EP1343934A2 - Reaktiv modifizierte, teilchenförmige polymerisate zur behandlung der oberflächen textiler und nicht-textiler materialien - Google Patents

Reaktiv modifizierte, teilchenförmige polymerisate zur behandlung der oberflächen textiler und nicht-textiler materialien

Info

Publication number
EP1343934A2
EP1343934A2 EP01990493A EP01990493A EP1343934A2 EP 1343934 A2 EP1343934 A2 EP 1343934A2 EP 01990493 A EP01990493 A EP 01990493A EP 01990493 A EP01990493 A EP 01990493A EP 1343934 A2 EP1343934 A2 EP 1343934A2
Authority
EP
European Patent Office
Prior art keywords
weight
polymers
acid
reactively modified
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01990493A
Other languages
English (en)
French (fr)
Inventor
Christoph Hamers
Dieter Boeckh
Jürgen Detering
Bernhard Schlarb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1343934A2 publication Critical patent/EP1343934A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/248Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing chlorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/252Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing bromine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/273Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having epoxy groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • D06M15/29Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides containing a N-methylol group or an etherified N-methylol group; containing a N-aminomethylene group; containing a N-sulfidomethylene group
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/31Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated nitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/347Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated ethers, acetals, hemiacetals, ketones or aldehydes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3568Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing silicon
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces

Definitions

  • the invention relates to a process for treating the surfaces of textile and non-textile materials with reactively modified particulate polymers, the use of the reactively modified, particulate polymers, agents for anti-itching and detergents, dishwashing detergents, care and textile treatment agent formulations containing the reactively modified particulate polymers.
  • Textiles containing cellulose are easy to care for, for example, by treatment with condensation products made from urea, glyoxal and formaldehyde.
  • the equipment takes place during the manufacture of the textile materials.
  • Other additives such as plasticizing compounds are often used in the finishing.
  • the textiles finished in this way have the advantage over the untreated cellulose textiles after the washing process that they have fewer creases and folds, are easier to iron and are softer and smoother.
  • a method for pretreating textile materials is known from WO 98/04772, in which a mixture of a polycarboxylic acid and a cationic plasticizer is applied to the textile materials. Anti-crease is achieved.
  • EP-A 0 978 556 describes a mixture of a plasticizer and a crosslinking component with cationic properties as an agent for providing textiles with anti-crease and wrinkle protection, and a method for anti-wrinkle finishing of textiles.
  • washing, rinsing, cleaning and maintenance processes in aqueous media are usually carried out in a highly diluted liquor, the ingredients of the formulation used generally not remaining on the substrate, but rather being disposed of with the waste water.
  • a sustainable modification of the The surface of cellulose-containing materials with dispersed particles in the processes mentioned below is only unsatisfactory.
  • No. 5,476,660 discloses the principle of using polymeric retention agents for cationic or zwitterionic dispersions of polystyrene or wax, which contain an active substance embedded in the dispersed particles. These dispersed particles act as carrier particles because they adhere to the treated surface and there an active substance, e.g. when used in formulations containing surfactants.
  • the object of the present invention is to provide a further method for modifying surfaces of textile and non-textile materials.
  • Another object of the present invention is to provide a method for improving the detachment of dirt from textile and non-textile surfaces.
  • the object is achieved according to the invention by a process for treating textile materials, in which reactively modified, particulate polymers having a particle size of 10 nm to 100 ⁇ m are applied from an aqueous dispersion to the surface of the textile materials and the textile materials are dried.
  • the object is further achieved by using the reactively modified, particulate polymers as a surface-modifying additive for rinsing, care or detergents and by detergent, care product and textile treatment agent formulations containing the particulate polymers.
  • reactively modified polymers are particulate polymers which contain reactive, crosslinking groups.
  • the reactively modified polymers can contain anionic and / or cationic monomers in copolymerized form and have anionic, cationic or amphoteric protective colloids or emulsifiers on their surface.
  • the reactively modified polymers can contain monomers containing reactive groups in copolymerized form and / or have protective colloids or emulsifiers which contain reactive groups on their surface.
  • Reactively modified polymers which have an anionic character, ie which contain anionic groups in copolymerized form and / or are dispersed with anionic protective colloids or emulsifiers can have cationic polymers coated on their surface.
  • the reactive groups can also have a crosslinking action, ie only have a crosslinking effect when the treated textile surfaces are heated or dried.
  • the reactively modified, particulate polymers can be obtained by copolymerization of ethylenically unsaturated monomers which do not contain crosslinking reactive groups with ethylenically unsaturated monomers which contain such crosslinking reactive groups.
  • the reactive groups can also be introduced into the polymer by coating the surfaces of the polymer particles with colloids which have crosslinking reactive groups.
  • the reactively modified polymers used according to the invention can be obtained by copolymerizing ethylenically unsaturated monomers containing no reactive groups with ethylenically unsaturated monomers containing reactive groups.
  • Suitable monomers containing no reactive groups are, for example, alkyl esters of C 3 -C 5 - monoethylenically unsaturated carboxylic acids with monohydric C 1 -C 22 alcohols, hydroxyalkyl esters of C 3 - C 5 - monoethylenically unsaturated carboxylic acids with dihydric C 2 -C 4 alcohols Vinyl esters of saturated CrC 18 carboxylic acids, ethylene, propylene, isobutylene, C 4 -C 2 -alpha olefins, butadiene, styrene, alpha-methylstyrene, Acrylonitrile, methacrylonitrile, tetrafluoroethylene, vinylidene fluoride, fluoroethylene, chlorotrifluoroethylene, hexafluoropropene or mixtures thereof.
  • Monomers which are preferably used are methyl acrylate, ethyl acrylate, n-butyl acrylate, sec-butyl acrylate, tert-butyl acrylate, ethylhexyl acrylate, hydroxyethyl acrylate,
  • Suitable reactive, crosslinking groups are, for example, azetidinium, glycidyl ether, halohydrin, carboxylic anhydride, carboxylic acid chloride, isocyanate, vinyl sulfone, N-methylol, aldehyde and imine groups.
  • Preferred, reactive group-containing unsaturated monomers are N-methylol- (meth) acrylamide, glycidyl methacrylate, methacryloxypropyltrimethylsilane, vinyl trimethoxysilane, m-isopropenylbenzyl isocyanate, acrolein, isobutoxymethylacrylamide, isobutoxymethylacrylamide, hydroxymethylethyl allyl amyllamyl acrylate, hydroxymethylethyl allyl amylamyl acrylate, hydroxymethyl methyl allyl amylamyl acrylate, hydroxymethyl methyl diacyl amyl amyl acrylate, -acryloxymethylene diamine, ga-methylacryloxypropyltrimethoxysilane, methacryloxyethoxytrimethylsilane,
  • the reactively modified polymers used according to the invention can be prepared by the processes of solution, precipitation, suspension or emulsion polymerization known per se, as described, for example, in P. Lovell and MS El-Aaser, Emulsion Polymerization and Emulsion Polymers, Wiley, New York, 1997.
  • the reactively modified, particulate polymers used according to the invention are preferably obtained by emulsion polymerization, the process being carried out in an aqueous medium.
  • the polymerization is carried out in the presence of polymerization initiators, which decompose either thermally or photochemically, or redox initiators.
  • thermally disintegrating polymerization initiators preference is given to those which disintegrate between 20 and 180 ° C., in particular between 50 and 90 ° C.
  • Preferred polymerization initiators for emulsion polymerization are water-soluble organic peroxides such as peresters, percarbonates, perketals, hydroperoxides, inorganic peroxides such as HO 2 , salts of peroxosulfuric acid and peroxodisulfuric acid, azo compounds, boralkyl compounds and homolytically decomposing hydrocarbons.
  • water-soluble organic peroxides such as peresters, percarbonates, perketals, hydroperoxides, inorganic peroxides such as HO 2 , salts of peroxosulfuric acid and peroxodisulfuric acid, azo compounds, boralkyl compounds and homolytically decomposing hydrocarbons.
  • the polymerization initiators which are used in amounts between 0.01 and 15% by weight, based on the monomers, can be used individually or in combination.
  • Dispersion aids are generally used in the preparation of the polymers by emulsion polymerization.
  • Water-soluble, high molecular weight organic compounds with polar groups such as polyvinylpyrrolidone, copolymers of vinyl propionate or
  • Gelatin block copolymers, modified starch, low molecular weight, carboxyl and / or
  • Suitable natural protective colloids are water-soluble proteins, partially degraded proteins, water-soluble cellulose ethers, native starches, degraded starches and / or chemically modified starches.
  • Water-soluble cellulose esters are, for example
  • Hydroxyethyl cellulose and methyl cellulose come in as natural strengths
  • Particularly preferred protective colloids are polyvinyl alcohols with a residual acetate content of 0 to 39, in particular 5 to 39 mol% and vinylpyrrolidone / vinyl propionate copolymers with a vinyl ester content of up to 35, in particular 5 to 30% by weight.
  • Nonionic or ionic emulsifiers and mixtures thereof can also be used as dispersants.
  • Preferred emulsifiers are optionally ethoxylated or propoxylated longer chain alkanols or alkylphenols with different degrees of ethoxylation or propoxylation, e.g. Adducts with 0 to 50 mol of alkylene oxide, and their neutralized, sulfated, sulfonated or phosphated derivatives.
  • Neutralized dialkyl sulfosuccinic acid esters or alkyl diphenyl oxide disulfonates are particularly suitable.
  • alkylamines N, N-Dimemyl-N- (C 7 -C 25 hydroxyalkyl) ammonium salts, quaternized with alkylating agents of mono- and di- (C 7 to C 25 -C - are also suitable cationic emulsifiers based on C 7 -alkyl) dimethylammonium compounds, ester quats, such as quaternary esterified mono-, di- or trialkanolamines, which are esterified with C 7 -C 22 -carboxylic acids, and imidazoline quats, such as 1-alkylimidazolinium salts.
  • ester quats such as quaternary esterified mono-, di- or trialkanolamines, which are esterified with C 7 -C 22 -carboxylic acids
  • imidazoline quats such as 1-alkylimidazolinium salts.
  • the polymers have, for example, molecular weights of 1,000 to 2 million, preferably 5,000 to 500,000, and the molecular weights of the polymers are usually in the range of 10,000 to 150,000.
  • customary regulators can be added during the polymerization.
  • typical regulators are mercapto compounds such as mercaptoethanol or thioglycolic acid.
  • the monomers containing the reactive groups can be added gradually and separately from the other monomers. It is preferred to add the majority of the monomers containing the reactive groups only towards the end of the total feed time of all monomers. In a variant of the preparation of the polymers used according to the invention, 70% of the monomers containing the reactive groups are added in the last third of the total feed time. In addition to the polymerization processes mentioned, other processes for the production of the particulate polymers used according to the invention are also suitable. So you can z. B. particulate polymers fail by lowering the solubility of the polymers dissolved in a solvent.
  • a copolymer containing an acidic group can be dissolved in a suitable water-miscible solvent and the solution can be metered into an excess of water such that the pH in the initial charge is at least 1 lower than the equivalent pH of the copolymer.
  • Equivalence pH is the pH at which 50% of the acidic groups of the copolymer are neutralized.
  • a dispersing aid, pH regulators and / or salts in order to obtain stable, finely divided aqueous dispersions.
  • the reactively modified polymers used according to the invention have a particle size of 10 nm to 100 ⁇ m, preferably 30 nm to 3 ⁇ m, in particular 50 nm to 800 nm.
  • the reactively modified polymers used according to the invention can have anionic, cationic, amphoteric or nonionic character.
  • Reactively modified polymers with an anionic character can be obtained by copolymerizing anionic monomers such as acrylic acid, methacrylic acid, styrenesulfonic acid, acrylamido-2-methylpropanesulfonic acid, vinylsulfonic acid and maleic acid, maleic acid semiesters with -Cs-alkanols and / or their salts, in the presence of emulsifiers and protective colloids can be worked.
  • Anionic monomers are also understood here to mean monomers with acidic groups which can be converted into their salts, even if these are not present in ionic form during the polymerization.
  • the anionic character of the polymers can also be achieved by carrying out the copolymerization in the presence of anionic protective colloids and / or anionic emulsifiers.
  • the anionic character of the polymers can also be achieved by emulsifying or dispersing the finished polymers in the presence of anionic protective colloids and / or anionic emulsifiers.
  • Reactively modified polymers with a cationic character can be obtained by copolymerizing cationic monomers, it being possible to work in the presence of emulsifiers and protective colloids.
  • Cationic monomers here also mean monomers with basic groups which can be converted into their salts, even if these are not present in ionic form during the polymerization. Suitable cationic monomers are nitrogen-containing, basic ethylenically unsaturated monomers in the form of the free bases, the salts with organic or inorganic acids or in quaternized form.
  • Suitable nitrogen-containing, basic ethylenically unsaturated compounds are, for example, N, N'-dialkylaminoalkyl (meth) acrylates, for example dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, dimethylaminopropyl methacrylate, dimethylaminoethyl acrylate,
  • N, N'-dialkylaminoalkyl (meth) acrylamides for example NjN'-di- -Cralkylamino-C -C 6 -alkyl (meth) acrylamides, such as dimethylaminoethylacrylamide, dimethylaminoethylmethacrylamide, diethylaminoethylacrylamide, diethylaminoethylmethacrylamide, dipropylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamethylamylamylamylamylamylamylamylamylamylamylamylamethylamylamylamylamylamylamylamylamylamylaminoamylamylamylamylamylamylamylamylamylamylaminoamylamylamylamylamylamylamylamylamylamylamy
  • Suitable monomers in this group are 4-vinylpyridine, 2-vinylpyridine, 1-vinylimidazole, 2-methyl-1-vinylimidazole and / or diallyl (di) alkylamines in which the alkyl group has 1 to 12 carbon atoms.
  • the above-mentioned basic monomers are used in the copolymerization in the form of the free bases, the salts with organic or inorganic acids or in quaternized form.
  • carboxylic acids with 1 to 7 carbon atoms are suitable, for example formic acid, acetic acid or propionic acid, benzenesulfonic acid, sulfuric acid, phosphoric acid, p-toluenesulfonic acid or inorganic acids such as hydrohalic acids, for example hydrochloric acid or hydrobromic acid.
  • the basic monomers exemplified above can also be used in quaternized form.
  • alkyl halides with 1 to 18 carbon atoms in the Alkyl group for example methyl chloride, methyl bromide, methyl iodide, ethyl chloride, propyl chloride, hexyl chloride, dodecyl chloride, lauryl chloride and benzyl halides, in particular benzyl chloride in benzyl bromide.
  • the quaternization of the nitrogen-containing basic monomers can also be carried out by reacting these compounds with dialkyl sulfates, in particular diethyl sulfate or dimethyl sulfate.
  • Examples of monomers of this group are quaternized trimethylammonium ethyl methacrylate chloride, and Dimethylethylammoniumethylmethacrylatethylsulfat Dimethylethylammom 'environmentally ethylmethacrylamidethylsulfat, 3-methyl-1 -vinyl-imidazolinimchlorid.
  • the cationic character of the polymers can also be achieved by carrying out the copolymerization in the presence of cationic protective colloids and / or cationic emulsifiers.
  • the cationic character of the polymers mentioned can also be achieved by emulsifying or dispersing the finished polymers in the presence of cationic protective colloids and / or cationic emulsifiers.
  • Reactively modified polymers with an amphoteric character can be obtained by copolymerizing both cationic and anionic monomers.
  • Suitable monomers are, for example, the aforementioned cationic and anionic monomers.
  • amphoteric character of the polymers can also be achieved by carrying out the copolymerization in the presence of amphoteric protective colloids and / or amphoteric emulsifiers.
  • amphoteric character of the polymers can also be achieved by emulsifying or dispersing the finished polymers in the presence of amphoteric protective colloids and / or amphoteric emulsifiers.
  • Reactively modified polymers can be obtained, for example, by copolymerization of (a) 40 to 99.9% by weight, preferably 50 to 90% by weight, particularly preferably 60 to 75% by weight of at least one sparingly water-soluble or water-insoluble nonionic monomer,
  • Polymers which contain at least one anionic monomer b) or c) in copolymerized form can be used without additional anionic emulsifiers or protective colloids. Polymers that contain less than 0.5% anionic monomers are mostly used together with at least one anionic emulsifier or protective colloid.
  • Monomers a) which are preferably used are methyl acrylate, ethyl acrylate, n-butyl acrylate, sec-butyl acrylate, tert-butyl acrylate, ethylhexyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, methyl methacrylate, n-butyl methacrylate, vinyl acetate, vinyl propionate, styrene, ethylene, ethylene, isyrene, ethylene, ethylene, isyrene, ethylene, styrene, ethylene, ethylene and tetrafluoroethylene, particularly preferred monomers are methyl acrylate, ethyl acrylate, n-butyl acrylate, styrene, methyl methacrylate and vinyl acetate.
  • Monomers b) normally used are acrylic acid, methacrylic acid, maleic acid or maleic acid semiesters with Cj-Cs
  • Suitable monomers c) are, for example, acrylamido-2-methylpropanesulfonic acid, ninylsulfonic acid, methallylsulfonic acid, and their alkali and ammonium salts.
  • Suitable monomers d) are, for example, dimethylaminoethyl methacrylate, dimethyl laminopropylacrylamide, 1-vinylimidazole, 3-methyl-1-vinylimidazolinium chloride and 4-vinyl pyridine.
  • Suitable monomers e) are, for example, acrylamide, methacrylamide, ⁇ -vinylformamide, ⁇ -vinyl acetamide, ⁇ -vinylpyrrolidone, ⁇ -vinyloxazolidone,
  • Methyl polyglycol acrylates methyl polyglycol methacrylates, methyl polyglycol acrylamides and vinyl caprolactam.
  • Suitable polyunsaturated monomers f) are, for example, acrylic esters, methacrylic esters, allyl ethers and vinyl ethers of at least dihydric alcohols.
  • the OH groups of the underlying alcohols can be completely or partially etherified or esterified.
  • Crosslinkers contain at least two ethylenically unsaturated groups. Examples are butanediol diacrylate, hexanediol diacrylate and trimethylolpropane triacrylate.
  • Further unsaturated monomers e) are e.g. Allyl esters of unsaturated carboxylic acids, divinylbenzene, methylenebisacrylamide and divinylurea.
  • Preferred reactive Gmppen containing unsaturated monomer g which have a crosslinking effect but mostly post-crosslinking are ⁇ -methylol (meth) acrylamide, glycidyl methacrylate, methacryloxypropyl-trimethylsilane, vinyltrimethoxysilane, m- isopropenyl benzyl isocyanate, acrolein, isobutoxymethyl acrylamide, hydroxymethyl diacetone acrylamide, allyl-N-methylolcarbamat , N-formyl-N'-acryloxymethylene diamine, gamma-methylacryloxypropyltrimethoxy silane, methacryloxyethoxytrimethylsilane,
  • reactively modified, particulate polymers which have an anionic character, that is to say contain anionic groups in copolymerized form and / or are dispersed with anionic protective colloids or emulsifiers, and which have coating on their surface with cationic polymers.
  • cationically modified, reactively modified, particulate polymers can be obtained by covering the surface of the anionically dispersed, particulate polymers with cationic polymers.
  • All natural or synthetic cationic polymers which contain amino and / or ammonium groups and are water-soluble can be used as cationic polymers.
