EP1410331B1 - Verfahren und vorrichtung zur änderung eines numerischen bildes unter berücksichtigung des geräusches - Google Patents

Verfahren und vorrichtung zur änderung eines numerischen bildes unter berücksichtigung des geräusches Download PDF

Info

Publication number
EP1410331B1
EP1410331B1 EP02745485.9A EP02745485A EP1410331B1 EP 1410331 B1 EP1410331 B1 EP 1410331B1 EP 02745485 A EP02745485 A EP 02745485A EP 1410331 B1 EP1410331 B1 EP 1410331B1
Authority
EP
European Patent Office
Prior art keywords
image
digital image
noise
corrected
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02745485.9A
Other languages
English (en)
French (fr)
Other versions
EP1410331A2 (de
Inventor
Laurent Chanas
Frédéric Guichard
Lionel Moisan
Bruno Liege
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dxo Labs SA
Original Assignee
Dxo Labs SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0109291A external-priority patent/FR2827459B1/fr
Priority claimed from FR0109292A external-priority patent/FR2827460B1/fr
Application filed by Dxo Labs SA filed Critical Dxo Labs SA
Publication of EP1410331A2 publication Critical patent/EP1410331A2/de
Application granted granted Critical
Publication of EP1410331B1 publication Critical patent/EP1410331B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • G06T3/10
    • G06T5/70
    • G06T5/73
    • G06T5/80
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00007Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00045Methods therefor using a reference pattern designed for the purpose, e.g. a test chart
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00071Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/40093Modification of content of picture, e.g. retouching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/58Edge or detail enhancement; Noise or error suppression, e.g. colour misregistration correction

