EP1488107B1 - Pompe a excentrique et procede permettant de faire fonctionner ladite pompe - Google Patents

Pompe a excentrique et procede permettant de faire fonctionner ladite pompe Download PDF

Info

Publication number
EP1488107B1
EP1488107B1 EP03744779A EP03744779A EP1488107B1 EP 1488107 B1 EP1488107 B1 EP 1488107B1 EP 03744779 A EP03744779 A EP 03744779A EP 03744779 A EP03744779 A EP 03744779A EP 1488107 B1 EP1488107 B1 EP 1488107B1
Authority
EP
European Patent Office
Prior art keywords
displacer
pump according
pump
sealing element
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03744779A
Other languages
German (de)
English (en)
Other versions
EP1488107A1 (fr
Inventor
Thomas Dreifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1488107A1 publication Critical patent/EP1488107A1/fr
Application granted granted Critical
Publication of EP1488107B1 publication Critical patent/EP1488107B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member
    • F04C18/107Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member with helical teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/50Pumps with means for introducing gas under pressure for ballasting

Definitions

  • the invention relates to a pump having a housing with inlet and outlet, with a stationary, centrally arranged to a central axis of the pump cylinder, with a cylinder eccentrically rotating displacer, with a crank drive for the displacer, with a circumferential, sickle-shaped delivery space between Cylinder and displacer and with a helical sealing element in the delivery chamber. Moreover, the invention relates to a method for operating this pump.
  • a pump with the mentioned features is known from EP-A-464 683. It has the function of a compressor and is preferably intended to compress the gas of a refrigeration cycle.
  • the present invention has for its object to make a pump of the type mentioned so that it can be used as a dry-running vacuum pump.
  • Dry-running rotary vane vacuum pumps are known.
  • the rubbing parts (slide, pump chamber inner wall) have a comparatively high relative speed. The life of the slide and thus the pump itself is therefore limited.
  • suitable vacuum pumps are scroll pumps. They comprise a stationary and a circular component carrying helical, interlocking conveyor elements. Their manufacturing costs are high. In addition, they often require maintenance to ensure reliable continuous operation. Dry piston vacuum pumps are also available on the market. Their manufacturing costs are also high, their construction volume is large. Disadvantages are further noise developments and the unavoidable vibrations.
  • dry two-shaft vacuum pumps screw, Roots, claw vacuum pumps
  • They have pumping powers from about 20 m 3 / h. Production and use of vacuum pumps this Art, however, with pumping speeds below 50 m 3 / h usually not economical.
  • the eccentric vacuum pump according to the invention no longer has the mentioned disadvantages.
  • a friction takes place substantially only in the movement of the helical sealing element in its groove. Much less is the friction between the sealing element and the inner wall of the cylinder or the outer surface of the displacer, depending on where the conveying element leading groove is located.
  • the displacer orbits the relative speeds between the rubbing partners are not high, so that their wear is negligible, especially when using suitable materials.
  • the vacuum pump 1 shown in Figure 1 has a cylindrical housing 2 with bearing caps 3 and 4. At the bearing cap 3, the drive motor 5 connects.
  • the motor shaft 6 passes through the bearing cap 3 and is supported in the bearing 7.
  • the motor shaft 6 is part of a rotating system 8, whose axis of rotation is denoted by 9 and which is supported by means of a shaft stub 11 on the bearing 12 in the bearing cap 4.
  • crank 13 Another component of the rotating system 8 is a crank 13, which is located at the level of the cylindrical housing 2.
  • E denotes the eccentricity.
  • the end portions 14 and 15 of the crank 13 are equipped with bearings 16 and 17, on which a hollow (cavity 20) circulating displacer 18 is supported.