  • cationic polymers are polymers containing vinylamine units, polymers containing vinylimidazole units, polymers containing quaternary vinylimidazole units, condensates of imidazole and epichlorohydrin, crosslinked polyamidoamines, crosslinked polyamidoamines grafted with ethyleneimine, polyethylenimines, alkoxylated polyethyleneimines, crosslinked polyethylenimineimines, amidated polyethylenimines, amine Amine-epichlorohydrin polycondensates, alkoxylated polyamines, polyallylamines,
  • Polydimethyldi-dlylammonium chlorides polymers containing basic (meth) acrylamide or ester units, polymers containing basic quaternary (meth) acrylamide or ester units, and / or lysine condensates.
  • Cationic polymers are also understood to mean amphoteric polymers which have a net cationic charge, i.e. the polymers contain both anionic and cationic monomers copolymerized, but the molar proportion of the cationic units contained in the polymer is greater than that of the anionic units.
  • Polymers containing vinylamine units are prepared, for example, from open-chain N-vinylcarboxamides of the formula (I)
  • R 1 and R 2 may be the same or different and represent hydrogen and - to C 6 alkyl.
  • the monomers mentioned can be polymerized either alone, as a mixture with one another or together with other monoethylenically unsaturated monomers.
  • Homopolymers or copolymers of ⁇ -vinylformamide are preferably used as starting materials.
  • Polymers containing vinylamine units are known, for example, from US Pat. No. 4,421,602, EP-A-0 216 387 and EP-A-0 251 182. They are obtained by hydrolysis of polymers which contain the monomers of the formula I in copolymerized form with acids, bases or enzymes.
  • Suitable monoethylenically unsaturated monomers which are copolymerized with the ⁇ -vinylcarboxamides are all compounds which can be copolymerized therewith.
  • Examples include vinyl esters of saturated carboxylic acids with 1 to 6 carbon atoms such as vinyl formate, vinyl acetate, vinyl propionate and vinyl butyrate and vinyl ethers such as C 1 -C 6 -alkyl vinyl ether, for example methyl or ethyl vinyl ether.
  • Suitable comonomers are ethylenically unsaturated C 3 - to C 6 -carboxylic acids, for example acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid and vinyl ester acid and their alkali metal and alkaline earth metal salts, esters, amides and nitriles of the carboxylic acids mentioned, for example methyl acrylate, methyl methacrylate and ethyl acrylate ethyl methacrylate.
  • C 3 - to C 6 -carboxylic acids for example acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid and vinyl ester acid and their alkali metal and alkaline earth metal salts, esters, amides and nitriles of the carboxylic acids mentioned, for example methyl acrylate, methyl methacrylate and ethyl acrylate ethyl methacrylate.
  • Suitable monoethylenically unsaturated monomers which are copolymerized with the N -ninylcarboxamides are carboxylic esters which are derived from glycols or polyalkylene glycols, only one OH group being esterified in each case, for example hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyl acrylate methacrylate, hydroxyl butyl acrylate, hydroxyl acrylate and hydroxyl butyl acrylate, and onoesters of polyalkylene glycols with a molecular weight of 500 to 10,000.
  • esters of ethylenically unsaturated carboxylic acids with amino alcohols such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylammopropyl methacrylate, diethylaminopropyl acrylate, dimethyl acrylate and diethyl acrylate and diethyl aminobutyl acrylate.
  • amino alcohols such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylammopropyl methacrylate, diethylaminopropyl acrylate, dimethyl acrylate and diethyl
  • the basic acrylates can be used in the form of the free bases, the salts with mineral acids such as hydrochloric acid, sulfuric acid or nitric acid, the salts with organic acids such as formic acid, acetic acid, propionic acid or the sulfonic acids or in quaternized form.
  • Suitable quaternizing agents are, for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride or benzyl chloride.
  • Suitable comonomers are amides of ethylenically unsaturated carboxylic acids such as acrylamide, methacrylamide and N-alkyl mono- and diamides of monoethylenically unsaturated carboxylic acids with alkyl radicals of 1 to 6 carbon atoms, e.g. N-methyl acrylamide, N, N-dimethylacrylamide, N-methyl methacrylamide,
  • Butylacrylamide and basic (meth) acrylamides e.g. Dimethylaminoethyl acrylamide, dimethylaminoethyl methacrylamide, diethylaminoethyl acrylamide, diethylaminoethyl methacrylamide, dimethylaminopropylacrylamide, diethylaminopropylacrylamide, dimethylaminopropyl methacrylamide and diethylaminopropyl methacrylamide.
  • N-vinylpyrrolidone N-vinylcaprolactam
  • acrylonitrile methacrylonitrile
  • N-vinylimidazole substituted N-vinylimidazoles
  • N-vinyl-2-methylimidazole N-vinyl-methylimidazole
  • N-vinyl-5-methylimidazole N-vinyl-2-ethylimidazole
  • N-vinylimidazolines such as N-vinylimidazoline, N-vinyl-2-methylimidazoline and N-vinyl -2-ethylimidazoline.
  • N-vinylimidazoles and N-vinylimidazolines are also used in neutralized or in quaternized form with mineral acids or organic acids, the quaternization preferably being carried out with dimethyl sulfate, diethyl sulfate, methyl chloride or benzyl chloride.
  • Diallyldialkylammonium halides such as e.g. Di-dlyldimemyl - n - moniumchloride.
  • monomers containing sulfo groups such as vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid,
  • Styrene sulfonic acid the alkali metal or ammonium salts of these acids or acrylic acid 3-sulfopropyl esters in question, the content of cationic units in the amphoteric copolymers exceeding the content of anionic units, so that the polymers as a whole have a cationic charge.
  • copolymers contain, for example
  • polymers containing vinylamine units In order to prepare polymers containing vinylamine units, one preferably starts from homopolymers of N-vinylformamide or from copolymers which are obtained by copolymerizing
  • the polymers described above are hydrolysed by known processes by the action of acids, bases or enzymes.
  • the resulting polymerized monomers of the formula I given above are formed by splitting off the grouping
  • R 1 has the meaning given in formula I. If acids are used as the hydrolysis agent, units III are present as the ammonium salt.
  • the homopolymers of N-vinylcarboxylic acid amides of the formula I and their copolymers can be hydrolyzed to 0.1 to 100, preferably 70 to 100, mol%. In most cases, the degree of hydrolysis of the homo- and copolymers is 5 to 95 mol%. The degree of hydrolysis of the homopolymers is synonymous with the vinylamine units in the polymers. In the case of copolymers which contain vinyl esters in copolymerized form, in addition to the hydrolysis of the N-vinylformamide units, hydrolysis of the ester groups can occur with formation of vinyl alcohol units. This is particularly the case when the copolymers are hydrolysed in the presence of sodium hydroxide solution.
  • Polymerized acrylonitrile is also chemically changed during the hydrolysis. This creates, for example, amide groups or carboxyl groups.
  • the homo- and copolymers containing vinylamine units can optionally contain up to 20 mol% of amidine units, which e.g. by reaction of formic acid with two adjacent amino groups or by intramolecular reaction of an amino group with a neighboring amide group e.g. of polymerized N-vinylformamide.
  • the molar masses of the polymers containing vinylamine units are, for example 1000 to 10 million, preferably 10,000 to 5 million (determined by light scattering). This molar mass range corresponds, for example, to K values of 5 to 300, preferably 10 to 250 (determined according to H. Fikentscher in 5% aqueous sodium chloride solution at 25 ° C. and a polymer concentration of 0.5% by weight).
  • the polymers containing vinylamine units are preferably used in salt-free form.
  • Salt-free aqueous solutions of polymers containing vinylamine units can be obtained, for example, from the salt-containing ones described above
  • Polymer solutions can be produced with the aid of ultrafiltration on suitable membranes at separation limits of, for example, 1000 to 500,000 daltons, preferably 10,000 to 300,000 daltons.
  • the aqueous solutions of other polymers containing amino and / or ammonium groups described below can also be obtained with the aid of ultrafiltration in a salt-free form.
  • Polyethyleneimines are also suitable as cationic polymers.
  • Polyethyleneimines are produced, for example, by polymerizing ethyleneimine in aqueous solution in the presence of acid-releasing compounds, acids or Lewis acids.
  • Polyethyleneimines have, for example, molecular weights of up to 2 million, preferably from 200 to 500,000. Polyethyleneimines with molecular weights of 500 to 100,000 are particularly preferably used.
  • water-soluble crosslinked polyethylenimines which can be obtained by reacting polyethyleneimines with crosslinkers such as epichlorohydrin or bischlorohydrin ethers of polyalkylene glycols having 2 to 100 ethylene oxide and / or propylene oxide units.
  • Amidic polyethyleneimines are also suitable, which can be obtained, for example, by amidating polyethyleneimines with - to C 22 -monocarboxylic acids.
  • Other suitable cationic polymers are alkylated polyethyleneimines and alkoxylated polyethyleneimines. In alkoxylation, 1 to 5 ethylene oxide or propylene oxide units are used, for example, per NH unit in polyethyleneimine.
  • Suitable polymers containing amino and / or ammonium groups are also polyamidoamines, which can be obtained, for example, by condensing dicarboxylic acids with polyamines.
  • Suitable polyamidoamines are obtained, for example, by reacting dicarboxylic acids with 4 to 10 carbon atoms with polyalkylene polyamines which contain 3 to 10 basic nitrogen atoms in the molecule.
  • Suitable dicarboxylic acids are, for example, succinic acid, maleic acid, adipic acid, glutaric acid, suberic acid, sebacic acid or terephthalic acid. Mixtures of dicarboxylic acids can also be used in the preparation of the polyamidoamines, as can mixtures of several polyalkylene polyamines.
  • Suitable polyalkylene polyamines are, for example, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, tripropylenetetramine, dihexamethylenetriamine, aminopropylethylenediamine and bis-aminopropylethylenediamine.
  • the dicarboxylic acids and polyalkylene polyamines are heated to higher temperatures to produce the polyamidoamines, for example to temperatures in the range from 120 to 220, preferably 130 to 180 ° C.
  • the water generated during the condensation is removed from the system.
  • Condensation can optionally also use lactones or lactams of carboxylic acids with 4 to 8 carbon atoms. For example, 0.8 to 1.4 moles of a polyalkylene polyamine are used per mole of a dicarboxylic acid.
  • polymers containing amino groups are polyamidoamines grafted with ethyleneimine. They can be obtained from the polyamidoamines described above by reaction with ethyleneimine in the presence of acids or Lewis acids such as sulfuric acid or boron trifluoride etherates at temperatures of, for example, 80 to 100.degree. Compounds of this type are described for example in DE-B-24 34 816.
  • the optionally crosslinked polyamidoamines which are optionally additionally grafted with ethyleneimine before crosslinking, are also suitable as cationic polymers.
  • the crosslinked polyamidoamines grafted with ethyleneimine are water-soluble and have e.g. an average molecular weight of 3000 to 1 million daltons.
  • Common crosslinkers are e.g. Epichlorohydrin or bischlorohydrin ether of alkylene glycols and polyalkylene glycols.
  • cationic polymers containing amino and / or ammonium groups are polydiallyldimethylammonium chlorides. Polymers of this type are also known.
  • Suitable cationic polymers are copolymers of, for example, 1 to
  • the basic acrylamides and methacrylamides are also preferably included
  • Acids neutralized or in quaternized form include N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Suitable cationic monomers for the production of (meth) acrylamide polymers are diallyldimethylammonium halides and basic (meth) acrylates. Suitable are e.g. Copolymers of 1 to 99 mol%, preferably 30 to 70 mol% of acrylamide and / or methacrylamide and 99 to 1 mol%, preferably 70 to 30 mol% of dialkylaminoalkyl acrylates and / or methacrylates such as copolymers of acrylamide and N, N -Dimethylaminoethyl acrylate or copolymers of acrylamide and dimethylaminopropyl acrylate.
  • Basic acrylates or methacrylates are preferably in a form neutralized with acids or in quaternized form. The quaternization can take place, for example, with methyl chloride or with dimethyl sulfate.
  • Polyallylamines are also suitable as cationic polymers which have amino and / or ammonium groups.
  • Polymers of this type are obtained by homopolymerizing allylamine, preferably in acid-neutralized or quaternized form, or by copolymerizing allylamine with other monoethylenically unsaturated monomers described above as comonomers for N-vinylcarboxamides.
  • the cationic polymers have e.g. K values from 8 to 300, preferably 100 to 180 (determined according to H. Fikentscher in 5% aqueous saline solution at 25% and a polymer concentration of 0.5% by weight). At a pH of 4.5, for example, they have a charge density of at least 1, preferably at least 4 meq / g polyelectrolyte.
  • Examples of preferred cationic polymers are polydimethyldiallylammonium chloride, polyethyleneimine, polymers containing vinylamine units, copolymerized basic monomers containing copolymerized acrylamide or methacrylamide, polymers containing lysine units or mixtures thereof.
  • Examples of cationic polymers are: • Copolymers of 50% vinyl pyrrolidone and 50%
  • Trimethyl _-- ammonium ethyl methacrylate methosulfate M w 1000 to 500 000;
  • Vinylamine homopolymers 1 to 99% hydrolyzed polyvinylformamides, copolymers of vinylformamide and vinyl acetate, vinyl alcohol, vinylpyrrolidone or acrylamide with molecular weights of 3,000-500,000,
  • Vinylimidazole homopolymers vinylimidazole copolymers with vinylpyrrolidone, vinylformamide, acrylamide or vinyl acetate with molecular weights from 5,000 to 500,000 and their quaternary derivatives,
  • Polyethyleneimines crosslinked polyethyleneimines or amidated polyethyleneimines with molecular weights of 500 to 3,000,000
  • Amine-epichlorohydrin polycondensates which contain imidazole, piperazine, -Cs-alkylamines, Ci-Cs-dialkylamines and / or dimemylaminopropylamine as amine component and which have a molecular weight of 500 to 250,000
  • Amine-epichlorohydrin polycondensates which contain imidazole, piperazine, -Cs-alkylamines, Ci-Cs-dialkylamines and / or dimemylaminopropylamine as amine component and which have a molecular weight of 500 to 250,000
  • anionic comonomers e.g. Acrylic acid, methacrylic acid, vinyl sulfonic acid or alkali salts of the acids mentioned.
  • anionically dispersed, particulate, reactively modified polymers they can optionally be treated with polyvalent metal ions and / or cationic surfactants in addition to treatment with cationic polymers.
  • a coating of the particles with polyvalent metal ions is achieved, for example, by adding an aqueous solution of at least one water-soluble polyvalent metal salt to an aqueous dispersion of anionically dispersed reactively modified polymers or by dissolving a water-soluble polyvalent metal salt therein, the modification of the anionically dispersed reactively modified Particles with cationic polymers either before, simultaneously, or after this treatment.
  • Suitable metal salts are, for example, the water-soluble salts of Ca, Mg, Ba, Al, Zn, Fe, Cr or mixtures thereof.
  • Other water-soluble heavy metal salts derived, for example, from Cu, Ni, Co and Mn can also be used in principle, but are not desired in all applications.
  • water-soluble metal salts are calcium chloride, calcium acetate, magnesium chloride, aluminum sulfate, aluminum chloride, barium chloride, zinc chloride, zinc sulfate, zinc acetate, iron (II) sulfate, iron (III) chloride, chromium (III) sulfate, copper sulfate, nickel sulfate , Cobalt sulfate and manganese sulfate.
  • the water-soluble salts of Mg, Ca, Al and Zn are preferably used for the cationization.
  • the modification of the properties of textile and non-textile surfaces with polymer dispersions is important in many commercial and technical applications in everyday domestic life. It is not always possible to modify the surfaces using impregnation, spraying and painting processes with concentrated dispersions. Often it is desirable to modify with the help of a rinse the surface to be treated with a highly diluted liquor containing an active substance. It is often desirable to combine the modification of the surface in connection with washing, cleaning and / or care or impregnation of the surface. Surfaces of textile materials such as cotton fabrics and cotton blended fabrics are particularly suitable. In addition, carpets and furniture covers can be treated according to the invention.
  • the modification of the surfaces of textile materials can consist, for example, of hydrophobization, soil-release finishing, dirt-repellent finishing, reinforcement of the fiber composite and protection against chemical or mechanical influences and damage.
  • the reactively modified, particulate polymers are used to modify surfaces of the above-mentioned materials as an additive to detergents or care products, washing or cleaning agents for textile and other non-textile surfaces.
  • applications in the washing, cleaning and aftertreatment of textiles, leather, wood, floor coverings, glass, ceramics and other surfaces in the household and in the commercial sector come into question.
  • the reactively modified, particulate polymers are used as a dilute, predominantly aqueous dispersion.
  • the application is carried out by treating the surfaces in washing, cleaning and rinsing liquors, to which the polymers are added either directly or by means of a liquid or solid formulation, or by the finely divided application of a liquid formulation, e.g. by spraying.
  • the reactively modified, particulate polymers can, for example, be used as the sole active component in aqueous detergents and care products and, depending on the composition of the polymer, cause e.g. a facilitated detachment of dirt during a subsequent wash, less dirt adherence when using the textiles, an improvement in the maintenance of fibers, an improvement in the shape and structure of fabrics, a hydrophobization of the surface of the laundry and an improvement in the handle.
  • the concentration of the reactively modified, particulate polymers when used in the rinsing or care bath, in the detergent liquor or in the cleaning bath is, for example, 0.0002 to 1% by weight, preferably 0.0005 to 0.25% by weight, particularly preferably 0.002 to 0.05% by weight.
  • all reactively modified particulate polymers can be used in the above-mentioned applications.
  • the polymers used contain polymerized cationic monomers and therefore have an increased affinity for the surfaces to be treated.
  • the polymers used contain copolymerized anionic monomers and are used together with cationic polymers, cationic surfactants and / or polyvalent metal cations.
  • the treatment of the surfaces is carried out with aqueous liquors which contain, for example, 2.5 to 300 ppm, preferably 5 to 200 ppm and in particular 10 to 100 ppm of at least one cationic polymer, up to 5 mmol / 1, preferably up to 3.5 mmol / 1 water-soluble salts of polyvalent metals, in particular salts of Ca, Mg or Zn and / or up to 2 mmol / 1, preferably up to 0.75 mmol / 1 water-soluble AI salts and / or up to 600 ppm , preferably contain up to 300 ppm of cationic surfactants.
  • alkali-swellable, particularly preferably alkali-soluble, reactive modified polymers are used.
  • Such polymers are used particularly advantageously, for example, to improve the detachment of dirt from textile and non-textile surfaces.
  • Suitable reactively modified alkali-soluble polymers contain, for example
  • Surface treatment agents can have, for example, the following composition:
  • additives such as acids or bases, inorganic builders, organic cobuilders, further surfactants, polymeric color transfer inhibitors, polymeric graying inhibitors, soil release polymers, enzymes, complexing agents, corrosion inhibitors, waxes Silicone oils
  • Light stabilizers, dyes, solvents, hydrotropes, thickeners and / or alkanolamines are examples of Light stabilizers, dyes, solvents, hydrotropes, thickeners and / or alkanolamines.
  • the invention also relates to laundry aftertreatment and laundry care compositions and to solid and liquid detergent formulations which contain the reactively modified, particulate polymers.
  • Laundry after-treatment and laundry care products contain, for example
  • Preferred cationic surfactants are selected from the group of the quaternary diesterammonium salts, the quaternary tetraalkylammonium salts, the quaternary diamidoammonium salts, the amidoamine esters and imidazolium salts. These are preferably contained in the laundry detergent in an amount of 3 to 30% by weight.
  • Examples are quaternary diesterammonium salts which have two C ⁇ to C 22 alk (en) yl carbonyloxy (mono- to pentamethylene) residues and two C r to C 3 alkyl or hydroxyalkyl residues on the quaternary N atom and as Counterion, for example, wear chloride, bromide, methyl sulfate or sulfate.