Definitions

  • the present invention relates to a method and a system for modifying a digital image by taking into account its noise.
  • the invention relates to a method for calculating a transformed image from a digital image and formatted information relating to defects in a device chain.
  • the device chain includes image capturing devices and / or image rendering devices.
  • the appliance chain comprises at least one appliance.
  • the method includes the step of automatically determining characteristic data from the formatted information and / or the digital image.
  • the characteristic data are hereinafter referred to as the characteristic data of the noise.
  • the transformed image does not present a visible or annoying defect, including defects related to noise, for its subsequent use.
  • the formatted information comprises the characteristic data of the noise.
  • the method further comprises the step of implementing a transformation algorithm for producing an intermediate digital image.
  • the algorithm has the advantage of making desired modifications to the digital image but has the disadvantage of increasing the noise of the intermediate digital image.
  • the intermediate digital image is composed of the digital image.
  • the formatted information makes it possible to determine, for each image zone to be corrected, an image representation and a reference representation in a base relating to the image area to be corrected.
  • the set of parameter values of the parameterized operator forms the PR enhancement profile.
  • the formatted information may depend on variable feature values depending on the digital image, including digital image size.
  • the method further comprises the step of determining the value (s) of the variable characteristics, for the digital image.
  • the method is more particularly intended to calculate an image transformed to from a digital image and formatted information relating to defects of a device chain comprising at least one image rendering apparatus.
  • the rendering machine has a dynamic.
  • the transformed image has a dynamic.
  • the method further comprises the step of adapting the dynamics of the transformed image to the dynamics of said rendering apparatus.
  • the invention applies to the case of a digital image composed of color planes.
  • the application consists in applying the method according to the invention to each color plane.
  • An image transformed from the digital image is thus obtained.
  • the transformed image has the desired characteristics and a controlled noise level.
  • the invention relates to a system for calculating a transformed image from a digital image and formatted information relating to defects of a device chain.
  • the device chain includes image capturing devices and / or image rendering devices.
  • the appliance chain comprises at least one appliance.
  • the system includes computer processing means for automatically determining characteristic data from the formatted information and / or the digital image.
  • the data characteristics are hereinafter referred to as the characteristic data of the noise.
  • the transformed image has no visible or annoying defects, including noise-related defects, for its subsequent use.
  • the formatted information comprises the characteristic data of the noise.
  • the system further comprises computer processing means implementing a transformation algorithm for producing an intermediate digital image.
  • the algorithm has the advantage of making desired modifications to the digital image but has the disadvantage of increasing the noise of the intermediate digital image.
  • the intermediate digital image is composed of the digital image.
  • the formatted information depends on variable characteristic values according to the digital image, in particular the size of the digital image.
  • the system further comprises calculating means for determining the value (s) of the variable characteristics for the digital image.
  • the system is more particularly intended for calculating a transformed image from a digital image and formatted information relating to defects in a device chain comprising at least one device for restoring the image. 'picture.
  • the rendering machine has a dynamic.
  • the transformed image has a dynamic.
  • the system further comprises computer processing means for adapting the dynamics of the transformed image to the dynamics of the rendering apparatus.
  • a more complex P25 device such as a scanner / fax / printer, a photo printing Minilab, a video conferencing device can be considered a P25 device or more than one P25 device.
  • a P3 appliance chain is a set of P25 appliances.
  • the notion of P3 apparatus string may further include a notion of order.
  • the defect P5 of the apparatus P25 a defect related to the characteristics of the optics and / or the sensor and / or the electronics and / or the software integrated in a device P25; examples of defects P5 are for example distortion, blur, vignetting, chromatic aberration, color rendering, flash uniformity, sensor noise, grain, astigmatism, spherical aberration.
  • INUM digital image is an image captured or modified or restored by a P25 device.
  • the INUM digital image can come from a P25 device in the P3 appliance chain.
  • the INUM digital image can be for a P25 device in the device chain P3. More generally, the digital image INUM may come from and / or be intended for the P3 appliance chain.
  • animated images for example video, consisting of a sequence in the time of still images
  • digital image is called INUM: a fixed image of the image sequence.
  • IF-formatted information is called data related to defects P5 of one or more apparatuses P25 of the appliance chain P3 and making it possible to calculate a transformed image I-Transf taking into account defects P5 of the apparatus P25.
  • various methods based on measurements, and / or captures or restitution of references, and / or simulations can be used.
  • the appliance chain includes in particular at least one image capture apparatus and / or at least one image rendering apparatus.
  • the method includes the step of producing formatted information related to defects of at least one device in the chain.
  • the apparatus for capturing or restoring an image (I) comprises at least one fixed characteristic and / or a variable characteristic according to the image (I).
  • the fixed and / or variable characteristics are likely to be associated with one or more characteristic values, in particular the focal length and / or the focus and their associated characteristic values.
  • the method comprises the step of producing measured formatted information related to the defects of the apparatus from a measured field D (H).
  • the formatted information may include the measured formatted information.
  • IF formatted information is related to defects in a P3 device chain.
  • the device chain P3 comprises in particular at least one image capture apparatus and / or an image restoration apparatus.
  • the image processing means use the IF formatted information to modify the quality of at least one image from or intended for the P3 appliance chain.
  • the IF formatted information includes data characterizing P5 defects of the image capture apparatus, including distortion characteristics, and / or data characterizing defects in the image rendering apparatus, including distortion characteristics.
  • the method includes the step of providing at least one field of the standard format with the IF formatted information.
  • the field is designated by a field name.
  • the field contains at least one field value.
  • Image processing means for modifying the quality of digital images from or intended for a device chain.
  • the device chain comprises at least one image capture apparatus and / or at least one image rendering apparatus.
  • the image processing means implement implement formatted information related to the faults of at least one device in the appliance chain.
  • the formatted information depends on at least one variable. Formatted information to match some of the variables and identifiers.
  • the identifiers make it possible to determine the value of the variable corresponding to the identifier taking into account the identifier and the image. It follows from the combination of technical features that it is possible to determine the value of a variable, especially in the case where the physical meaning and / or the content of the variable are known only after the diffusion of the processing means. image. It also results from the combination of technical features that the time between two updates of the correction software can be spaced. It also results from the combination of technical features that the various economic actors that produce devices and / or image processing means can update their products independently of other economic actors, even if they radically change the characteristics of their products. product or can not force their client to update their products. It also results from the combination of technical features that a new functionality can be rolled out gradually starting with a limited number of economic actors and pioneering users.
  • variable characteristic CC a measurable and variable factor from one apparatus P25 to another but fixed from one INUM digital image to another captured, modified or restored by the same apparatus P25, for example, the focal length for a P25 camera with fixed focal length.
  • the IF formatted information may depend on at least one variable characteristic CC.
  • variable characteristic value VCC is called the value of the variable characteristic CC at the time of capture, modification or restitution of a given image.
  • An INUM digital image comprises a set of image elements called pixels Px-num.1 to Px-num.n regularly distributed on the surface of the RHUM image.
  • these pixels have the shape of squares but they could have a completely different form, circular or hexagonal for example; this depends on the design of the surfaces intended to carry the image in the image capture and rendering apparatus.
  • the pixels have been represented in a joined way but in reality, generally there is a spacing between the pixels.
  • the associated luminance at any point Px-num is vx-num.
  • the intermediate image I-Int comprises a set of pixels, similar to that of the INUM image but not necessarily, called intermediate pixels Px-int.1 to Px-int. each intermediate pixel is characterized by an intermediate position Px-int and an intermediate value vx-int.
  • the transformed image I-Trarisf also comprises a set of pixels called transformed pixels Px-tr.1 to Px-tr.n each transformed pixel is characterized by a transformed position Px-tr and a transformed value vx-tr.
  • the formatted information may relate to a limited number of transformed pixels and / or integrate values of variable characteristics according to the image (for example the focal length, the focus, the aperture, etc.), in this case. case there may be an additional step performed for example by interpolation so as to reduce to simple formatted information such as those of a device having no variable characteristics, so that the case of devices including variable focus is reduced to the case fixed focal length camera.
  • the formatted information may relate to a limited number of transformed pixels and / or values of variable characteristics depending on the image, in which case there may be an additional step performed for example by interpolation.
  • a function x ', y' f (x, y, t) where t is a variable characteristic (focal for example)
  • the formatted information can consist of a limited number of values (xi, yi, ti, f (xi, yi, ti)). It is then necessary to calculate an approximation for the other values of x, y, t other than the measurement points.
  • the formatted information could possibly consist of vectors making it possible to characterize the noise and / or the blur relating to a device and / or a chain of devices, and this for all combinations of the variable parameters of the device, in particular by using characteristic profiles of the defect in particular representation bases, in particular frequency representations such as, for example, Fourier transforms, wavelet transforms, etc.
  • frequency representations are compact and appropriate domains for the representation of physical phenomena related to noise and / or blur.
  • a frequency representation such as, for example, the Fourier transform
  • the formatted information may include data studied in a prior phase and relating to the devices used, but also any information in the format Exif format or otherwise that would provide information on the settings of the camera at the time of shooting (focal, focus , aperture, speed, flash ..).
  • the INUM digital image represents, for example, the capture of the monochromatic image of a white square on a black background.
  • the ideal profile (a step) is deformed.
  • the method of the invention makes it possible, using CAPP calculation means incorporating approximations according to, among other things, a desired final precision, to obtain on the transformed I-Transf image a square whose luminance value vx-tr in each point px-tr is corrected to the nearest approximations.
  • the application of the CAPP algorithm can in the case of noise and / or blur bring the original INUM image to a perfect or almost perfect image.
  • the same algorithm can also bring the INUM image to another possibly distorted image, but differently, so as to produce an image similar to a known type of noise and / or image blur (retro noise effect). .).
  • the same process also makes it possible to bring the INUM image back to a non-perfect image (in the sense of a white square on a black background as on the figure 2 ) but optimal in the eyes of the observer so that it is possible to compensate for defects in perception of the human eye.
  • characteristic data of the noise DcB For certain types of APP devices, notably image capture, it is possible to deduce characteristic data of the noise DcB from the formatted information. For example, this is particularly the case for the apparatus making it possible to provide variable influential characteristics on the noise such as the gain, the ISO, etc. The dependence between the noise and these characteristics will be indicated in the information formatted notably by means of functions. polynomial.
  • the INUM image is subdivided into a series of analysis zones (ZAN) that are not necessarily contiguous and can, if necessary, overlap.
  • ZAN analysis zones
  • the figure 3 represents an example of cutting.
  • a ZAN analysis zone may be of any shape and it is not necessary to analyze all the points inscribed in said ZAN analysis zone.
  • the method realizes a local luminance variation (VLL) measurement.
  • VLL local luminance variation
  • the set of local luminance variation measurements for all the ZAN analysis zones is then analyzed statistically to produce one or more data characteristic of the DcB noise and relative to the RHUM image.
  • VLL can be performed by calculating on a ZAN analysis zone, the maximum luminance deviation between the set of points.
  • VLL is 29, which represents the maximum difference between two pixels in the area.
  • Another way could be to calculate the standard deviation of the distribution relative to the luminance variation.
  • the set of measurements of local variation of luminance VLL can be analyzed statistically by creating a histogram of the frequencies of appearance of the variations.
  • This histogram an example of which is represented in figure 4b gate on the abscissa a quantization of the luminance deviations VLL according to the measurement accuracy on the noise.
  • the number of occurrences of a ZAN analysis zone giving the value VLL is totalized. In the example there were 22 ZAN analysis zones for which the local luminance variation measurement gave the value 50.
  • the profile of this histogram for a natural image for example a landscape image having a random distribution of patterns of different luminance, but homogeneous luminance over small areas of analysis, comprises a characteristic zone situated before the first local maximum ( Figure 4b, 4c ). If it is assumed that a natural image has a large number of small areas (size of a ZAN analysis area) for which the illumination is almost uniform, then the first local maximum of the histogram (d 'abscissa xm and ordinate fm) characterizes the average noise of the INUM image.
  • the characteristic data of the noise of the INUM image may consist of all the values of the histogram up to the first mode.
  • Another way to extract a more synthetic information of the noise characteristic consists, as shown on the figure 4c , assigning a mean noise value BM as the abscissa xb, between the origin and the first mode of the histogram (xm), for which the ordinate is a fraction of fm (typically its half).
  • the figure 5 represents a variant of calculation of the characteristic data of the noise DcB.
  • the invention provides for estimating simultaneously with the local luminance variation VLL information relating to the average luminance in said ZAN analysis zone (for example the average algebraic of the luminances on the area).
  • the method also provides, based on the quantification of the luminance images, to create classes that linearly or non-linearly subdivide the scale of the luminance. For 8-bit quantization the class maximum is 255; typically we will use between 5 and 10 classes (C1 .. Cn) of cutting of the luminance.
  • the choice of the division may be a function of the luminance histogram of the INUM image. Each class will have a cumulative VLL occurrence frequency histogram, so that the noise contained in the INUM image is analyzed by luminance slice.
  • the analysis of the average luminance and the local variation of luminance VLL in the zone ZAN-j makes it possible to determine the class Cj of membership of noise, and to extract from the data DcB the noise BM-j. In one way, a normalized Rj ratio between BM-j and VLL can be calculated. As shown on the figure 6 if Rj tends to 1 (where the local variation of luminance VLL is substantially of the same order as BM-j that is to say that noise is measured, then the luminance vx-tr of the transformed pixel Px-tr-j is taken mainly in INUM.
  • the luminance value of a transformed pixel can then be expressed as a function of the luminance of the pixel vx-num, the luminance of the pixel vx-int and the characteristic data of the noise.
  • the luminance value of a transformed pixel can be expressed as a function of the luminances of the pixel vx-num and its neighbors, the luminances of the pixel vx-int and of its neighbors and finally the characteristic data of the noise. .
  • This method has the advantage of taking in the intermediate image only the relevant information excluding the points for which the noise analyzed in the original INUM image is too important in the sense of a global statistical study of noise characterized by the DcB data.
  • the system according to the invention comprises in figure 3 , an SZ analysis zone selection device.
  • it comprises a computing device MC1 for calculating an intermediate pixel from a pixel Pi of the INUM image.
  • a calculation device dcb makes it possible to calculate the characteristic data of the noise DcB and to provide a coefficient Rj.
  • the computing device MC2 makes it possible to calculate the value of a transformed pixel, ie its luminance, from the values of the corresponding digital and intermediate pixels and the coefficient Rj.
  • the configurable model of the formatted information makes it possible to access characteristic profiles of the blur relating to an image representation RI and a reference representation RR. These profiles are expressed in a particular base including a frequency base B using for example a Fourier transform, a wavelet transform ...
  • the base B will be implicit or else filled in the formatted information.
  • a digital image for example INUM
  • the term base B and this non-exclusively, a base in the mathematical sense of the term of this vector space and / or a vector subspace thereof.
  • frequency is called an identifier relative to each element of the base.
  • Those skilled in the art include Fourier transformations and / or wavelet transformations as basic changes in image space.
  • the base B will preferably be chosen as a basis of representation of this subspace.
  • Another way of implementing the method in the sense of the invention is to choose a representation base of the optimal image in the sense of for example that of the calculation time.
  • This base may be chosen as a small size, each element of the base having a support of a few spatially located pixels in the INUM image (for example the Splines or the set of local variation operators Laplacian, Laplacian of Laplacian or derived from higher order ).
  • the measurement of the local variation of luminance VLL on the zone ZIC makes it possible thanks to the characteristic data of the noise DcB of INUM to calculate a coefficient Rj (device dcb2).
  • This coefficient will be coupled to the representations RI and RR (device pr) to generate a frequency profile PR enhancement relative to the zone ZIC.
  • This profile indicates the gain to be made to each frequency relative to the luminance information contained in the area to be corrected ZIC, to remove all or part of the blur.
  • the set of transformed image areas is then combined so as to obtain the deflated transformed image (I-Transf ID).
  • This combination makes it possible, for example, to provide solutions in the event of ZIC overlap, in particular to limit edge effects;
  • the image creation (I-Transf ID) as previously described, has the advantage of making the necessary modifications to the INUM image with respect to the blur, but has the disadvantage of increasing the noise in certain areas (including relatively uniform areas).
  • a second implementation of a method of the present invention is based on the exemplary embodiment of the system of the figure 7b . It allows a deflated image (I-Transf IDBC) with a controlled noise level.
  • the creation of the transformed image (I-Transf IDBC) implements a clipping procedure similar to that previously described in figure 6 , using the device dcb1 and the clipping device.
  • the intermediate image, as defined in the figure 6 is none other than the deflamed image (I-Transf ID).
  • the ratio between these two profiles can indicate the gain for each frequency to bring to RI to find RR.
  • the direct application of the calculated gain between RI and RR can generate undesirable behaviors, especially at high frequencies when the area to be corrected ZIC has a high level of noise. These phenomena are known to those skilled in the art by the effect of luminance oscillations called "ringing".
  • the method will estimate a profile RH between RR and RI and whose position is parameterized as a function of the noise in the analyzed zone ZIC.
  • the Figures 8a and 8b show two examples of profiles PR that can be generated according to the invention.
  • the difference between the profiles RI and RR shows the frequency loss introduced by the blur inherent in the device.
  • the figure 8a treats the case of a high noise level in the ZIC area; it will be advantageous to choose a profile RH between RI and RR and such that its effect is less towards the high frequencies (the end of RH will be confused with RI) which in this case present the information related to the noise in the picture.
  • the figure 8b deals with the case of a very low noise level in the ZIC zone; the high frequencies of profile RI therefore represent the signal and no longer noise.
  • We will then be interested in choosing an HR profile between RI and RR such that the gain between RH and RI remains significant even at high frequencies to reinforce the perception of details in the ZIC area.
  • RH can not exceed RR which is the ideal profile of the device but does not correspond to an image achievable by a real device.
  • RR the basis of representation chosen for the RR and RI representations is that of Fourier.
  • the abscissa axis carries the frequencies of the signal, that of ordinates carries the logarithm of the module of the Fourier transform.
  • One particular way of proceeding to compute an HR profile representation is to remain tangent at low frequency to the RR profile then ( Figures 8a, 8b ) to use a line to the extreme point characterizing the high frequencies.
  • Frequency rectification PR profile construction is carried out immediately by calculating the ratio of RH / RI for all frequencies.
  • the method of the invention is applicable to the processing of color images.
  • a color image is considered from the point of view of the software processing of the image as having as many images (or color planes) as there are basic colors in the image. This is how an IMrvb image is considered to have the three color planes Im-red, Im-green, Im-blue.
  • an IMcmjn image can be considered as comprising 4 color planes Im-cyan, Im-magenta, Im-yellow, Imnoir.
  • each color plane will be processed independently so as to obtain n transformed images that will recompose the different color planes of the transformed final image.
  • the method of the invention is applicable to the computation of a transformed digital image I-Transf, intended to be displayed via a known dynamic reproduction means ( figure 9a ) to create an I-REST image.
  • This means of reproduction for example a projector, intrinsically introduces blur at the moment of restitution, which is reflected in the figure 9b for example, by attenuating the profile of a staircase transition.
  • Figure 9c we have interest ( Figure 9c ) to modify upstream the dynamics of the transformed image so that the projected image has a profile closer to the ideal profile.
  • This dynamic modification is not always possible because of the quantification of the transformed image (generally 8 bits).
  • the process can reduce the overall dynamics of the transformed image (the image becomes less contrasted and therefore less energetic).
  • the method and system according to the invention can be used to reduce the cost of a device or a chain of devices: digital optics can be designed to produce IF formatted information relating to defects P5 of the device or to the appliance chain, use this formatted information to allow image processing means, integrated or not, to modify the quality of the images coming from or intended for the appliance or the appliance chain, so that the device combination or the device chain and image processing means can capture, modify or restore images of the desired quality with reduced cost.

