EP1537282B1 - Manipulateur de grande taille avec un mât articulé et avec un dispositif de réglage pour commander ledit mât - Google Patents

Manipulateur de grande taille avec un mât articulé et avec un dispositif de réglage pour commander ledit mât Download PDF

Info

Publication number
EP1537282B1
EP1537282B1 EP03790779A EP03790779A EP1537282B1 EP 1537282 B1 EP1537282 B1 EP 1537282B1 EP 03790779 A EP03790779 A EP 03790779A EP 03790779 A EP03790779 A EP 03790779A EP 1537282 B1 EP1537282 B1 EP 1537282B1
Authority
EP
European Patent Office
Prior art keywords
mast
articulation
angle
large manipulator
manipulator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03790779A
Other languages
German (de)
English (en)
Other versions
EP1537282A1 (fr
Inventor
Hartmut Benckert
Kurt Rau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putzmeister Concrete Pumps GmbH
Original Assignee
Putzmeister AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Putzmeister AG filed Critical Putzmeister AG
Publication of EP1537282A1 publication Critical patent/EP1537282A1/fr
Application granted granted Critical
Publication of EP1537282B1 publication Critical patent/EP1537282B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution

Definitions

  • the invention relates to a large manipulator with a articulated mast, which is articulated to a rotatable about a vertical axis on a frame mast bracket and which has at least three mast arms which are limited by each horizontal, mutually parallel bending axes relative to the mast block or an adjacent mast arm by means of a respective drive unit are pivotable and form a mast top at the free end of the last mast arm, with a control device for controlling the drive units for the mast movement, the one on a preferably fixed in a frame-fixed coordinate system reference variable for the mast top or arranged on this end hose and on by means of angle sensors
  • the mast arms certain angle measured responsive coordinate transformer for implementation in kink-axis related motion signals for the drive units in accordance with a predetermined path / swing characteristic has.
  • Large manipulators of this type are used, for example, in stationary and truck-mounted concrete pumps. Such large manipulators are operated by an operator who is responsible via a remote control device for both the pump control and for the positioning of a arranged at the top of the articulated end hose. For this purpose, the operator has to actuate several rotational degrees of freedom of the articulated mast via the associated drive units while moving the articulated mast in the non-structured three-dimensional work space while observing the site boundary conditions.
  • the single-axis actuation has the advantage that the individual boom arms can be brought individually into any, limited only by their pivoting position.
  • Each axis of the articulated mast or the mastbuck is a main direction of the Fem interviewedorgane of Assigned remote control device, so that in the presence of three or more boom arms, the operation becomes confusing.
  • the operator must always keep an eye on both the actuated axles and the end hose in order to avoid the risk of uncontrolled movements on the end hose and thus endangering the site personnel.
  • the drive units of the bending axes are independent of the drive unit of the rotation axis under execution of a lifting and lowering movement of the mast tip actuated.
  • the drive units of the redundant bending axes of the articulated mast can each be actuated in accordance with a travel / swivel characteristic. This includes modifying the swing / swing characteristic in the coordinate transformer under the influence of load-dependent bending and torsional moments acting on the individual mast arms.
  • angle sensors for determining the kink angles are provided on the mast arms.
  • Each angle encoder only measures the bending angle between two mast arms of a bending axis. This type of angle measurement is stable because the system is relatively stiff in the axis area and because the angle encoders specify the actual kink angle quite accurately.
  • the axis-related measured value is independent of the measured values on the other axes. This provides a relatively simple mathematical mapping between the kink angles on the one hand and the instantaneous position of the end hose on the other.
  • the buckling-related angle measurement is also independent of the deflection of the individual mast arms due to the attacking load moments.
  • the deflection must also be considered mathematically. For this, first of all, the mass of the individual arms and, in particular, the filling of the associated arms. Distributor pipes are determined with concrete. The deflection then purely mathematically enters the coordinate transformation. This is considered disadvantageous.
  • the angle-axis-related angle measurements do not contain any information components about the state of vibration itself, so that there is dynamic decoupling with respect to the angle measurements.
  • the relatively stable axis angles therefore allow disturbance variable feedback using additional information about the vibrational state in the individual axes, e.g. the dynamic pressure curve in the associated actuating cylinder.
  • For an effective vibration damping is possible (see DE-A-10046546).
  • the present invention seeks to further develop the known large manipulators so that information about the Deflection of the mast arms and the dynamics of the system can be detected metrologically and used in control technology.
  • a first variant of the invention provides that geodesic angle sensors are preferably arranged rigidly on the mast arms, preferably at a distance from the bending axes, for determining earth-fixed angle measurement values assigned to the individual mast arms. Also, a non-horizontal orientation of the mastbuck and this supporting frame in the coordinate transformation It is advantageous if, in addition, a geodetic angle sensor arranged on the mast block and / or at least one arranged on the frame is provided for measuring a ground-constant measured value associated with the mast block and / or the frame.
  • a preferred embodiment of the invention provides that the geodesic angle sensors are designed as responsive to the gravity of the earth inclination angle sensor.
  • the coordinate transformer has a software routine for converting earth-fixed mastarm-related angle measured values into bending angles.
  • the coordinate transformer should have a software routine for converting the reference variable in the frame-fixed cylindrical coordinate system in accordance with a predetermined path / swivel characteristic of the articulated mast in guide bending angle.
  • a mathematical model is required, which causes a decoupling of the geodetic angle measurements in the individual mast arms.
  • a dynamic decoupling of the signals converted to the buckling-axis-related angular coordinates is carried out for this purpose.
  • a software routine responsive to dynamic angle measurements is divided into low-frequency components and high-frequency angle measured value components.
  • a group of buckling-related rule comparators is provided, which can be acted upon by the stationary or low-frequency components of the buckling angle as actual values and with the guide bending angles as setpoints and the output side are connected with buckling-related reference variable controllers for controlling the drive units of the respective buckling axes.
  • a group of buckling-related disturbance variables is provided, which can be acted upon by the buckling-axis-related high-frequency components of the dynamic angle measurement values and which are connected to the signal inputs of the associated drive units of the buckling axes to form a disturbance variable connection.
  • the disturbance variable regulators can be preceded by a software routine responding to the dynamic earth-fixed angle measurement values and the summary high-frequency component of the articulation angles for determining the high-frequency components of the individual articulation angles.
  • the decomposition of the dynamic angle measured values described above leads to different control signals of different categories being obtained and being evaluated in different control loops: a reference variable controller which influences the guide behavior predefined by the operator and a disturbance variable controller which influences the oscillation behavior.
  • the two controller groups are supplied with the actual value signal components from this decomposition.
  • the setpoint values of the reference variable controller are generated from the incoming data of, for example, a joystick, ie from the specifications of the operator, with additional consideration of a preset off-axis characteristic, while the distributed disturbance variables are regulated to zero via the disturbance controller for the purpose of vibration damping.
  • the leadership behavior according to the invention additionally comprises the static deformation of the mast arms and the Aufstellne Trent the substructure.
  • a second alternative solution is that a satellite-supported GPS module (Global Positioning System) for determining fixed earth measured values assigned to the individual boom arms is rigidly arranged on the boom arms, wherein the coordinate transformer can be acted upon by the position measurement values of the GPS modules.
  • a GPS module arranged on the gantry and, if appropriate, at least one GPS module arranged on the gantry are also provided for determining earth-fixed position measurement values assigned to the gantry and / or the gantry.