  • the circular movement of the substantially cylindrical displacer 18 takes place about the axis of rotation 9.
  • the crank axle is designated 19.
  • To secure the axial position of the displacer 18 is one of the two bearings 16, 17 - here the bearing 16 - formed as spherical roller bearings.
  • the cylindrical housing 2 which at the same time has the function of the cylinder stator of the pump 1, is centric arranged to the rotation axis 9.
  • the diameter of the displacer 18 is selected so that it does not touch the inner wall of the housing 2.
  • the smallest distance between the housing 2 and the displacer 18 should be as small as possible, suitably much smaller than 1 mm, for example 0.2 mm.
  • an additional co-rotating eccentric is provided for this purpose and designated 21. It is supported by stumps in the displacer 18 and in the bearing cap 4. For its rotatable mounting in the displacer 18 and the bearing cap 4 z. B. dry plain bearings or grease-lubricated bearings are used (not shown). For a unique kinematics of the displacer 18 at least 2 eccentric 21 must be used, the z. B. are arranged offset by 120 °. The illustrated kinematics leads to a rotational movement of the displacer 18 relative to the crank 13 with the axis of rotation 19.
  • the central, substantially cylindrical portion 22 of the crank 13 with its axis 23 is also arranged eccentrically to the axis of rotation 9, with the eccentricity E.
  • the directions of the eccentricities e and E are directed opposite to each other.
  • the eccentricity E and the mass of the central portion 22 are selected so that the unbalance forces, the masses of the rotating crank sections 14 and 15 with the bearings 16 and 17 and the mass of the rotating displacer 18th cause during operation of the pump 1, be compensated.
  • a helical sealing element 27 forms delivery chambers, which move from the inlet 28 of the pump 1 to the outlet 29.
  • 18 closing delivery chambers are formed continuously in the circular motion of the displacer, which open again only on the outlet side.
  • the inlet 28 is located on the lid 4.
  • An outlet chamber 29 is located in the Deckel'3. An adjoining outlet is not shown.
  • the sealing element 27 is a helical flexible, elongated in cross-section, rectangular band. It is guided in a groove 30 in the displacer 18. In the relaxed state, the sealing element 27 has an outer diameter which is slightly larger than the inner diameter of the bore in the cylinder 2. As a result, it is in the mounted state under a radially outwardly acting bias, so that a tight contact of the sealing element 27 is ensured on the inner wall of the housing 2.
  • the width b of the sealing element 27 is greater than twice the amount of eccentricity e.
  • a torque is exerted on the sealing element 27 during operation of the pump 1 by the friction between the sealing element 27 and the groove 30.
  • a resulting axial displacement of the belt 27 is expediently prevented by locking.
  • Such a barrier may e.g. be formed as a stop in the groove 30 of the displacer 18.
  • an end portion of the sealing element 27 is fixed on the housing 2 or on a bearing cap 3.4 such that it can not rotate about the axis 9, but in the axial direction has slight freedom of movement (see FIG ).
  • the pitch of the groove 30 in the displacer 18, and thus also the slope of the sealing element 27, decreases continuously from the inlet 28 to the outlet 29. This also applies to the volumes of the feed chambers traveling from the inlet 28 to the outlet 29, so that a compression of the sucked-in gases takes place.
  • a relief valve 32 is provided. It is located between inlet 28 and outlet 29 and opens a bore 33 in the housing 2, when impermissibly high pressures occur. The discharge takes place via channels 34, 35, which lead directly to the outlet 29.
  • the cavity 20 of the displacer 18 forms a short circuit between inlet 28 and outlet 29 and, on the other hand, that hydrocarbons from this cavity 20 penetrate into the region of the inlet.
  • These tasks fulfill on the one hand the seals 41, 42 which seal the passages of the end portions 14, 15 of the crank 13 through the frontal openings in the displacer 18. It is expedient, moreover, to use for the lubrication of the bearings 16, 17 hydrocarbon-free grease.