Claims (22)

  1. Verfahren zum Erhalt eines umgewandelten Bilds (I-Transf) ausgehend von einem digitalen Bild (INUM) von einer Gerätekette (P3), wobei die Gerätekette (P3) Bilderfassungsgeräte (P25) und/oder Bildwiedergabegeräte aufweist, wobei die Gerätekette mindestens ein Gerät aufweist,
    wobei das Verfahren enthält:
    - den Schritt der automatischen Bestimmung charakteristischer Daten ausgehend von formatierten Informationen (IF) bezüglich von Fehlern (PS) der Gerätekette (P3) und/oder ausgehend vom digitalen Bild, wobei die charakteristischen Daten nachfolgend als charakteristische Rauschdaten (DcB) bezeichnet werden,
    - den Schritt der Berechnung des umgewandelten Bilds (I-Transf) ausgehend von den formatierten Informationen (IF) und von den charakteristischen Rauschdaten (DcB),
    wobei das Verfahren außerdem zur Bestimmung der charakteristischen Rauschdaten enthält:
    - den Schritt der Auswahl von Analysezonen (ZAN) im digitalen Bild (INUM), insbesondere abhängig von den Geräten (P25) der Gerätekette und/oder von den formatierten Informationen (IF),
    - den Schritt der Berechnung der lokalen Leuchtdichteschwankungen (VLL) in den Analysezonen (ZAN),
    - den Schritt der Ableitung der charakteristischen Rauschdaten (DcB) abhängig von einer statistischen Berechnung des Auftretens der lokalen Schwankungen über die Gesamtheit der Analysezonen (ZAN), wobei diese Ableitung folgendermaßen erfolgt:
    - es wird ein Histogramm (HC1, HC2, HC3) des Auftretens der lokalen Leuchtdichteschwankungen (VLL) erstellt, und
    - aus dem Histogramm wird zumindest ein Teil des Teils ausgewählt, der sich vor dem ersten lokalen Maximum einschließlich diesem befindet,
    wobei das Verfahren dadurch gekennzeichnet ist, dass es außerdem zur Auswahl der Analysezonen (ZAN) im digitalen Bild (INUM) den Schritt der Einordnung der Analysezonen entsprechend ihrer mittleren Leuchtdichte enthält, um Klassen (CI, C2, C3) zu erhalten, und dass es außerdem enthält:
    - den Schritt der Ableitung der charakteristischen Rauschdaten (DcB) für die zur gleichen Klasse gehörenden Analysezonen (ZANi, ZANj, ZANp),
    - den Schritt der Wiederholung des vorhergehenden Schritts für jede der Klassen (C1, C2, C3),
    damit so charakteristische Rauschdaten (DcB) abhängig von der Leuchtdichte erhalten werden.
  2. Verfahren nach Anspruch 1, wobei die formatierten Informationen (IF) die charakteristischen Rauschdaten (DcB) enthalten.
  3. Verfahren nach einem der Ansprüche 1 bis 2, wobei das Verfahren außerdem den Schritt der Anwendung eines Umwandlungsalgorithmus enthält, um ein digitales Zwischenbild (I-Int) herzustellen,
    wobei der Algorithmus den Vorteil hat, am digitalen Bild (INUM) gewünschte Änderungen vorzunehmen, aber den Nachteil hat, das Rauschen des digitalen Zwischenbilds (I-Int) zu erhöhen.
  4. Verfahren nach Anspruch 3, um ausgehend vom ausgehend vom digitalen Bild (INUM) erhaltenen digitalen Zwischenbild (I-Int) ein umgewandeltes Bild (I-Transf) zu berechnen, wobei das Verfahren außerdem den Schritt der Anwendung einer Funktion enthält, die zum Ziel hat, die Leuchtdichte des digitalen Bilds (INUM) zu ändern, und die zumindest als Argumente hat:
    - die Leuchtdichte (vx-int) eines Punkts des digitalen Zwischenbilds (px-int),
    - die Leuchtdichten (vx-num) einer Zone um den entsprechenden Punkt (px-num) des digitalen Bilds,
    - charakteristische Rauschdaten (DcB),
    damit so ein umgewandeltes Bild (I-Transf) erhalten wird, das die gewünschten Eigenschaften und einen kontrollierten Rauschpegel aufweist.
  5. Verfahren nach Anspruch 4, wobei das digitale Zwischenbild (I-Int) aus dem digitalen Bild (INUM) besteht.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren insbesondere dazu bestimmt ist, ein umgewandeltes Bild (I-Transf ID) zu berechnen, in dem die ganze oder ein Teil der Unschärfe korrigiert wurde, wobei das Verfahren außerdem die folgenden Schritte enthält:
    - den Schritt der Auswahl von zu korrigierenden Bildzonen (ZIC) im digitalen Bild (INUM),
    - den Schritt der Erstellung, für jede so ausgewählte zu korrigierende Bildzone (ZIC), eines Kontrastverstärkungsprofils (PR) ausgehend von den formatierten Informationen (IF) und von den charakteristischen Rauschdaten (DcB),
    - den Schritt der Korrektur jeder so ausgewählten zu korrigierenden Bildzone (ZIC) abhängig vom Kontrastverstärkungsprofil (PR), um eine umgewandelte Bildzone zu erhalten,
    - den Schritt der Kombination der umgewandelten Bildzonen, um das umgewandelte Bild (I-Transf ID) des digitalen Bilds zu erhalten,
    damit so ein von Unschärfe befreites umgewandeltes Bild erhalten wird.
  7. Verfahren nach Anspruch 6, wobei die formatierten Informationen (IF) es ermöglichen, für jede zu korrigierende Bildzone (ZIC) eine Bilddarstellung (RI) und eine Bezugsdarstellung (RR) in einer Bank (B) bezüglich der zu korrigierenden Bildzone (ZIC) zu bestimmen, wobei das Verfahren so ist, dass es zur Erstellung eines Kontrastverstärkungsprofils (PR) ausgehend von den formatierten Informationen (IF) und vom Rauschen außerdem die folgenden Schritte enthält:
    - den Schritt der Bestimmung eines Profils (RH), ggf. unter Berücksichtigung des Rauschens, ausgehend von der Bilddarstellung (RI) und von der Bezugsdarstellung (RR),
    - den Schritt der Bestimmung eines parametrierten Operators, der es ermöglicht, von der Bilddarstellung (RI) zum Profil (RH) überzugehen,
    damit die Gesamtheit der Werte der Parameter des parametrierten Operators das Kontrastverstärkungsprofil (PR) bildet.
  8. Verfahren nach Anspruch 7, wobei das Verfahren außerdem zur Korrektur jeder zu korrigierenden Bildzone (ZIC) abhängig vom Kontrastverstärkungsprofil (PR) die folgenden Schritte enthält:
    - den Schritt der zumindest teilweisen Darstellung der zu korrigierenden Bildzone (ZIC) in der Bank (B),
    - den Schritt der Anwendung des parametrierten Operators an die am Ende des vorhergehenden Schritts erhaltene Darstellung, um eine korrigierte Darstellung der zu korrigierenden Bildzone (ZIC) zu erhalten,
    - den Schritt des Ersatzes der Darstellung der zu korrigierenden Bildzone (ZIC) durch die korrigierte Darstellung der zu korrigierenden Bildzone (ZIC), um eine umgewandelte Bildzone zu erhalten.
  9. Verfahren nach einem der Ansprüche 6 bis 8, wobei das Verfahren außerdem den Schritt der Berechnung eines Bilds mit einem kontrollierten Rauschpegel (I-Transf IDBC) ausgehend vom umgewandelten Bild enthält, indem eine Funktion angewendet wird, die zum Ziel hat, die Leuchtdichte des digitalen Bilds zu verändern und zumindest als Argumente hat:
    - die Leuchtdichte eines Punkts des umgewandelten digitalen Bilds,
    - die Leuchtdichten einer Zone um den entsprechenden Punkts des digitalen Bilds,
    - charakteristische Rauschdaten (DcB),
    damit so ein Bild mit entfernter Unschärfe (I-Transf IDBC) und mit einem kontrollierten Rauschpegel erhalten wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die formatierten Informationen von Werten von gemäß dem digitalen Bild variablen Eigenschaften abhängen, insbesondere von der Größe des digitalen Bilds, wobei das Verfahren außerdem den Schritt der Bestimmung des oder der Werte der variablen Eigenschaften für das digitale Bild enthält.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren insbesondere dazu bestimmt ist, ein umgewandeltes Bild ausgehend von einem digitalen Bild und formatierten Informationen bezüglich von Fehlern einer Gerätekette zu berechnen, die mindestens ein Bildwiedergabegerät enthält, wobei das Wiedergabegerät eine Dynamik hat, wobei das umgewandelte Bild eine Dynamik hat, wobei das Verfahren außerdem den Schritt der Anpassung der Dynamik des umgewandelten Bilds an die Dynamik des Wiedergabegeräts enthält.
  12. System zum Erhalt eines umgewandelten Bilds (I-Transf) ausgehend von einem digitalen Bild (INUM) einer Gerätekette (P3), wobei die Gerätekette Bilderfassungsgeräte (P25) und/oder Bildwiedergabegeräte enthält, wobei die Gerätekette mindestens ein Gerät aufweist,
    wobei das System enthält
    - Datenverarbeitungseinrichtungen (dcb, MC1, MC2), um automatisch charakteristische Daten ausgehend von formatierten Informationen (IF) bezüglich von Fehlern (P5) der Gerätekette (P3) und/oder ausgehend vom digitalen Bild (INUM) zu bestimmen, wobei die charakteristischen Daten nachfolgend als charakteristische Rauschdaten (DcB) bezeichnet werden,
    - Datenverarbeitungseinrichtungen (dcb, MC1, MC2), um das umgewandelte Bild (I-Transf) ausgehend von den formatierten Informationen (IF) und von den charakteristischen Rauschdaten (DcB) zu berechnen,
    wobei die Datenverarbeitungseinrichtungen zur Bestimmung der charakteristischen Rauschdaten (DcB) außerdem enthalten
    - Auswahleinrichtungen (SZ), um im digitalen Bild (INUM) Analysezonen (ZAN) insbesondere abhängig von den Geräten der Gerätekette und/oder von den formatierten Informationen (IF) auszuwählen,
    - Recheneinrichtungen, um lokale Leuchtdichteschwankungen (VLL) in den Analysezonen (ZAN) zu berechnen,
    - Ableitungseinrichtungen, um die charakteristischen Rauschdaten (DcB) abhängig von einer statistischen Berechnung des Auftretens der lokalen Schwankungen in der Gesamtheit der Analysezonen (ZAN) abzuleiten,
    wobei die Ableitungseinrichtungen enthalten
    - Einrichtungen zur Erstellung eines Histogramms (HC1, HC2, HC3) des Auftretens der lokalen Leuchtdichteschwankungen (VLL),
    - Auswahleinrichtungen, um im Histogramm mindestens einen Teil des Teils auszuwählen, der sich vor dem ersten lokalen Maximum einschließlich diesem befindet,
    wobei das System dadurch gekennzeichnet ist, dass es außerdem zur Auswahl von Analysezonen (ZAN) im digitalen Bild (INUM) Einordnungseinrichtungen enthält, um die Analysezonen gemäß ihrer mittleren Leuchtdichte einzuordnen, um Klassen (C1, C2, C3) zu erhalten,
    wobei das System außerdem Datenverarbeitungseinrichtungen enthält, um:
    - die charakteristischen Rauschdaten (DcB) für die Analysezonen (ZANi, ZANj, ZANp) abzuleiten, die zur gleichen Klasse gehören,
    - den vorhergehenden Schritt für jede der Klassen (CI, C2, C3) zu wiederholen.
  13. System nach Anspruch 12, wobei die formatierten Informationen (IF) die charakteristischen Rauschdaten (DcB) aufweisen.
  14. System nach einem der Ansprüche 12 oder 13, wobei das System außerdem Datenverarbeitungseinrichtungen (MC1) enthält, die einen Umwandlungsalgorithmus anwenden, um ein digitales Zwischenbild (I-Int) herzustellen,
    wobei der Algorithmus den Vorteil hat, am digitalen Bild (INUM) gewünschte Veränderungen vorzunehmen, aber den Nachteil hat, das Rauschen des digitalen Zwischenbilds (I-Int) zu erhöhen.
  15. System nach Anspruch 14 zur Berechnung eines umgewandelten Bilds (I-Transf) ausgehend von dem ausgehend vom digitalen Bild (INUM) erhaltenen digitalen Zwischenbild (I-Int), wobei das System Recheneinrichtungen (MC2) enthält, die eine Funktion anwenden, die zum Ziel hat, die Leuchtdichte des digitalen Bilds zu verändern und mindestens als Argumente hat
    - die Leuchtdichte (vx-int) eines Punkts des digitalen Zwischenbilds (px-int),
    - die Leuchtdichten (vx-num) einer Zone um den entsprechenden Punkt (px-num) des digitalen Bilds,
    - charakteristische Rauschdaten (DcB).
  16. System nach Anspruch 15, wobei das digitale Zwischenbild (I-Int) aus dem digitalen Bild (INUM) besteht.
  17. System nach einem der Ansprüche 12 bis 16, wobei das System insbesondere dazu bestimmt ist, ein um die ganze oder einen Teil der Unschärfe korrigiertes umgewandeltes Bild (I-Transf ID) zu berechnen, wobei das System außerdem enthält:
    - Auswahleinrichtungen zur Auswahl von zu korrigierenden Bildzonen (ZIC) im digitalen Bild (INUM),
    - Recheneinrichtungen (dcb2, pr) zur Erstellung, für jede so ausgewählte zu korrigierende Bildzone (ZIC), eines Kontrastverstärkungsprofils (PR) ausgehend von den formatierten Informationen und von den charakteristischen Rauschdaten,
    - Datenverarbeitungseinrichtungen (zic), um:
    - jede so ausgewählte zu korrigierende Bildzone (ZIC) abhängig vom Kontrastverstärkungsprofil (PR) zu korrigieren, um eine umgewandelte Bildzone zu erhalten, und um
    - die umgewandelten Bildzonen so zu kombinieren, dass das umgewandelte Bild (I-Transf) des digitalen Bilds (INUM) erhalten wird.
  18. System nach Anspruch 17, wobei die formatierten Informationen (IF) es ermöglichen, für jede zu korrigierende Bildzone (ZIC) eine Bilddarstellung (RI) und eine Bezugsdarstellung (RR) in einer Bank (B) bezüglich der zu korrigierenden Bildzone (ZIC) zu bestimmen, wobei das System so ist, dass die Recheneinrichtungen zur Erstellung eines Kontrastverstärkungsprofils (PR) ausgehend von den formatierten Informationen (IF) und vom Rauschen außerdem Einrichtungen enthalten, um zu bestimmen:
    - ein Profil (RH), ggf. unter Berücksichtigung des Rauschens, ausgehend von der Bilddarstellung (RI) und von der Bezugsdarstellung (RR),
    - einen parametrierten Operator, der es ermöglicht, von der Bilddarstellung (RI) zum Profil (RH) überzugehen.
  19. System nach Anspruch 18, wobei die Datenverarbeitungseinrichtungen zur Korrektur jeder zu korrigierenden Bildzone (ZIC) abhängig vom Kontrastverstärkungsprofil (PR) Recheneinrichtungen enthalten, um:
    - zumindest zum Teil die zu korrigierende Bildzone (ZIC) in der Bank (B) darzustellen,
    - den parametrierten Operator an die Darstellung der zu korrigierenden Bildzone (ZIC) anzuwenden, um eine korrigierte Darstellung der zu korrigierenden Bildzone (ZIC) zu erhalten,
    - die Darstellung der zu korrigierenden Bildzone (ZIC) durch die korrigierte Darstellung der zu korrigierenden Bildzone (ZIC) zu ersetzen, um eine umgewandelte Bildzone zu erhalten.
  20. System nach einem der Ansprüche 17 bis 19, wobei das System außerdem Recheneinrichtungen enthält, um ausgehend vom umgewandelten Bild ein Bild mit einem kontrollierten Rauschpegel (I-Transf IDBC) zu berechnen, indem eine Funktion angewendet wird, die zum Ziel hat, die Leuchtdichte des digitalen Bilds zu verändern, und mindestens als Argumente hat:
    - die Leuchtdichte eines Punkts des umgewandelten digitalen Bilds,
    - die Leuchtdichten einer Zone um den entsprechenden Punkt des digitalen Bilds,
    - charakteristische Rauschdaten.
  21. System nach einem der Ansprüche 12 bis 20, wobei die formatierten Informationen von gemäß dem digitalen Bild variablen Eigenschaften abhängen, insbesondere von der Größe des digitalen Bilds, wobei das System außerdem Recheneinrichtungen enthält, um den oder die Werte der variablen Eigenschaften für das digitale Bild zu bestimmen.
  22. System nach einem der Ansprüche 12 bis 21, wobei das System insbesondere dazu bestimmt ist, ein umgewandeltes Bild ausgehend von einem digitalen Bild und von formatierten Informationen bezüglich von Fehlern einer Gerätekette zu berechnen, die mindestens ein Bildwiedergabegerät enthält, wobei das Wiedergabegerät eine Dynamik hat, wobei das umgewandelte Bild eine Dynamik hat, wobei das System außerdem Datenverarbeitungseinrichtungen enthält, um die Dynamik des umgewandelten Bilds an die Dynamik des Wiedergabegeräts anzupassen.
EP02745485.9A 2001-07-12 2002-06-05 Verfahren und vorrichtung zur änderung eines numerischen bildes unter berücksichtigung des geräusches Expired - Lifetime EP1410331B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0109291 2001-07-12
FR0109291A FR2827459B1 (fr) 2001-07-12 2001-07-12 Procede et systeme pour fournir a des logiciels de traitement d'image des informations formatees liees aux caracteristiques des appareils de capture d'image et/ou des moyens de restitution d'image
FR0109292A FR2827460B1 (fr) 2001-07-12 2001-07-12 Procede et systeme pour fournir, selon un format standard, a des logiciels de traitement d'images des informations liees aux caracteristiques des appareils de capture d'image et/ou des moyens de resti
FR0109292 2001-07-12
PCT/FR2002/001908 WO2003007243A2 (fr) 2001-07-12 2002-06-05 Procede et systeme pour modifier une image numerique en prenant en compte son bruit

