EP1456872A1 - Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat - Google Patents
Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substratInfo
- Publication number
- EP1456872A1 EP1456872A1 EP02792976A EP02792976A EP1456872A1 EP 1456872 A1 EP1456872 A1 EP 1456872A1 EP 02792976 A EP02792976 A EP 02792976A EP 02792976 A EP02792976 A EP 02792976A EP 1456872 A1 EP1456872 A1 EP 1456872A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- iii
- substrate
- masking
- particular according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02463—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02647—Lateral overgrowth
Definitions
- the invention relates to a method for depositing III-V semiconductor layers on a non-III-V substrate, in particular sapphire, silicon, silicon oxide substrate or another silicon-containing substrate, in a process chamber of a reactor made of gaseous starting materials a III-V layer, in particular a buffer layer, is deposited on a III-V seed layer.
- III-V semiconductors for example gallium arsenide or indium phosphide or mixed crystals, leads to a high defect density of the grown layer due to the lattice mismatch that is usually present.
- the gallium arsenide or indium phosphide layer is deposited according to the invention in the MOCVD process / in which gaseous starting materials, for example TMG, TMI, TMAl, arsine or phosphine NH3 are introduced into the process chamber of a reactor, where the silicon substrate is located on a heated substrate holder ,
- gaseous starting materials for example TMG, TMI, TMAl, arsine or phosphine NH3
- the object of the invention is to provide a method by means of which the defect density of the grown layer can be reduced.
- the masking layer is deposited as a quasi-monolayer. This creates a quasi-monolayer.
- the masking layer preferably consists of a different semiconductor material than the seed layer or the layer deposited thereon, for example the buffer layer.
- the masking layer can consist of Si x N or SiO x . But it can also consist of metal. As a result of the deposition of this masking layer on the generally less than 100 nm thick seed layer, the seed layer is covered except for randomly distributed island areas.
- the masking layer After the masking layer has been deposited, a very thin layer is formed on the III-V seed layer or on the substrate, on which no III-V material grows. The majority of the surface is masked. However, this layer or mask is not closed, but rather forms island-shaped free spaces in which a free III-V surface of the germ layer is present. These island-like III-V surface sections form germ zones for the III-V buffer layer to be deposited thereafter.
- the buffer layer is deposited from one or more gaseous III material and one or more gaseous V material. The germ growth initially occurs only in the area of the free 111 V surfaces, i.e. on the islands, at locations that are at a distance from one another.
- this layer (buffer layer) are initially selected so that essentially lateral growth takes place. The germs therefore initially grow towards each other until an essentially closed layer has formed. With this method, areas with a very low defect density are formed over a large area. After the surface has been closed, the growth parameters can be changed such that the growth takes place primarily in the vertical direction.
- a seed layer denoted by k made of, for example, gallium arsenide, aluminum nitride, aluminum gallium nitride, gallium aluminum arsenide or the like is deposited on the silicon substrate.
- a masking layer of, for example, silicon nitride or silicon oxide is then deposited onto this seed layer k in the manner described above.
- any layer on which further germination of the III-V material is suppressed during the subsequent deposition of the buffer layer is suitable as a masking layer.
- the actual buffer layer is then deposited on the masked seed layer. This is shown in drawing 2.
- the growth there initially takes place only in the lateral direction. The individual islands enlarge towards each other. There is increased lateral growth. The germs can coalize so quickly.
- dislocated facets can also be used, for example, to bend in the lateral direction. New dislocations then only form in the coalescence regions of the laterally growing layers. For a low defect density, a large distance between the crystal nuclei or
- Drawing 3 shows the complete III-V layer with c.
- the seed layer itself serves to uniformly argue the substrate and, in the case of non-polar substrates, to orient the crystal growing thereon. This is not necessary when using the insulating sapphire as a substrate, and an in-situ Si _, N v mask deposited directly on the substrate can also be used here to improve the crystallographic properties. Such a masking cannot be controlled in the case of silicon-containing substrates such as SiC or SiGe layers and in particular in the case of pure silicon, because the substrate is completely nitrided or oxidized too quickly and the seed layer is necessary to specify the polarity.
- this can also be carried out at lower temperatures than at the later growth temperatures and / or with starting materials, such as Aluminum, which have a lower mobility.
- starting materials such as Aluminum, which have a lower mobility.
- a generally undesirable island growth of the seed layer can thus be avoided and the polarity or orientation for the subsequent layer growth can be specified.
- aluminum-containing seed layers are also particularly suitable in order to improve the crystal orientation.
- a variant of the invention provides that a plurality of masking layers are deposited within the buffer layer.