  • Quaternary diester ammonium salts are furthermore, in particular, those which have a C n - to C 22 -alk (en) ylcarbonyloxytrimethylene radical which is attached to the middle carbon atom of the trimethylene
  • Grouping carries a C ⁇ - to C 22 alk (en) ylcarbonyloxy radical, and three C j - bis Have alkyl or hydroxyalkyl residues on the quaternary N atom and carry, for example, chloride, bromide, methyl sulfate or sulfate as counterion.
  • Quaternary tetraallylammonixim salts are in particular those which have two C r to C 6 alkyl radicals and two C 8 to C 24 alk (en) yl radicals on the quaternary N atom and, for example, chloride, bromide, methyl sulfate as counterion or carry sulfate.
  • Quaternary diamidoammonium salts are in particular those which have two C 3 - to C 24 -alk (en) ylcarbonylaminoethylene radicals, a substituent selected from hydrogen, methyl, ethyl and polyoxyethylene with up to 5 oxyethylene units and as the fourth radical a methyl group on the quaternary Have N atom and wear, for example, chloride, bromide, methyl sulfate or sulfate as counterion.
  • Amidoamino esters are, in particular, tertiary amines which, as substituents on the N atom, have a C u to C 22 alk (en) ylcarbonylamino (mono- to trimethylene) radical, a C n to C 22 alk (en) ylcarbonyloxy (mono - to trimethylene) residue and a methyl group.
  • Imidazolinium salts are in particular those which have a C ] 4 - to C 18 -alk (en) yl radical in the 2-position of the heterocycle and a C 14 - to C 18 -alk (en) ylcarbonyl (oxy or amino) on the neutral N atom ) carry the ethylene radical and hydrogen, methyl or ethyl on the N atom carrying the positive charge; counterions here are, for example, chloride, bromide, methyl sulfate or sulfate.
  • Solid detergent formulations according to the invention contain
  • Bleach activators bleach catalysts, dye transfer inhibitors, graying inhibitors, soil-release polyesters, dyes, dissolution improvers and / or disintegrants,
  • the solid detergent formulations according to the invention are usually in the form of powder, granules, extrudate or in tablet form.
  • Enzymes perfume, complexing agents, corrosion inhibitors, bleaching agents, bleach activators, bleaching catalysts, color transfer inhibitors, graying inhibitors, target release polyesters, dyes, non-aqueous solvents
  • Suitable anionic surfactants are in particular:
  • Alkoxylation product then sulfated Alkoxylation product then sulfated.
  • Ethylene oxide is preferably used for the alkoxylation; linear Cg to C 2 Q alkyl benzosulfonates (LAS), preferably linear C 9 to C 13 alkyl benzene sulfonates and alkyl toluenesulfonates, alkane sulfonates such as C 8 to C 24 , preferably C 10 to C 8 alkanesulfonates
  • LAS linear Cg to C 2 Q alkyl benzosulfonates
  • alkane sulfonates such as C 8 to C 24 , preferably C 10 to C 8 alkanesulfonates
  • Soaps such as the Na and K salts of C 8 to C 24 carboxylic acids.
  • the anionic surfactants mentioned are preferably added to the detergent in the form of salts.
  • Suitable cations in these salts are alkali metal ions such as sodium, potassium and lithium and ammonium ions such as hydroxyethylammonium, di (hydroxyethyl) ammonium and tri (hydroxyethyl) an ⁇ monium.
  • Suitable nonionic surfactants are in particular:
  • Alkoxylated C 8 - to C 2 alcohols such as fatty alcohol alkoxylates or oxo alcohol alkoxylates. These can be alkoxylated with ethylene oxide, propylene oxide and / or butylene oxide. All alkoxylated alcohols which contain at least two molecules of one of the above-mentioned alkylene oxides added can be used as surfactants.
  • block polymers of ethylene oxide, propylene oxide and / or butylene oxide come into consideration or addition products which contain the alkylene oxides mentioned in a statistical distribution.
  • the nonionic surfactants generally contain 2 to 50, preferably 3 to 20, moles of at least one alkylene oxide per mole of alcohol. These preferably contain ethylene oxide as the alkylene oxide.
  • the alcohols preferably have 10 to 18 carbon atoms. Depending on the type of alkoxylation catalyst used in the production, the
  • Alkoxylates have a broad or narrow alkylene oxide homolog distribution; Alkylphenol alkoxylates such as alkylphenol ethoxylates with C 6 to C 14 alkyl chains and 5 to 30 alkylene oxide units; Alkyl polyglucosides having 8 to 22, preferably 10 to 18 carbon atoms in the alkyl chain and generally 1 to 20, preferably 1.1 to 5, glucoside units; N-alkyl glucamides, fatty acid amide alkoxylates, fatty acid alkanolamide alkoxylates and block copolymers of ethylene oxide, propylene oxide and / or butylene oxide.
  • Suitable inorganic builders are in particular:
  • crystalline or amorphous aluminosilicates with ion-exchanging properties such as, in particular, zeolites.
  • Suitable zeolites are in particular zeolites A, X, B, P, MAP and HS in their Na form or in forms in which Na is partly replaced by other cations such as Li, K, Ca, Mg or ammonium;
  • - Crystalline silicates such as, in particular, disilicates or layered silicates, for example ⁇ -Na Si 2 O 5 or ß-Na 2 Si 2 O 5 .
  • the silicates can be used in the form of their alkali metal, alkaline earth metal or ammonium salts, preferably as Na, Li and Mg silicates; amorphous silicates such as sodium metasilicate or amorphous disilicate; Carbonates and hydrogen carbonates. These can be used in the form of their alkali metal, alkaline earth metal or ammonium salts. Na, Li and Mg carbonates or bicarbonates, in particular sodium carbonate and / or sodium bicarbonate, are preferred; Polyphosphates such as pentasodium triphosphate;
  • Suitable organic cobuilders are in particular low molecular weight, oligomeric or polymeric carboxylic acids.
  • Suitable low molecular weight carboxylic acids are, for example, citric acid, hydrophobically modified citric acid such as. B. agaricinic acid, malic acid, tartaric acid, gluconic acid, glutaric acid, succinic acid, imidodisuccinic acid,
  • Nitrilotriacetic acid ß-alaninediacetic acid, ethylenediaminetetraacetic acid, serinediacetic acid, isoserinediacetic acid, N- (2-hydroxyethyl) iminodiacetic acid, ethylenediaminedisuccinic acid and methyl- and ethyl
  • Suitable oligomeric or polymeric carboxylic acids are, for example, homopolymers of acrylic acid, oligomaleic acids, copolymers of maleic acid with acrylic acid, methacrylic acid, C 2 -C 22 olefins such as isobutene or long-chain ⁇ -olefins, vinyl alkyl ethers with -Cs alkyl groups, vinyl acetate, vinyl propionate, (meth ) acrylic esters of -Cs alcohols and styrene. It is preferred to use the
  • oligomeric and polymeric carboxylic acids are used in acid form or as the sodium salt.
  • a cationic modification of the reactively modified, particulate polymers this is preferably carried out before use in the aqueous treatment agents, but it can also be used in the preparation of the aqueous treatment agents or the use of anionically dispersed, particulate polymers with a particle size of 10 nm up to 100 ⁇ m by using e.g. aqueous dispersions of the particulate polymers in question are mixed with the other constituents of the respective treatment agent in the presence of cationic polymers and optionally of water-soluble salts of polyvalent metals and / or cationic surfactants.
  • Metal ions and / or cationic surfactants are present in dissolved form.
  • anionic polymers or formulations containing them in liquors with a cationic polymer content of 2.5 to
  • cationic surfactants are used, for example, in
  • the reactive modified polymers with an anionic character or the formulations containing them can also be metered in before, after or at the same time with a formulation containing cationic polymers and optionally cationic surfactants.
  • alkali-soluble or alkali-swellable reactively modified particulate polymers With alkali-soluble or alkali-swellable reactively modified particulate polymers, a much higher soil-release effect is achieved, in particular on cotton and cellulose fibers, than with known water-soluble soil-release polymers.
  • the invention also relates to the use of reactively modified polymers in finishing agents for the anti-crease treatment of cellulose-containing ones Textiles.
  • Finishing agents are any liquid formulations which contain the reactively modified polymer, in particular in the form of an aqueous polymer dispersion, for application to the textile material in dispersed form.
  • the finishing agents according to the invention can be present, for example, as finishing agents in the narrower sense in the manufacture of the textiles or in the form of an aqueous washing liquor or as a liquid textile treatment agent. For example, it is possible to treat the textiles with the finishing agent in connection with textile production.
  • Textiles which have not yet been treated or have been insufficiently treated with finishing agents can be treated, for example, in the home area before or after washing, for example when ironing, with a textile treatment agent which contains the polymer dispersion.
  • a textile treatment agent which contains the polymer dispersion.
  • the present invention also relates to the use of the reactively modified polymers in the manufacture of the textiles, in the treatment of the textiles before and after washing, in the main wash cycle, in the fabric rinse cycle and in ironing.
  • Different formulations are required for this. Examples are the liquid and solid detergents, laundry aftertreatment and laundry care compositions described above.
  • the textiles treated with the reactively modified polymers in the main wash cycle of the washing machine not only wrinkle significantly less than untreated textiles. They are also easier to iron, softer and smoother, more dimensionally and dimensionally stable and after washing several times they look less "used” due to their fiber and color protection, so they have less lint and knots and less color damage or fading.
  • the textiles treated with reactive modified polymers in the fabric softener or conditioner after the main wash cycle also have very good crease protection after drying on a line or preferably in a tumble dryer and are easier to iron.
  • the anti-crease can be significantly increased by briefly ironing the textiles after drying.
  • Treatment in a soft or conditioner cycle also has a positive effect on the shape stability of the textiles. Furthermore, the formation of knots and lint is inhibited and color damage is suppressed.
  • a textile treatment agent can be used as the finishing agent which, in addition to the reactively modified polymer, contains a surface-active agent in dispersed form.
  • the cellulose-containing textiles are sprayed, for example, with the reactively modified polymers, the application amount generally being 0.01 to 10% by weight, preferably 0.1 to 7, particularly preferably 0.3 to 4% by weight, based on the Weight of the dry textile goods.
  • the finishing agent can, however, also be applied to the textile material by immersing the textiles in a bath which is generally 0.1 to 10% by weight, preferably 0.3 to 5% by weight, based on the weight of the dry textile material. contains the reactively modified, particulate polymer in dispersed form.
  • the textile is either only briefly immersed in the bath or can also remain there for a period of, for example, 1 to 30 minutes.
  • the cellulose-containing textiles, which have been treated with the finishing agent either by spraying or by immersion, are optionally pressed off and dried. Drying can be done in air or in a dryer or by hot ironing the treated textile.
  • the finishing agent is fixed on the textile by drying. The most favorable conditions for this can easily be determined with the help of experiments.
  • the temperature during drying, including ironing is generally 40 to 150 ° C, preferably 60 to 110 ° C.
  • the iron ironing program is particularly suitable for ironing.
  • the textiles which have been treated with the reactively modified polymers in dispersed form by the process described above have excellent crease and wrinkle protection which remains after several washes. Ironing the textiles is often no longer necessary.
  • the invention also relates to a textile treatment composition containing
  • silicones b) 0 to 30% by weight of silicones, c) 0 to 30% by weight of one or more cationic and / or nonionic surfactants,
  • Preferred silicones are silicones containing amino groups, which are preferably in microemulsified form, alkoxylated, in particular ethoxylated silicones, polyalkylene oxide polysiloxanes, polyalkylene oxide aminopolydimethylsiloxanes, silicones with quaternary ammonium groups (silicone quats) and silicone surfactants.
  • Suitable plasticizers or lubricants are, for example, oxidized polyethylenes or waxes and oils containing paraffin.
  • Suitable water-soluble, film-forming and adhesive polymers are, for example, (co) polymers based on acrylamide, N-vinylpyrrolidone, vinylformamide, N-vinylimidazole, ninylamine, ⁇ , ⁇ '-dialkylaminoalkyl (meth) acrylates, N, N '-dialkylaminoalkyl (meth) acrylamides, (meth) acrylic acid, (meth) acrylic acid alkyl esters and / or vinyl sulfonate.
  • the basic monomers mentioned above can also be used in quaternized form.
  • the formulation can additionally contain a spraying aid.
  • a spraying aid such as ethanol, isopropanol, ethylene glycol or propylene glycol
  • alcohols such as ethanol, isopropanol, ethylene glycol or propylene glycol
  • Other common additives are fragrances and dyes, stabilizers, fiber and color protection additives, viscosity modifiers, soil release additives, corrosion protection additives, bactericides and preservatives in the amounts customary for this.
  • the textile treatment agent can also generally be applied by spraying when the textile is ironed after washing. This not only makes ironing considerably easier, the textiles are additionally equipped with a long-lasting crease and wrinkle protection.
  • the emulsifiers used in the examples have the following composition:
  • Emulsifier 1 15% by weight solution of sodium lauryl sulfate
  • Emulsifier 2 40% by weight solution of an ethoxylated and quaternized oleylamine, (Lipamin® OK from BASF)
  • pphm used in the examples means parts by weight based on 100 parts by weight of total monomers.
  • Solids content 25.8% by weight average particle size: 70 nm
  • Sodium persulfate solution as initiator 2.3 g of a 40% strength by weight solution of emulsifier 2 and 402 g of water are introduced and heated with stirring in a heating bath, at the same time displacing the air by introducing nitrogen. As soon as the heating bath has reached a temperature of 85 ° C, the introduction of nitrogen is interrupted and 4 g of a 0.1% by weight sodium persulfate solution and an emulsion of 178 g of butyl acrylate, 114 g of methacrylic acid are added in the course of 2 hours. 15 g of glycidyl methacrylate and 22 g of a 15% strength by weight solution of emulsifier 1 in 400 ml of water were added dropwise.
  • the mixture is then polymerized at 75 ° C for 1 hour. While cooling to room temperature, 0.75 g of a 30% by weight hydrogen peroxide solution is added all at once and a solution containing 0.3 g of ascorbic acid and
  • Solids content 25.9% by weight average particle size: 100 nm
  • the nitrogen introduction is interrupted and 4 g of the initiator solution and an emulsion of 178 g of butyl acrylate, 114 g of methacrylic acid, 15 g of glycidyl methacrylate and 8.3 g of a 40 % by weight solution of emulsifier 1 in 400 ml of water was added dropwise.
  • the mixture is then polymerized at 85 ° C for 1 hour.
  • Solids content 25.5% by weight average particle size: 120 nm
  • Coagulate content ⁇ 1 g pH: 4.0
  • Solids content 40.6% by weight average particle size: 120 nm
  • Coagulate content ⁇ 1 g pH: 4.0
  • Cotton fabrics were prewashed with the anionic polymer dispersions according to Examples 1 to 3, which contained the polymer in a concentration of 400 ppm, at a pH of 4 in water of 3.0 mmol of water hardness and then dried.
  • Example 7 washing was carried out with a liquor which contained the reactively modified polymers from Example 1 with a coating of polyethyleneimine with a molecular weight of 25,000.
  • the polyethyleneimine was dissolved in water of 3.0 mmol hardness and a pH of 4.0 was set in the solution.
  • a 20% by weight polymer dispersion according to Example 1 with a pH of 4.0 was added to this solution.
  • the concentration of the polymer particles in the liquor was 400 ppm, the concentration of the polyethyleneimine was 40 ppm.
  • the prewashed fabrics were soiled with lipstick paste and then washed with a standard commercial detergent.
  • Prewash pH of the liquor: 4.0
  • Prewash temperature 20 ° C
  • Prewash time 15 min liquor ratio 1: 12.5
  • the flat cotton fabrics were rated visually with the grades 1-5, the grade 1 being given for unchanged soiled fabric and the grade 5 for completely detaching the lipstick soiling.
  • a dispersion of reactively modified polymers according to Example 1 or 2 was prepared, the polymer concentration being 200 ppm, the water hardness 3 mmol and the pH 6.0 mg.
  • Example 10 there was an additional 20 ppm of polyethyleneimine with a molecular weight of 25,000.
  • the glass plate was immersed in this dispersion for 10 seconds, then removed and dried at 60 ° C. for 30 minutes.
  • Sheet-like structures made of cotton (BW) of the size given in Table 3 with a weight per unit area of 160 g / m 2 were sprayed on both sides with the polymers from Examples 1 to 3, so that the application amount was 2%, based on the weight of the dry textile goods, and then ironed hot in a slightly damp state.
  • tissue samples treated in this way were washed for comparison with untreated tissue samples of the same size and in the presence of ballast tissue with a liquid detergent at 40 ° C. in an automatic household machine (load between 1.5 and 3.0 kg) and then dried in a drum dryer.
  • a standard washing or standard dry program was used (40 ° C colored wash program or cupboard dry program).
  • the flat tissue samples were rated visually in accordance with the AATCC test method 124, where the grade 1 means that the fabric is very creased and has many folds, while the grade 5 is given for crease-free and wrinkle-free fabric.
  • the tissue samples pretreated with the finishing agents (Examples 1 to 3) received grades between 2.5 and 3.5. In contrast, the untreated tissue samples were given a grade of 1. Table 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Detergent Compositions (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Behandlung der Oberfläche textiler und nichttextiler Materialien, bei dem reaktiv modifizierte, teilchenförmige Polymerisate mit einer Teilchengrösse von 10 nm 100 νm aus einer wässrigen Dispersion auf die Oberfläche der Materialien aufgebracht werden und die Materialien getrocknet werden.

Description

Reaktiv modifizierte, teilchenfδrmige Polymerisate zur Behandlung der Oberflächen textiler und nicht-textiler Materialien
Die Erfindung betrifft ein Verfahren zur Behandlung der Oberflächen textiler und nichttextiler Materialien mit reaktiv modifizierten teilchenformigen Polymerisaten, die Verwendung der reaktiv modifizierten, teilchenformigen Polymerisate, Mittel zur AntiJ itterausrüstung und Waschmittel, Spülmittel, Pflegemittel- und Textilbehandlungsmittelformulierungen enthaltend die reaktiv modifizierten teilchenformigen Polymerisate.
Cellulosehaltige Textilien werden beispielsweise durch Behandlung mit Kondensationsprodukten aus Harnstoff, Glyoxal und Formaldehyd pflegeleicht ausgerüstet. Die Ausrüstung erfolgt dabei während der Herstellung der Textilmaterialien. Bei der Ausrüstung verwendet man häufig weitere Zusätze wie weichmachende Verbindungen. Die so veredelten Textilien besitzen gegenüber den unbehandelten Cellulosetextilien nach den Waschprozess den Vorteil, dass sie weniger Knitter und Falten aufweisen, leichter zu bügeln und weicher und glatter sind.
Aus der WO 98/04772 ist ein Verfahren zur Vorbehandlung von textilen Materialien bekannt, bei dem man eine Mischung aus einer Polycarbonsäure und einem kationischen Weichmacher auf die textilen Materialien aufbringt. Man erreicht dadurch einen Knitterschutz.
EP-A 0 978 556 beschreibt ein Gemisch aus einem Weichmacher und einer Vernetzerkomponente mit kationischen Eigenschaften als Mittel zur Ausstattung von Textilien mit einem Knitter- und Faltenschutz, sowie ein Verfahren zur -A-ntiknitterausrüstung von Textilien.