Publications (2)

Publication Number Publication Date
EP1410331A2 EP1410331A2 (de) 2004-04-21
EP1410331B1 true EP1410331B1 (de) 2015-08-12

Family

ID=26213095

Family Applications (7)

Application Number Title Priority Date Filing Date
EP02747504A Expired - Lifetime EP1444651B1 (de) 2001-07-12 2002-06-05 Verfahren und system zur verringerung der aktualisierungs-häufigkeit
EP02747506A Expired - Lifetime EP1410327B1 (de) 2001-07-12 2002-06-05 Verfahren und vorrichtung zur erzeugung formatierter information, die mit den fehlern zumindest eines geräts einer kette verbunden ist, insbesondere der bildschärfeverzerrung
EP08100657.9A Expired - Lifetime EP2015247B1 (de) 2001-07-12 2002-06-05 Verfahren und System zur Übermittlung von nach einem Standardformat formatierten Informationen an Bildverarbeitungsmodule
EP02745485.9A Expired - Lifetime EP1410331B1 (de) 2001-07-12 2002-06-05 Verfahren und vorrichtung zur änderung eines numerischen bildes unter berücksichtigung des geräusches
EP02748933A Expired - Lifetime EP1415275B1 (de) 2001-07-12 2002-06-05 Verfahren und System zur Bereitstellung formatierter Informationen für Bildverarbeitungsvorrichtungen
EP02751241.7A Expired - Lifetime EP1442425B1 (de) 2001-07-12 2002-06-05 Verfahren und vorrichtung zur erstellung von formatierter information über maschinenfehler
EP02743349A Expired - Lifetime EP1410326B1 (de) 2001-07-12 2002-06-05 Verfahren und system zur qualitätsverbesserung von bildern

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP02747504A Expired - Lifetime EP1444651B1 (de) 2001-07-12 2002-06-05 Verfahren und system zur verringerung der aktualisierungs-häufigkeit
EP02747506A Expired - Lifetime EP1410327B1 (de) 2001-07-12 2002-06-05 Verfahren und vorrichtung zur erzeugung formatierter information, die mit den fehlern zumindest eines geräts einer kette verbunden ist, insbesondere der bildschärfeverzerrung
EP08100657.9A Expired - Lifetime EP2015247B1 (de) 2001-07-12 2002-06-05 Verfahren und System zur Übermittlung von nach einem Standardformat formatierten Informationen an Bildverarbeitungsmodule

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP02748933A Expired - Lifetime EP1415275B1 (de) 2001-07-12 2002-06-05 Verfahren und System zur Bereitstellung formatierter Informationen für Bildverarbeitungsvorrichtungen
EP02751241.7A Expired - Lifetime EP1442425B1 (de) 2001-07-12 2002-06-05 Verfahren und vorrichtung zur erstellung von formatierter information über maschinenfehler
EP02743349A Expired - Lifetime EP1410326B1 (de) 2001-07-12 2002-06-05 Verfahren und system zur qualitätsverbesserung von bildern

Country Status (11)

Country Link
US (10) US7343040B2 (de)
EP (7) EP1444651B1 (de)
JP (6) JP4614657B2 (de)
KR (4) KR100957878B1 (de)
CN (6) CN100361153C (de)
AT (4) ATE400040T1 (de)
AU (3) AU2002317900A1 (de)
CA (1) CA2453423C (de)
DE (4) DE60234207D1 (de)
ES (2) ES2253542T3 (de)
WO (6) WO2003007240A1 (de)