- the masking layer is applied in situ, ie immediately after the application of a III-V layer in the same process chamber, without the substrate being covered or removed from the process chamber.
- the layers can be produced in a variety of ways. For example, only oxygen can be introduced into the process chamber to produce a masking layer. Oxide formation then occurs. This is particularly advantageous if the III-V layer contains aluminum. An aluminum oxide masking layer then forms. Silicon can also be deposited together with oxygen. Metallic masks can also be used. For example, tungsten can be used.
- An amorphous masking layer has the effect of interrupting the crystal periodicity.
- the masking layer can also be achieved by degradation of the semiconductor surface, for example at high temperatures.
- the openings of the masking layers can be a distance of several hundred Have nanometers up to a few micrometers. As the growth starts from the openings, the layers above the masks grow in single crystals until the individual germs touch. In this case, the germs grow almost without dislocations up to the coalescence points. There may again be dislocations.
- a mask is deposited again on a first region of a buffer layer.
- This buffer layer section then acts to a certain extent as a seed layer for a III-V semiconductor layer to be deposited thereon.
- This layer sequence can be repeated many times, which leads overall to a reduction in the dislocation density.
- the process is then also carried out in such a way that the process parameters are set in each case after the deposition of a masking layer in such a way that lateral growth initially preferably takes place so that the gaps close.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10163715 | 2001-12-21 | ||
DE10163715 | 2001-12-21 | ||
DE10206751 | 2002-02-19 | ||
DE10206751A DE10206751A1 (de) | 2001-12-21 | 2002-02-19 | Verfahren zum Abscheiden von III-V-Halbleiterschichten auf einem Nicht -III-V-Substrat |
PCT/EP2002/014096 WO2003054939A1 (de) | 2001-12-21 | 2002-12-11 | Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1456872A1 true EP1456872A1 (de) | 2004-09-15 |
Family
ID=26010858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02792976A Withdrawn EP1456872A1 (de) | 2001-12-21 | 2002-12-11 | Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat |
Country Status (6)
Country | Link |
---|---|
US (1) | US7128786B2 (de) |
EP (1) | EP1456872A1 (de) |
JP (1) | JP2005513799A (de) |
AU (1) | AU2002358678A1 (de) |
TW (1) | TW561526B (de) |
WO (1) | WO2003054939A1 (de) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7172745B1 (en) * | 2003-07-25 | 2007-02-06 | Chien-Min Sung | Synthesis of diamond particles in a metal matrix |
DE10335081A1 (de) * | 2003-07-31 | 2005-03-03 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Vielzahl von optoelektronischen Halbleiterchips und optoeleketronischer Halbleiterchip |
DE10335080A1 (de) | 2003-07-31 | 2005-03-03 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Vielzahl von optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
EP1583139A1 (de) | 2004-04-02 | 2005-10-05 | Interuniversitaire Microelectronica Centrum vzw ( IMEC) | Verfahren zur Abscheidung von einem Gruppe III-Nitrid-Material auf ein Siliziumsubstrat und entsprechende Vorrichtung |
US9406505B2 (en) * | 2006-02-23 | 2016-08-02 | Allos Semiconductors Gmbh | Nitride semiconductor component and process for its production |
WO2007122669A1 (ja) | 2006-03-29 | 2007-11-01 | Fujitsu Limited | 多結晶SiC基板を有する化合物半導体ウエハ、化合物半導体装置とそれらの製造方法 |
TWI334164B (en) * | 2006-06-07 | 2010-12-01 | Ind Tech Res Inst | Method of manufacturing nitride semiconductor substrate and composite material substrate |
TWI325641B (en) | 2006-09-04 | 2010-06-01 | Huga Optotech Inc | Light emitting device and methods for forming the same |
US20080083431A1 (en) * | 2006-10-06 | 2008-04-10 | Mark Schwarze | Device and method for clearing debris from the front of a hood in a mechanized sweepers |
US7825432B2 (en) * | 2007-03-09 | 2010-11-02 | Cree, Inc. | Nitride semiconductor structures with interlayer structures |