Wasch-, Spül-, Reinigungs- und Pflegeprozesse in wässrigen Medien werden üblicherweise in einer stark verdünnten Flotte durchgeführt, wobei die Inhaltsstoffe der jeweils angewendeten Formulierung in der Regel nicht auf dem Substrat verbleiben, sondern vielmehr mit dem Abwasser entsorgt werden. Eine nachhaltige Modifizierung der Oberfläche von cellulosehaltigen Materialien mit dispergierten Partikeln in den nachstehend genannten Prozessen gelingt nur in unbefriedigendem Maße.
Aus der US 5,476,660 ist das Prinzip der Verwendung polymerer Retentionsmittel für kationische oder zwitterionische Dispersionen von Polystyrol oder Wachs bekannt, die in den dispergierten Teilchen einen Aktivstoff eingebettet enthalten. Diese dispergierten Teilchen fungieren als Trägerpartikel, weil sie auf der behandelten Oberfläche haften und dort einen Aktivstoff, z.B. bei der Anwendung in tensidhaltigen Formulierungen, freisetzen.
Aus der US 3,993,830 ist bekannt, einen nicht-permanenten Finish zur Schmutzabweisung dadurch auf ein Textügut aufzubringen, dass man das Textilgut mit einer verdünnten wässrigen Lösung behandelt, die ein Polycarboxylat und ein wasserlösliches Salz eines mehrwertigen Metalls enthält. Als bevorzugte Polycarboxylate werden wasserlösliche Copolymerisate aus ethylenisch ungesättigten Monocarbonsäuren und Alkylacrylaten genannt. Die Mischungen werden bei der Textilwäsche im Haushalt im Spülgang der Waschmaschine freigesetzt.
Aufgabe der vorliegenden Erfindung ist es, eine weitere Methode zur Modifizierung von Oberflächen textiler und nicht-textiler Materialien zu Verfügung zu stellen.
Insbesondere ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Antiknitterausrüstung von cellulosehaltigen Textilien bereitzustellen.
Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Verbesserung der Schmutzablösung von textilen und nicht-textilen Oberflächen bereitzustellen.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Behandlung textiler Materialien, bei dem reaktiv modifizierte, teilchenförmige Polymerisate mit einer Teilchengrösse von 10 nm bis 100 μm aus einer wässrigen Dispersion auf die Oberfläche der textilen Materialien aufgebracht werden und die textilen Materialien getrocknet werden.
Die Aufgabe wird ferner gelöst durch die Verwendung der reaktiv modifizierten, teilchenformigen Polymerisate als oberflächenmodifizierender Zusatz zu Spül-, Pflege- oder Waschmitteln und durch Waschmittel-, Pflegemittel- und Textilbehandlungs- mittelformulierungen enthaltend die teilchenformigen Polymerisate.
Reaktiv modifizierte Polymerisate im Sinne der Erfindung sind teilchenförmige Polymerisate, die reaktive, vernetzend wirkende Gruppen enthalten. Die reaktiv modifizierten Polymerisate können anionische und/oder kationische Monomere mit einpolymerisiert enthalten und an ihrer Oberfläche anionische, kationische oder amphotere Schutzkolloide oder Emulgatoren aufweisen. Die reaktiv modifizierten Polymerisate können reaktive Gruppen enthaltende Monomere mit einpolymerisiert enthalten und/oder an ihrer Oberfläche Schutzkolloide oder Emulgatoren, die reaktive Gruppen enthalten, aufweisen. Reaktiv modifizierte Polymerisate, die anionischen Charakter aufweisen, also anionische Gruppen einpolymerisiert enthalten und/oder mit anionischen Schutzkolloiden oder Emulgatoren dispergiert sind, können an ihrer Oberfläche eine Belegung mit kationischen Polymeren aufweisen.
Die reaktiven Gruppen können auch nachvernetzend wirken, also erst bei Erwärmung oder Trocknung der behandelten Textiloberflächen vernetzend wirken.
Die reaktiv modifizierten, teilchenformigen Polymerisate können durch Copolymerisation von ethylenisch ungesättigten Monomeren, die keine vernetzend wirkenden reaktiven Gruppen enthalten, mit ethylenisch ungesättigten Monomeren, die derartige vernetzend wirkende reaktive Gruppen enthalten, erhalten werden. Die reaktiven Gruppen können aber auch durch Belegung der Oberflächen der Polymerteilchen mit Kolloiden, die vernetzend wirkende reaktive Gruppen aufweisen, in das Polymerisat eingeführt werden.
Die erfindungsgemäß verwendeten reaktiv modifizierten Polymerisate sind gemäß einer Ausfuhrungsform der Erfindung durch Copolymerisation von ethylenisch ungesättigten, keine reaktive Gruppen enthaltenden Monomeren mit reaktive Gruppen enthaltenden, ethylenisch ungesättigten Monomeren erhältlich.
Geeignete, keine reaktive Gruppen enthaltende Monomere sind beispielsweise Alkylester von C3-C5- monoethylenisch ungesättigten Carbonsäuren mit einwertigen C1-C22- Alkoholen, Hydroxyalkylester von C3- C5- monoethylenisch ungesättigten Carbonsäuren mit zweiwertigen C2-C4-Alkoholen, Vinylester von gesättigten CrC18-Carbonsäuren, Ethylen, Propylen, Isobutylen, C4-C2 -alpha-Olefme, Butadien, Styrol, alpha-Methylstyrol, Acrylnitril, Methacrylnitril, Tetrafluorethylen, Vinylidenfluorid, Fluorethylen, Chlortrifluorethylen, Hexafluorpropen oder deren Mischungen.
Vorzugsweise eingesetzte Monomere sind Methylacrylat, Ethylacrylat, n-Butylacrylat, sec- Butylacrylat, tert.-Butylacrylat, Ethylhexylacrylat, Hydroxy ethylacrylat,
Hydroxypropylacrylat, Methylmethacrylat, n-Butylmethacrylat, Vinylacetat, Vinylpropionat, Styrol, Ethylen, Propylen, Butylen, Isobuten, Diisobuten und Tetrafluorethylen, besonders bevorzugte Monomere sind Methylacrylat, Ethylacrylat, n- Butylacrylat, Styrol, Methylmethacrylat und Vinylacetat.
Geeignete reaktive, vernetzend wirkenden Gruppen sind beispielsweise Azetidinium-, Glycidylether-, Halohydrin-, Carbonsäureanhydrid-, Carbonsäurechlorid-, Isocyanat-, Vinylsulfon-, N-Methylol-, Aldehyd- und Imingruppen.
Bevorzugte, reaktive Gruppen enthaltende ungesättigte Monomere sind N-Methylol- (Meth)acrylamid, Glycidylmethacrylat, Methacryloxypropyltrimethylsilan, Vinyl- trimethoxysilan, m-Isopropenylbenzylisocyanat, Acrolein, Isobutoxymethylacrylamid, Isobutoxymethylacrylamid, hydroxymethyliertes Diacetonacrylamid, Allyl-N- methylolcarbamat, N-Formyl-N'-acryloxymethylendiamin, ga ma- Methylacryloxypropyltrimethoxysilan, Methacryloxyethoxytrimethylsilan,
Epithiopropylmethacrylat, Vinylchlorid, 2-Chlorethylacrylat, 4-Chlorbutylacrylat, 3-Chlor- 2-hydroxypropylacrylat, Methyl- l-(chloromethyl)acrylat, 2-(Bromomethyl)acrylonitril, 2- (Chloromethyl)acrylamid, 6-Bromo-2-napthylenylacrylat, 2-(4-Chloro-2- nitroanilino)ethylacrylat, 6-Chloro-5-(trichloromethyl)-2-norbonylacrylat, 3-Chloro-2- [(dimethylphosphinyl)oxy]propylacrylat, 3-Chloro-2-[(l-oxo-3-phenyl-2- propenyl)oxy]propylmethacrylat, 2-Phenylallylbromid, p-Chloromethylstyrol, Vinyl- monochloroacetat und 2-(4-Ethoxyphenyl)2-oxazolinylmehtacrylat.
Die erfindungsgemäß verwendeten, reaktiv modifizierten Polymerisate können nach den an sich bekannten Verfahren der Lösungs-, Fällungs-, Suspensions- oder Emulsionspolymerisation hergestellt werden, wie sie beispielsweise in P. Lovell und M. S. El- Aaser, Emulsion Polymerisation and Emulsion Polymers, Wiley, New York, 1997 beschrieben sind. Vorzugsweise werden die erfindungsgemäß verwendeten reaktiv modifizierten, teilchenformigen Polymerisate durch Emulsionspolymerisation erhalten, wobei in wässrigem Medium gearbeitet wird. Die Polymerisation wird in Gegenwart von Polymerisationsinitiatoren, die entweder thermisch oder photochemisch zerfallen, oder Redoxinitiatoren durcheführt. Dabei sind von den thermisch zerfallenden Polymerisationsinitiatoren solche bevorzugt, die zwischen 20 und 180°C, insbesondere zwischen 50 und 90°C, zerfallen.
Bevorzugte Polymerisationsinitiatoren für die Emulsionspolymerisation sind wasserlösliche organische Peroxide wie Perester, Percarbonate, Perketale, Hydroperoxide, anorganische Peroxide wie H O2, Salze der Peroxoschwefelsäure und Peroxodischwefelsäure, Azoverbindungen, Boralkylverbindungen sowie homolytisch zerfallende Kohlenwasserstoffe.
Die Polymerisationsitiatoren, die in Mengen zwischen 0,01 und 15 Gew.-%, bezogen auf die Monomere, eingesetzt werden, können einzeln oder in Kombination angewendet werden.
Bei der Herstellung der Polymerisate durch Emulsionspolymerisation werden in der Regel Dispergierhilfsmittel eingesetzt.
Als Dispergierhilfmittel werden wasserlösliche, hochmolekulare organische Verbindungen mit polaren Gruppen, wie Polyvinylpyrrolidon, Copolymerisate aus Vinylpropionat oder
-acetat und Vinylpyrrolidon, teüverseifte Copolymerisate aus einem Acrylester und
Acrylnitril, Polyvinylalkohole mit unterschiedlichem Restacetat-Gehalt, Celluloseether,
Gelatine, Blockcopolymere, modifizierte Stärke, niedermolekulare, Carboxyl- und / oder
Sulfonsäuregruppen enthaltende Polymerisate oder deren Mischungen eingesetzt. Als natürliche Schutzkolloide kommen wasserlösliche Proteine, partiell abgebaute Proteine, wasserlösliche Celluloseether, native Stärken, abgebaute Stärken und/oder chemisch modifizierte Stärken in Betracht. Wasserlösliche Celluloseester sind beispielsweise
Hydroxyethylcellulose und Methylcellulose. Als natürliche Stärken kommen solche in
Betracht, die durch Aufheizen in wässrigem Medium auf Temperaturen oberhalb der Verkleisterungstemperatur der Stärken erhältlich sind. Außerdem eignen sich abgebaute
Stärken, die durch einen hydrolytischen, oxidativen oder enzymatischen Abbau erhältlich sind. Besonders bevorzugte Schutzkolloide sind Polyvinylalkohole mit einem Restacetatgehalt von 0 bis 39 , insbesondere von 5 bis 39 Mol.-% und Vinylpyrrolidon/Vinylpropionat- Copolymere mit einem Vinylestergehalt von bis zu 35 , insbesondere von 5 bis 30 Gew.- %.
Als Dispergierhilfsmittel können ferner nichtionische oder ionische Emulgatoren sowie deren Mischungen eingesetzt werden. Bevorzugte Emulgatoren sind gegebenenfalls ethoxylierte oder propoxylierte längerkettige Alkanole oder Alkylphenole mit unterschiedlichen Ethoxylierungs- bzw. Propoxylierungsgraden, z.B. Addukte mit 0 bis 50 mol Alkylenoxid, und deren neutralisierte, sulfatierte, sulfonierte oder phosphatierte Derivate. Neutralisierte Dialkylsulfobernsteinsäureester oder Alkyldiphenyloxiddisulfonate sind besonders gut geeignet.
Geeignet sind ferner kationische Emulgatoren auf Basis von C7- bis C25-Alkylaminen, N,N-Dimemyl-N-(C7-C25-hydroxyalkyl)ammoniumsalze, mit Alkylierungsmitteln quaternisierte Mono- und Di-(C7-C25-alkyl)dimethylammoniumverbindungen, Esterquats, wie quaternäre veresterte Mono-, Di- oder Trialkanolamine, die mit C7-C22-Carbonsäuren verestert sind, und Imidazolinquats, wie 1-Alkylimidazoliniumsalze.
Die Polymerisate haben beispielweise Molmassen von 1 000 bis 2 Millionen, vorzugsweise 5000 bis 500 000, meistens liegen die Molmassen der Polymerisate in dem Bereich von 10 000 bis 150 000.
Zur Begrenzung der Molmassen der Polymerisate können übliche Regler bei der Polymerisation zugesetzt werden. Beispiele für typische Regler sind Mercaptover- bindungen wie Mercaptoethanol oder Thioglycolsäure.
Um die Dichte der reaktiven Gruppen an der Oberfläche der Polymerisatteilchen zu erhöhen, können die die reaktiven Gruppen enthaltenden Monomere stufenweise und getrennt von den übrigen Monomeren zugegeben werden. Dabei ist es bevorzugt, den überwiegenden Teil der die reaktiven Gruppen enthaltenden Monomeren erst gegen Ende der Gesamtzulaufzeit aller Monomere zuzugeben. In einer Variante der Herstellung der erfindungsgemäß verwendeten Polymerisate werden 70 % der die reaktiven Gruppen enthaltenden Monomere im letzten Drittel der Gesamtzulaufzeit zugegeben. Außer den genannten Polymerisationsverfahren kommen auch andere Verfahren zur Herstellung der erfindungsgemäß verwendeten teilchenformigen Polymerisate in Betracht. So kann man z. B. teilchenförmige Polymerisate durch Erniedrigung der Löslichkeit der in einem Lösungsmittel gelösten Polymere ausfallen. Beispielsweise kann man ein saure Gruppe enthaltendes Copolymerisat in einem geeigneten, mit Wasser mischbaren Lösemittel lösen und die Lösung so in einen Überschuß Wasser dosieren, dass der pH- Wert in der Vorlage um mindestens 1 niedriger liegt als der Äquivalenz-pH- Wert des Copolymeren. Unter Äquivalenz-pH- Wert ist derjenige pH- Wert zu verstehen, bei dem 50 % der sauren Gruppen des Copolymeren neutralisiert sind. Bei diesem Verfahren kann es erforderlich sein, ein Dispergierhilfsmittel, pH-Regulatoren und/oder Salze zu verwenden, um stabile, feinteilige wässrige Dispersionen zu erhalten.
Die erfindungsgemäß verwendeten reaktiv modifizierten Polymerisate haben eine Teilchengröße von 10 nm bis 100 μm, vorzugsweise 30 nm bis 3 μm, insbesondere 50 nm bis 800 nm.
Die erfindungsgemäß verwendeten reaktiv modifizierten Polymerisate können anionischen, kationischen, amphoteren oder nichtionischen Charakter aufweisen.
Reaktiv modifizierte Polymerisate mit anionischem Charakter können erhalten werden, indem man anionische Monomere wie Acrylsäure, Methacrylsäure, Styrolsulfonsäure, Acrylamido-2-methylpropansulfonsäure, Vinylsulfonsäure und Maleinsäure, Maleinsäurehalbester mit -Cs-Alkanolen und/oder deren Salze mit einpolymerisiert, wobei in Gegenwart von Emulgatoren und Schutzkolloiden gearbeitet werden kann. Unter anionischen Monomeren werden hier auch Monomere mit sauren Gruppen, die sich in ihre Salze überfuhren lassen, verstanden, auch wenn diese während der Polymerisation nicht in ionischer Form vorliegen.
Der anionische Charakter der Polymerisate kann auch dadurch erzielt werden, dass man die Copolymerisation in Gegenwart von anionischen Schutzkolloiden und/oder anionischen Emulgatoren durchfiihrt.
Der anionische Charakter der Polymerisate kann aber auch dadurch erzielt werden, dass man die fertigen Polymerisate in Gegenwart von anionischen Schutzkolloiden und/oder anionischen Emulgatoren emulgiert bzw. dispergiert. Reaktiv modifizierte Polymerisate mit kationischem Charakter können erhalten werden, indem man kationische Monomere mit einpolymerisiert, wobei in Gegenwart von Emulgatoren und Schutzkolloiden gearbeitet werden kann. Unter kationischen Monomeren werden hier auch Monomere mit basischen Gruppen, die sich in ihre Salze überfuhren lassen, verstanden, auch wenn diese während der Polymerisation nicht in ionischer Form vorliegen. Als kationische Monomere kommen stickstoffhaltige, basische ethylenisch ungesättigte Monomere in Form der freien Basen, der Salze mit organischen oder anorganischen Säuren oder in quatemierter Form in Betracht. Geeignete stickstoffhaltige, basische ethylenisch ungesättigte Verbindungen sind beispielsweise N, N'-Dialkylaminoalkyl(meth)acrylate, z.B. Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylacrylat, Dimethylaminopropylmethacrylat, Diethylaminopropylacrylat, Diethylaminopropylmethacrylat, Dimethylaminobutylacrylat, Dimethylaminobutylmethacrylat, Dimethylaminoneopentylacrylat,
Dimethylaminoneopentylmethacrylat. Weitere geeignete basische Monomere dieser Gruppe sind N, N'-Dialkylaminoalkyl(meth) acrylamide, z.B. NjN'-Di- -CrAlkylamino- C -C6-Alkyl(meth)acrylamide, wie Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylamid, Diethylaminoethylacrylamid, Diethylaminoethylmethacrylamid, Dipropylaminoethylacrylamid, Dipropylaminoethylmethacrylamid, Dimethylaminopropylacrylamid, Dimethylaminopropylmethacrylamid, Diethylaminopropylacrylamid, Diethylaminopropylmethacrylamid, Dimethylaminoneopentylacrylamid, Dimethylaminoneopentylmethacrylamid und Dialkylaminobutylacrylamid.
Weitere geeignete Monomere dieser Gruppe sind 4-Vinylpyridin, 2-Vinylpyridin, 1- Vinylimidazol, 2-Methyl-l-vinylimidazol und/oder Diallyl(di)alkylamine, bei denen die Alkylgruppe 1 bis 12 C-Atome aufweist. Die oben genannten basischen Monomeren werden bei der Copolymerisation in Form der freien Basen, der Salze mit organischen oder anorganischen Säuren oder in quatemierter Form eingesetzt. Zur Salzbildung eignen sich beispielsweise Carbonsäuren mit 1 bis 7 Kohlenstoffatomen, z.B. Ameisensäure, Essigsäure oder Propionsäure, Benzolsulfonsäure, Schwefelsäure, Phosphorsäure, p- Toluolsulfonsäure oder anorganische Säuren wie Halogenwasserstoffsäuren, beispielsweise Salzsäure oder Bromwasserstoffsäure. Die oben beispielhaft genannten basischen Monomeren können auch in quatemierter Form eingesetzt werden. Zur Quaternierung eignen sich beispielsweise Alkylhalogenide mit 1 bis 18 C-Atomen in der Alkylgruppe, z.B. Methylchlorid, Methylbromid, Methyljodid, Ethylchlorid, Propylchlorid, Hexylchlorid, Dodecylchlorid, Laurylchlorid und Benzylhalogenide, insbesondere Benzylchlorid i d Benzylbromid. Die Quaternierung der stickstoffhaltigen basischen Monomeren kann auch durch Umsetzung dieser Verbindungen mit Dialkylsulfaten, insbesondere Diethylsulfat oder Dimethylsulfat, vorgenommen werden. Beispiele für quaternierte Monomere dieser Gruppe sind Trimethylammoniumethylmethacrylatchlorid, Dimethylethylammoniumethylmethacrylatethylsulfat und Dimethylethylammom'um- ethylmethacrylamidethylsulfat, 3 -Methyl- 1 -vinyl-imidazolinimchlorid.