  • a negative pressure, for. B. 80 mbar to maintain. This can be done via a bore 43 in the Verdrängerwandung. It opens into the delivery chamber 26, in the area in which there is the desired internal pressure in the cavity of the displacer. By this measure, the seal 42 applied pressure difference is significantly reduced.
  • the embodiment shown in Figure 2 differs from the embodiment of Figure 1, characterized in that the rotating system 8 and the displacer mounted thereon 18 are supported on the shaft 6 flying.
  • the shaft 6 itself is supported by the bearing 7 in the pump housing 2 and another bearing, not shown, in the motor housing.
  • This measure has the advantage that the hollow interior 20 of the displacer 18 can be sealed tight on the suction side (cover 44).
  • an Oldham coupling 45 is provided to prevent the rotational movement of the displacer 18, an Oldham coupling 45 is provided.
  • the sealing element 27 is fixed by means of an axial pin 46 on the cover 4.
  • the pin 46 passes through a bore 47 in the sealing element 27, which prevents rotation of the belt about the axis 9, but permits a play in the axial direction.
  • ballast gas passes through a line 51 from the outside through a bore, not shown in detail in the housing 2 in the delivery chamber 26.
  • a check valve 52 In the line 51 is a check valve 52, a check valve 53 and a differential pressure valve 54.
  • a gas ballast device of this kind is known from DE-A-199 62 445.
  • the supply of the ballast gas via the cavity 20 of the displacer 18 takes place.
  • a channel system 55 in the rotating system 8 forms the connection to the outside. Passed via the channel system ballast gas (arrows 56) passes through a bore 57 (shown in phantom) in the displacement in the delivery chamber 26.
  • the advantage of this embodiment is that the displacer is cooled from the inside by the ballast gas.
  • the gases conveyed by the pump leave the delivery chamber 26 via the bore 59 in the housing 2. This opens into the channel 34, which communicates with the outlet 29 of the pump.
  • the circular movement of the displacer 18 and the pitch of the helical groove 30 are chosen so that the individual delivery chambers in the delivery chamber 26 during operation of the pump 1 from the inlet 28 to the bore 59 to move (arrows 61).
  • the displacer 18 extends with its portion 62 beyond the bore 59 addition. This also applies to the groove 30.
  • the pitch of the groove 30 is selected so that a further, independent sealing element 27 ') forming delivery chambers, which is directed against the conveying direction between the inlet 28 and bore 59 (arrows 63).
  • the pump is double-flow. It has two pumping stages, which promote from the respective end faces in the direction of bore 61. If a connection between the cavity 20 of the displacer and the suction side of the section 62 is made (arrows 64), it is possible to keep the cavity 20 at a negative pressure. In addition, an effective cooling of the pump can be realized. Cooling gas flowing into the cavity 20 via the channel system 55 in the rotating system 8 reaches the suction side of the section 62 and is removed together with the conveyed gas through the bore 59 and the outlet 29 from the delivery chamber 26. In this way, it is also prevented that gas from the inlet 28 of the pump into the cavity 20 and to the bearings located therein 7, 16 and 17 can pass. This is desirable, for example, when corrosive or corrosive gases to be promoted.
  • Figure 3 shows a double-flow design with a central inlet 28 and two end-side, indicated only by arrows outlets 29 and 29 '.
  • Side of the inlet 28 are two pump sections, of which only one is shown.
  • the non-visible portion is formed in mirror image to the visible portion. They each convey from the inlet 28 to the outlet 29 or 29 '.
  • the rotating system 8 (axis 9) as well the circular displacer 18 extend over the entire length of the pump 1.
  • the drive is via the motor 5 and a coupling, not shown in detail.
  • the sealing elements 27, 27 'leading grooves 30, 30' in the housing 2.