  • the earth-fixed mastarm-related position measured values are advantageously converted into bending angles with the aid of a software routine of the coordinate transformer.
  • the coordinate transformer additionally has a software routine for converting the reference variable in accordance with a predetermined path / swivel characteristic of the articulated mast into frame-fixed guide bending angles.
  • the position measurement values also contain dynamic position information with a sufficiently high frequency
  • a software routine responding to dynamic position measurement values is provided for dividing it into low-frequency and high-frequency position measured value components.
  • a group of rule comparators is provided, which can be acted upon with the stationary or low-frequency components of the bending angle as actual values and the researcherssknickwinkeln as setpoints and the output side are connected to a kink axis related reference variable controller for controlling the drive units of the respective bending axes.
  • the reference variable regulators ensure that the specifications of an operator, for example, with the help of a joystick in the desired shortening or stretching movement of the articulated mast is implemented.
  • a group of buckling-related disturbance controllers can additionally be provided, which with the buckling-axis-related high-frequency components of the dynamic Winkelmesswer angle measured values can be acted upon and connected to the signal inputs of the associated drive units of the buckling axes to form a disturbance variable circuit.
  • the disturbance variable regulators are suitably preceded by a software routine responsive to the dynamic earth-fixed position measurement values and the summary high-frequency component of the articulation angles for determining the buckling-related high-frequency components of the articulation angles.
  • the truck-mounted concrete pump 10 includes a chassis 11, an example designed as a two-cylinder piston pump thick matter pump 12 and a concrete distributor boom 14 as a support for a concrete conveyor line 16 on the concrete conveyor line 16 is liquid concrete, which is continuously introduced into a hopper 17 during concreting, to a Location of the vehicle 11 removed arranged concreting 18 promoted.
  • the distribution boom 14 consists of a by means of a hydraulic rotary drive 19 about the vertical axis 13 rotatable mast bracket 21 and a pivotable on this articulated mast 22, which is continuously adjustable to variable range and height difference between the vehicle 11 and the concreting 18.
  • the articulated mast 22 consists in the illustrated embodiment five pivotally interconnected boom arms 23 to 27, which are parallel to each other and at right angles to the vertical axis 13 of the mast bracket 21 extending axes 28 to 32 pivotally.
  • the buckling angles ⁇ 1 to ⁇ 5 (FIG. 2) of the buckling joints formed by the bending axes 28 to 32 and their arrangement with one another are coordinated with one another such that the placing boom with the space-saving transport configuration on the vehicle corresponding to multiple folding as shown in FIG 11 can be stored.
  • drive units 34 to 38 which are individually assigned to the articulated axes 28 to 32, the articulated boom 22 can be unfolded at different distances r and / or height differences h between the concreting location 18 and the vehicle location (FIG. 2).
  • the operator controls by means of a wireless remote control device 50, the mast movement through which the mast tip 33 is carried away with the Enschlauch 43 over the area to be concreted.
  • the end hose 43 has a typical length of 3 to 4 m and, because of its articulated suspension in the area of the mast top 33 and due to its inherent flexibility with its outlet end, can be held by a hose man in a favorable position to the concreting site 18.
  • a geodesic angle sensor 44 to 48 is rigidly arranged on each mast arm 23 to 27 for determining earth-fixed angle measurement values ⁇ v (see FIG. 3) assigned to the individual mast arms.
  • Another geodesic angle sensor 49 is located on the mast block 21. With this, the inclination of the vertical axis 13 relative to the vertical and thus the inclination of the chassis relative to the ground can be measured.
  • the angle sensors 44 to 48 replace the buckling-axis-related angle sensors provided in the conventional articulated mast controls.
  • the geodesic angle sensors 44 to 49 are expediently designed as responsive to the gravity of the earth inclination angle sensor.
  • the angle sensors are arranged on the mast arms 23 to 27 outside the bending axes 28 to 32, their measured values contain additional information about the deflection of the mast system and the dynamic vibration state. Furthermore, the measured values also contain information about the pitch and a deformation in the substructure, which can be separated via an additional measuring point 49 on the gantry or on the frame.
  • the remote control device 50 contains at least one remote control element 60 which is designed as a control lever and which can be moved back and forth in three main operating directions while outputting control signals 62.
  • the control signals 62 are transmitted via a radio link 64 to a vehicle-mounted radio receiver 66, which is connected on the output side via a trained example as a CAN bus bus 68 to a microcontroller 70.
  • the microcontroller 70 contains software modules 74, 76, 78, 80, via which the control signals 62 ( ⁇ , r, h) received from the remote control device 50 and the measurement signals 82 ( ⁇ ⁇ ) received by the geodesic angle sensors 44 to 48 are interpreted, transformed and transmitted a reference variable controller 84, a disturbance controller 86 and a downstream signal generator 88 in actuation signals ( ⁇ ⁇ ) for the Drive units 34 to 38 (actuators) of the bending axes 28 to 32 are implemented.
  • the deflection of the remote control member 60 in the respective direction is converted into a speed signal in an interpolation routine, not shown, wherein a limit file ensures that the speed of movement of the axes and their acceleration does not exceed a predetermined maximum value (see DE-A-10060077).
  • the software module 74 designated "transformation routine” has the task of transforming the incoming control signals (nominal values), which are interpreted as cylindrical coordinates ⁇ , r, h, into angular time signals ⁇ s , ⁇ s in predetermined time clocks ⁇ on the pivoting and bending axes 13, 28 to 32.
  • Each articulation axis 28 to 32 is controlled so software-wise within the transformation routine 74 by using a predetermined path-and-swing characteristic that the articulated joints move in harmony with one another in a way and time.
  • the control of the redundant degrees of freedom of the articulated joints thus takes place according to a preprogrammed strategy, with which the self-collisions with adjacent boom arms 23 to 27 can be excluded in the movement.
  • the geodesic angle sensors 44 to 48 measure the instantaneous earth-fixed angles ⁇ v in a predetermined time interval and transmit the measured values to the microcontroller 74 via the bus system 68.
  • the measured values ⁇ ⁇ in the software module 76 are converted into the actual buckling angle values ⁇ i ⁇ converted.
  • the time-dependent bending angles are then used in the "filter routine" designated software module 78 divided into low frequency (quasi-stationary) kink angle ⁇ i ⁇ N and in a higher frequency summary buckling angle signal ⁇ H.
  • the low-frequency axis-related kink angle actual values ⁇ i ⁇ N are in a rule comparator 90 with the setpoints ⁇ s ⁇ compared and used via the reference variable controller 84 and the signal generator 88 for controlling the leading to the drive units 34 to 38 valves.
  • the higher-frequency summary component ⁇ H is converted into higher-frequency buckling-related interference signals ⁇ ⁇ H using the earth-fixed mast-related angle measured values ⁇ ⁇ in a higher-frequency buckling-related interference signal ⁇ ⁇ H , which is fed to the signal generator 88 via a control comparator 92 and the disturbance variable controller 86 in the sense of disturbance variable connection while being set to zero.
  • the invention relates to a device for actuating a buckling mast in particular for large manipulators and concrete pumps.
  • the articulated mast 22 is articulated on a mast block 21 rotatable about a vertical axis 13. He has at least three mast arms 23 to 27 which are limited to each horizontal, mutually parallel bending axes 28 to 32 relative to the mast bracket 21 or an adjacent mast arm 23 to 27 by means of a respective drive unit 34 to 38 pivotally limited.
  • a control device for controlling the drive units for the mast movement is provided, the one to a predetermined command r and on by means of angle sensors 44 to 48 to the mast arms 23 to 27 certain angle measured values ⁇ ⁇ responsive coordinate transformer 74,76 for implementation in kink-axis related motion signals ⁇ ⁇ for the drive units 34 to 38 in accordance with a predetermined path / swing characteristic has.
  • geodesic angle sensors 44 to 48 are fixedly arranged on the mast arms 23 to 27 at a distance from the bending axes for determining earth-fixed angle measured values ⁇ ⁇ assigned to the individual mast arms 23 to 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Operation Control Of Excavators (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Earth Drilling (AREA)
  • Control Of Position Or Direction (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Claims (20)