US8362503B2 (en) * | 2007-03-09 | 2013-01-29 | Cree, Inc. | Thick nitride semiconductor structures with interlayer structures |
EP2126141A4 (de) * | 2007-03-15 | 2010-08-11 | Univ Cleveland Hospitals | Screening, diagnose, behandlung und prognose pathophysiologischer zustände durch rna-regulation |
US8962453B2 (en) * | 2007-07-10 | 2015-02-24 | Nxp B.V. | Single crystal growth on a mis-matched substrate |
US7732306B2 (en) * | 2007-07-26 | 2010-06-08 | S.O.I.Tec Silicon On Insulator Technologies | Methods for producing improved epitaxial materials |
CN101802254B (zh) | 2007-10-11 | 2013-11-27 | 瓦伦斯处理设备公司 | 化学气相沉积反应器 |
US8803189B2 (en) * | 2008-08-11 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | III-V compound semiconductor epitaxy using lateral overgrowth |
US8377796B2 (en) | 2008-08-11 | 2013-02-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | III-V compound semiconductor epitaxy from a non-III-V substrate |
EP2412006A1 (de) * | 2009-02-05 | 2012-02-01 | S.O.I.Tec Silicon on Insulator Technologies | Epitaxialverfahren und strukturen zur bildung von halbleitermaterialien |
US8178427B2 (en) * | 2009-03-31 | 2012-05-15 | Commissariat A. L'energie Atomique | Epitaxial methods for reducing surface dislocation density in semiconductor materials |
DE102009050234A1 (de) † | 2009-10-21 | 2011-05-05 | Von Ardenne Anlagentechnik Gmbh | Verfahren zur Beschichtung eines Substrats mit einer TCO-Schicht und Dünnschichtsolarzelle |
PL2815421T3 (pl) * | 2012-03-21 | 2018-06-29 | Freiberger Compound Materials Gmbh | SPOSÓB WYTWARZANIA MATRYC lll-N I ICH DALSZEJ OBÓRKI I MATRYCA lll-N |
DE102012107001A1 (de) * | 2012-07-31 | 2014-02-06 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
KR101464854B1 (ko) * | 2013-01-14 | 2014-11-25 | 주식회사 엘지실트론 | 반도체 기판 |
EP3274692B1 (de) | 2015-03-24 | 2022-08-10 | Illumina, Inc. | Verfahren zur bildgebung von proben zur biologischen oder chemischen analyse |
US9520394B1 (en) | 2015-05-21 | 2016-12-13 | International Business Machines Corporation | Contact structure and extension formation for III-V nFET |
KR102369676B1 (ko) | 2017-04-10 | 2022-03-04 | 삼성디스플레이 주식회사 | 표시 장치의 제조장치 및 표시 장치의 제조방법 |
EP3696300A1 (de) * | 2019-02-18 | 2020-08-19 | Aixatech GmbH | Verfahren zur herstellung eines verbundmaterialkörpers insbesondere für die verwendung bei der herstellung von elektronischen oder optoelektronischen bauelementen |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000057460A1 (fr) * | 1999-03-23 | 2000-09-28 | Mitsubishi Cable Industries, Ltd. | PROCEDE DE CROISSANCE DE CRISTAUX SEMICONDUCTEURS COMPOSES DE GaN, ET SUBSTRAT DE SEMICONDUCTEUR |
EP1111663A2 (de) * | 1999-12-20 | 2001-06-27 | Nitride Semiconductors Co., Ltd. | Galliumnitrid-Verbindungshalbleiterbauelement und Herstellungsverfahren |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3321369B2 (ja) * | 1996-09-27 | 2002-09-03 | 日本碍子株式会社 | 表面弾性波装置およびその基板およびその製造方法 |
ATE550461T1 (de) * | 1997-04-11 | 2012-04-15 | Nichia Corp | Wachstumsmethode für einen nitrid-halbleiter |
FR2769924B1 (fr) * | 1997-10-20 | 2000-03-10 | Centre Nat Rech Scient | Procede de realisation d'une couche epitaxiale de nitrure de gallium, couche epitaxiale de nitrure de gallium et composant optoelectronique muni d'une telle couche |
US6051849A (en) * | 1998-02-27 | 2000-04-18 | North Carolina State University | Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer |
US6160833A (en) * | 1998-05-06 | 2000-12-12 | Xerox Corporation | Blue vertical cavity surface emitting laser |
JP4145437B2 (ja) * | 1999-09-28 | 2008-09-03 | 住友電気工業株式会社 | 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板 |
US6841808B2 (en) * | 2000-06-23 | 2005-01-11 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and method for producing the same |
-
2002
- 2002-10-24 TW TW091124715A patent/TW561526B/zh not_active IP Right Cessation
- 2002-12-11 JP JP2003555567A patent/JP2005513799A/ja active Pending
- 2002-12-11 WO PCT/EP2002/014096 patent/WO2003054939A1/de active Application Filing
- 2002-12-11 AU AU2002358678A patent/AU2002358678A1/en not_active Abandoned
- 2002-12-11 EP EP02792976A patent/EP1456872A1/de not_active Withdrawn
-
2004