  • the respective inner narrow side of the sealing elements 27, 27 ' are the cylindrical outer wall of the displacer 18 at. This is achieved in that the helical sealing elements 27, 27 'in the relaxed state have a diameter which is smaller than the outer diameter of the displacer 18.
  • a two-stage pump 1 according to the invention. It has an outer housing 2 with two helical grooves 30 and 30 ", in each of which a sealing element 27, 27" is guided.
  • the arrangement corresponds to a two-start thread.
  • crank 13 crank section 14
  • circular displacer 18 are mounted in such a manner that bearings are no longer required in the region of the end face 31.
  • the crank portion 14 has a step.
  • the displacer 18 is supported on the two bearings 16, 17 with different diameters flying.
  • the pumping stage formed by the sealing elements 27, 27 "and the outer wall of the displacer 18 is preceded by a further pumping stage, for which purpose the displacer 18 is designed in the manner of a double pot.
  • a cylindrical member 35 is fixed centrally via a flange 34 to the axis 9, which projects into the interior 36 of the displacer 18 in. Its diameter is chosen so that its outer wall and the inner wall of the displacer 18 form a further sickle-shaped delivery chamber 37.
  • the outer wall of the cylindrical member 35 (or the inner wall of the displacer 18) is equipped with a helical groove 38 in which a further sealing element 39 is guided.
  • the pumping stage formed by the component 35, displacer 18 and sealing element 39 serves as the first stage of a two-stage pump 1 according to the invention. It conveys from the bearing side in the direction of the end face 31. In this area, the delivery chambers 37 and 26 communicate with each other.
  • the inlet 28 forms a central bore 60 in the component 35.
  • the slopes of the groove 38 in the component 35 and the grooves 30, 30 'in the housing 2 are constant (easy to produce) but chosen different sizes.
  • the slope of the groove 38 is greater than the pitch of the grooves 30, 30 '.
  • a particular advantage of the described embodiment is that the high pressure stage is located outside.
  • the heat which is preferably produced in the high pressure stage can be dissipated in a simple manner, be it through cooling channels in the housing 2 or, as shown, by relatively large cooling fins 51.
  • the helical sealing element 27, 27 ', 27 ", 39 has the task of mutually sealing the delivery chambers moving from the suction side to the pressure side,
  • the frictional resistance between the sealing element and the involved components 2, 18, 35 should be minimal 5a to 5c show special configurations of the sealing element 27.
  • the sealing element 27 bears against the inside of the stator housing 2 with a substantially axially directed sealing lip 71.
  • the recess 72 located below the sealing lip 71 is to the side with the higher pressure open, leaving a flexible and safe investment of the sealing lip 71 is ensured.
  • the embodiments of the sealing element 27 according to FIGS. 5b and 5c have radially directed and differently long sealing lips 73, 74 in the region of the groove 30. They have the effect of a reduced frictional resistance between the sealing element and the groove side walls.
  • the described embodiments differ essentially in terms of their bearings as well as in terms of number, pitch and choice of the location of the guide grooves for the or the sealing elements.
  • the variants described can be implemented in each of the described embodiments.
  • the invention makes it possible to produce at low production costs a compact, dry-running, low-noise and low-vibration vacuum pump, which is economical even at low pump powers (below 50 m 3 / h). It is sufficient if the rotational speed of the rotating components is between 1500 and 3600 rpm. Cooling the pump is easy as all essential components have contact with the atmosphere.
  • the displacer 18 and / or the housing 2 and the component 35 expediently consist of an aluminum material, preferably from a hard anodised aluminum alloy, eg AlMgSi1.
  • a hard anodised aluminum alloy eg AlMgSi1.
  • speed and eccentricity are chosen so that the sliding speed between 1 and 5 m / sec, preferably 4 and 5 m / sec. lies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Claims (40)