  1. Manipulateur de grande taille avec un mât articulé (22) qui est articulé sur un chevalet de mât (21) pouvant tourner de préférence autour d'un axe vertical (13) sur un châssis (11) et qui présente au moins trois bras de mât (23 à 27) qui peuvent pivoter de manière limitée autour d'axes d'articulation (28 à 32) horizontaux, parallèles entre eux par rapport au chevalet de mât (21) ou à un bras de mât (23 à 27) voisin chaque fois au moyen d'un ensemble d'entraînement (34 à 38) et forment une pointe de mât (33) à l'extrémité libre du dernier bras de mât (27), avec un dispositif de régulation (70) pour commander les ensembles d'entraînement (34 à 38) pour le mouvement du mât qui présente un transformateur de coordonnées (74, 76) réagissant à une grandeur de référence (r, h) de préférence prédéfinie dans un système de coordonnées lié au châssis pour la pointe de mât (33) ou pour un tuyau flexible terminal (43) disposé sur celle-ci et à des valeurs de mesure d'angle déterminées sur les bras de mât (23 à 27) au moyen de capteurs d'angle (44 à 48) pour la conversion en signaux de déplacement (Δαν) rapportés aux axes d'articulation pour les ensembles d'entraînement (34 à 38) selon une caractéristique de course/pivotement prédéfinie, caractérisé par le fait que des capteurs d'angle géodésiques (44 à 48) sont disposés rigidement sur les bras de mât (23 à 27) pour déterminer des valeurs de mesure d'angle (εν) liées à la terre associées aux différents bras de mât (23 à 27) et que le transformateur de coordonnées peut être soumis aux valeurs de mesure d'angle (εν) des capteurs d'angle géodésiques (44 à 48).
  2. Manipulateur de grande taille selon la revendication 1, caractérisé par le fait qu'il est prévu en plus un capteur d'angle géodésique (49) disposé sur le chevalet de mât (21) pour mesurer une valeur de mesure d'angle liée à la terre associée au chevalet de mât (21).
  3. Manipulateur de grande taille selon la revendication 1 ou 2, caractérisé par le fait qu'il est prévu en plus au moins un capteur d'angle géodésique disposé sur le châssis (11) pour mesurer au moins une valeur de mesure d'angle liée à la terre associée au châssis.
  4. Manipulateur de grande taille selon l'une des revendications 1 à 3, caractérisé par le fait que les capteurs d'angle géodésiques (44 à 49) sont réalisés sous forme de transmetteurs d'angle d'inclinaison réagissant à la gravitation de la terre.
  5. Manipulateur de grande taille selon l'une des revendications 1 à 4, caractérisé par le fait que le transformateur de coordonnées présente une routine logicielle (76) pour convertir les valeurs de mesure d'angle (εν) liées à la terre rapportées aux bras de mât en angles d'articulation (αiν ).
  6. Manipulateur de grande taille selon l'une des revendications 1 à 5, caractérisé par le fait que le transformateur de coordonnées présente une routine logicielle pour convertir les valeurs de mesure d'angle (εν) liées à la terre rapportées aux bras de mât en coordonnées cylindriques (r, h) liées au châssis de la pointe de mât ou du tuyau flexible terminal.
  7. Manipulateur de grande taille selon l'une des revendications 1 à 6, caractérisé par le fait que le transformateur de coordonnées présente une routine logicielle (76) pour convertir la grandeur de référence (r) selon une caractéristique de course/pivotement prédéfinie du mât articulé (22) en angle d'articulation de référence (αsν ).
  8. Manipulateur de grande taille selon l'une des revendications 1 à 7, caractérisé par une routine logicielle (78) réagissant à des valeurs de mesure d'angle (αiν ) pour les répartir en composantes de valeurs de mesure d'angle à basse fréquence et à plus haute fréquence.
  9. Manipulateur de grande taille selon la revendication 7 ou 8, caractérisé par un groupe de comparateurs de régulation (90) rapportés aux axes d'articulation qui peuvent être soumis aux composantes stationnaires ou à basse fréquence (αiν N) des angles d'articulation (αiν ) rapportés aux axes d'articulation en tant que valeurs réelles et aux angles d'articulation de référence (αsν ) rapportés aux axes d'articulation en tant que valeurs de consigne et qui sont reliés côté sortie à des régulateurs de grandeur de référence (84) rapportés aux axes d'articulation pour la commande des ensembles d'entraînement (34 à 38) des axes d'articulation (28 à 32) concernés.
  10. Manipulateur de grande taille selon la revendication 8 ou 9, caractérisé par un groupe de régulateurs de grandeur perturbatrice (86) rapportés aux axes d'articulation qui peuvent être soumis aux composantes à plus haute fréquence (αν H) rapportées aux axes d'articulation des angles d'articulation et qui sont reliés aux entrées de signal (88) des ensembles d'entraînement (34 à 38) associés des axes d'articulation (28 à 32) en formant une compensation de grandeur perturbatrice.
  11. Manipulateur de grande taille selon la revendication 10, caractérisé par le fait qu'une routine logicielle (80) réagissant aux valeurs de mesure d'angle (εν) liées à la terre et à une composante à plus haute fréquence cumulée (αH) des angles d'articulation est placée en amont des régulateurs de grandeur perturbatrice (86) pour déterminer les composantes à plus haute fréquence (αν H) rapportées aux axes d'articulation des angles d'articulation.
  12. Manipulateur de grande taille avec un mât articulé (22) qui est articulé sur un chevalet de mât (21) pouvant tourner de préférence autour d'un axe vertical (13) sur un châssis (11) et qui présente au moins trois bras de mât (23 à 27) qui peuvent pivoter de manière limitée autour d'axes d'articulation (28 à 32) horizontaux, parallèles entre eux par rapport au chevalet de mât (21) ou à un bras de mât (23 à 27) voisin chaque fois au moyen d'un ensemble d'entraînement (34 à 38) et forment une pointe de mât (33) à l'extrémité libre du dernier bras de mât (27), avec un dispositif de régulation (70) pour commander les ensembles d'entraînement (34 à 38) pour le mouvement du mât qui présente un transformateur de coordonnées (74, 76) réagissant à une grandeur de référence (r, h) de préférence prédéfinie dans un système de coordonnées lié au châssis pour la pointe de mât (33) ou pour un tuyau flexible terminal (43) disposé sur celle-ci et à des valeurs de mesure déterminées sur les bras de mât (23 à 27) au moyen de capteurs (44 à 48) pour la conversion en signaux de déplacement (Δαν) rapportés aux axes d'articulation pour les ensembles d'entraînement (34 à 38) selon une caractéristique de course/pivotement prédéfinie, caractérisé par le fait qu'un module GPS est disposé rigidement sur chacun des bras de mât pour la détermination de valeurs de mesure de position liées à la terre associées aux différents bras de mât, le transformateur de coordonnées pouvant être soumis aux valeurs de mesure de position des modules GPS.
  13. Manipulateur de grande taille selon la revendication 12, caractérisé par le fait qu'il est prévu en plus un module GPS disposé sur le chevalet de mât pour mesurer une valeur de mesure de position liée à la terre associée au chevalet de mât.
  14. Manipulateur de grande taille selon la revendication 12 ou 13, caractérisé par le fait qu'il est prévu en plus au moins un module GPS disposé sur le châssis pour mesurer au moins une valeur de mesure de position liée à la terre associée au châssis.
  15. Manipulateur de grande taille selon l'une des revendications 12 à 14, caractérisé par le fait que le transformateur de coordonnées présente une routine logicielle (74) pour convertir les valeurs de mesure de position liées à la terre rapportées aux bras de mât en angles d'articulation (αiν ).
  16. Manipulateur de grande taille selon l'une des revendications 12 à 15, caractérisé par le fait que le transformateur de coordonnées présente une routine logicielle pour convertir la grandeur de référence (r, h) selon une caractéristique de course/pivotement prédéfinie du mât articulé (22) en angle d'articulation de référence (αsν ).
  17. Manipulateur de grande taille selon l'une des revendications 12 à 16, caractérisé par une routine logicielle (78) réagissant à des valeurs de mesure de position dynamiques pour les répartir en composantes de valeurs de mesure de position à basse fréquence et à plus haute fréquence.
  18. Manipulateur de grande taille selon la revendication 16 ou 17, caractérisé par un groupe de comparateurs de régulation (90) rapportés aux axes d'articulation qui peuvent être soumis aux composantes stationnaires ou à basse fréquence (αiν N) des angles d'articulation (αiν ) en tant que valeurs réelles et aux angles de référence (αsν ) en tant que valeurs de consigne et qui sont reliés côté sortie à des régulateurs de grandeur de référence (84) rapportés aux axes d'articulation pour la commande des ensembles d'entraînement des axes d'articulation (28 à 32) concernés.
  19. Manipulateur de grande taille selon la revendication 17 ou 18, caractérisé par un groupe de régulateurs de grandeur perturbatrice (86) rapportés aux axes d'articulation qui peuvent être soumis aux composantes à plus haute fréquence (αν H) rapportées aux axes d'articulation des angles d'articulation et qui sont reliés aux entrées de signal (88) des ensembles d'entraînement (34 à 38) associés des axes d'articulation (28 à 32) en formant une compensation de grandeur perturbatrice.
  20. Manipulateur de grande taille selon la revendication 19, caractérisé par le fait qu'une routine logicielle (80) réagissant aux valeurs de mesure de position liées à la terre et à une composante à plus haute fréquence cumulée (αH) des angles d'articulation est placée en amont des régulateurs de grandeur perturbatrice (86) pour déterminer les composantes à plus haute fréquence (αν H) rapportées aux axes d'articulation des angles d'articulation.
EP03790779A 2002-08-27 2003-06-30 Manipulateur de grande taille avec un mât articulé et avec un dispositif de réglage pour commander ledit mât Expired - Lifetime EP1537282B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10240180A DE10240180A1 (de) 2002-08-27 2002-08-27 Vorrichtung zur Betätigung eines Knickmasts
DE10240180 2002-08-27
PCT/EP2003/006925 WO2004020765A1 (fr) 2002-08-27 2003-06-30 Dispositif pour faire fonctionner une flèche articulée