Families Citing this family (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950211B2 (en) * 2001-07-05 2005-09-27 Corel Corporation Fine moire correction in images
CA2453423C (fr) * 2001-07-12 2014-10-14 Vision Iq Procede et systeme pour fournir des informations formatees a des moyens de traitement d'images
EP1394742B1 (de) * 2002-08-23 2007-12-12 STMicroelectronics S.r.l. Verfahren zur Rauschfilterung einer numerischen Bildfolge
US8294999B2 (en) 2003-01-16 2012-10-23 DigitalOptics Corporation International Optics for an extended depth of field
US7773316B2 (en) * 2003-01-16 2010-08-10 Tessera International, Inc. Optics for an extended depth of field
EP1584067A2 (de) * 2003-01-16 2005-10-12 D-blur Technologies LTD. C/o Yossi Haimov CPA Kamera mit funktionen zur bildverbesserung
US7609425B2 (en) * 2003-01-31 2009-10-27 Canon Kabushiki Kaisha Image data processing apparatus, method, storage medium and program
US8471852B1 (en) 2003-05-30 2013-06-25 Nvidia Corporation Method and system for tessellation of subdivision surfaces
JP4096828B2 (ja) * 2003-07-15 2008-06-04 セイコーエプソン株式会社 画像処理装置
US7369699B1 (en) 2003-08-29 2008-05-06 Apple Inc. Methods and apparatuses for restoring color and enhancing electronic images
GB2406992A (en) * 2003-10-09 2005-04-13 Ta Vision Lab Ltd Deconvolution of a digital image using metadata
JP2007513427A (ja) * 2003-12-01 2007-05-24 シーディーエム オプティックス, インコーポレイテッド 光学システムおよびデジタルシステムの設計を最適化するシステムおよび方法
US7944467B2 (en) * 2003-12-01 2011-05-17 Omnivision Technologies, Inc. Task-based imaging systems
US7317843B2 (en) * 2004-04-01 2008-01-08 Microsoft Corporation Luminance correction
US7463296B2 (en) 2004-04-01 2008-12-09 Microsoft Corporation Digital cameras with luminance correction
US8285041B2 (en) * 2004-09-14 2012-10-09 Olympus Corporation Image processing apparatus, image recording apparatus, and image processing method
US7461331B2 (en) * 2004-12-21 2008-12-02 Fotomedia Technologies, Llc Automated construction of print order for images capture during a session
EP1679907A1 (de) * 2005-01-05 2006-07-12 Dialog Semiconductor GmbH Hexagonale Farbpixel-Struktur mit weissen Pixeln
FR2881011B1 (fr) 2005-01-19 2007-06-29 Dxo Labs Sa Procede de realisation d'un appareil de capture et/ou restitution d'images et appareil obtenu par ce procede
US7683950B2 (en) * 2005-04-26 2010-03-23 Eastman Kodak Company Method and apparatus for correcting a channel dependent color aberration in a digital image
US20060274209A1 (en) * 2005-06-03 2006-12-07 Coretronic Corporation Method and a control device using the same for controlling a display device
US20090204475A1 (en) * 2005-07-01 2009-08-13 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Media markup for promotional visual content
US20070263865A1 (en) * 2005-07-01 2007-11-15 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Authorization rights for substitute media content
US9426387B2 (en) 2005-07-01 2016-08-23 Invention Science Fund I, Llc Image anonymization
US7860342B2 (en) 2005-07-01 2010-12-28 The Invention Science Fund I, Llc Modifying restricted images
US20080013859A1 (en) * 2005-07-01 2008-01-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Implementation of media content alteration
US8910033B2 (en) * 2005-07-01 2014-12-09 The Invention Science Fund I, Llc Implementing group content substitution in media works
US9230601B2 (en) 2005-07-01 2016-01-05 Invention Science Fund I, Llc Media markup system for content alteration in derivative works
US20080086380A1 (en) * 2005-07-01 2008-04-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Alteration of promotional content in media works
US20070266049A1 (en) * 2005-07-01 2007-11-15 Searete Llc, A Limited Liability Corportion Of The State Of Delaware Implementation of media content alteration
US20090210946A1 (en) * 2005-07-01 2009-08-20 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Media markup for promotional audio content
US20090150199A1 (en) * 2005-07-01 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Visual substitution options in media works
US20070005422A1 (en) * 2005-07-01 2007-01-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Techniques for image generation
US20080052104A1 (en) * 2005-07-01 2008-02-28 Searete Llc Group content substitution in media works
US20090037243A1 (en) * 2005-07-01 2009-02-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Audio substitution options in media works
US8203609B2 (en) * 2007-01-31 2012-06-19 The Invention Science Fund I, Llc Anonymization pursuant to a broadcasted policy
US20090150444A1 (en) * 2005-07-01 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Media markup for audio content alteration
US20090300480A1 (en) * 2005-07-01 2009-12-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Media segment alteration with embedded markup identifier
US20100154065A1 (en) * 2005-07-01 2010-06-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Media markup for user-activated content alteration
US9065979B2 (en) * 2005-07-01 2015-06-23 The Invention Science Fund I, Llc Promotional placement in media works
US20090235364A1 (en) * 2005-07-01 2009-09-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Media markup for promotional content alteration
US20080028422A1 (en) * 2005-07-01 2008-01-31 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Implementation of media content alteration
US9583141B2 (en) * 2005-07-01 2017-02-28 Invention Science Fund I, Llc Implementing audio substitution options in media works
US20070276757A1 (en) * 2005-07-01 2007-11-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Approval technique for media content alteration
US20090151004A1 (en) * 2005-07-01 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Media markup for visual content alteration
US9092928B2 (en) * 2005-07-01 2015-07-28 The Invention Science Fund I, Llc Implementing group content substitution in media works
US20070294720A1 (en) * 2005-07-01 2007-12-20 Searete Llc Promotional placement in media works
US20080052161A1 (en) * 2005-07-01 2008-02-28 Searete Llc Alteration of promotional content in media works
WO2008008084A2 (en) * 2005-09-19 2008-01-17 Cdm Optics, Inc. Task-based imaging systems
JP2007096405A (ja) * 2005-09-27 2007-04-12 Fujifilm Corp ぶれ方向判定方法および装置ならびにプログラム
US8571346B2 (en) 2005-10-26 2013-10-29 Nvidia Corporation Methods and devices for defective pixel detection
US7750956B2 (en) 2005-11-09 2010-07-06 Nvidia Corporation Using a graphics processing unit to correct video and audio data
US8588542B1 (en) 2005-12-13 2013-11-19 Nvidia Corporation Configurable and compact pixel processing apparatus
FR2895104A1 (fr) * 2005-12-19 2007-06-22 Dxo Labs Sa Procede pour fournir des donnees a un moyen de traitement numerique
FR2895103B1 (fr) * 2005-12-19 2008-02-22 Dxo Labs Sa Procede et systeme de traitement de donnees numeriques
FR2895102B1 (fr) * 2005-12-19 2012-12-07 Dxo Labs Procede pour traiter un objet dans une plateforme a processeur(s) et memoire(s) et plateforme utilisant le procede
US20070165961A1 (en) * 2006-01-13 2007-07-19 Juwei Lu Method And Apparatus For Reducing Motion Blur In An Image
US8295562B2 (en) * 2006-01-13 2012-10-23 Carl Zeiss Microimaging Ais, Inc. Medical image modification to simulate characteristics
US8737832B1 (en) 2006-02-10 2014-05-27 Nvidia Corporation Flicker band automated detection system and method
US8310533B2 (en) * 2006-03-27 2012-11-13 GE Sensing & Inspection Technologies, LP Inspection apparatus for inspecting articles
US20070239417A1 (en) * 2006-03-31 2007-10-11 D-Blur Technologies Ltd. Camera performance simulation
US20070269123A1 (en) * 2006-05-16 2007-11-22 Randall Don Briggs Method and apparatus for performing image enhancement in an image processing pipeline
JP4974586B2 (ja) * 2006-05-24 2012-07-11 オリンパス株式会社 顕微鏡用撮像装置
US7612805B2 (en) 2006-07-11 2009-11-03 Neal Solomon Digital imaging system and methods for selective image filtration
JP4839148B2 (ja) * 2006-07-12 2011-12-21 株式会社リコー ネットワーク装置,端末装置,プログラムおよび記録媒体
US8594441B1 (en) 2006-09-12 2013-11-26 Nvidia Corporation Compressing image-based data using luminance
DE102006057190A1 (de) * 2006-12-05 2008-06-12 Carl Zeiss Meditec Ag Verfahren zur Erzeugung hochqualitativer Aufnahmen der vorderen und/oder hinteren Augenabschnitte
US20080180539A1 (en) * 2007-01-31 2008-07-31 Searete Llc, A Limited Liability Corporation Image anonymization
US8723969B2 (en) 2007-03-20 2014-05-13 Nvidia Corporation Compensating for undesirable camera shakes during video capture
US20080244755A1 (en) * 2007-03-30 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Authorization for media content alteration
US20080270161A1 (en) * 2007-04-26 2008-10-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Authorization rights for substitute media content
US9215512B2 (en) 2007-04-27 2015-12-15 Invention Science Fund I, Llc Implementation of media content alteration
US7936915B2 (en) * 2007-05-29 2011-05-03 Microsoft Corporation Focal length estimation for panoramic stitching
US8634103B2 (en) * 2007-06-12 2014-01-21 Qualcomm Incorporated Print image matching parameter extraction and rendering on display devices
US8724895B2 (en) 2007-07-23 2014-05-13 Nvidia Corporation Techniques for reducing color artifacts in digital images
US8570634B2 (en) 2007-10-11 2013-10-29 Nvidia Corporation Image processing of an incoming light field using a spatial light modulator
US8780128B2 (en) 2007-12-17 2014-07-15 Nvidia Corporation Contiguously packed data
US9177368B2 (en) 2007-12-17 2015-11-03 Nvidia Corporation Image distortion correction
US8698908B2 (en) 2008-02-11 2014-04-15 Nvidia Corporation Efficient method for reducing noise and blur in a composite still image from a rolling shutter camera
US9379156B2 (en) * 2008-04-10 2016-06-28 Nvidia Corporation Per-channel image intensity correction
US8280194B2 (en) * 2008-04-29 2012-10-02 Sony Corporation Reduced hardware implementation for a two-picture depth map algorithm
US8553093B2 (en) 2008-09-30 2013-10-08 Sony Corporation Method and apparatus for super-resolution imaging using digital imaging devices
US8194995B2 (en) * 2008-09-30 2012-06-05 Sony Corporation Fast camera auto-focus
US8373718B2 (en) 2008-12-10 2013-02-12 Nvidia Corporation Method and system for color enhancement with color volume adjustment and variable shift along luminance axis
US8290260B2 (en) * 2008-12-15 2012-10-16 Xerox Corporation Method and system for creating integrated remote custom rendering profile
US20100198876A1 (en) * 2009-02-02 2010-08-05 Honeywell International, Inc. Apparatus and method of embedding meta-data in a captured image
DE102009002393A1 (de) * 2009-04-15 2010-11-04 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Verfahren und Vorrichtung zur Bearbeitung von Aufnahmebildern einer digitalen Videokamera
US8749662B2 (en) 2009-04-16 2014-06-10 Nvidia Corporation System and method for lens shading image correction
CN101551661B (zh) * 2009-05-12 2013-04-24 广东工业大学 一种面向多机器人系统的控制方法
US9519814B2 (en) 2009-06-12 2016-12-13 Hand Held Products, Inc. Portable data terminal
FR2948521B1 (fr) 2009-07-21 2012-01-27 Dxo Labs Procede d'estimation d'un defaut d'un systeme de capture d'images et systemes associes
US8698918B2 (en) 2009-10-27 2014-04-15 Nvidia Corporation Automatic white balancing for photography
KR20110065997A (ko) * 2009-12-10 2011-06-16 삼성전자주식회사 영상처리장치 및 영상처리방법
KR101451136B1 (ko) * 2010-03-19 2014-10-16 삼성테크윈 주식회사 비네팅 보정 방법 및 장치
US8335390B2 (en) * 2010-03-22 2012-12-18 Sony Corporation Blur function modeling for depth of field rendering
US8660372B2 (en) * 2010-05-10 2014-02-25 Board Of Regents Of The University Of Texas System Determining quality of an image or video using a distortion classifier
US20120019709A1 (en) * 2010-07-21 2012-01-26 Altek Corporation Assisting focusing method using multiple face blocks
CN102338972A (zh) * 2010-07-21 2012-02-01 华晶科技股份有限公司 多人脸区块辅助对焦的方法
CH703995A2 (de) 2010-10-24 2012-04-30 Airlight Energy Ip Sa Rinnenkollektor sowie Absorberrohr für einen Rinnenkollektor.
EP2447889A1 (de) * 2010-10-29 2012-05-02 Siemens Aktiengesellschaft Verfahren zur Modellierung eines Defektmanagements in einem Herstellungsverfahren und zur Handhabung des Defekts während des Herstellungsverfahrens basierend auf dem modellierten Defektmanagement