  1. Pompe (1) comprenant un carter (2) présentant une entrée (28) et une sortie (29), un dispositif d'entraînement (5), un cylindre (2) fixe centré par rapport à un axe médian (9), un déplaceur (18) à rotation excentrique à l'intérieur du cylindre (2), une commande à manivelle (13) destinée au déplaceur (18), une chambre de refoulement (26) périphérique en forme de faucille entre le cylindre (2) et le déplaceur (18), et un élément d'étanchéité hélicoïdal (27, 27', 27'', 39) dans la chambre de refoulement (26), caractérisée en ce qu'il s'agit d'une pompe à vide sèche et en ce que le déplaceur (18) circule dans le cylindre (2) sans le toucher.
  2. Pompe selon la revendication 1, caractérisée en ce que la distance la plus petite entre le déplaceur (18) et une paroi interne du cylindre (2) ne dépasse pas 1 mm, de préférence 0,2 mm.
  3. Pompe selon la revendication 1 ou 2,
    caractérisée en ce que le cylindre (2) est un constituant du carter de pompe.
  4. Pompe selon la revendication 1, 2 ou 3,
    caractérisée en ce que le déplaceur (18) présente une cavité (20).
  5. Pompe selon la revendication 4, caractérisée en ce qu'un gaz de refroidissement s'écoule dans la cavité (20).
  6. Pompe selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'il est prévu des moyens (21, 45) qui empêchent une rotation du déplaceur (18) autour de l'axe (9) du cylindre (2).
  7. Pompe selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'il est prévu des moyens (46, 47) qui empêchent une rotation de l'élément d'étanchéité autour de l'axe (9) du cylindre (2).
  8. Pompe selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la paroi extérieure du déplaceur (18) est munie d'une rainure hélicoïdale (30) destinée à l'élément d'étanchéité (27).
  9. Pompe selon la revendication 8, caractérisée en ce que l'élément d'étanchéité hélicoïdal (27) a un diamètre extérieur à l'état détendu qui est supérieur au diamètre intérieur du cylindre (2).
  10. Pompe selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la paroi intérieure du cylindre (2) est munie d'une rainure hélicoïdale (30) destinée à l'élément d'étanchéité (27).
  11. Pompe selon la revendication 10, caractérisée en ce que l'élément d'étanchéité hélicoïdal (27) a un diamètre intérieur à l'état détendu qui est inférieur au diamètre extérieur du déplaceur (18).
  12. Pompe selon l'une quelconque des revendications 8 à 11, caractérisée en ce que l'élément d'étanchéité (27) présente, à proximité de la rainure (30), des lèvres d'étanchéité (73, 74) orientées de manière approximativement radiale.
  13. Pompe selon l'une quelconque des revendications 8 à 12, caractérisée en ce que l'élément d'étanchéité (27) présente, à proximité de sa face frontale libre, une lèvre d'étanchéité (71) orientée de manière sensiblement axiale.
  14. Pompe selon l'une quelconque des revendications 8 à 13, caractérisée en ce qu'il est prévu deux rainures (30, 30''), ou plus, à la manière d'un filetage double ou multiple ainsi qu'un nombre correspondant d'éléments d'étanchéité (27, 27'').
  15. Pompe selon l'une quelconque des revendications 8 à 14, caractérisée en ce que le pas de la rainure (30, 30', 30") diminue au moins partiellement entre l'entrée (28) et la sortie (29).
  16. Pompe selon la revendication 15, caractérisée en ce qu'elle est munie d'une soupape de décharge (32) située entre l'entrée (28) et la sortie (29).
  17. Pompe selon l'une quelconque des revendications 1 à 16, caractérisée en ce qu'un système rotatif (8) entraîné par un dispositif d'entraînement (5) via un arbre (6) est muni d'une manivelle (13) sur laquelle le déplaceur (18) s'appuie par l'intermédiaire de paliers (16, 17).
  18. Pompe selon la revendication 17, caractérisée en ce que le système rotatif (8) est monté dans des couvercles de palier (3, 4) du carter de pompe (2) disposés de chaque côté via deux sections de manivelle (14, 15).
  19. Pompe selon la revendication 17, caractérisée en ce qu'une section de manivelle (14) est montée en porte-à-faux et en ce que le déplaceur (18) s'appuie en porte-à-faux sur la section de manivelle (14).
  20. Pompe selon la revendication 17, 18 ou 19, caractérisée en ce que le système rotatif (8) présente comme constituant au moins un poids de compensation de masse (22).
  21. Pompe selon les revendications 4 et 20,
    caractérisée en ce que le poids de compensation de masse (22) est placé dans la cavité (20).
  22. Pompe selon l'une quelconque des revendications 1 à 21, caractérisée en ce qu'elle est de conception à double flux.
  23. Pompe selon la revendication 22, caractérisée par une entrée centrale (28) et des sorties (29, 29') placées sur la face frontale.