Publications (2)

Publication Number Publication Date
EP1537282A1 EP1537282A1 (fr) 2005-06-08
EP1537282B1 true EP1537282B1 (fr) 2006-12-20

Family

ID=31502195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03790779A Expired - Lifetime EP1537282B1 (fr) 2002-08-27 2003-06-30 Manipulateur de grande taille avec un mât articulé et avec un dispositif de réglage pour commander ledit mât

Country Status (10)

Country Link
US (1) US7729832B2 (fr)
EP (1) EP1537282B1 (fr)
JP (1) JP4630664B2 (fr)
KR (1) KR101015010B1 (fr)
CN (2) CN100410478C (fr)
AT (1) ATE348929T1 (fr)
AU (1) AU2003246643A1 (fr)
DE (2) DE10240180A1 (fr)
ES (1) ES2277141T3 (fr)
WO (1) WO2004020765A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032864A1 (fr) 2013-09-04 2015-03-12 Schwing Gmbh Détermination de la position d'un point de mesure mobile sur une machine
WO2016131977A1 (fr) 2015-02-19 2016-08-25 Schwing Gmbh Régulation de position d'une pointe de mât
DE102015208577A1 (de) 2015-05-08 2016-11-10 Putzmeister Engineering Gmbh Verfahren zur Ansteuerung eines Knickmasts in einem Großmanipulator
DE102016106406A1 (de) * 2016-04-07 2017-10-12 Schwing Gmbh Kartesische Steuerung einer Mastspitze eines Großmanipulators
EP3705664B1 (fr) 2019-03-07 2022-08-17 Liebherr-Mischtechnik GmbH Commande à bras articulaire d'une pompe à béton
EP3705663B1 (fr) 2019-03-07 2022-08-24 Liebherr-Mischtechnik GmbH Commande à bras articulaire d'une pompe à béton