CN102625043B (zh) 2011-01-25 2014-12-10 佳能株式会社 图像处理设备、成像设备和图像处理方法
US8842931B2 (en) * 2011-02-18 2014-09-23 Nvidia Corporation System, method, and computer program product for reducing noise in an image using depth-based sweeping over image samples
JP5367749B2 (ja) * 2011-03-25 2013-12-11 株式会社東芝 サーバ装置、通信方法およびプログラム
US10331658B2 (en) * 2011-06-03 2019-06-25 Gdial Inc. Systems and methods for atomizing and individuating data as data quanta
US8712181B2 (en) * 2011-06-14 2014-04-29 Apteryx, Inc. Real-time application of filters based on image attributes
EP2552099B1 (de) 2011-07-27 2013-08-28 Axis AB Verfahren und Kamera zur Bereitstellung einer Schätzung eines mittleren Signal-Rausch-Verhältnisses für ein Bild
EP2692280B1 (de) * 2011-11-16 2019-01-09 Olympus Corporation Bildsignalprozessor für ein endoskop
JP2013123812A (ja) * 2011-12-13 2013-06-24 Canon Inc 検査装置、検査方法、コンピュータプログラム
US20130329996A1 (en) * 2012-06-10 2013-12-12 Apple Inc. Method and system for auto-enhancing photographs with tonal response curves
JP5656926B2 (ja) 2012-06-22 2015-01-21 キヤノン株式会社 画像処理方法、画像処理装置および撮像装置
US8976271B2 (en) 2012-07-19 2015-03-10 Canon Kabushiki Kaisha Optical system and image pickup apparatus
AU2013295568B2 (en) 2012-07-26 2017-09-07 DePuy Synthes Products, Inc. YCbCr pulsed illumination scheme in a light deficient environment
KR102278509B1 (ko) 2012-07-26 2021-07-19 디퍼이 신테스 프로덕츠, 인코포레이티드 광 부족 환경에서 연속된 비디오
US9509917B2 (en) 2012-07-26 2016-11-29 DePuy Synthes Products, Inc. Wide dynamic range using monochromatic sensor
US9798698B2 (en) 2012-08-13 2017-10-24 Nvidia Corporation System and method for multi-color dilu preconditioner
US9508318B2 (en) 2012-09-13 2016-11-29 Nvidia Corporation Dynamic color profile management for electronic devices
US8867817B1 (en) * 2012-10-29 2014-10-21 Amazon Technologies, Inc. Display analysis using scanned images
GB2507576A (en) * 2012-11-05 2014-05-07 British Broadcasting Corp Focus detection
US9307213B2 (en) 2012-11-05 2016-04-05 Nvidia Corporation Robust selection and weighting for gray patch automatic white balancing
US9026553B2 (en) * 2012-11-29 2015-05-05 Unisys Corporation Data expanse viewer for database systems
CA2906950A1 (en) 2013-03-15 2014-09-18 Olive Medical Corporation Comprehensive fixed pattern noise cancellation
EP2967291B1 (de) 2013-03-15 2019-10-30 DePuy Synthes Products, Inc. Rauschbewusste randverstärkung
EP2967294B1 (de) 2013-03-15 2020-07-29 DePuy Synthes Products, Inc. Hohe auflösung und farbbewegungsartefaktkorrektur in einem gepulsten farbbilderzeugungssystem
CA2906821A1 (en) 2013-03-15 2014-09-18 Olive Medical Corporation Scope sensing in a light controlled environment
EP2967290A4 (de) 2013-03-15 2016-11-16 Olive Medical Corp Kalibrierung anhand einer distalen kappe
JP6404318B2 (ja) 2013-03-15 2018-10-10 デピュイ・シンセス・プロダクツ・インコーポレイテッド レーザーパルスの積算光エネルギー制御
US9756222B2 (en) 2013-06-26 2017-09-05 Nvidia Corporation Method and system for performing white balancing operations on captured images
US9826208B2 (en) 2013-06-26 2017-11-21 Nvidia Corporation Method and system for generating weights for use in white balancing an image
US9167706B2 (en) 2013-08-05 2015-10-20 Steven J. Holmstrom Electronic flight bag retention device
WO2015131045A1 (en) 2014-02-28 2015-09-03 The Board Of Trustees Of The Leland Stanford Junior University Imaging providing ratio pixel intensity
CN114191114A (zh) 2014-03-21 2022-03-18 德普伊新特斯产品公司 用于成像传感器的卡缘连接器
US9396409B2 (en) 2014-09-29 2016-07-19 At&T Intellectual Property I, L.P. Object based image processing
CN104363986B (zh) * 2014-10-31 2017-06-13 华为技术有限公司 一种图像处理方法和设备
JP6496940B2 (ja) * 2014-11-06 2019-04-10 ソニー株式会社 軸上色収差を有するレンズを含む撮像システム、内視鏡及び撮像方法
JP6465752B2 (ja) * 2015-05-29 2019-02-06 キヤノン株式会社 制御装置、制御方法、及びプログラム
CN106687023B (zh) * 2015-08-13 2018-12-18 Hoya株式会社 评价值计算装置以及电子内窥镜系统
DE112016000094B4 (de) * 2015-08-13 2019-07-11 Hoya Corporation Vorrichtung zur Berechnung von Analysewerten und elektronisches Endoskopsystem
US9838646B2 (en) * 2015-09-24 2017-12-05 Cisco Technology, Inc. Attenuation of loudspeaker in microphone array
WO2018050725A1 (en) * 2016-09-19 2018-03-22 Thomson Licensing A method and a device for reconstructing a point cloud representative of a scene using light-field data
US11025845B2 (en) * 2016-10-12 2021-06-01 Samsung Electronics Co., Ltd. Method, apparatus, and recording medium for processing image
WO2018185972A1 (ja) * 2017-04-03 2018-10-11 三菱電機株式会社 マップデータ生成装置および方法
US10733262B2 (en) * 2017-10-05 2020-08-04 Adobe Inc. Attribute control for updating digital content in a digital medium environment
US10657118B2 (en) 2017-10-05 2020-05-19 Adobe Inc. Update basis for updating digital content in a digital medium environment
US10685375B2 (en) 2017-10-12 2020-06-16 Adobe Inc. Digital media environment for analysis of components of content in a digital marketing campaign
US11551257B2 (en) 2017-10-12 2023-01-10 Adobe Inc. Digital media environment for analysis of audience segments in a digital marketing campaign
US10795647B2 (en) 2017-10-16 2020-10-06 Adobe, Inc. Application digital content control using an embedded machine learning module
US11544743B2 (en) 2017-10-16 2023-01-03 Adobe Inc. Digital content control based on shared machine learning properties
GB2570278B (en) * 2017-10-31 2020-09-16 Cambium Networks Ltd Spectrum management for a point-to-multipoint wireless network
US10853766B2 (en) 2017-11-01 2020-12-01 Adobe Inc. Creative brief schema
US10991012B2 (en) 2017-11-01 2021-04-27 Adobe Inc. Creative brief-based content creation
EP3731724A4 (de) 2017-12-27 2021-10-13 Ethicon LLC Fluoreszenzbildgebung in einer lichtschwachen umgebung
CN108074241B (zh) * 2018-01-16 2021-10-22 深圳大学 目标图像的质量评分方法、装置、终端及存储介质
US11379725B2 (en) 2018-06-29 2022-07-05 International Business Machines Corporation Projectile extrapolation and sequence synthesis from video using convolution
JP7278096B2 (ja) * 2019-02-20 2023-05-19 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
US11172810B2 (en) 2019-06-20 2021-11-16 Cilag Gmbh International Speckle removal in a pulsed laser mapping imaging system
US11187658B2 (en) 2019-06-20 2021-11-30 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11622094B2 (en) 2019-06-20 2023-04-04 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11284783B2 (en) 2019-06-20 2022-03-29 Cilag Gmbh International Controlling integral energy of a laser pulse in a hyperspectral imaging system
US11540696B2 (en) 2019-06-20 2023-01-03 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11903563B2 (en) 2019-06-20 2024-02-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US10979646B2 (en) 2019-06-20 2021-04-13 Ethicon Llc Fluorescence imaging with minimal area monolithic image sensor
US11213194B2 (en) 2019-06-20 2022-01-04 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for hyperspectral, fluorescence, and laser mapping imaging
US11122968B2 (en) 2019-06-20 2021-09-21 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for hyperspectral imaging
US11280737B2 (en) 2019-06-20 2022-03-22 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed fluorescence imaging system
US11895397B2 (en) 2019-06-20 2024-02-06 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11937784B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11758256B2 (en) 2019-06-20 2023-09-12 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11533417B2 (en) 2019-06-20 2022-12-20 Cilag Gmbh International Laser scanning and tool tracking imaging in a light deficient environment
US11457154B2 (en) 2019-06-20 2022-09-27 Cilag Gmbh International Speckle removal in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11265491B2 (en) 2019-06-20 2022-03-01 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US10952619B2 (en) 2019-06-20 2021-03-23 Ethicon Llc Hyperspectral and fluorescence imaging and topology laser mapping with minimal area monolithic image sensor
US10841504B1 (en) 2019-06-20 2020-11-17 Ethicon Llc Fluorescence imaging with minimal area monolithic image sensor
US11398011B2 (en) 2019-06-20 2022-07-26 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed laser mapping imaging system
US20200397277A1 (en) 2019-06-20 2020-12-24 Ethicon Llc Videostroboscopy of vocal cords with a hyperspectral, fluorescence, and laser mapping imaging system
US20200397239A1 (en) 2019-06-20 2020-12-24 Ethicon Llc Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11134832B2 (en) 2019-06-20 2021-10-05 Cilag Gmbh International Image rotation in an endoscopic hyperspectral, fluorescence, and laser mapping imaging system
US11122967B2 (en) 2019-06-20 2021-09-21 Cilag Gmbh International Driving light emissions according to a jitter specification in a fluorescence imaging system
US11187657B2 (en) 2019-06-20 2021-11-30 Cilag Gmbh International Hyperspectral imaging with fixed pattern noise cancellation
US11700995B2 (en) 2019-06-20 2023-07-18 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11221414B2 (en) 2019-06-20 2022-01-11 Cilag Gmbh International Laser mapping imaging with fixed pattern noise cancellation
US11633089B2 (en) 2019-06-20 2023-04-25 Cilag Gmbh International Fluorescence imaging with minimal area monolithic image sensor
US11877065B2 (en) 2019-06-20 2024-01-16 Cilag Gmbh International Image rotation in an endoscopic hyperspectral imaging system
US11172811B2 (en) 2019-06-20 2021-11-16 Cilag Gmbh International Image rotation in an endoscopic fluorescence imaging system
US11071443B2 (en) 2019-06-20 2021-07-27 Cilag Gmbh International Minimizing image sensor input/output in a pulsed laser mapping imaging system
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11412152B2 (en) 2019-06-20 2022-08-09 Cilag Gmbh International Speckle removal in a pulsed hyperspectral imaging system
US11375886B2 (en) 2019-06-20 2022-07-05 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for laser mapping imaging
US11432706B2 (en) 2019-06-20 2022-09-06 Cilag Gmbh International Hyperspectral imaging with minimal area monolithic image sensor
US11237270B2 (en) 2019-06-20 2022-02-01 Cilag Gmbh International Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation
US11276148B2 (en) 2019-06-20 2022-03-15 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed fluorescence imaging system
US11012599B2 (en) 2019-06-20 2021-05-18 Ethicon Llc Hyperspectral imaging in a light deficient environment
US11218645B2 (en) 2019-06-20 2022-01-04 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11288772B2 (en) 2019-06-20 2022-03-29 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed fluorescence imaging system
US11892403B2 (en) 2019-06-20 2024-02-06 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11233960B2 (en) 2019-06-20 2022-01-25 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11624830B2 (en) 2019-06-20 2023-04-11 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for laser mapping imaging
US11389066B2 (en) 2019-06-20 2022-07-19 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11671691B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Image rotation in an endoscopic laser mapping imaging system
US11471055B2 (en) 2019-06-20 2022-10-18 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11412920B2 (en) 2019-06-20 2022-08-16 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11686847B2 (en) 2019-06-20 2023-06-27 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11898909B2 (en) 2019-06-20 2024-02-13 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11550057B2 (en) 2019-06-20 2023-01-10 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11516387B2 (en) 2019-06-20 2022-11-29 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11294062B2 (en) 2019-06-20 2022-04-05 Cilag Gmbh International Dynamic range using a monochrome image sensor for hyperspectral and fluorescence imaging and topology laser mapping
US11631202B2 (en) * 2021-01-08 2023-04-18 Samsung Electronics Co., Ltd. System and method for obtaining and applying a vignette filter and grain layer
US11829239B2 (en) 2021-11-17 2023-11-28 Adobe Inc. Managing machine learning model reconstruction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461655A (en) * 1992-06-19 1995-10-24 Agfa-Gevaert Method and apparatus for noise reduction