Der kationische Charakter der Polymerisate kann aber auch dadurch erzielt werden, dass man die Copolymerisation in Gegenwart von kationischen Schutzkolloiden und/oder kationischen Emulgatoren durchführt.
Der kationische Charakter der erwähnten Polymerisate kann aber auch dadurch erzielt werden, dass man die fertigen Poylmerisate in Gegenwart von kationischen Schutzkolloiden und/oder kationischen Emulgatoren emulgiert bzw. dispergiert.
Eine Übersicht über eine Auswahl geeigneter kationischer Tenside ist in Ullmanns Enzyklopädie der Industriellen Chemie, Sechste Auflage, 1999, Electronic Release, Kapitel "Surfactants", Chapter 8, Cationic Sürfactants zu finden.
Reaktiv modifizierte Polymerisate mit amphoterem Charakter können erhalten werden, indem man sowohl kationische als auch anionische Monomere mit einpolymerisiert. Geeignete Monomere sind beispielsweise die zuvor genannten kationischen und anionischen Monomere.
Der amphotere Charakter der Polymerisate kann auch dadurch erzielt werden, dass man die Copolymerisation in Gegenwart von amphoteren Schutzkolloiden und/oder amphoteren Emulgatoren durchführt.
Der amphotere Charakter der Polymerisate kann aber auch dadurch erzielt werden, dass man die fertigen Polymerisate in Gegenwart von amphoteren Schutzkolloiden und/oder amphoteren Emulgatoren emulgiert bzw. dispergiert.
Reaktiv modifizierte Polymerisate sind beispielsweise erhältlich durch Copolymerisation von (a) 40 bis 99,9 Gew.-%, vorzugsweise 50 bis 90 Gew.-%, besonders bevorzugt 60 bis 75 Gew.-% mindestens eines schwer wasserlöslichen oder wasserunlöslichen nichtionischen Monomeren,
(b) 0 bis 60 Gew.-%, vorzugsweise 1 bis 55 Gew.-%, besonders bevorzugt 5 bis 50 Gew.-%, insbesondere 15 bis 40 Gew.-% Carboxylgruppen enthaltenden Monomeren oder deren Salze,
(c) 0 bis 25 Gew.-%, vorzugsweise 0 bis 15 Gew.-%, Sulfonsäure- und/oder Phosphonsäuregruppen enthaltenden Monomeren oder deren Salzen,
(d) 0 bis 30 Gew.-%, vorzugsweise 0 bis 15 Gew.-%, kationischen Monomeren,
(e) 0 bis 55 Gew.-%, vorzugsweise 0 bis 40 Gew.-% wasserlöslichen nichtionischen Monomeren,
(f) 0 bis 30 Gew.-%, vorzugsweise 0 bis 10 Gew.-% mehrfach ethylenisch ungesättigten Monomeren, und
(g) 0,1 bis 30 Gew.%, vorzugsweise 0,25 bis 15 Gew.-%, besonders bevorzugt 0,5 bis 10 Gew.-% mindestens eines reaktive, vernetzend wirkende Gruppen enthaltenden ethylenisch ungesättigten Monomeren.
Polymere, die mindestens ein anionisches Monomer b) oder c) einpolymerisiert enthalten, können ohne zusätzliche anionische Emulgatoren oder Schutzkolloide eingesetzt werden. Polymere, die weniger als 0,5 % anionischer Monomere enthalten, werden meistens zusammen mit mindestens einem anionischen Emulgator oder Schutzkolloid eingesetzt.
Vorzugsweise eingesetzte Monomere a) sind Methylacrylat, Ethylacrylat, n-Butylacrylat, sec-Butylacrylat, tert.-Butylacrylat, Ethylhexylacrylat, Hydroxyethylacrylat, Hydroxypropylacrylat, Methylmethacrylat, n-Butylmethacrylat, Vinylacetat, Vinylpropionat, Styrol, Ethylen, Propylen, Butylen, Isobuten, Diisobuten und Tetrafluorethylen, besonders bevorzugte Monomere sind Methylacrylat, Ethylacrylat, n-Butylacrylat, Styrol, Methylmethacrylat und Vinylacetat. Norzugsweise eingesetzte Monomere b) sind Acrylsäure, Methacrylsäure, Maleinsäure, oder Maleinsäurehalbester mit Cj-Cs-Alkanolen.
Geeignete Monomere c) sind beispielsweise Acrylamido-2-methylpropansulfonsäure, Ninylsulfonsäure, Methallylsulfonsäure, sowie deren Alkali und Ammoniumsalze.
Geeignete Monomere d) sind beispielsweise Dimethylaminoethylmethacrylat, Dimethy laminopropylacrylamid, 1 -Ninylimidazol, 3 -Methyl- 1 -vinylimidazoliniumchlorid und 4-Ninylpyridin.
Geeignete Monomere e) sind beispielsweise Acrylamid, Methacrylamid, Ν- Ninylformamid, Ν-Vinylacetamid, Ν-Vinylpyrrolidon, Ν-Vinyloxazolidon,
Methylpolyglykolacrylate, Methylpolyglykolmethacrylate, Methylpolyglykolacrylamide und Vinylcaprolactam.
Geeignete mehrfach ungesättigte Monomere f) sind beispielsweise Acrylester, Methacrylester, Allylether und Vinylether von mindestens zweiwertigen Alkoholen. Die OH-Gruppen der zugrunde liegenden Alkohole können dabei ganz oder teilweise verethert oder verestert sein. Vemetzer enthalten dabei mindestens zwei ethylenisch ungesättigte Gruppen. Beispiele sind Butandioldiacrylat, Hexandioldiacrylat und Trimethylolpropantriacrylat. Weitere ungesättigte Monomere e) sind z.B. Allylester ungesättigter Carbonsäuren, Divinylbenzol, Methylenbisacrylamid und Divinylharnstoff.
Bevorzugte reaktive Gmppen enthaltende ungesättigte Monomere g), die vernetzend, größtenteils aber nachvernetzend wirken, sind Ν-Methylol(meth)acrylamid, Glycidylmethacrylat, Methacryloxypropyl-trimethylsilan, Vinyltrimethoxysilan, m- Isopropenylbenzylisocyanat, Acrolein, Isobutoxymethylacrylamid, hydroxymethyliertes Diacetonacrylamid, Allyl-N-methylolcarbamat, N-Formyl-N'-acryloxymethylendiamin, gamma-Methylacryloxypropyltrimethoxy silan, Methacryloxyethoxytrimethylsilan,
Epithiopropylmethacrylat, Vinylchlorid, 2-Chlorethylacrylat, 4-Chlorbutylacrylat, 3-Chlor- 2-hydroxypropylacrylat, Methyl- l-(chloromethyl)acrylat, 2-(Bromomethyl)acrylonitril, 2- (Chloromethyl)acrylamid, 6-Bromo-2-napthylenylacrylat, 2-(4-Chloro-2- nitroanilino)ethylacrylat, 6-Chloro-5-(trichloromethyl)-2-norbonylacrylat, 3-Chloro-2- [(dimethylphosphinyl)oxy]propylacrylat, 3-Chloro-2-[(l-oxo-3-phenyl-2- propenyl)oxy]propylmethacrylat, 2-Phenylallylbromid, p-Chloromethylstyrol, Vinyl- monochloroacetat und 2-(4-Ethoxyphenyl)2-oxazolinylmehtacrylat.
In einer Ausfuhrungsform der Erfindung werden reaktiv modifizierte, teilchenförmige Poylmerisate verwendet, die anionischen Charakter aufweisen, also anionische Gmppen einpolymerisiert enthalten und/oder mit anionischen Schutzkolloiden oder Emulgatoren dispergiert sind, und die an ihrer Oberfläche eine Belegung mit kationischen Polymeren aufweisen.
Diese kationisch modifizierten, reaktiv modifizierten, teilchenformigen Polymerisate sind erhältlich durch Belegung der Oberfläche der anionisch dispergierten, teilchenformigen Polymerisate mit kationischen Polymeren. Als kationische Polymere können sämtliche natürlichen oder synthetischen kationischen Polymere verwendet werden, die Amino- und/oder Ammoniumgruppen enthalten und wasserlöslich sind. Beispiele für solche kationischen Polymere sind Vinylamineinheiten enthaltende Polymere, Vinylimidazoleinheiten enthaltende Polymere, quaternäre Vinylimidazoleinheiten enthaltende Polymere, Kondensate aus Imidazol und Epichlorhydrin, vernetzte Polyamidoamine, mit Ethylenimin gepfropfte vernetzte Polyamidoamine, Polyethylenimine, alkoxylierte Polyethylenimine, vernetzte Polyethylenimine, amidierte Polyethylenimine, alkylierte Polyethylenimine, Polyamine, Amin-Epichlorhydrin- Polykondensate, alkoxylierte Polyamine, Polyallylamine,
Polydimethyldi-dlylammoniumchloride, basische (Meth)acrylamid- oder -estereinheiten enthaltende Polymere, basische quaternäre (Meth)acrylamid- oder -estereinheiten enthaltende Polymere, und/oder Lysinkondensate.
Unter kationischen Polymeren werden auch amphotere Polymerisate verstanden, die eine netto-kationische Ladung aufweisen, d.h. die Polymere enthalten sowohl anionische als auch kationische Monomere einpolymerisiert, jedoch ist der molare Anteil der im Polymeren enthaltenen kationischen Einheiten größer als der der anionischen Einheiten.
Zur Herstellung von Vinylamineinheiten enthaltenden Polymerisaten geht man beispielsweise von offenkettigenN-Vinylcarbonsäureamiden der Formel (I)
aus, in der R1 und R2 gleich oder verschieden sein können und für Wasserstoff und - bis C6-Alkyl stehen. Geeignete Monomere sind beispielsweise N-Vinylformamid (R1=R2=H in Formel l) N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methyl- acetamid, N-Vinyl-N-ethylacetamid, N-Vinyl-N-methylpropionamid und N- Ninylpropionamid. Zur Herstellung der Polymerisate können die genannten Monomere entweder allein, in Mischung untereinander oder zusammen mit anderen monoethylenisch ungesättigten Monomeren polymerisiert werden. Vorzugsweise geht man von Homo- oder Copolymerisaten des Ν-Vinylformamids aus. Vinylamineinheiten enthaltende Polymerisate sind beispielsweise aus US 4,421,602, EP-A-0 216 387 und- EP-A- 0 251 182 bekannt. Sie werden durch Hydrolyse von Polymerisaten, die die Monomere der Formel I einpolymerisiert enthalten, mit Säuren, Basen oder Enzymen erhalten.
Als monoethylenisch ungesättigte Monomere, die mit den Ν-Vinylcarbonsäureamiden copolymerisiert werden, kommen alle damit copolymerisierbaren Verbindungen in Betracht. Beispiele hierfür sind Vinylester von gesättigten Carbonsäuren mit 1 bis 6 Kohlenstoffatomen wie Vinylformiat, Vinylacetat, Vinylpropionat und Vinylbutyrat und Vinylether wie Ci- bis C6-Alkylvinylether, z.B. Methyl- oder Ethylvinylether. Weitere geeignete Comonomere sind ethylenisch ungesättigte C3- bis C6-Carbonsäuren, beispielsweise Acrylsäure, Methacrylsäure, Maleinsäure, Crotonsäure, Itaconsäure und Vinylestersäure sowie deren Alkalimetall- und Erdalkalimetallsalze, Ester, Amide und Νitrile der genannten Carbonsäuren, beispielsweise Methylacrylat, Methylmethacrylat, Ethylacrylat und Ethylmethacrylat.
Weitere geeignete monoethylenisch ungesättigte Monomere, die mit den Ν— Ninylcarbonsäureamiden copolymerisiert werden, sind Carbonsäureester, die sich von Glykolen oder Polyalkylenglykolen ableiten, wobei jeweils nur eine OH-Gmppe verestert ist, z.B. Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxypropylmethacrylat, Hydroxybutylmethacrylat sowie Acrylsäure onoester von Polyalkylenglykolen einer Molmasse von 500 bis 10000. Weitere geeignete Comonomere sind Ester von ethylenisch ungesättigten Carbonsäuren mit Aminoalkoholen wie Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylacrylat, Dimethylammopropylmethacrylat, Diethylaminopropylacrylat, Dime yl-i-minobutylacrylat und Diethylaminobutylacrylat. Die basischen Acrylate können in Form der freien Basen, der Salze mit Mineralsäuren wie Salzsäure, Schwefelsäure oder Salpetersäure, der Salze mit organischen Säuren wie Ameisensäure, Essigsäure, Propionsäure oder der Sulfonsäuren oder in quatemierter Form eingesetzt werden. Geeignete Quaternierungsmittel sind beispielsweise Dimethylsulfat, Diethylsulfat, Methylchlorid, Ethylchlorid oder Benzylchlorid.
Weitere geeignete Comonomere sind Amide ethylenisch ungesättigter Carbonsäuren wie Acrylamid, Methacrylamid sowie N-Alkylmono- und diamide von monoethylenisch ungesättigten Carbonsäuren mit Alkylresten von 1 bis 6 C-Atomen, z.B. N-Methylacrylamid, N,N-Dimethylacrylamid, N-Methylmethacrylamid,
N-Ethylacrylamid, N-Propylacrylamid und tert. Butylacrylamid sowie basische (Meth)acrylamide, wie z.B. Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylamid, Diethylaminoethylacrylamid, Diethylaminoethylmethacrylamid, Dimethylaminopropylacrylamid, Diethylaminopropylacrylamid, Dimethylaminopropylmethacrylamid und Diethylaminopropylmethacrylamid.
Weiterhin sind als Comonomere geeignet N-Vinylpyrrolidon, N-Vinylcaprolactam, Acrylnitril, Methacrylnitril, N-Vinylimidazol sowie substituierte N-Vinylimidazole wie z.B. N-Vinyl-2-methylimidazol, N-Vinyl- -methylimidazol, N-Vinyl-5- methylimidazol, N-Vinyl-2-ethylimidazol und N-Vinylimidazoline wie N-Vinylimidazolin, N-Vinyl-2-methylimidazolin und N-Vinyl-2-ethylimidazolin. N-Vinylimidazole und N-Vinylimidazoline werden außer in Form der freien Basen auch in mit Mineralsäuren oder organischen Säuren neutralisierter oder in quaternisierter Form eingesetzt, wobei die Quatemisierung vorzugsweise mit Dimethylsulfat, Diethylsulfat, Methylchlorid oder Benzylchlorid vorgenommen wird. In Frage kommen auch Diallyldialkylammoniumhalogenide wie z.B. Di-dlyldimemyl--n--moniumchloride.
Außerdem kommen als Comonomere Sulfogruppen enthaltende Monomere wie beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Methallylsulfonsäure,
Styrolsulfonsäure, die Alkalimetall- oder Ammoniumsalze dieser Säuren oder Acrylsäure- 3-sulfopropylester in Frage, wobei der Gehalt der amphoteren Copolymerisate an kationischen Einheiten den Gehalt an anionischen Einheiten übertrifft, so dass die Polymeren insgesamt eine kationische Ladung haben.
Die Copolymerisate enthalten beispielsweise
99,99 bis 1 mol-%, vorzugsweise 99,9 bis 5 mol-% N-Vinylcarbonsäureamide der Formel I und
- 0,01 bis 99 mol-%, vorzugsweise 0,1 bis 95 mol-% andere, damit copolymerisierbare monoethylenisch ungesättigte Monomere
in einpolymerisierter Form.
Um Vinylamineinheiten enthaltende Polymerisate herzustellen, geht man vorzugsweise von Homopolymerisaten des N-Vinylformamids oder von Copolymerisaten aus, die durch Copolymerisieren von
N-Vinylformamid mit
Vinylformiat, Vinylacetat, Vinylpropionat, Acrylnitril, N-Vinylcaprolactam, N- Ninylharnstoff, Acrylsäure, Ν-Ninylpyrrolidon oder Ci- bis C6-Alkylvinylethern
und anschließende Hydrolyse der Homo- oder der Copolymerisate unter Bildung von Vinylamineinheiten aus den einpolymerisierten Ν-Vinylformamideinheiten erhältlich sind, wobei der Hydrolysegrad z. B. 0,1 bis 100 mol-% beträgt.
Die Hydrolyse der oben beschriebenen Polymerisate erfolgt nach bekannten Verfahren durch Einwirkung von Säuren, Basen oder Enzymen. Hierbei entstehen aus den einpolymerisierten Monomeren der oben angegebenen Formel l durch Abspaltung der Gruppierung
wobei R2 die dafür in Formel I angegebene Bedeutung hat, Polymerisate, die
Vinylamineinheiten der Formel (III)
CH.— CH-
(III)
N \ 1 H R
enthalten, in der R1 die in Formel l angegebene Bedeutung hat. Bei Verwendung von Säuren als Hydrolysemittel liegen die Einheiten III als Ammoniumsalz vor.
Die Homopolymerisate der N-Vinylcarbonsäurearnide der Formel I und ihre Copolymerisate können zu 0,1 bis 100, vorzugsweise 70 bis 100 mol-% hydrolysiert sein. In den meisten Fällen beträgt der Hydrolysegrad der Homo- und Copolymerisate 5 bis 95 mol-%. Der Hydrolysegrad der Homopolymerisate ist gleichbedeutend mit dem Gehalt der Polymerisate an Vinylamineinheiten. Bei Copolymerisaten, die Vinylester einpolymerisiert enthalten, kann neben der Hydrolyse der N-Vinylformamideinheiten eine Hydrolyse der Estergrappen unter Bildung von Vinylalkoholeinheiten eintreten. Dies ist insbesondere dann der Fall, wenn man die Hydrolyse der Copolymerisate in Gegenwart von Natronlauge durchführt. Einpolymerisiertes Acrylnitril wird ebenfalls bei der Hydrolyse chemisch verändert. Hierbei entstehen beispielsweise Amidgruppen oder Carboxylgmppen. Die Vinylamineinheiten enthaltenden Homo- und Copolymeren können gegebenenfalls bis zu 20 mol-% an Amidineinheiten enthalten, die z.B. durch Reaktion von Ameisensäure mit zwei benachbarten Aminogruppen oder durch intramolekulare Reaktion einer Aminogruppe mit einer benachbarten Amidgrappe z.B. von einpolymerisiertem N-Vinylformamid entsteht. Die Molmassen der Vinylamineinheiten enthaltenden Polymerisate betragen z.B. 1000 bis 10 Millionen, vorzugsweise 10 000 bis 5 Millionen (bestimmt durch Lichtstreuung). Dieser Molmassenbereich entspricht beispielsweise K-Werten von 5 bis 300, vorzugsweise 10 bis 250 (bestimmt nach H. Fikentscher in 5 %iger wäßriger Kochsalzlösung bei 25°C und einer Polymerkonzentration von 0,5 Gew.-%).
