/P92钢Laves相含量测定方法
EP2927337A4 (fr) * 2012-09-27 2016-06-22 Hitachi Metals Ltd Acier martensitique de type à durcissement par précipitation et son procédé de fabrication
US9777355B2 (en) 2012-09-27 2017-10-03 Hitachi Metals, Ltd. Process for producing precipitation strengthening martensitic steel
US10837073B2 (en) 2015-02-20 2020-11-17 Jfe Steel Corporation High-strength heavy-walled stainless steel seamless tube or pipe and method of manufacturing the same
EP3604591A4 (fr) * 2017-03-28 2020-09-02 Nippon Steel Corporation Matériau en acier inoxydable martensitique

Also Published As

Publication number Publication date
EP1584699A4 (fr) 2009-06-03
NO337858B1 (no) 2016-07-04
BR0317550A (pt) 2005-11-22
RU2005122929A (ru) 2006-02-10
JP4428237B2 (ja) 2010-03-10
MXPA05006562A (es) 2005-08-16
AU2003289437A1 (en) 2004-07-14
CN100368579C (zh) 2008-02-13
US20050224143A1 (en) 2005-10-13
AR042494A1 (es) 2005-06-22
WO2004057050A1 (fr) 2004-07-08
JPWO2004057050A1 (ja) 2006-04-20
CN1729306A (zh) 2006-02-01
NO20052986L (no) 2005-09-15
RU2307876C2 (ru) 2007-10-10
NO20052986D0 (no) 2005-06-17
AU2003289437B2 (en) 2007-09-20
CA2509581C (fr) 2010-04-06
BRPI0317550B1 (pt) 2016-06-14
CA2509581A1 (fr) 2004-07-08

Similar Documents

Publication Publication Date Title
EP1584699A1 (fr) Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure
EP0864663B1 (fr) Structures en acier soude presentant une excellente resistance a la corrosion
WO2018181404A1 (fr) Matériau en acier inoxydable martensitique
CN101437973B (zh) 油井管用马氏体类无缝不锈钢管及其制造方法
WO2005017222A1 (fr) Tuyau en acier inoxydable a haute resistance a la corrosion utilise dans un puits de petrole et procede de production correspondant
EP2677054A1 (fr) Acier inoxydable duplex et procédé pour la production de celui-ci
CA2397592C (fr) Acier inoxydable duplex
AU2017274993B2 (en) Duplex stainless steel and duplex stainless steel manufacturing method
MX2010010435A (es) Acero inoxidable usado para material tubular destinado a pozos petroleros.
WO2005042793A1 (fr) Tuyau en acier inoxydable haute resistance pour une canalisation presentant une excellente resistance a la corrosion, et procede de production associe
JPWO2019189871A1 (ja) 二相ステンレスクラッド鋼板およびその製造方法
JP2003003243A (ja) 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼
JP6780426B2 (ja) 二相ステンレス鋼
EP1026273B1 (fr) Acier inoxydable martensitique a haute resistance a la corrosion
JP3156170B2 (ja) ラインパイプ用マルテンサイト系ステンレス鋼
CN100473736C (zh) 马氏体类不锈钢管
EP0738784B1 (fr) Aciers inoxydables martensitiques avec haute teneur de chrome pour tubes qui sont résistants à la corrosion par formation de piqûres et leur fabrication
JPH032227B2 (fr)
JPH09327721A (ja) 溶接性に優れたマルテンサイト系ステンレス溶接鋼管の製造方法
JPS6160866A (ja) 耐サワ−性に優れたラインパイプ用鋼材
JP3201081B2 (ja) 油井用ステンレス鋼およびその製造方法
JPH0148345B2 (fr)
JP3642030B2 (ja) 高強度マルテンサイト系ステンレス鋼およびその製造方法
JP2002180210A (ja) マルテンサイト系ステンレス鋼
JPH06299301A (ja) 110Ksi グレードの高強度耐食性マルテンサイト系ステンレス鋼管

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20090508

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/18 20060101ALI20090429BHEP

Ipc: C22C 38/04 20060101ALI20090429BHEP

Ipc: C22C 38/02 20060101ALI20090429BHEP

Ipc: C21D 6/00 20060101ALI20090429BHEP

Ipc: C22C 38/58 20060101ALI20090429BHEP

Ipc: C22C 38/00 20060101AFI20040716BHEP

17Q First examination report despatched

Effective date: 20091130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100611