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080374A (ja) * 1983-10-11 1985-05-08 Hitachi Denshi Ltd テレビジヨンカメラ装置の撮像特性補正方法
FR2652695B1 (fr) * 1989-10-03 1993-04-16 Thomson Csf Procede et dispositif de visualisation d'images, a correction automatique de defauts par contre-reaction.
FR2661061B1 (fr) 1990-04-11 1992-08-07 Multi Media Tech Procede et dispositif de modification de zone d'images.
US5047861A (en) * 1990-07-31 1991-09-10 Eastman Kodak Company Method and apparatus for pixel non-uniformity correction
US5157497A (en) * 1991-02-25 1992-10-20 Matsushita Electric Industrial Co., Ltd. Method and apparatus for detecting and compensating for white shading errors in a digitized video signal
US5251271A (en) 1991-10-21 1993-10-05 R. R. Donnelley & Sons Co. Method for automatic registration of digitized multi-plane images
JPH05176166A (ja) 1991-12-25 1993-07-13 Hitachi Ltd 色再現方法
US5905530A (en) * 1992-08-24 1999-05-18 Canon Kabushiki Kaisha Image pickup apparatus
US5323204A (en) * 1992-11-03 1994-06-21 Eastman Kodak Company Automatic optimization of photographic exposure parameters for non-standard display sizes and/or different focal length photographing modes through determination and utilization of extra system speed
US5461440A (en) * 1993-02-10 1995-10-24 Olympus Optical Co., Ltd. Photographing image correction system
US5353362A (en) * 1993-05-17 1994-10-04 Tucci Robert R Method of generation of two electromagnetic modes using squeezers
JPH0715631A (ja) * 1993-06-29 1995-01-17 Nippon Telegr & Teleph Corp <Ntt> 画像信号雑音除去方法および装置
US5499057A (en) 1993-08-27 1996-03-12 Sony Corporation Apparatus for producing a noise-reducded image signal from an input image signal
US5485568A (en) * 1993-10-08 1996-01-16 Xerox Corporation Structured image (Sl) format for describing complex color raster images
DE69524669D1 (de) * 1994-05-26 2002-01-31 Canon Kk Bildverarbeitungsverfahren und -vorrichtung
US6334219B1 (en) * 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
JPH08116490A (ja) * 1994-10-14 1996-05-07 Olympus Optical Co Ltd 画像処理装置
KR100203239B1 (ko) * 1995-02-16 1999-06-15 윤종용 화이트쉐이딩 보정방법 및 장치
US5606365A (en) * 1995-03-28 1997-02-25 Eastman Kodak Company Interactive camera for network processing of captured images
US5694484A (en) * 1995-05-15 1997-12-02 Polaroid Corporation System and method for automatically processing image data to provide images of optimal perceptual quality
JPH0998299A (ja) 1995-10-02 1997-04-08 Canon Inc 画像処理装置及び方法
JP3409541B2 (ja) 1995-11-14 2003-05-26 三菱電機株式会社 色補正方法及び色補正装置並びに色補正応用装置及びカラー画像システム
AU714853B2 (en) * 1995-12-19 2000-01-13 Telefonaktiebolaget Lm Ericsson (Publ) Job scheduling for instruction processor
US5696850A (en) * 1995-12-21 1997-12-09 Eastman Kodak Company Automatic image sharpening in an electronic imaging system
JPH09214807A (ja) * 1996-01-31 1997-08-15 Canon Inc 画像処理装置および画像処理方法
JP3950188B2 (ja) * 1996-02-27 2007-07-25 株式会社リコー 画像歪み補正用パラメータ決定方法及び撮像装置
JPH1083024A (ja) 1996-09-09 1998-03-31 Fuji Photo Film Co Ltd カメラ及びプリンタ
JP3791635B2 (ja) * 1996-10-22 2006-06-28 富士写真フイルム株式会社 画像再生方法、画像再生装置、画像処理方法および画像処理装置
US6173087B1 (en) 1996-11-13 2001-01-09 Sarnoff Corporation Multi-view image registration with application to mosaicing and lens distortion correction
US6100925A (en) 1996-11-27 2000-08-08 Princeton Video Image, Inc. Image insertion in video streams using a combination of physical sensors and pattern recognition
US6094221A (en) * 1997-01-02 2000-07-25 Andersion; Eric C. System and method for using a scripting language to set digital camera device features
JPH10226139A (ja) * 1997-02-14 1998-08-25 Canon Inc 画像形成システム及び画像形成装置及び媒体
US6249315B1 (en) * 1997-03-24 2001-06-19 Jack M. Holm Strategy for pictorial digital image processing
JP3225882B2 (ja) 1997-03-27 2001-11-05 日本電信電話株式会社 景観ラベリングシステム
US6222583B1 (en) 1997-03-27 2001-04-24 Nippon Telegraph And Telephone Corporation Device and system for labeling sight images
US5990935A (en) * 1997-04-04 1999-11-23 Evans & Sutherland Computer Corporation Method for measuring camera and lens properties for camera tracking
JPH10319929A (ja) * 1997-05-19 1998-12-04 Matsushita Electric Ind Co Ltd 表示装置
JP3911354B2 (ja) * 1997-09-02 2007-05-09 大日本スクリーン製造株式会社 画像処理方法および装置、並びにその処理を実行するためのプログラムを記録した記録媒体
JPH11146308A (ja) 1997-11-13 1999-05-28 Fuji Photo Film Co Ltd 画像情報記録装置および画像プリントシステム
US6493028B1 (en) 1997-11-26 2002-12-10 Flashpoint Technology, Inc. Method and system for extending the available image file formats in an image capture device
DE19855885A1 (de) * 1997-12-04 1999-08-05 Fuji Photo Film Co Ltd Bildverarbeitungsverfahren und -vorrichtung
US6069982A (en) * 1997-12-23 2000-05-30 Polaroid Corporation Estimation of frequency dependence and grey-level dependence of noise in an image
JPH11220687A (ja) * 1998-01-30 1999-08-10 Fuji Photo Film Co Ltd 画像処理方法および装置
US6381375B1 (en) * 1998-02-20 2002-04-30 Cognex Corporation Methods and apparatus for generating a projection of an image
DE19812028A1 (de) * 1998-03-19 1999-09-23 Heidelberger Druckmasch Ag Verfahren zur Koordinatenumrechnung von Bilddaten mit zufälligem Offset der Bildpunkte
JP3926918B2 (ja) 1998-03-20 2007-06-06 富士通株式会社 画像補正処理装置及びそのプログラム記録媒体
US6603885B1 (en) * 1998-04-30 2003-08-05 Fuji Photo Film Co., Ltd. Image processing method and apparatus
JP4338155B2 (ja) * 1998-06-12 2009-10-07 キヤノン株式会社 画像処理装置及びその方法、コンピュータ可読メモリ
JP4187830B2 (ja) 1998-07-03 2008-11-26 東芝医用システムエンジニアリング株式会社 医用画像合成装置
US6462835B1 (en) * 1998-07-15 2002-10-08 Kodak Polychrome Graphics, Llc Imaging system and method
JP4095184B2 (ja) 1998-10-29 2008-06-04 キヤノン株式会社 画像処理装置及びその方法
JP2000165647A (ja) * 1998-11-26 2000-06-16 Seiko Epson Corp 画像データ処理方法および画像データ印刷装置並びに画像データ処理プログラムを記録した記録媒体
JP4154053B2 (ja) * 1998-12-25 2008-09-24 キヤノン株式会社 画像記録・再生システム、画像記録装置及び画像再生装置
US6538691B1 (en) * 1999-01-21 2003-03-25 Intel Corporation Software correction of image distortion in digital cameras
JP4072302B2 (ja) * 1999-04-13 2008-04-09 キヤノン株式会社 データ処理方法及び装置及び記憶媒体
US6856427B1 (en) * 1999-05-20 2005-02-15 Eastman Kodak Company System for printing correct exposure in a rendered digital image
US6693668B1 (en) * 1999-06-04 2004-02-17 Canon Kabushiki Kaisha Self-diagnostic image sensor
US6707950B1 (en) * 1999-06-22 2004-03-16 Eastman Kodak Company Method for modification of non-image data in an image processing chain
US6470151B1 (en) * 1999-06-22 2002-10-22 Canon Kabushiki Kaisha Camera, image correcting apparatus, image correcting system, image correcting method, and computer program product providing the image correcting method
JP2001016449A (ja) 1999-06-25 2001-01-19 Ricoh Co Ltd 画像入力装置
US6633408B1 (en) 1999-06-29 2003-10-14 Kodak Polychrome Graphics, Llc Spectral modeling of photographic printing based on dye concentration
WO2001001675A2 (en) 1999-06-30 2001-01-04 Logitech, Inc. Video camera with major functions implemented in host software
JP4822571B2 (ja) * 1999-08-03 2011-11-24 キヤノン株式会社 デジタルx線撮影システム及び方法
DE19943183A1 (de) * 1999-09-09 2001-03-15 Heimann Systems Gmbh & Co Verfahren zur Farbanpassung eines Bildes, insbesondere eines Röntgenbildes
JP2001094848A (ja) 1999-09-20 2001-04-06 Canon Inc モニター付カメラ
WO2001035052A1 (en) 1999-11-12 2001-05-17 Armstrong Brian S Robust landmarks for machine vision and methods for detecting same
US6809837B1 (en) * 1999-11-29 2004-10-26 Xerox Corporation On-line model prediction and calibration system for a dynamically varying color reproduction device
KR100414083B1 (ko) * 1999-12-18 2004-01-07 엘지전자 주식회사 영상왜곡 보정방법 및 이를 이용한 영상표시기기
US6816625B2 (en) * 2000-08-16 2004-11-09 Lewis Jr Clarence A Distortion free image capture system and method
JP3429280B2 (ja) * 2000-09-05 2003-07-22 理化学研究所 画像のレンズ歪みの補正方法
JP4399133B2 (ja) * 2000-09-08 2010-01-13 カシオ計算機株式会社 撮影条件提供装置、撮影条件設定システム、撮影条件提供方法
US6956966B2 (en) * 2001-04-03 2005-10-18 Electronics For Imaging, Inc. Method and apparatus for automated image correction for digital image acquisition
CA2453423C (fr) * 2001-07-12 2014-10-14 Vision Iq Procede et systeme pour fournir des informations formatees a des moyens de traitement d'images
ES2324817T3 (es) * 2001-07-12 2009-08-17 Dxo Labs Procedimiento y sistema para calcular una imagen transformada a partir de una imagen digital.
FR2827459B1 (fr) * 2001-07-12 2004-10-29 Poseidon Procede et systeme pour fournir a des logiciels de traitement d'image des informations formatees liees aux caracteristiques des appareils de capture d'image et/ou des moyens de restitution d'image
US6873727B2 (en) * 2001-07-23 2005-03-29 Hewlett-Packard Development Company, L.P. System for setting image characteristics using embedded camera tag information
FR2895104A1 (fr) 2005-12-19 2007-06-22 Dxo Labs Sa Procede pour fournir des donnees a un moyen de traitement numerique
FR2895102B1 (fr) * 2005-12-19 2012-12-07 Dxo Labs Procede pour traiter un objet dans une plateforme a processeur(s) et memoire(s) et plateforme utilisant le procede
FR2895103B1 (fr) 2005-12-19 2008-02-22 Dxo Labs Sa Procede et systeme de traitement de donnees numeriques