Die Vinylamineinheiten enthaltenden Polymere werden vorzugsweise in salzfreier Form eingesetzt. Salzfreie wäßrige Lösungen von Vinylamineinheiten enthaltenden Polymerisaten können beispielsweise aus den oben beschriebenen salzhaltigen Polymerlösungen mit Hilfe einer Ultrafiltration an geeigneten Membranen bei Trenngrenzen von beispielsweise 1000 bis 500 000 Dalton, vorzugsweise 10 000 bis 300 000 Dalton hergestellt werden. Auch die unten beschriebenen wäßrigen Lösungen von Amino- und/oder Ammoniumgmppen enthaltenden anderen Polymeren können mit Hilfe einer Ultrafiltration in salzfreier Form gewonnen werden.
Als kationische Poylmere geeignet sind femer Polyethylenimine. Polyethylenimine werden beispielsweise durch Polymerisation von Ethylenimin in wäßriger Lösung in Gegenwart von säureabspaltenden Verbindungen, Säuren oder Lewis-Säuren hergestellt. Polyethylenimine haben beispielsweise Molmassen bis zu 2 Millionen, vorzugsweise von 200 bis 500 000. Besonders bevorzugt werden Polyethylenimine mit Molmassen von 500 bis 100 000 eingesetzt. Außerdem eignen sich wasserlösliche vernetzte Polyetliylenimine, die durch Reaktion von Polyethyleniminen mit Vemetzem wie Epichlorhydrin oder Bischlorhydrinethern von Polyalkylenglykolen mit 2 bis 100 Ethylenoxid- und/oder Propylenoxid-Einheiten erhältlich sind. Auch amidische Polyethylenimine sind geeignet, die beispielsweise durch Amidierung von Polyethyleniminen mit - bis C22-Mono- carbonsäuren erhältlich sind. Weitere geeignete kationische Polymere sind alkylierte Polyethylenimine und alkoxylierte Polyethylenimine. Bei der Alkoxylierung verwendet man z.B. pro NH-Einheit in Polyethylenimin 1 bis 5 Ethylenoxid- bzw. Propylenoxideinheiten.
Geeignete Amino- und/oder Ammoniumgmppen enthaltende Polymere sind außerdem Polyamidoamine, die beispielsweise durch Kondensieren von Dicarbonsäuren mit Polyaminen erhältlich sind. Geeignete Polyamidoamine erhält man beispielsweise dadurch, dass man Dicarbonsäuren mit 4 bis 10 Kohlenstoffatomen mit Polyalkylenpolyaminen umsetzt, die 3 bis 10 basische Stickstoffatome im Molekül enthalten. Geeignete Dicarbonsäuren sind beispielsweise Bernsteinsäure, Maleinsäure, Adipinsäure, Glutarsäure, Korksäure, Sebacinsäure oder Terephthalsäure. Bei der Herstellung der Polyamidoamine kann man auch Mischungen von Dicarbonsäuren einsetzen, ebenso Mischungen aus mehreren Polyalkylenpolyaminen. Geeignete Polyalkylenpolyamine sind beispielsweise Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Dipropylentriamin, Tripropylentetramin, Dihexamethylentriamin, Aminopropylethylen- diamin und Bis-aminopropylethylendiamin. Die Dicarbonsäuren und Polyalkylenpolyamine werden zur Herstellung der Polyamidoamine auf höhere Temperaturen erhitzt, z.B. auf Temperaturen in dem Bereich von 120 bis 220, vorzugsweise 130 bis 180°C. Das bei der Kondensation entstehende Wasser wird aus dem System entfernt. Bei der Kondensation kann man gegebenenfalls auch Lactone oder Lactame von Carbonsäuren mit 4 bis 8 C-Atomen einsetzen. Pro Mol einer Dicarbonsäure verwendet man beispielsweise 0,8 bis 1,4 Mol eines Polyalkylenpolyamins.
Weitere Aminogruppen enthaltende Polymere sind mit Ethylenimin gepfropfte Polyamidoamine. Sie sind aus den oben beschriebenen Polyamidoaminen durch Umsetzung mit Ethylenimin in Gegenwart von Säuren oder Lewis-Säuren wie Schwefelsäure oder Bortrifluoridetheraten bei Temperaturen von beispielsweise 80 bis 100°C erhältlich. Verbindungen dieser Art werden beispielsweise in der DE-B-24 34 816 beschrieben.
Auch die gegebenenfalls vernetzten Polyamidoamine, die gegebenenfalls noch zusätzlich vor der Vernetzung mit Ethylenimin gepfropft sind, kommen als kationische Polymere in Betracht. Die vernetzten, mit Ethylenimin gepfropften Polyamidoamine sind wasserlöslich und haben z.B. ein mittleres Molgewicht von 3000 bis 1 Million Dalton. Übliche Vemetzer sind z.B. Epichlorhydrin oder Bischlorhydrinether von Alkylenglykolen und Polyalkylenglykolen.
Weitere Beispiele für kationische Polymere, die Amino- und/oder Ammoniumgruppen enthalten, sind Polydiallyldimethylammoniumchloride. Polymerisate dieser Art sind ebenfalls bekannt.
Weitere geeignete kationische Polymere sind Copolymerisate aus beispielsweise 1 bis
99 mol-%, vorzugsweise 30 bis 70 mol-% Acrylamid und/oder Methacrylamid und 99 bis 1 mol-%, vorzugsweise 70 bis 30 mol-% an kationischen Monomeren wie
Dialkylaminoalkylacrylamid, -ester und/oder -methacrylamid und/oder -methacrylester.
Die basischen Acrylamide und Methacrylamide liegen ebenfalls vorzugsweise in mit
Säuren neutralisierter oder in quaternisierter Form vor. Als Beispiele seien genannt N-
Trimethyl-u-nmoniumethylacrylamidchlorid, N-Trimethy lammoniumethy lmethacrylamidchlorid,
N-Trimethyl--mmoniι--methylmethacrylesterchlorid,
N-Trimemylammoniumethylacrylesterchlorid,
Trimethylammoniumetliylacrylamidmethosulfat,
Trimethyl- ---noniumethylmethacrylamidmethosulfat, N-Ethyldimethyl--mmoniumethylacrylamidethosulfat, N-Ethyldimemyl--mmoniumethylmethacryl_--midethosulfat, Trimethyl-u-nmonixm propylacrylamidchlorid, Trimethyl-uι--moniumpropylmethacrylamidchlorid, Trimethyl--π--moniumpropylacrylamidmethosulfat, Trimethyl--mmomιιmpropylmethacrylamidmethosulfat und
N-El-hylcümethyl---n--momumpropylacrylamidethosulfat. Bevorzugt ist Trimethyl--mmom'umpropylmethacrylamidchlorid.
Weitere geeignete kationische Monomere für die Herstellung von (Meth)acrylamid- Polymerisaten sind Diallyldimethylammoniumhalogenide sowie basische (Meth)acrylate. Geeignet sind z.B. Copolymerisate aus 1 bis 99 mol-%, vorzugsweise 30 bis 70 mol-% Acrylamid und/oder Methacrylamid und 99 bis 1 mol-%, vorzugsweise 70 bis 30 mol-% Dialkylaminoalkylacrylaten und/oder -methacrylaten wie Copolymerisate aus Acrylamid und N,N-Dimethylaminoethylacrylat oder Copolymerisate aus Acrylamid und Dimethylaminopropylacrylat. Basische Acrylate oder Methacrylate liegen vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form vor. Die Quatemisierung kann beispielsweise mit Methylchlorid oder mit Dimethylsulfat erfolgen.
Als kationische Polymere, die Amino- und/oder Ammoniumgrappen aufweisen, kommen auch Polyallylamine in Betracht. Polymerisate dieser Art werden erhalten durch Homopolymerisation von Allylamin, vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form oder durch Copolymerisieren von Allylamin mit anderen monoethylenisch ungesättigten Monomeren, die oben als Comonomere für N-Vinylcarbonsäureamide beschrieben sind.
Die kationischen Polymerisate haben z.B. K-Werte von 8 bis 300, vorzugsweise 100 bis 180 (bestimmt nach H. Fikentscher in 5 %iger wäßriger Kochsalzlösung bei 25 % und einer Polymerkonzentration von 0,5 Gew.-%). Bei einem pH-Wert von 4,5 haben sie beispielsweise eine Ladungsdichte von mindestens 1, vorzugsweise mindestens 4 mVal/g Polyelektrolyt.
Beispiele für bevorzugt in Betracht kommende kationische Polymere sind Polydimethyldiallylammoniumchlorid, Polyethylenimin, Vinylamineinheiten enthaltende Polymere, basische Monomere einpolymerisiert enthaltende Copolyniere von Acrylamid oder Methacrylamid, Lysineinheiten enthaltende Polymere oder deren Mischungen. Beispiele für kationische Polymere sind: • Copolymere aus 50 % Vinylpyrrolidon und 50 %
Trimethyl_--mmoniumethylmethacrylat-Methosulfat, Mw 1000 bis 500 000;
• Copolymere aus 30 % Acrylamid und 70 % Trimet-hyl-u-nmoniumethylmethacrylat- Methosulfat, Mw 1000 bis 1 000 000;
• Copolymere aus 70 % Acrylamid und 30 % Dimethylaminoethylmethacrylamid, Mw 1000 bis 1 000 000;
• Copolymere aus 50 % Hydroxyethylmethacrylat und 50 % 2-Dimethylaminoethyl- methacrylamid, Mw 1000 bis 500 000;
• Copolymer aus 70 % Hydroxyethylmethacrylat und 50 % 2-Dimethylamino- ethylmethacrylamid; Copolymer aus 30 % Vinylimidazol-Methochlorid, 50 %
Dimethylaminoethylacrylat, 15 % Acrylamid, 5 % Acrylsäure;
• Polylysine mit Mw von 250 bis 250 000, vorzugsweise 500 bis 100 000 sowie Lysin- Cokondensate mit Molmassen Mw von 250 bis 250 000, wobei man als cokondensierbare Komponente z.B. Amine, Polyamine, Ketendimere, Lactame,
Alkohole, alkoxylierte Amine, alkoxylierte Alkohole und/oder nichtproteinogene Aminosäuren einsetzt,
• Vinylamin-Homopolymere, 1 bis 99 % hydrolysierte Polyvinylformamide, Copolymerisate aus Vinylformamid und Vinylacetat, Vinylalkohol, Vinylpyrrolidon oder Acrylamid mit Molmassen von 3 000 - 500 000,
• Vinylimidazol-Homopolymere, Vinylimidazol-Copolymere mit Vinylpyrrolidon, Vinylformamid, Acrylamid oder Vinylacetat mit Molmassen von 5 000 bis 500 000 sowie deren quaternäre Derivate,
• Polyethylenimine, vernetzte Polyethylenimine oder amidierte Polyethylenimine mit Molmassen von 500 bis 3 000 000, • Amin-Epichlorhydrin-Polykondensate, die als Aminkomponente Imidazol, Piperazin, -Cs-Alkylamine, Ci-Cs-Dialkylamine und/oder Dimemylaminopropylamin enthalten und die eine Molmasse von 500 bis 250 000 aufweisen,
• Basische (Meth)acrylamid- oder -estereinheiten enthaltende Polymere, basische quaternäre (Meth)acrylamid- oder -estereinheiten enthaltende Polymere mit Molmassen von 10 000 bis 2 000 000.
Weiterhin ist es auch möglich, in untergeordnetem Maße (< 10 Gew.-%) an anionischen Comonomeren einzupolymerisieren, z.B. Acrylsäure, Methacrylsäure, Vinylsulfonsäure oder Alkalisalze der genannten Säuren.
Um anionisch dispergierte, teilchenformige, reaktiv modifizierte Polymere kationisch zu modifizieren, kann man sie zusätzlich zu einer Behandlung mit kationischen Polymeren gegebenenfalls noch mit mehrwertigen Metallionen und/oder kationischen Tensiden behandeln. Eine Belegung der Partikel mit mehrwertigen Metallionen wird erzielt, indem man beispielsweise zu einer wäßrigen Dispersion anionisch dispergierter reaktiv modifizierter Polymerer eine wäßrige Lösung mindestens eines wasserlöslichen, mehrwertigen Metallsalzes zugibt oder ein wasserlösliches, mehrwertiges Metallsalz darin löst, wobei man die Modifizierung der anionisch dispergierten reaktiv modifizierten Partikel mit kationischen Polymeren entweder vor, gleichzeitig oder nach dieser Behandlung vornimmt. Geeignete Metallsalze sind beispielsweise die wasserlöslichen Salze von Ca, Mg, Ba, AI, Zn, Fe, Cr oder deren Mischungen. Auch andere wasserlösliche Schwermetallsalze, die sich beispielsweise von Cu, Ni, Co und Mn ableiten, sind prinzipiell verwendbar, jedoch nicht in allen Anwendungen erwünscht. Beispiele für wasserlösliche Metallsalze sind Calciumchlorid, Calciumacetat, Magnesiumchlorid, Aluminiumsulfat, Aluminiumchlorid, Bariumchlorid, Zinkchlorid, Zinksulfat, Zinkacetat, Eisen-(II)-sulfat, Eisen-(III)-chlorid, Chrom-(III)-sulfat, Kupfersulfat, Nickelsulfat, Kobaltsulfat und Mangansulfat. Bevorzugt werden die wasserlöslichen Salze von Mg, Ca, AI und Zn zur Kationisierung verwendet.
Bei vielen gewerblichen technischen Anwendungen und Anwendungen im häuslichen Alltag ist die Modifizierung der Eigenschaften von textilen und nicht-textilen Oberflächen mit Polymerdispersionen von Bedeutung. Nicht immer ist es möglich, die Modifizierung der Oberflächen durch Tränk-, Sprüh- und Streichprozesse mit konzentrierten Dispersionen durchzui-ühren. Häufig ist es wünschenswert, die Modifizierung mit Hilfe einer Spülung der zu behandelnden Oberfläche mit einer stark verdünnten, eine aktive Substanz enthaltenden Flotte auszuführen. Dabei ist es häufig wünschenswert, die Modifizierung der Oberfläche im Zusammenhang mit einer Wäsche, Reinigung und/oder Pflege bzw. Imprägnierung der Oberfläche zu kombinieren. Dabei kommen insbesondere Oberflächen textiler Materialien wie Baumwollgewebe und Baumwollmischgewebe in Betracht. Außerdem können Teppichböden und Möbelbezüge erfindungsgemäß behandelt werden. Die Modifizierung der Oberflächen von textilen Materialien kann beispielsweise in einer Hydrophobierung, Soil-Release-Ausrüstung, schmutzabweisenden Ausrüstung, einer Verstärkung des Faserverbundes und dem Schutz vor chemischen oder mechanischen Einflüssen und Beschädigungen bestehen.
Die reaktiv modifizierten, teilchenformigen Polymere werden zur Modifizierung von Oberflächen der oben beispielhaft genannten Materialien als Zusatz zu Spül- oder Pflegemitteln, Wasch- oder Reinigungsmitteln von textilen und weiteren nicht-textilen Oberflächen verwendet. Insbesondere kommen dabei Anwendungen beim Waschen, Reinigen und Nachbehandeln von Textilien, Leder, Holz, Bodenbelägen, Glas, Keramik und anderen Oberflächen im Haushalt und im gewerblichen Bereich in Frage.
Die reaktiv modifizierten, teilchenformigen Polymeren werden als verdünnte, überwiegend wässrige Dispersion angewendet. Die Anwendung erfolgt durch eine Behandlung der Oberflächen in Wasch-, Reinigungs- und Spülflotten, denen die Polymere entweder direkt oder mittels einer flüssigen oder festen Formulierung zugesetzt werden, oder durch das fein verteilte Aufbringen einer flüssigen Formulierung z.B. durch Aufsprühen.
Die reaktiv modifizierten, teilchenformigen Polymere können beispielsweise als alleinige aktive Komponente in wässrigen Spül- und Pflegemitteln eingesetzt werden und bewirken je nach Zusammensetzung des Polymeren z.B. eine Erleichterung der Schmutzablösung bei einer nachfolgenden Wäsche, eine geringere Schmutzhaftung beim Gebrauch der Textilien, eine Verbesserung des Stnikturerhalts von Fasern, eine Verbesserung des Form- und Strukturerhalts von Geweben, eine Hydrophobierung der Oberfläche des Waschguts sowie eine Griffverbesserung.
Die Konzentration der reaktiv modifizierten, teilchenformigen Polymeren bei der Anwendung im Spül- oder Pflegebad, in der Waschmittelflotte oder dem Reinigungsbad beträgt beispielsweise 0,0002 bis 1 Gew.-%, vorzugsweise 0,0005 bis 0,25 Gew.-%, besonders bevorzugt 0,002 bis 0,05 Gew.-%. In den oben genannten Anwendungen lassen sich prinzipiell alle reaktiv modifizierten teilchenformigen Polymere einsetzen. Je nach Ausfuhrungsform kann es dabei vorteilhaft sein eine bestimmte Monomerzusammensetzung auszuwählen um besonders vorteilhafte Modifizierungen zu erzielen.
In einer bevorzugten Ausführangsform der Erfindung enthalten die verwendeten Polymeren kationische Monomere einpolymerisiert und besitzen dadurch eine erhöhte Affinität zu den zu behandelnden Oberflächen.
In einer weiteren bevorzugten Ausfuhrungsform enthalten die verwendeten Polymeren anionische Monomere einpolymerisiert und werden zusammen mit kationischen Polymeren, kationischen Tensiden und/oder mehrwertigen Metallkationen angewendet. Dabei erfolgt die Behandlung der Oberflächen, beispielsweise textiler Oberflächen, mit wässrigen Flotten, die beispielsweise 2,5 bis 300 ppm, vorzugsweise 5 bis 200 ppm und insbesondere 10 bis 100 ppm mindestens eines kationischen Polymeren, bis zu 5 mmol/1, vorzugsweise bis zu 3,5 mmol/1 wasserlösliche Salze von mehrwertigen Metallen, insbesondere Salze von Ca, Mg oder Zn und/ oder bis zu 2 mmol/1, vorzugsweise bis zu 0,75 mmol/1 wasserlösliche AI-Salze und/oder bis zu 600 ppm, vorzugsweise bis zu 300 ppm kationische Tenside enthalten.
In einer weiteren bevorzugten AusJ-ührungsform werden alkaliquellbare, besonders bevorzugt alkalilösliche reaktiv modifizierte Polymerisate eingesetzt. Solche Polymerisate werden beispielsweise besonders vorteilhaft zur Verbesserung der Schmutzablösung von textilen und nicht-textilen Oberflächen eingesetzt. Geeignete reaktiv modifizierte alkalilösliche Polymere enthalten beispielsweise
(a) 30 bis 80 Gew.-%, vorzugsweise 40 bis 75 Gew.-%, besonders bevorzugt 50 bis 70 Gew.-% mindestens eines schwer wasserlöslichen oder wasserunlöslichen nichtionischen Monomer,
(b) 20 bis 70 Gew.-%, vorzugsweise 25 bis 60 Gew.-%, besonders bevorzugt 30 bis 50 Gew.-% mindestens eines Carboxylgmppen enthaltenden Monomeren oder deren Salze, (c) 0 bis 25 Gew.-%, vorzugsweise 0 bis 15 Gew.-%, eines oder mehrerer Sulfonsäure und/oder Phosphonsäuregrappen enthaltener Monomere oder deren Salze,
(d) 0 bis 30 Gew.-%, vorzugsweise 0 bis 15 Gew.-%, eines oder mehrerer kationischer Monomere,
(e) 0 bis 55 Gew.-%, vorzugsweise 0 bis 40 Gew.-% eines oder mehrerer wasserlöslicher nichtionischer Monomere,
(f) 0 bis 30 Gew.-%, vorzugsweise 0 bis 10 Gew.-% eines oder mehrerer mehrfach ethylenisch ungesättigter Monomere, und
(g) 0,1 bis 30 Gew.%, vorzugsweise 0,1 bis 10 Gew.-% mindestens eines reaktive Gruppen enthaltenden ethylenisch ungesättigten Monomeren.