  24. Pompe selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est de conception à deux étages ou plus.
  25. Pompe selon la revendication 19 et 24,
    caractérisée en ce que le déplaceur (18) a sensiblement la forme d'un double pot, en ce que les paliers (16, 17) du déplaceur se trouvent dans l'une des cavités frontales et en ce qu'un deuxième étage de pompe se trouve dans l'autre cavité (36).
  26. Pompe selon la revendication 25, caractérisée en ce qu'un constituant (35) fixé au carter et faisant saillie dans la cavité (36) présentant une surface extérieure cylindrique forme, conjointement avec la paroi intérieure du déplaceur (18), l'autre étage de pompe.
  27. Pompe selon la revendication 26, caractérisée en ce qu'un orifice (40) traversant le constituant (35) forme l'entrée.
  28. Pompe selon l'une quelconque des revendications 24 à 27, caractérisée en ce que les volumes des chambres de refoulement de l'étage côté aspiration sont plus importants que les volumes des chambres de refoulement de l'étage de pompe du côté pression.
  29. Pompe selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est conçue avec un dispositif de ballast de gaz.
  30. Pompe selon la revendication 29, caractérisée en ce que le carter (2) est muni d'un orifice par lequel le gaz de ballast est introduit via une conduite (51) munie d'une soupape (52).
  31. Pompe selon les revendications 4 et 17,
    caractérisée en ce que le système rotatif (8) est muni d'un système de canaux (55) grâce auquel la cavité (20) présente dans le déplaceur (18) communique avec l'environnement.
  32. Pompe selon les revendications 29 et 31,
    caractérisée en ce que le déplaceur (18) est muni d'un orifice (57) et en ce que le système de canaux (55) sert à l'introduction de gaz de ballast.
  33. Pompe selon la revendication 31, caractérisée en ce que le système de canaux (55) sert à l'introduction d'air de refroidissement.
  34. Pompe selon les revendications 4, 22 et 33, caractérisée par une direction de refoulement des deux étages de pompe allant de la face frontale respective à un orifice de sortie (59) commun, un des étages de pompe servant à éliminer l'air de refroidissement de la cavité (20) du déplaceur (18).
  35. Pompe selon l'une quelconque des revendications précédentes, caractérisée en ce que l'élément d'étanchéité se compose d'un matériau contenant du PTFE et le déplaceur (18) ainsi que le carter (2) se composent d'un matériau aluminium.
  36. Pompe selon l'une quelconque des revendications précédentes, caractérisée en ce que la vitesse de rotation et l'excentricité sont choisies de telle sorte que la vitesse de coulissement entre l'élément d'étanchéité et la paroi latérale de la rainure apparentée est comprise entre 1 et 5 m/s, de préférence entre 3,5 et 5 m/s.
  37. Procédé d'actionnement d'une pompe (1) comprenant un carter (2) présentant une entrée (28) et une sortie (29), un dispositif d'entraînement (5), un cylindre fixe (2) centré par rapport à un axe médian (9), un déplaceur (18) à rotation excentrique à l'intérieur du cylindre (2), une commande à manivelle (13) destinée au déplaceur (18), une chambre de refoulement (26) en forme de faucille entre le cylindre (2) et le déplaceur (18), et un élément d'étanchéité hélicoïdal (27, 27', 27", 39) dans la chambre de refoulement (26), caractérisé en ce que la pompe (1) fonctionne comme pompe à vide, en ce que la chambre de refoulement (26) fonctionne sans lubrifiant et en ce que la commande à manivelle (13) guide le déplaceur (18) de telle sorte qu'il circule dans le cylindre (2) sans le toucher.
  38. Procédé selon la revendication 37, caractérisé en ce que la pompe (1) fonctionne avec une compression interne.
  39. Procédé selon la revendication 37 ou 38 comprenant une pompe (1) dont le déplaceur (18) présente une cavité (20), caractérisé en ce qu'une dépression est maintenue dans le déplaceur (18).
  40. Procédé selon la revendication 37 ou 38 comprenant une pompe (1) dont le déplaceur (18) présente une cavité (20), caractérisée en ce que la cavité (20) du déplaceur (18) est parcourue par de l'air de refroidissement ou du gaz de ballast.
EP03744779A 2002-03-22 2003-02-18 Pompe a excentrique et procede permettant de faire fonctionner ladite pompe Expired - Lifetime EP1488107B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10212940 2002-03-22
DE10212940A DE10212940A1 (de) 2002-03-22 2002-03-22 Exzenterpumpe und Verfahren zum Betrieb dieser Pumpe
PCT/EP2003/001597 WO2003081048A1 (fr) 2002-03-22 2003-02-18 Pompe a excentrique et procede permettant de faire fonctionner ladite pompe