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461655A (en) * 1992-06-19 1995-10-24 Agfa-Gevaert Method and apparatus for noise reduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BO-CAI GAO: "An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers", REMOTE SENSING OF ENVIRONMENT, vol. 43, no. 1, 1 January 1993 (1993-01-01), pages 23 - 33, XP055039783, ISSN: 0034-4257, DOI: 10.1016/0034-4257(93)90061-2 *

Also Published As

Publication number Publication date
JP2005509333A (ja) 2005-04-07
AU2002317902A1 (en) 2003-01-29
DE60227374D1 (de) 2008-08-14
DE60234207D1 (de) 2009-12-10
KR100879832B1 (ko) 2009-01-22
EP2015247B1 (de) 2016-04-13
US7792378B2 (en) 2010-09-07
JP2004537791A (ja) 2004-12-16
US20050008242A1 (en) 2005-01-13
US20120308160A1 (en) 2012-12-06
KR20040044187A (ko) 2004-05-27
CA2453423C (fr) 2014-10-14
JP4614657B2 (ja) 2011-01-19
EP1415275B1 (de) 2008-07-02
ATE447216T1 (de) 2009-11-15
EP1444651B1 (de) 2009-10-28
US20040252906A1 (en) 2004-12-16
ATE400040T1 (de) 2008-07-15
ATE497224T1 (de) 2011-02-15
KR20040043154A (ko) 2004-05-22
ATE310284T1 (de) 2005-12-15
DE60207417D1 (de) 2005-12-22
JP4295613B2 (ja) 2009-07-15
US7724977B2 (en) 2010-05-25
JP4367757B2 (ja) 2009-11-18
EP2015247A3 (de) 2009-03-18
EP1442425A1 (de) 2004-08-04
WO2003007240A1 (fr) 2003-01-23
CN1554074A (zh) 2004-12-08
CN1316427C (zh) 2007-05-16
CN1527989A (zh) 2004-09-08
JP2004535128A (ja) 2004-11-18
KR100940147B1 (ko) 2010-02-03
ES2253542T3 (es) 2006-06-01
WO2003007236A3 (fr) 2003-04-24
WO2003007239A1 (fr) 2003-01-23
US20040234152A1 (en) 2004-11-25
US9536284B2 (en) 2017-01-03
US20050002586A1 (en) 2005-01-06
WO2003007241A1 (fr) 2003-01-23
US8559743B2 (en) 2013-10-15
US20110085740A1 (en) 2011-04-14
WO2003007242A2 (fr) 2003-01-23
CN1526117A (zh) 2004-09-01
EP1410327A2 (de) 2004-04-21
WO2003007243A3 (fr) 2004-01-22
JP2004534341A (ja) 2004-11-11
CA2453423A1 (fr) 2003-01-23
JP4020262B2 (ja) 2007-12-12
JP2004534342A (ja) 2004-11-11
CN1305010C (zh) 2007-03-14
KR20040043157A (ko) 2004-05-22
CN1316426C (zh) 2007-05-16
EP1415275A1 (de) 2004-05-06
DE60207417T2 (de) 2006-08-10
US7760955B2 (en) 2010-07-20
KR100957878B1 (ko) 2010-05-13
US20140099042A1 (en) 2014-04-10
CN100361153C (zh) 2008-01-09
US20040218803A1 (en) 2004-11-04
US7343040B2 (en) 2008-03-11
CN1526115A (zh) 2004-09-01
WO2003007236A2 (fr) 2003-01-23
KR100940148B1 (ko) 2010-02-03
DE60239061D1 (de) 2011-03-10
CN1305006C (zh) 2007-03-14
CN1273931C (zh) 2006-09-06
CN1526116A (zh) 2004-09-01
CN1535448A (zh) 2004-10-06
US20100278415A1 (en) 2010-11-04
US20040247196A1 (en) 2004-12-09
KR20040043155A (ko) 2004-05-22
US7346221B2 (en) 2008-03-18
US8675980B2 (en) 2014-03-18
EP1444651A2 (de) 2004-08-11
EP1410326A1 (de) 2004-04-21
WO2003007243A2 (fr) 2003-01-23
AU2002317900A1 (en) 2003-01-29
ES2311061T3 (es) 2009-02-01
AU2002317219A1 (en) 2003-01-29
JP4452497B2 (ja) 2010-04-21
EP1410327B1 (de) 2005-11-16
EP1410326B1 (de) 2011-01-26
EP1410331A2 (de) 2004-04-21
JP2004534491A (ja) 2004-11-11
EP1442425B1 (de) 2018-08-08
EP2015247A2 (de) 2009-01-14
JP4295612B2 (ja) 2009-07-15
WO2003007242A3 (fr) 2003-04-10

Similar Documents

Publication Publication Date Title
EP1410331B1 (de) Verfahren und vorrichtung zur änderung eines numerischen bildes unter berücksichtigung des geräusches
EP1523730B1 (de) Verfahren und system zur umsetzung eines bildes aus einem digitalen bild
EP1482724B1 (de) Bildverarbeitungsverfahren für numerische Bilder mit Belichtungskorrektur durch Erkennung von Hautbereichen des Gegenstandes
CA2600185C (fr) Procede pour commander une action, notamment une modification de nettete, a partir d&#39;une image numerique en couleurs
Julliand et al. Image noise and digital image forensics
EP3657784A1 (de) Verfahren zum abschätzen eines fehlers eines bilderfassungssystems, und entsprechende systeme
EP1673728B1 (de) Verfahren und system zum differentiellen und regelmässigen modifizieren eines digitalen bildes nach pixeln
US20220343470A1 (en) Correcting Dust and Scratch Artifacts in Digital Images
FR2996034A1 (fr) Procede pour creer des images a gamme dynamique etendue en imagerie fixe et video, et dispositif d&#39;imagerie implementant le procede.
Lee et al. Image enhancement approach using the just-noticeable-difference model of the human visual system
FR2910673A1 (fr) Procede de traitement d&#39;image et dispositif implementant ledit procede
EP4002264A1 (de) Hilfslösung zur visualisierung der simulation eines automatischen belichtungsprozesses
CN107533757A (zh) 处理图像的装置和方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040722

17Q First examination report despatched

Effective date: 20071126

R17C First examination report despatched (corrected)

Effective date: 20071129

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DXO LABS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 742740

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60247384

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 742740

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150812

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60247384

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

26N No opposition filed

Effective date: 20160513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160605

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160605

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180625

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180629

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180627

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190214 AND 20190221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60247384

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190605

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630