Mittel zur Behandlung von Oberflächen können beispielsweise folgende Zusammensetzung haben:
(a) 0,05 bis 40 Gew.-% reaktiv modifizierte, teilchenförmige Polymere, deren Teilchengröße 10 nm bis 100 μm beträgt,
(b) 0 bis 10 Gew.-% eines oder mehrerer kationischer Polymere,
(c) 0 bis 30 Gew.-% eines oder mehrerer wasserlöslicher Salze von Mg, Ca, Zn oder AI und/oder eines oder mehrerer kationischer Tenside,
(d) 0 bis 80 Gew.-% eines oder mehrerer üblicher Zusatzstoffe wie Säuren oder Basen, anorganische Builder, organische Cobuilder, weitere Tenside, polymere Farbüber- tragungsinhibitoren, polymere Vergrauungsinhibitoren, Soil-Release-Polymere, Enzyme, Komplexbildner, Korrosionsinhibitoren, Wachse, Silikonöle,
Lichtschutzmittel, Farbstoffe, Lösemittel, Hydrotrope, Verdicker und/oder Alkanolamine.
Gegenstand der Erfindung sind außerdem Wäschenachbehandlungs- und Wäschepflegemittel sowie feste und flüssige Waschmittelformulierungen, die die reaktiv modifizierten, teilchenformigen Polymere enthalten. Wäschenachbehandlungs- und Wäschepflegemittel enthalten beispielsweise
(a) . 0,1 bis 40 Gew.-% reaktiv modifizierte, teilchenformige Polymere, die eine Teilchengröße von 10 nm bis 100 μm haben und in Wasser dispergiert vorliegen,
(b) 0 bis 20 Gew.-% einer oder mehrerer organischer Säuren wie Ameisensäure, Zitronensäure, Adipinsäure, Bernsteinsäure, Oxalsäure oder deren Mischungen,
(c) 0 bis 10 Gew. -% kationische Polymere,
(d) 0 bis 30 Gew.-% eines oder mehrerer wasserlöslicher Salze von Mg, Ca, Zn oder AI und/oder eines oder mehrerer kationischer Tenside,
(e) 0 bis 30 Gew.-% eines oder mehrerer nichtionischer Tenside,
(f) 0 bis 30 Gew.-% weitere übliche Inhaltsstoffe wie Parfüm, Silikonöle, andere Gleitmittel, filmbildende Polymere, Stabilisatoren, Korrosionsschutzadditive, Konservierungsmittel, Bakterizide, Lichtschutzmittel, Farbstoff, Komplexbildner, Vergrauungsinhibitoren, Soil-Release-Polyester, F-irbübertragungsinhibitoren, nichtwäßriges Lösungsmittel, Hydrotrope, Verdicker und/oder Alkanolamine und
(g) Wasser zur Ergänzung auf 100 Gew.-%.
Bevorzugte kationische Tenside sind ausgewählt aus der Gmppe der quartären Diesterammoniumsalze, der quartären Tetraalkylammoniumsalze, der quartären Diamidoammoniumsalze, der Amidoaminester und Imidazoliumsalze. Diese sind vorzugweise in einer Menge von 3 bis 30 Gew.-% in den Wäschepflegespülmitteln enthalten. Beispiele sind quartäre Diesterammoniumsalze, die zwei Cπ- bis C22-Alk(en)yl- carbonyloxy(mono- bis pentamethylen)-Reste und zwei Cr bis C3-Alkyl- oder -Hydroxyalkylreste am quartären N-Atom aufweisen und als Gegenion beispielsweise Chlorid, Bromid, Methylsulfat oder Sulfat tragen.
Quartäre Diesterammoniumsalze sind weiterhin insbesondere solche, die einen Cn- bis C22-Alk(en)ylcarbonyloxytrimethylen-Rest, der am mittleren C-Atom der Trimethylen-
Gruppierung einen Cπ- bis C22-Alk(en)ylcarbonyloxy-Rest trägt, und drei Cj- bis Alkyl- oder -Hydroxyalkylreste am quarätren N-Atom aufweisen und als Gegenion beispielsweise Chlorid, Bromid, Methylsulfat oder Sulfat tragen.
Quartäre Tetraall-ylammonixιmsalze sind insbesondere solche, die zwei Cr bis C6-Alkyl- Reste und zwei C8- bis C24-Alk(en)yl-Reste am quartären N-Atom aufweisen und als Gegenion beispielsweise Chlorid, Bromid, Methylsulfat oder Sulfat tragen.
Quartäre Diamidoammoniumsalze sind insbesondere solche, die zwei C3- bis C24- Alk(en)ylcarbonylaminoethylen-Reste, einen Substituenten ausgewählt aus Wasserstoff, Methyl, Ethyl und Polyoxy ethylen mit bis zu 5 Oxyethylen-Einheiten und als vierten Rest eine Methylgruppe am quartären N-Atom aufweisen und als Gegenion beispielsweise Chlorid, Bromid, Methylsulfat oder Sulfat tragen.
Amidoaminoester sind insbesondere tertiäre Amine, die als Substituenten am N-Atom einen Cu- bis C22-Alk(en)ylcarbonylamino(mono- bis trimethylen)-Rest, einen Cn- bis C22-Alk(en)ylcarbonyloxy(mono- bis trimethylen)-Rest und eine Methylgruppe tragen.
Imidazoliniumsalze sind insbesondere solche, die in der 2-Position des Heterocyclus einen C]4- bis C18-Alk(en)ylrest, am neutralen N-Atom einen C14- bis C18-Alk(en)ylcarbonyl(oxy oder amino)ethylen-Rest und am die positive Ladung tragenden N-Atom Wasserstoff, Methyl oder Ethyl tragen, Gegenionen sind hierbei beispielsweise Chlorid, Bromid, Methylsulfat oder Sulfat.
Erfindungsgemäße feste Waschmittelformulierangen enthalten
(a) 0,05 bis 20 Gew.-% reaktiv modifizierte, teilchenförmige Polymere, deren Teilchengröße 10 nm bis 100 μm beträgt,
(b) 0,1 bis 40 Gew.-% mindestens eines nichtionischen und/oder anionischen Tensids,
(c) 0 bis 50 Gew.-% eines oder mehrerer anorganischer Builder,"
(d) 0 bis 20 Gew.-% eines oder mehrerer organischer Cobuilder, (e) 0 bis 60 Gew.-% anderer üblicher Inhaltsstoffe wie kationische Tenside, Stellmittel,
Enzyme, Parfüm, Komplexbildner, Korrosionsinhibitoren, Bleichmittel,
Bleichaktivatoren, Bleichkatalysatoren, Farbübertragungsinhibitoren, Vergrauungs- inhibitoren, Soil-Release-Polyester, Farbstoffe, Auflösungsverbesserer und/oder Sprengmittel,
wobei die Summe der Komponenten (a) bis (e) 100 Gew.-% ergibt.
Die erfindungsgemäßen festen Waschmittelformulierungen liegen üblicherweise als Pulver, Granulat, Extrudat oder in Tablettenform vor.
Erfindungsgemäße flüssige Waschmittelformulierungen enthalten
(a) 0,05 bis 20 Gew.-% reaktiv-modifizierte, teilchenförmige Polymere, deren Teilchengröße 10 nm bis 100 μm beträgt,
(b) 0,1 bis 40 Gew.-% mindestens eines nichtionischen und/oder anionischen Tensids,
(c) 0 bis 20 Gew.-% eines oder mehrerer anorganischer Builder,
(d) 0 bis 10 Gew.-% eines oder mehrerer organischer Cobuilder,
(e) 0 bis 40 Gew.-% anderer üblicher Inhaltsstoffe wie kationische Tenside, Soda,
Enzyme, Parfüm, Komplexbildner, Korrosionsinhibitoren, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Farbübertragungsinhibitoren, Vergrauungs- inhibitoren, Soll-Release-Polyester, Farbstoffe, nicht-wäßrige Lösemittel
Hydrotrope, Verdicker und/oder Alkanolamine und
(f) 0 bis 99,85 Gew.-% Wasser,
wobei die Summe der Komponenten (a) bis (f) 100 Gew.-% ergibt.
Geeignete anionische Tenside sind insbesondere:
- (Fett)alkoholsulfate von (Fett)alkoholen mit 8 bis 22, vorzugsweise 10 bis 18 Kohlenstoffatomen, z.B. C9- bis Cπ-Alkoholsulfate, C12- bis C14- Alkoholsulfate, C12- C18- Alkoholsulfate, Laurylsulfat, Cetylsulfat, Myristylsulfat, Palmitylsulfat, Stearylsulfat und Talgfettalkoholsulfat; sulfatierte alkoxylierte C8- bis C22-Alkohole (Alkylethersulfate); Verbindungen dieser Art werden beispielsweise dadurch hergestellt, dass man zunächst einen C8- bis C22-, vorzugsweise einen C10- bis C18-Alkohol, z.B. einen Fettalkohol, alkoxyliert und das
Alkoxylierungsprodukt anschließend sulfatiert. Für die Alkoxylierung verwendet man vorzugsweise Ethylenoxid; lineare Cg- bis C2Q-Alkylbenzosulfonate (LAS), vorzugsweise lineare C9- bis C13- Alkylbenzolsulfonate und Alkyltoluolsulfonate, - Alkansulfonate wie C8- bis C24-, vorzugsweise C10- bis Cι8-Alkansulfonate
Seifen wie beispielsweise die Na- und K-Salze von C8- bis C24-Carbonsäuren.
Die genannten anionischen Tenside werden dem Waschmittel vorzugsweise in Form von Salzen zugegeben. Geeignete Kationen in diesen Salzen sind Alkalimetallionen wie Natrium, Kalium und Lithium und Ammoniumionen wie Hydroxyethylammonium, Di(hydroxyethyl)ammonium und Tri(hydroxyethyl)anιmonium.
Geeignete nichtionische Tenside sind insbesondere:
- alkoxylierte C8- bis C2 -Alkohole wie Fettalkoholalkoxylate oder Oxoalkoholalkoxylate. Diese können mit Ethylenoxid, Propylenoxid und/oder Butylenoxid alkoxyliert sein. Als Tenside einsetzbar sind hierbei sämtliche alkoxylierten Alkohole, die mindestens zwei Moleküle eines der vorstehend genannten Alkylenoxide addiert enthalten. Hierbei kommen Blockpolymerisate von Ethylenoxid, Propylenoxid und/oder Butylenoxid in Betracht oder Anlagerungsprodukte, die die genannten Alkylenoxide in statistischer Verteilung enthalten. Die nichtionischen Tenside enthalten pro Mol Alkohol im allgemeinen 2 bis 50, vorzugsweise 3 bis 20 Mol mindestens eines Alkylenoxids. Vorzugsweise enthalten diese als Alkylenoxid Ethylenoxid. Die Alkohole haben vorzugsweise 10 bis 18 Kohlenstoffatome. Je nach Art des bei der Herstellung verwendeten Alkoxylierungskatalysators weisen die
Alkoxylate eine breite oder enge Alkylenoxid-Homologenverteilung auf; Alkylphenolalkoxylate wie Alkylphenolethoxylate mit C6- bis C14-Alkylketten und 5 bis 30 Alkylenoxideinheiten; Alkylpolyglucoside mit 8 bis 22, vorzugsweise 10 bis 18 Kohlenstoffatomen in der Alkylkette und im allgemeinen 1 bis 20, vorzugsweise 1,1 bis 5 Glucosideinheiten; N-Alkylglucamide, Fettsäureamidalkoxylate, Fettsäurealkanolamidalkoxylate sowie Blockcopolymere aus Ethylenoxid, Propylenoxid und/oder Butylenoxid.
Geeignete anorganische Builder sind insbesondere:
kristalline oder amorphe Alumosilicate mit ionenaustauschenden Eigenschaften wie insbesondere Zeolithe. Als Zeolithen geeignet sind insbesondere Zeolithe A, X, B, P, MAP und HS in ihrer Na-Form oder in Formen, in denen Na teilweise gegen andere Kationen wie Li, K, Ca, Mg, oder Ammonium ausgetauscht ist; - kristalline Silicate wie insbesondere Disilicate oder Schichtsilicate, z.B. δ-Na Si2O5 oder ß-Na2Si2O5. Die Silicate können in Form ihrer Alkalimetall-, Erdalkalimetalloder Ammoniumsalze eingesetzt werden, vorzugsweise als Na-, Li- und Mg-Silicate; amorphe Silicate wie beispielsweise Natriummetasilicat oder amorphes Disilicat; Carbonate und Hydrogencarbonate. Diese können in Form ihrer Alkalimetall-, Erdalkalimetall- oder Ammoniumsalze eingesetzt werden. Bevorzugt sind Na-, Li- und Mg-Carbonate bzw. —Hydrogencarbonate, insbesondere Natriumcarbonat und/oder Natriumhydrogencarbonat; Polyphosphate wie z.B. Pentanatriumtriphosphat;
Geeignete organische Cobuilder sind insbesondere niedermolekulare, oligomere oder polymere Carbonsäuren.
Geeignete niedermolekulare Carbonsäuren sind beispielsweise Citronensäure, hydrophob modifizierte Citronensäure wie z. B. Agaricinsäure, Äpfelsäure, Weinsäure, Gluconsäure, Glutarsäure, Bernsteinsäure, Imidodibernsteinsäure,
Oxydibemsteinsäure, Propantricarbonsäure, Butantetracarbonsäure, Cyclopentantetra- carbonsäure, Alkyl- und Alkenylbernsteinsäuren und Aminopolycarbonsäuren wie z.B. Nitrilotriessigsäure, ß-Alanindiessigsäure, Ethylendiamintetraessigsäure, Serindiessigsäure, Isoserindiessigsäure, N-(2-Hydroxyethyl)iminodiessigsäure, Ethylendiamindibemsteinsäure und Methyl- und Ethylglycindiessigsäure;
Geeignete oligomere oder polymere Carbonsäuren sind beispielsweise Homopolymere der Acrylsäure, Oligomaleinsäuren, Copolymere der Maleinsäure mit Acrylsäure, Methacrylsäure, C2-C22-Olefine wie z.B. Isobuten oder langkettige α-Olefine, Vinylalkylether mit -Cs-Alkylgruppen, Vinylacetat, Vinylpropionat, (Meth)acrylester von -Cs-Alkoholen und Styrol. Bevorzugt verwendet man die
Homopolymeren der Acrylsäure sowie Copolymere von Acrylsäure mit Maleinsäure. Weiterhin eignen sich Polyasparaginsäuren als organische Cobuilder. Die oligomeren und polymeren Carbonsäuren werden in Säureform oder als Natriumsalz eingesetzt.
Sofern eine kationische Modifizierung der reaktiv modifizierten, teilchenformigen Polymerisate erfolgt, wird diese vorzugsweise vor dem Einsatz in den wässrigen Behandlungsmitteln vorgenommen, sie kann jedoch auch bei der Herstellung der wässrigen Behandlungsmittel bzw. der Anwendung von anionisch dispergierten, teilchenformigen Polymeren mit einer Teilchengröße von 10 nm bis 100 μm erfolgen, indem man z.B. wässrige Dispersionen der in Betracht kommenden teilchenformigen Polymeren mit den anderen Bestandteilen des jeweiligen Behandlungsmittels in Gegenwart von kationischen Polymeren und gegebenenfalls von wasserlöslichen Salzen mehrwertiger Metalle und/oder kationischen Tensiden mischt.
In einer besonderen Ausfuhrungsform kann man auch reaktiv modifizierte Polymerisate mit anionischem Charakter oder diese enthaltende Formulierungen direkt der Spül-,
Wasch- oder Reinigungsflotte zusetzen, wenn gewährleistet ist, dass in der Flotte ausreichende Mengen an kationischen Polymeren und gegebenenfalls mehrwertigen
Metallionen und/oder kationischen Tensiden in gelöster Form vorliegen. Beispielsweise ist es möglich, die Polymerisate mit anionischem Charakter oder diese enthaltende Formulierungen in Flotten mit einem Gehalt an kationischen Polymeren von 2,5 bis
300 ppm und gegebenenfalls an wasserlöslichen Salzen von Ca, Mg oder Zn von über
0,5 mmol/1, vorzugsweise über 1 mmol/1, besonders bevorzugt über 2 mmol/1 einzusetzen.
Falls kationische Tenside eingesetzt werden, verwendet man sie beispielsweise in
Konzentrationen von 50 bis 100 ppm, vorzugsweise 75 bis 500 ppm und insbesondere von 100 bis 300 ppm in der wäßrigen Flotte.
Die reaktiv modifizierten Polymerisate mit anionischem Charakter oder die diese enthaltenden Formulierungen können auch vor, nach oder zugleich mit einer kationische Polymere und ggf. kationische Tenside enthaltenden Formulierung zudosiert werden.
Mit alkalilöslichen oder alkaliquellbaren reaktiv modifizierten teilchenformigen Polymerisaten erzielt man insbesondere auf Baumwolle und Cellulosefasern eine weitaus höhere Soil-Release- Wirkung als mit bekannten wasserlöslichen Soil-Release-Polymeren.
Gegenstand der Erfindung ist außerdem die Verwendung von reaktiv modifizierten Polymeren in Ausrüstungsmitteln zur Antiknitterausrüstung von cellulosehaltigen Textilien. Ausrüstungsmittel sind beliebige flüssige Formulierungen, die das reaktiv modifizierte Polymerisat, insbesondere in Form einer wässrigen Polymerdispersion, zur Applikation auf das Textilgut in dispergierter Form enthalten. Die erfindungsgemäßen Ausrüstungsmitteln können beispielsweise als Ausrüstungsmittel im engeren Sinne bei der Herstellung der Textilien oder in Form einer wässrigen Waschflotte oder als flüssiges Textilbehandlungsmittel vorliegen. So ist es beispielsweise möglich, im Zusammenhang mit der Textilherstellung die Textilien mit dem Ausrüstungsmittel zu behandeln. Textilien, die noch nicht oder nur unzureichend mit Ausrüstungsmittel behandelt worden sind, können beispielsweise im Heimbereich vor oder nach dem Waschen, beispielsweise beim Bügeln, mit einem Textilbehandlungsmittel, das die Poylmerdispersion enthält, behandelt werden. Es ist aber auch möglich, die Textilien im Hauptwaschgang oder nach dem Hauptwaschgang im Pflege- oder Weichspülgang der Waschmaschine mit den reaktiv modifizierten Polymerisaten zu behandeln, beispielsweise unter Verwendung der oben beschriebenen Formulierungen.
Gegenstand der vorliegenden Erfindung ist auch die Verwendung der reaktiv modifizierten Polymerisate bei der Herstellung der Textilien, bei der Behandlung der Textilien vor und nach dem Waschen, im Textilwäsche-Hauptwaschgang, im Textilwäsche- Weichspülgang und beim Bügeln. Hierfür benötigt man jeweils unterschiedliche Formulierungen. Beispiele sind die oben beschriebenen flüssigen und festen Waschmittel, Wäschenachbehandlungs- und Wäschepflegemittel.
Die mit den reaktiv modifizierten Polymerisaten im Hauptwaschgang der Waschmaschine behandelten Textilien knittern nicht nur deutlich weniger als unbehandelte Textilien. Sie sind auch leichter zu bügeln, weicher und glatter, dimensions- und formstabiler und sehen nach mehrmaligem Waschen aufgrund ihres Faser- und Farbschutzes weniger „gebraucht" aus, weisen also weniger Fusseln und Knoten und eine geringere Farbschädigung bzw. - verblassung auf.