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7640683B2 (en) * 2005-04-15 2010-01-05 Topcon Positioning Systems, Inc. Method and apparatus for satellite positioning of earth-moving equipment
JP2006320825A (ja) * 2005-05-18 2006-11-30 Fuji Heavy Ind Ltd 自動制御塗装車両
CN101309783B (zh) * 2005-11-16 2013-09-11 Abb股份有限公司 控制装有定位开关的工业机器人运动的方法、装置、系统及其应用
DE102005062406A1 (de) * 2005-12-23 2007-06-28 Baufritz-Ag Konstruktionsverfahren
CN100591880C (zh) 2006-12-31 2010-02-24 三一重工股份有限公司 一种智能臂架控制装置
DE102007008881A1 (de) 2007-02-21 2008-08-28 Putzmeister Concrete Pumps Gmbh Verfahren zum Aufstellen einer mobilen Arbeitsmaschine
DE102007012575A1 (de) * 2007-03-13 2008-09-18 Putzmeister Concrete Pumps Gmbh Großmanipulator
DE102007019203A1 (de) * 2007-04-20 2008-10-23 Putzmeister Concrete Pumps Gmbh Betriebsdatenerfassungssytem für Autobetonpumpen sowie Verfahren zur Erfassung von Arbeitsabläufen von Autobetonpumpen
FI123361B (fi) * 2007-10-01 2013-03-15 Sandvik Mining & Constr Oy Menetelmä ja laitteisto sekä tietokoneohjelma hydraulikäyttöisen puomin toiminnan säätämiseksi
DE102008017961A1 (de) 2008-04-08 2009-10-15 Putzmeister Concrete Pumps Gmbh Betonpumpe mit einer Steuereinheit für die Verteilermastbewegung und einer Regeleinheit für die Fördermengenregelung
NL2001758C2 (nl) * 2008-07-04 2010-01-05 Zwijnenberg Evert Hendrik Will Hulpinrichting voor plaatsing tussen een trek- of duwkracht verschaffend eerste object en een tweede object waarop de trek- of duwkracht wordt uitgeoefend.
JP4687784B2 (ja) * 2008-12-22 2011-05-25 トヨタ自動車株式会社 移乗支援装置及びその制御方法
DE102009007311A1 (de) 2009-02-03 2010-08-05 Putzmeister Concrete Pumps Gmbh Vorrichtung zur Verteilung von Beton mit einem Knickmast
DE102009007310A1 (de) 2009-02-03 2010-08-05 Putzmeister Concrete Pumps Gmbh Vorrichtung zur Verteilung von Beton mit einem Knickmast
CN101525944B (zh) * 2009-03-31 2011-09-21 北京易斯路电子有限公司 混凝土泵车智能臂架控制系统及其控制方法
DE102009015603B4 (de) * 2009-04-02 2012-02-23 Siemens Aktiengesellschaft Landanschluss für Schiffe mit einem Gelenkkran
CN101633168B (zh) * 2009-07-28 2012-05-02 三一重工股份有限公司 一种大型工程机械手的控制方法及控制系统
CN101750046B (zh) * 2009-12-24 2013-05-08 三一重工股份有限公司 一种角度测量装置和方法及工程机械
CN101750620A (zh) * 2009-12-25 2010-06-23 三一重工股份有限公司 臂架系统的定位方法、定位装置及混凝土泵车
IT1397794B1 (it) * 2010-01-26 2013-01-24 Cifa Spa Dispositivo per il controllo attivo delle vibrazioni di un braccio articolato per il pompaggio di calcestruzzo.
CN101870110B (zh) * 2010-07-01 2012-01-04 三一重工股份有限公司 一种机械铰接臂的控制方法及控制装置
DE102011018267A1 (de) * 2011-04-20 2012-10-25 Schwing Gmbh Vorrichtung und Verfahren zur Dickstoff-, insbesondere Betonförderung mit Drehwinkelmessung
US10647560B1 (en) * 2011-05-05 2020-05-12 Enovation Controls, Llc Boom lift cartesian control systems and methods
DE102011107754B4 (de) * 2011-06-10 2021-07-22 Liebherr-Werk Ehingen Gmbh Winkelbezogenes Verfahren zur Überwachung der Kransicherheit während des Rüstvorgangs, sowie Kran und Kransteuerung
CN102385391B (zh) * 2011-07-14 2014-09-10 中联重科股份有限公司 机械臂的控制方法与控制装置以及工程机械
CN102393754B (zh) * 2011-09-28 2014-04-16 三一重工股份有限公司 臂架动作控制方法、系统及臂架末端直线位移控制方法、系统及混凝土泵车
WO2013056517A1 (fr) 2011-10-20 2013-04-25 中联重科股份有限公司 Camion pompe et procédé, unité de commande et appareil pour commander la vibration de la flèche d'un camion pompe
JP5859804B2 (ja) * 2011-10-24 2016-02-16 極東開発工業株式会社 コンクリートポンプ車
JP5877996B2 (ja) * 2011-10-24 2016-03-08 極東開発工業株式会社 コンクリートポンプ車
JP5816517B2 (ja) * 2011-10-24 2015-11-18 極東開発工業株式会社 コンクリートポンプ車
CN102409857B (zh) * 2011-10-24 2013-11-20 三一汽车制造有限公司 一种臂架装置及混凝土泵车
CN102393751A (zh) * 2011-10-27 2012-03-28 中联重科股份有限公司 臂架回转位置的控制方法、装置和系统,以及工程机械
CN102505853B (zh) * 2011-11-10 2014-01-15 三一汽车制造有限公司 喷射机械及其机械臂、喷射控制方法和喷射控制装置
CN102566582B (zh) * 2011-12-20 2014-06-04 中联重科股份有限公司 一种定位方法、装置及系统
CN103195249B (zh) * 2012-01-09 2015-06-17 中联重科股份有限公司 混凝土泵送设备及其浇注施工用末端软管
CN102561700B (zh) * 2012-01-16 2014-05-21 三一重工股份有限公司 一种机械臂控制系统、方法及工程机械