Publications (2)

Publication Number Publication Date
EP1488107A1 EP1488107A1 (fr) 2004-12-22
EP1488107B1 true EP1488107B1 (fr) 2006-11-29

Family

ID=27798100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03744779A Expired - Lifetime EP1488107B1 (fr) 2002-03-22 2003-02-18 Pompe a excentrique et procede permettant de faire fonctionner ladite pompe

Country Status (6)

Country Link
US (1) US7186098B2 (fr)
EP (1) EP1488107B1 (fr)
JP (2) JP2005520988A (fr)
AU (1) AU2003215561A1 (fr)
DE (2) DE10212940A1 (fr)
WO (1) WO2003081048A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006001733A1 (de) * 2006-01-13 2007-07-19 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
DE102007043350B3 (de) 2007-09-12 2009-05-28 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe sowie Verfahren zur Steuerung einer Gasballastzufuhr zu einer Vakuumpumpe
WO2011115201A1 (fr) * 2010-03-17 2011-09-22 住友重機械工業株式会社 Piston déplaceur et son procédé de fabrication, et réfrigérateur de stockage de refroidissement
DE202016001950U1 (de) * 2016-03-30 2017-07-03 Leybold Gmbh Vakuumpumpe
US20180058453A1 (en) * 2016-08-30 2018-03-01 Agilent Technologies, Inc. Hermetic vacuum pump isolation valve
EP3636879B1 (fr) * 2019-11-20 2022-01-05 Pfeiffer Vacuum Gmbh Pompe à vide
WO2021240620A1 (fr) * 2020-05-25 2021-12-02 樫山工業株式会社 Dispositif d'échappement sous vide pourvu d'un silencieux

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274944A (en) * 1965-09-30 1966-09-27 Frederick L Parsons Screw vane pump
JPS61192884A (ja) * 1984-11-29 1986-08-27 クルト・ゲ−・フイツケルシヤ− 流体を圧縮し搬送するための作動機械
JPH01176779U (fr) * 1988-05-31 1989-12-18
JP2619022B2 (ja) * 1988-10-31 1997-06-11 株式会社東芝 流体機械
JPH02201084A (ja) * 1989-01-31 1990-08-09 Toshiba Corp 流体圧縮機
JPH03117694A (ja) * 1989-09-29 1991-05-20 Toshiba Corp 多段圧縮式コンプレッサー
JP2888936B2 (ja) * 1990-06-28 1999-05-10 株式会社東芝 流体圧縮機
JPH04128592A (ja) * 1990-09-19 1992-04-30 Nec Yamagata Ltd ドライポンプ
JP2954757B2 (ja) * 1991-09-12 1999-09-27 株式会社東芝 流体圧縮機
JP3263117B2 (ja) * 1992-03-30 2002-03-04 株式会社東芝 コンプレッサ
DE4300274A1 (de) * 1993-01-08 1994-07-14 Leybold Ag Vakuumpumpe mit Rotor
DE4337064A1 (de) * 1993-10-29 1995-05-04 Linde Ag Drehkolbenmaschine
JPH07269478A (ja) * 1994-03-31 1995-10-17 Toshiba Corp 流体圧縮機
JPH0821389A (ja) * 1994-07-06 1996-01-23 Shuichi Kitamura 無給油式ロータリポンプ
JP3534950B2 (ja) * 1996-08-21 2004-06-07 東芝キヤリア株式会社 流体機械用ブレードおよびその製造方法
JPH10184561A (ja) 1996-11-08 1998-07-14 Atsushi Imai 螺旋状シールの螺旋溝構造
JP3329707B2 (ja) * 1997-09-30 2002-09-30 株式会社東芝 半導体装置
JP3517098B2 (ja) * 1997-09-30 2004-04-05 株式会社東芝 流体圧縮機
JPH11125193A (ja) * 1997-10-22 1999-05-11 Toshiba Corp 流体機械
TW411381B (en) * 1997-10-23 2000-11-11 Toshiba Corp Helical blade type compressor
JP3347050B2 (ja) * 1998-03-16 2002-11-20 株式会社東芝 ヘリカルブレード式圧縮機
JPH11173285A (ja) * 1997-12-08 1999-06-29 Mitsubishi Electric Corp 流体圧縮機
JPH11173286A (ja) * 1997-12-08 1999-06-29 Mitsubishi Electric Corp 流体圧縮機
JPH11257263A (ja) * 1998-03-11 1999-09-21 Toshiba Corp へリカルブレード式圧縮機及びこれを用いた冷凍サイクル装置
JPH11336681A (ja) * 1998-05-25 1999-12-07 Toshiba Corp 流体圧縮機
JPH11351172A (ja) 1998-06-10 1999-12-21 Toshiba Corp 流体機械
JP2000110761A (ja) * 1998-10-06 2000-04-18 Toshiba Corp 流体圧縮機
DE19962455A1 (de) 1999-12-22 2001-06-28 Basf Ag Verfahren zur Herstellung von reinem Triethylendiamin
JP2001082363A (ja) * 1999-09-13 2001-03-27 Toshiba Kyaria Kk 流体圧縮機
JP2001082367A (ja) * 1999-09-20 2001-03-27 Toshiba Kyaria Kk 流体圧縮機
DE19962445A1 (de) * 1999-12-22 2001-06-28 Leybold Vakuum Gmbh Trockenverdichtende Vakuumpumpe mit Gasballasteinrichtung
JP2001295781A (ja) * 2000-04-12 2001-10-26 Toshiba Kyaria Kk 流体機械
JP2002054589A (ja) * 2000-08-10 2002-02-20 Toshiba Kyaria Kk 流体圧縮機