- 2004-06-21 US US10/872,914 patent/US7128786B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000057460A1 (fr) * | 1999-03-23 | 2000-09-28 | Mitsubishi Cable Industries, Ltd. | PROCEDE DE CROISSANCE DE CRISTAUX SEMICONDUCTEURS COMPOSES DE GaN, ET SUBSTRAT DE SEMICONDUCTEUR |
EP1178523A1 (de) * | 1999-03-23 | 2002-02-06 | Mitsubishi Cable Industries, Ltd. | Gan-halbleiterverbundkristall-wachsmethode und halbleitersubstrat |
EP1111663A2 (de) * | 1999-12-20 | 2001-06-27 | Nitride Semiconductors Co., Ltd. | Galliumnitrid-Verbindungshalbleiterbauelement und Herstellungsverfahren |
Non-Patent Citations (2)
Title |
---|
SAKAI S. ET AL: "A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE", JOURNAL OF CRYSTAL GROWTH, vol. 221, 1 December 2000 (2000-12-01), pages 334 - 337, XP004226879 * |
See also references of WO03054939A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2002358678A1 (en) | 2003-07-09 |
WO2003054939A1 (de) | 2003-07-03 |
JP2005513799A (ja) | 2005-05-12 |
TW561526B (en) | 2003-11-11 |
US20050022725A1 (en) | 2005-02-03 |
US7128786B2 (en) | 2006-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2003054939A1 (de) | Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat | |
EP1908099B1 (de) | Halbleitersubstrat sowie verfahren und maskenschicht zur herstellung eines freistehenden halbleitersubstrats mittels der hydrid-gasphasenepitaxie | |
DE10392313B4 (de) | Auf Galliumnitrid basierende Vorrichtungen und Herstellungsverfahren | |
DE602004003910T2 (de) | Pufferstruktur für Heteroepitaxie auf einem Siliciumsubstrat | |
DE102007021944B4 (de) | Freistehendes Nitrid-Halbleitersubstrat und lichtemittierende Vorrichtung | |
EP2815421B1 (de) | Verfahren zur herstellung von iii-n-templaten und deren weiterverarbeitung, und iii-n-template | |
DE112004000383T5 (de) | Galliumnitrid-Einkristallsubstrat und Verfahren zur Herstellung desselben | |
DE10051632A1 (de) | Basissubstrat für die Kristallzüchtung und Verfahren zur Herstellung eines Substrats unter Verwendung des Basissubstrats | |
DE10320160A1 (de) | Verfahren zum Herstellen einer Mehrzahl von Halbleiterkörper und elektronischer Halbleiterkörper | |
DE10114029A1 (de) | III-V-Halbleiter und Verfahren zu seiner Herstellung | |
DE10313062A1 (de) | Auf Nitrid der Gruppe III basierendes Halbleitersubstrat und Verfahren zu seiner Herstellung | |
DE102018213437B4 (de) | Verfahren zur Herstellung von Galliumnitridsubstrat unter Verwendung von Hydrid-Gasphasenepitaxie | |
DE69204794T2 (de) | Verfahren zur Züchtung von heteroepitaktischen Schichten. | |
DE102011012925A1 (de) | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips | |
DE10196361B4 (de) | Verfahren zur Herstellung eines Gruppe-III-Nitrid-Halbleiterkristalls | |
DE102018213434A1 (de) | Verfahren zur Herstellung von Galliumnitridsubstrat unter Verwendung der Multiionimplantation | |
WO2014118162A1 (de) | Halbleiterschichtenfolge und verfahren zur herstellung einer halbleiterschichtenfolge | |
DE3300716C2 (de) | ||
DE60303014T2 (de) | Zwischenprodukt für die Herstellung von optischen, elektronischen oder optoelektronischen Komponenten | |
DE69106478T2 (de) | Verfahren zur heteroepitaktischen Züchtung von Schichten. | |
DE10206751A1 (de) | Verfahren zum Abscheiden von III-V-Halbleiterschichten auf einem Nicht -III-V-Substrat | |
EP1425784A1 (de) | Verfahren zur herstellung von halbleiterschichten auf iii-v-nitridhalbleiter-basis | |
WO2011032546A1 (de) | Semipolare wurtzitische gruppe-iii-nitrid basierte halbleiterschichten und darauf basierende halbleiterbauelemente | |
DE102012204553A1 (de) | Verfahren zur Herstellung von III-N-Templaten und deren Weiterverarbeitung, und III-N-Template | |
DE69318271T2 (de) | Verfahren zum Wachstum von Verbundhalbleitern auf einer Siliziumscheibe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040505 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DADGAR, ARMIN Inventor name: KROST, ALOIS Inventor name: JUERGENSEN, HOLGER |
|
17Q | First examination report despatched |
Effective date: 20080416 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AIXTRON AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20091020 |