CN102535852B (zh) * 2012-01-16 2014-04-16 三一重工股份有限公司 一种机械臂操控系统、方法及工程机械
AT514116A1 (de) * 2013-04-09 2014-10-15 Ttcontrol Gmbh Regelsystem und Verfahren zum Steuern der Orientierung eines Segments eines Manipulators
US9810242B2 (en) * 2013-05-31 2017-11-07 Eaton Corporation Hydraulic system and method for reducing boom bounce with counter-balance protection
CN104345731B (zh) * 2013-08-01 2019-02-01 江苏金刚文化科技集团股份有限公司 一种户外表演机器人防碰系统
WO2015031821A1 (fr) 2013-08-30 2015-03-05 Eaton Corporation Procédé et système de commande pour l'utilisation d'une paire de soupapes de dosage à commande hydraulique indépendantes pour réduire des oscillations de flèche
CN103572967B (zh) * 2013-11-12 2015-09-02 湖南中联重科智能技术有限公司 一种臂架控制设备、系统、方法和工程机械
WO2015073329A1 (fr) 2013-11-14 2015-05-21 Eaton Corporation Mécanisme de commande pilote pour réduction de rebond de flèche
CN105940241B (zh) 2013-11-14 2018-11-20 伊顿公司 降低动臂振荡的控制策略
GB201321515D0 (en) * 2013-12-05 2014-01-22 Agco Netherlands Bv Agricultural sprayer with multi-section foldable boom
CN103696572B (zh) * 2013-12-12 2016-01-20 中联重科股份有限公司 布料杆系统和混凝土泵车
CN103862465B (zh) * 2014-02-20 2016-12-07 三一汽车制造有限公司 多关节机械臂坐标校正方法和装置
CN104018676B (zh) * 2014-03-04 2017-08-29 三一汽车制造有限公司 一种工程机械和臂架控制系统及方法
DE102014007071A1 (de) * 2014-05-15 2015-11-19 Schwing Gmbh Großmanipulator mit Knickmast und mit Mitteln zur Drehwinkelmessung
CN104070535B (zh) * 2014-07-14 2016-06-29 中国科学院合肥物质科学研究院 一种多节折叠式遥操作机械臂
CN106661894B (zh) 2014-07-15 2019-12-10 伊顿公司 实现悬臂弹跳减少以及防止液压系统中的非指令运动的方法和设备
CN105353776B (zh) * 2014-08-20 2018-04-13 湖南中联重科智能技术有限公司 一种臂架的控制系统、方法、装置及工程机械
EP3015625A1 (fr) 2014-10-31 2016-05-04 CIFA SpA Procédé et appareil pour déplacer un bras articulé
DE102015108473A1 (de) * 2015-05-28 2016-12-01 Schwing Gmbh Großmanipulator mit schnell ein- und ausfaltbarem Knickmast
JP5987092B2 (ja) * 2015-07-27 2016-09-06 極東開発工業株式会社 コンクリートポンプ車
JP5987091B2 (ja) * 2015-07-27 2016-09-06 極東開発工業株式会社 コンクリートポンプ車
DE102016106352A1 (de) * 2016-04-07 2017-10-12 Schwing Gmbh Fernsteuergerät für Großmanipulator mit Steuerhebel
JP2017226374A (ja) * 2016-06-24 2017-12-28 前田建設工業株式会社 構造物の点検装置
US10543817B2 (en) 2016-12-15 2020-01-28 Schwing America, Inc. Powered rear outrigger systems
WO2018200700A1 (fr) 2017-04-28 2018-11-01 Eaton Intelligent Power Limited Système d'amortissement de vibrations induites par la masse dans des machines ayant des bras ou des éléments allongés à commande hydraulique
EP3615813A4 (fr) 2017-04-28 2021-01-27 Eaton Intelligent Power Limited Système à capteurs de mouvement pour amortir des vibrations induites par la masse dans des machines
KR102038277B1 (ko) * 2017-11-13 2019-10-30 전진중공업(주) 콘크리트 펌프트럭 붐
DE102018104491A1 (de) * 2018-02-27 2019-08-29 Putzmeister Engineering Gmbh Großmanipulator mit Schwingungsdämpfer
DE102018109098A1 (de) 2018-04-17 2019-10-17 Liebherr-Mischtechnik Gmbh Betonpumpe
DE102018109057A1 (de) 2018-04-17 2019-10-17 Liebherr-Mischtechnik Gmbh Betonpumpe
DE102018109088A1 (de) * 2018-04-17 2019-10-17 Liebherr-Mischtechnik Gmbh Großmanipulator, insbesondere für Betonpumpen
CN108894502A (zh) * 2018-07-10 2018-11-27 中国华能集团清洁能源技术研究院有限公司 一种门机结合gps定位技术混凝土浇筑方法
US11325822B2 (en) * 2018-11-21 2022-05-10 Organo Corporation Water dispenser and pure water producing apparatus
KR102522923B1 (ko) * 2018-12-24 2023-04-20 한국전자통신연구원 차량의 자기위치 추정 장치 및 그 방법
DE102019105814A1 (de) * 2019-03-07 2020-09-10 Liebherr-Mischtechnik Gmbh Gelenkarm-Steuerung einer Betonpumpe
EP4321461A3 (fr) * 2019-03-27 2024-05-08 Boston Dynamics, Inc. Caisses de palettisation
DE102019107833A1 (de) 2019-03-27 2020-10-01 Putzmeister Engineering Gmbh Vorrichtung für das Ausbringen eines fluiden Prozesswerkstoffs
DE102019214034A1 (de) * 2019-09-13 2021-03-18 Putzmeister Engineering Gmbh Verfahren zum Betreiben einer Arbeitsmaschine und Arbeitsmaschine
CN111677284A (zh) * 2020-06-16 2020-09-18 广东博智林机器人有限公司 一种布料机、建筑施工系统及其控制方法