Also Published As

Publication number Publication date
EP1488107A1 (fr) 2004-12-22
US20050163632A1 (en) 2005-07-28
US7186098B2 (en) 2007-03-06
AU2003215561A1 (en) 2003-10-08
DE10212940A1 (de) 2003-10-02
JP2005520988A (ja) 2005-07-14
WO2003081048A1 (fr) 2003-10-02
DE50305843D1 (de) 2007-01-11
JP2010270765A (ja) 2010-12-02

Similar Documents

Publication Publication Date Title
DE69624867T2 (de) Spiralverdrängungsanlage für Fluide
DE3878073T2 (de) Fluessigkeitsverdichter.
DE4091980C2 (de) Spiralverdichter
DE1703251C3 (de) Schraubenverdichter mit zwei Schraubenrotoren und ölzufuhr zum Arbeitsraum und zu Wellenlagern
DE2225327A1 (de) Vakuumpumpe
EP1108143A1 (fr) Pompe a broche helicoidale a compression a sec
DE3627579A1 (de) Spiralkompressor
DE102010009083B4 (de) Vakuumpumpe
DE19907492A1 (de) CO¶2¶-Kompressor
DE69020434T2 (de) Rotationsverdichter.
DE3127323A1 (de) Schraubenkompressor mit geschlossenem druckgassystem mit oelnebelschmierung
DE10223958A1 (de) Schneckenkompressor
EP1488107B1 (fr) Pompe a excentrique et procede permettant de faire fonctionner ladite pompe
DE69427186T2 (de) Schwingender rotations-kompressor
DE112016002389T5 (de) Kompressor vom Zylinderrotations-Typ
EP1088153B1 (fr) Machine de refoulement construite selon le principe de la spirale
DE102008008860B4 (de) Verdichter
DE2332411B2 (de) Rotationskolbenverdichter
EP3670915B1 (fr) Machine volumétrique selon le principe de la spirale, en particulier compresseur à spirale pour un climatisateur de véhicule
DE19800825A1 (de) Trockenverdichtende Schraubenspindelpumpe
DE69303008T2 (de) Spiralverdichter
DE69831024T2 (de) Spiralverdichter
DE3826548A1 (de) Fluegelradkompressor mit variabler foerderleistung
DE3812487C2 (de) Flügelzellenverdichter mit variabler Förderleistung
DE102020210453B4 (de) Scrollverdichter eines elektrischen Kältemittelantriebs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50305843

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070201

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120222

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130218

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140428

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305843

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901