US11346497B2 (en) * 2020-09-14 2022-05-31 Christopher Rixon Irvine Grease gun extension device
CN113445752B (zh) * 2021-05-25 2022-03-25 中联重科股份有限公司 臂架末端运动的控制方法、装置、系统、介质及工程机械
CN113445746A (zh) * 2021-06-20 2021-09-28 王永强 一种混凝土泵车末端软管装置
CN114562111B (zh) * 2022-02-14 2023-09-08 三一汽车制造有限公司 臂架位置确定方法、装置、设备及作业机械
CN115503876B (zh) * 2022-08-08 2024-05-31 北京航天控制仪器研究所 一种无人船用自稳定桅杆
KR102662405B1 (ko) * 2023-06-09 2024-07-10 샬롬엔지니어링 주식회사 오물 수거 시스템
CN117588059B (zh) * 2024-01-18 2024-04-19 湘潭恒拓机械设备有限公司 一种混凝土泵车臂架装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689601B2 (ja) * 1989-03-06 1994-11-09 極東開発工業株式会社 ブーム装置付コンクリートポンプ車
JP2736569B2 (ja) * 1991-01-23 1998-04-02 新キャタピラー三菱株式会社 油圧パワーショベルの操作方法
DE4233171A1 (de) 1992-10-02 1994-04-07 Putzmeister Maschf Betonverteilermast
DE4306127C2 (de) * 1993-02-27 2002-08-08 Putzmeister Ag Großmanipulator, insbesondere für Autobetonpumpen
DE19503895A1 (de) * 1995-02-07 1996-08-08 Putzmeister Maschf Betonpumpe mit Verteilermast
DE19520166C2 (de) * 1995-06-01 2000-03-23 Konrad Schauer Maststeuerung für nicht-schwingungsfreie Vielgelenkgeräte, insbesondere für vielgliedrige Betonpumpen-Verteilausleger
JPH09217489A (ja) * 1996-02-09 1997-08-19 Ishikawajima Constr Mach Co ブーム付コンクリートポンプ車
JP3306301B2 (ja) * 1996-06-26 2002-07-24 日立建機株式会社 建設機械のフロント制御装置
US6202013B1 (en) * 1998-01-15 2001-03-13 Schwing America, Inc. Articulated boom monitoring system
DE29811097U1 (de) 1998-06-20 1998-08-20 Waitzinger Baumaschinen Vertrieb und Service GmbH, 89278 Nersingen Fahrbare Betonpumpe
US6095439A (en) * 1998-12-02 2000-08-01 Valmont Industries, Inc. Corner irrigation system including a GPS guidance system
JP4002690B2 (ja) * 1999-01-19 2007-11-07 ヤンマー株式会社 クレーン仕様型バックホーの作業角度制御装置
US6405114B1 (en) * 1999-02-04 2002-06-11 Snorkel International, Inc. Aerial work platform boom having ground and platform controls linked by a controller area network
US6263595B1 (en) * 1999-04-26 2001-07-24 Apache Technologies, Inc. Laser receiver and angle sensor mounted on an excavator
US6351696B1 (en) * 1999-09-10 2002-02-26 Schwing America, Inc. Automatic leveling system for articulated boom
US6341665B1 (en) * 1999-09-13 2002-01-29 Grove U.S. L.L.C. Retractable counterweight for straight-boom aerial work platform
JP2001159518A (ja) 1999-11-30 2001-06-12 Komatsu Ltd 建設機械のツール位置計測装置、ヨー角検出装置、作業機自動制御装置及び校正装置
US20010045032A1 (en) * 2000-04-11 2001-11-29 Kleffner Charles P. Excavation control mounting mast
DE10046546A1 (de) * 2000-09-19 2002-03-28 Putzmeister Ag Großmanipulator mit Schwingungsdämpfer
DE10060077A1 (de) * 2000-12-01 2002-06-06 Putzmeister Ag Vorrichtung zur Betätigung des Knickmasts eines Großmanipulators
DE10107107A1 (de) * 2001-02-14 2002-08-29 Putzmeister Ag Vorrichtung zur Betätigung eines Knickmasts eines Großmanipulators sowie Großmanipulator mit einer solchen Vorrichtung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032864A1 (fr) 2013-09-04 2015-03-12 Schwing Gmbh Détermination de la position d'un point de mesure mobile sur une machine
DE102013014626A1 (de) 2013-09-04 2015-03-19 Schwing Gmbh Bestimmung der Position eines verlagerbaren Messpunktes an einerMaschine
DE102013014626B4 (de) 2013-09-04 2022-09-08 Schwing Gmbh Bestimmung der Position eines verlagerbaren Messpunktes an einer Maschine
WO2016131977A1 (fr) 2015-02-19 2016-08-25 Schwing Gmbh Régulation de position d'une pointe de mât
DE102015102368A1 (de) 2015-02-19 2016-08-25 Schwing Gmbh Positionsregelung Mastspitze
DE102015208577A1 (de) 2015-05-08 2016-11-10 Putzmeister Engineering Gmbh Verfahren zur Ansteuerung eines Knickmasts in einem Großmanipulator
DE102016106406A1 (de) * 2016-04-07 2017-10-12 Schwing Gmbh Kartesische Steuerung einer Mastspitze eines Großmanipulators
EP3705664B1 (fr) 2019-03-07 2022-08-17 Liebherr-Mischtechnik GmbH Commande à bras articulaire d'une pompe à béton
EP3705663B1 (fr) 2019-03-07 2022-08-24 Liebherr-Mischtechnik GmbH Commande à bras articulaire d'une pompe à béton

Also Published As

Publication number Publication date
KR20050036978A (ko) 2005-04-20
ATE348929T1 (de) 2007-01-15
CN1678806A (zh) 2005-10-05
DE10240180A1 (de) 2004-03-11
CN101328767B (zh) 2011-09-07
JP2005536369A (ja) 2005-12-02
DE50306060D1 (de) 2007-02-01
CN101328767A (zh) 2008-12-24
US20050278099A1 (en) 2005-12-15
JP4630664B2 (ja) 2011-02-09
US7729832B2 (en) 2010-06-01
EP1537282A1 (fr) 2005-06-08
CN100410478C (zh) 2008-08-13
AU2003246643A1 (en) 2004-03-19
KR101015010B1 (ko) 2011-02-16
WO2004020765A1 (fr) 2004-03-11
ES2277141T3 (es) 2007-07-01

Similar Documents

Publication Publication Date Title
EP1537282B1 (fr) Manipulateur de grande taille avec un mât articulé et avec un dispositif de réglage pour commander ledit mât
EP3556969B1 (fr) Pompe à béton
EP3065530B1 (fr) Dispositif pour distribuer des substances actives liquides et/ou solides et procédé de commande d'un tel dispositif
EP1882795B1 (fr) Grand manipulateur pourvu d'un amortisseur de vibrations
EP0715673B1 (fr) Manipulateur de taille importante, notamment pour pompes a beton automatiques, et son procede de manipulation
EP0686224B1 (fr) Manipulateur de grande taille, notamment pour pompes a beton automotrice
EP3259221B1 (fr) Contrôle de la position d'une pointe de mât
EP1337727B1 (fr) Dispositif permettant d'actionner le mat articule d'un gros manipulateur
DE102013014626B4 (de) Bestimmung der Position eines verlagerbaren Messpunktes an einer Maschine
DE102005042721A1 (de) Gelenkleiter oder Hubbühne mit Bahnsteuerung und aktiver Schwingungsdämpfung
EP3689141A1 (fr) Dispositif d'extraction de liquides et/ou d'agents actifs solides et procédé de commande d'un tel dispositif
DE102015208577A1 (de) Verfahren zur Ansteuerung eines Knickmasts in einem Großmanipulator
WO2010121713A1 (fr) Engin de chantier mobile équipé d'un dispositif de régulation de position d'un bras de travail et procédé pour réguler la position d'un bras de travail d'un engin de chantier mobile
EP2186968A1 (fr) Manipulateur de grande capacité
DE102008017961A1 (de) Betonpumpe mit einer Steuereinheit für die Verteilermastbewegung und einer Regeleinheit für die Fördermengenregelung
EP3556967B1 (fr) Manipulateur de grande taille, en particulier pour pompes à béton
EP3556968A1 (fr) Pompe à béton
DE2821113A1 (de) Verfahren und vorrichtung zur maschinellen einstellung der neigung einer gesteinsbohrvorrichtung
DE202019004672U1 (de) Ausgleichsvorrichtung zum störungsfreien 3D-Beton-Druck mittels Autobetonpumpe
DE102022116319A1 (de) Verfahren zur Überwachung der Standsicherheit einer Arbeitsmaschine
WO2022263382A1 (fr) Grand manipulateur mobile
AT17596U1 (de) Verfahren zum Steuern und/oder Regeln eines fahrzeuggebundenen Hebezeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041231

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050615

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: LARGE MANIPULATOR WITH AN ARTICULATED MAST AND WITH A REGULATION SYSTEM FOR CONTROLLING SAID MAST

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50306060

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070320

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070424

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2277141

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

BERE Be: lapsed

Owner name: PUTZMEISTER A.G.

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110113 AND 20110119

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: PUTZMEISTER ENGINEERING GMBH

Effective date: 20110610

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120615

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130619

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210625

Year of fee payment: 19

Ref country code: DE

Payment date: 20210623

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210625

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306060

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630