Auch die im Weich- oder Pflegespülgang nach dem Hauptwaschgang mit reaktiv modifizierten Polymerisaten behandelten Textilien besitzen nach dem Trocknen auf der Leine oder bevorzugt im Wäschetrockner einen sehr guten Knitterschutz und sind leichter zu bügeln. Der Knitterschutz kann durch ein einmaliges kurzes Bügeln der Textilien nach dem Trocknen noch deutlich verstärkt werden. Die Behandlung im Weich- oder Pflegespülgang wirkt sich zusätzlich günstig auf die Formstabilität der Textilien aus. Weiterhin wird die Bildung von Knoten und Fusseln gehemmt und Farbschädigungen unterdrückt.
Bei der Behandlung vor oder nach der Textilwäsche kann ein Textilbehandlungsmittel als Ausrüstungsmittel eingesetzt werden, das außer dem reaktiv modifizierten Polymerisat in dispergierter Form ein oberflächenaktives Mittel enthält. Bei dieser Behandlung werden die cellulosehaltigen Textilien beispielsweise mit den reaktiv modifizierten Polymerisaten besprüht, wobei die Auftragsmenge im allgemeinen 0,01 bis 10 Gew.%, vorzugsweise 0,1 bis 7, besonders bevorzugt 0,3 bis 4 Gew.%, bezogen auf das Gewicht des trockenen Textilguts, betragen kann. Das Ausrüstungsmittel kann aber auch auf das Textilgut appliziert werden, indem man die Textilien in ein Bad taucht, das im allgemeinen 0,1 bis 10 Gew.%, vorzugsweise 0,3 bis 5 Gew.%, bezogen auf das Gewicht des trockenen Textilguts, des reaktiv modifizierten, teilchenformigen Polymerisats dispergiert enthält. Das Textilgut wird entweder nur kurzzeitig in das Bad getaucht oder kann auch darin für einen Zeitraum von beispielsweise 1 bis 30 Min. verweilen.
Die cellulosehaltigen Textilien, die mit dem Ausrüstungsmittel entweder durch Sprühen oder durch Tauchen behandelt worden sind, werden gegebenenfalls abgedrückt und getrocknet. Das Trocknen kann hierbei an der Luft erfolgen oder auch in einem Trockner oder auch dadurch, dass man das behandelte Textilgut heiß bügelt. Durch das Trocknen wird das Ausrüstungsmittel auf dem Textilgut fixiert. Die hierfür jeweils günstigsten Bedingungen können leicht mit Hilfe von Versuchen bestimmt werden. Die Temperatur beim Trocknen, einschließlich des Bügeins, beträgt im allgemeinen 40 bis 150 °C vorzugsweise 60 bis 110 °C. Für das Bügeln eignet sich insbesondere das Baumwollprogramm des Bügeleisens. Die Textilien, die nach dem oben beschriebenen Verfahren mit den reaktiv modifizierten Polymerisaten in dispergierter Form behandelt worden sind, weisen einen ausgezeichneten Knitter- und Faltenschutz auf, der über mehrere Wäschen bestehen bleibt. Ein Bügeln der Textilien ist häufig nicht mehr erforderlich.
Gegenstand der Erfindung ist auch ein Textilbehandlungsmittel, enthaltend
a) 0,1 bis 40 Gew.-%, bevorzugt 0, 5 bis 25 Gew.-% mindestens eines reaktiv modifizierten, teilchenformigen Polymerisats,
b) 0 bis 30 Gew.-% Silicone, c) 0 bis 30 Gew.-% eines oder mehrerer kationischer und/oder nichtionischer Tenside,
d) 0 bis 60 Gew.-% weiterer Inhaltsstoffe wie weitere Netzmittel, Weichmacher, Gleitmittel, wasserlösliche, filmbildende und adhesive Polymere, Duft- und
Farbstoffe, Stabilisatoren, Faser- und Farbschutzadditive, Viskositätsmodifizierer, Soil-Release-Additive, Korrosionsschutzadditive, Bakterizide, Konservierungsmittel und Spri-hhilfsmittel, und
e) 0 bis 99,9 Gew.-% Wasser,
wobei die Summe der Komponenten a) bis e) 100 Gew.-% ergibt.
Bevorzugte Silicone sind aminogmppenhaltige Silicone, die vorzugsweise in microemulgierter Form vorliegen, alkoxylierte, insbesondere ethoxylierte Silicone, Polyalkylenoxid-Polysiloxane, Polyalkylenoxid-Aminopolydimethylsiloxane, Silicone mit quartären Ammoniumgmppen (Siliconquats) und Silicontenside. Geeignete Weichmacher oder Gleitmittel sind beispielsweise oxidierte Polyethylene oder paraffinhaltige Wachse und Öle. Geeignete wasserlösliche, filmbildende und adhesive Polymere sind beispielsweise (Co)polymere auf Basis von Acrylamid, N-Vinylpyrrolidon, Vinylformamid, N-Vinylimidazol, Ninylamin, Ν,Ν'-Dialkylaminoalkyl(meth)acrylaten, N,N' -Dialkylaminoalkyl(meth)acrylamiden, (Meth)acrylsäure, (Meth)acrylsäurealkylester und/oder Vinylsulfonat. Die vorstehend genannten basischen Monomeren können auch in quarternierter Form eingesetzt werden.
Falls die Textilbehandlungsformulierung auf das Textilgut gesprüht wird, kann die Formulierung zusätzlich ein Sprühhilfsmittel enthalten. In manchen Fällen kann es außerdem von Vorteil sein, der Formulierung Alkohole wie Ethanol, Isopropanol, Ethylenglykol oder Propylenglykol zuzusetzen. Weitere übliche Additive sind Duft- und Farbstoffe, Stabilisatoren, Faser- und Farbschutzadditive, Viskositätsmodifizierer, Soil- Release-Additive, Korrosionsschutzadditive, Bakterizide und Konservierungsmittel in den hierfür üblichen Mengen.
Das Textilbehandlungsmittel kann auch beim Bügeln des Textilguts nach der Wäsche im allgemeinen durch Sprühen appliziert werden. Das Bügeln wird dadurch nicht nur erheblich erleichtert, die Textilien werden zusätzlich mit einem langanhaltenden Knitter- und Faltenschutz ausgestattet.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
Beispiele
Die in den Beispielen benutzten Emulgatoren haben folgende Zusammensetzung:
Emulgator 1 : 15 gew.-%ige Lösung von Natriumlaurylsulfat;
Emulgator 2: 40 gew.-%ige Lösung eines ethoxylierten und quarterniertem Oleylamins, (Lipamin® OK von BASF)
Die Teilchengrößen- Verteilung wurde mit Hilfe eines Autosizer® 2C der Firma Malvem, England, bestimmt. Die Messung erfolgte bei 23 °C. Lösungen sind, soweit nicht anderes angegeben ist, wässrige Lösungen. Die in den Beispielen verwendete Angabe pphm bedeutet Gew. -Teile bezogen auf 100 Gew. -Teile Gesamtmonomere.
Herstellung der Polymerisate
Beispiel 1
In einem mit Ankerrührer, Thermometer, Gaseinleitungsrohr, Tropftrichter und Rückflußkühler versehenen Glasreaktor werden 12 g einer 0,1 gew.-%igen Natriumpersulfat-Lösung als Initiator, 6 g einer 15 gew.-%igen Lösung von Emulgator 1 und 402 g Wasser vorgelegt und unter Rühren in einem Heizbad erwärmt, wobei gleichzeitig die Luft durch Einleiten von Stickstoff verdrängt wird. Sobald das Heizbad eine Temperatur von 75 °C erreicht hat, wird die Stickstoffeinleitung unterbrochen und es werden im Verlauf von 2 Stunden 4 g einer 0,1 gew.-%igen Natriumpersulfatlösung und eine Emulsion von 177 g Ethylacrylat, 69 g Methacrylsäure, 39 g Acrylsäure, 15 g Glycidylmethacrylat und 22 g einer 15 gew.-%igen Lösung von Emulgator 1 in 400 ml Wasser zugetropft. Anschließend wird 1 Stunde bei 75 °C nachpolymerisiert. Während auf Raumtemperatur abgekühlt wird werden 0,75 g einer 30 gew.-%igen Wasserstoffperoxid- Lösung auf einmal zugegeben und über 15 Minuten eine Lösung enthaltend 0,3 Ascorbinsäure und 0,3 g Eisen(II)sulfat in 29,7 g Wasser zugegeben.
Es wird eine Polymerdispersion mit folgenden Eigenschaften erhalten:
Feststoffgehalt: 25,8 Gew.-% mittlere Teilchengrösse: 70 nm
Koagulatanteil: < l g pH-Wert: 2,2
Beispiel 2
In einem mit Ai-kemihrer, Thermometer, Gaseinleitungsrohr, Tropftrichter und Rückflußkühler versehenen Glasreaktor werden 12 g einer 0,1 gew.-%igen
Natriumpersulfat-Lösung als Initiator, 2,3 g einer 40 gew.-%igen Lösung von Emulgator 2 und 402 g Wasser vorgelegt und unter Rühren in einem Heizbad erwärmt, wobei gleichzeitig die Luft durch Einleiten von Stickstoff verdrängt wird. Sobald das Heizbad eine Temperatur von 85 °C erreicht hat, wird die Stickstoffeinleitung unterbrochen und es werden im Verlauf von 2 Stunden 4 g einer 0,1 gew.-%igen Natriumpersulfat-Lösung und eine Emulsion von 178 g Butylacrylat, 114 g Methacrylsäure, 15 g Glycidylmethacrylat und 22 g einer 15 gew.-%igen Lösung von Emulgator 1 in 400 ml Wasser zugetropft.
Anschließend wird 1 Stunde bei 75 °C nachpolymerisiert. Während auf Raumtemperatur abgekühlt wird werden 0,75 g einer 30 % gew.-%igen Wasserstoffperoxid-Lösimg auf einmal zugegeben und über 15 Minuten eine Lösung enthaltend 0,3 g Ascorbinsäure und
0,3 g Eisen(II)sulfat in 29,7 g Wasser zugegeben.
Es wird eine Polymerdispersion mit folgenden Eigenschaften erhalten:
Feststoffgehalt: 25,9 Gew.-% mittlere Teilchengrösse: 100 nm
Koagulatanteil: < l g pH-Wert: 2,2 Beispiel 3
In einem mit -A-nkerrührer, Thermometer, Gaseinleitungsrohr, Tropftrichter und Rückflußkühler versehenen Glasreaktor werden 12 g einer 0,1 gew.-%igen Lösung von 2,2'-Azobis(2-amidinopropan)dihydrochlorid (Wako V 50 von Wako Chemie) als Initiator, 2,3 g einer 40 gew.-%igen Lösung von Emulgator 2 und 402 g Wasser vorgelegt und unter Rühren in einem Heizbad erwärmt, wobei gleichzeitig die Luft durch Einleiten von Stickstoff verdrängt wird. Sobald das Heizbad eine Temperatur von 85 °C erreicht hat, wird die Stickstoffeinleitung unterbrochen und es werden im Verlauf von 2 Stunden 4 g der Initiatorlösung und eine Emulsion von 178 g Butylacrylat, 114 g Methacrylsäure, 15 g Glycidylmethacrylat und 8,3 g einer 40 gew.-%igen Lösung von Emulgator 1 in 400 ml Wasser zugetropft. Anschließend wird 1 Stunde bei 85 °C nachpolymerisiert. Während auf Raumtemperatur abgekühlt wird werden 0,75 g einer 30 % gew.-%igen Wasserstoffperoxid-Lösung auf einmal zugegeben und über 15 Minuten eine Lösung enthaltend 0,3 g Ascorbinsäure und 0,3 g Eisen(II)sulfat in 29,7 g Wasser zugegeben.
Es wird eine Polymerdispersion mit folgenden Eigenschaften erhalten:
Feststoffgehalt: 25,5 Gew.-% mittlere Teilchengrösse: 120 nm
Koagulatanteil: < l g pH-Wert: 4,0
Beispiel 4
In einem mit A-t-tke ihrer, Thermometer, Gaseinleitungsrohr, Tropftrichter und Rückflxxßkühler versehenen Glasreaktor werden 5,2 g einer 3,8 gew.-%igen Lösung von 2,2'-Azobis(2-amidinopropan)dihydrochlorid (Wako V 50 von Wako Chemie) als Initiator, 37,5 g einer 40 gew.-%igen Lösung von Emulgator 2 und 370 g Wasser vorgelegt und unter Rühren in einem Heizbad erwärmt, wobei gleichzeitig die Luft durch Einleiten von Stickstoff verdrängt wird. Sobald das Heizbad eine Temperatur von 90 °C erreicht hat, wird die Stickstoffeinleitung unterbrochen und es werden im Verlauf von 2 Stunden 46,8 g des Initiatorzulaufs, eine Emulsion von 265 g n-Butylacrylat, 14,5 g Acrylsäure, 135 g Glycidylmethacrylat, 85,5 g Dimethylaminopropylacrylamid, 52 g 50 gew.-%ige Schwefelsäure und 37,5 g einer 40 gew.-%igen Lösung von Emulgator 2 in 280 ml Wasser zugetropft. Anschließend wird 1 Stunde bei 85 °C nachpolymerisiert. Während auf Raumtemperatur abgekühlt wird werden über einen Zeitraum von 90 min 25 g einer 4 gew.-%igen wässrigen Lösung von Nafriximformaldehydsulfoxylat (Rongalit® C) und 25 g einer 10 gew.-%igen wässrigen Lösung von tert.-Butylhydroperoxid zugegeben.
Es wird eine Polymerdispersion mit folgenden Eigenschaften erhalten:
Feststoffgehalt: 40,6 Gew.-% mittlere Teilchengrösse: 120 nm
Koagulatanteil: < l g pH-Wert: 4,0
Prüfung der Soil-Release-Eigenschaften der Polymerisate
Beispiele 5 - 7 und Vergleichsbeispiel VI
Zur Prüfung der Soil-Release-Eigenschaften der Polymerdispersionen wurden Waschversuche durchgeführt:
Baumwollgewebe wurden mit den anionischen Polymerdispersionen gemäß Beispielen 1 bis 3, die das Polymerisat in einer Konzentration von 400 ppm enthielten, bei einem pH- Wert von 4 in Wasser von 3,0 mmol Wasserhärte vorgewaschen und anschließend getrocknet.
In Vergleichsbeispiel VI wurde das Gewebe in Abwesenheit reaktivmodifizierter Partikel bei pH 4 vorgewaschen.
In Beispiel 7 wurde mit einer Flotte gewaschen, die die reaktiv modifizierten Polymerisate aus Beispiel 1 mit einer Belegung von Polyethylenimin mit einer Molmasse von 25 000 enthielt. Hierfür wurde in Wasser von 3,0 mmol Härte das Polyethylenimin gelöst und in der Lösung ein pH- Wert von 4,0 eingestellt. Zu dieser Lösung wurde eine 20 gew.-%ige Polymerdispersion gemäß Beispiel 1 mit einem pH-Wert von 4,0 zugegeben. Die Konzentration der Polymerpartikel in der Flotte betmg 400 ppm, die Konzentration des Polyethylenimins 40 ppm. Die vorgewaschenen Gewebe wurden nach Trocknung mit Lippenstiftmasse angeschmutzt und anschließend mit einem handelsüblichen Vollwaschmittel gewaschen.
Waschbedingungen:
Waschgerät: Lauder-O-meter Wasserhärte: 3,0 mmol/1 Ca 2+/Mg 2+-Verhältnis: 3:1
Vorwäsche: pH- Wert der Flotte: 4,0 Vorwaschtemperatur: 20°C Vorwaschzeit: 15 min Flottenverhältnis 1: 12,5
Hauptwäsche: Waschtemperatur: 40 °C Waschdauer: 30 min Flottenverhältnis 1: 12,5
Nach dem Trocknen erfolgte eine visuelle Benotung der flächigen Baumwollgewebe mit den Noten 1 - 5, wobei die Note 1 für unverändert angeschmutztes Gewebe und die Note 5 für vollständiges Ablösen der Lippenstift- Anschmutzung vergeben wurde.
Tabelle 1
Die Ergebnisse der Waschversuche zeigen, dass die Verwendung von handelsüblichem Vollwaschmittel unter den gewählten Bedingungen nahezu keine Verbesserung der Schmutzablösung von Lippenstift auf Baumwollgewebe hervorbringt. Durch Verwendung der reaktiv modifizierten Polymerisate zeigt sich dagegen eine deutliche Verbesserung der Schmutzablösung.
Prüfung der hydrophobierenden Eigenschaften der Polymerisate
Beispiele 8 - 10 und Vergleichsbeispiel N2
Zur Prüfung der hydrophobierenden Eigenschaften der reaktiv modifizierten Polymerisate wurden Spülversuche an Glas durchgeführt.
Glasplättchen mit einer Fläche von 2,5 x 7,5 cm wurden mit einer wässrigen Lösung eines nichtionischen Tensids (200 ppm C13/C15-Oxoalkohol, alkoxyliert mit 7 Mol Ethylenoxid) bei Raumtemperatur vorgespült, mit reinem Wasser der Härte 3 mmol/1 nachgespült und an Luft getrocknet.
Es wurde eine Dispersion von reaktiv modifizierten Polymerisaten gemäß Beispiel 1 bzw. 2 hergestellt, wobei die Polymerisat-Konzentration 200 ppm, die Wasserhärte 3 mmol und der pH- Wert 6,0 betmg.
In Beispiel 10 lagen zusätzlich 20 ppm Polyethylenimin mit einer Molmasse von 25 000 vor.
Die Glasplättchen wurde 10 Sekunden in diese Dispersion getaucht, anschließend entnommen und 30 Minuten bei 60°C getrocknet.
Auf die so behandelten Glasplättchen wurde jeweils ein Tropfen entionisiertes Wasser aufgebracht und der Kontaktwinkel gemessen. Tabelle 2 zeigt die gemessenen Kontaktwinkel. Tabelle 2
Antiknitterausrüstung von Gewebeproben
Beispiele 11 - 14 und Vergleichsbeispiel N3
Flächengebilde aus Baumwolle (BW) der in Tabelle 3 angegebenen Größe mit einem Flächengewicht von 160 g/m2 wurden mit den Polymerisaten aus Beipielen 1 bis 3 beidseitig besprüht, so dass die Auftragsmenge 2 %, bezogen auf das Gewicht des trockenen Textilguts, betrug, und anschließend in leicht feuchtem Zustand heiß gebügelt.
Die so behandelten Gewebeproben wurden zum Vergleich mit unbehandelten Gewebeproben gleicher Größe und in Gegenwart von Ballastgewebe mit einem Flüssigwaschmittel bei 40 °C in einer automatischen Haushaltsmaschine (Beladung zwischen 1,5 und 3,0 kg) gewaschen und anschließend in einem Trommeltrockner getrocknet. Zur Anwendung kam ein Standardwasch- bzw. St-mdardtrockenprogramm (Programm Buntwäsche 40 °C bzw. Programm Schranktrocken). Nach dem Trocknen erfolgte eine visuelle Benotung der flächigen Gewebeproben in Anlehnung an die AATCC Testmethode 124, wobei die Note 1 bedeutet, dass das Gewebe sehr knittrig ist und viele Falten aufweist, während die Note 5 für knitter- und faltenfreies Gewebe vergeben wird. Die mit den Ausrüstungsmitteln (Beispiele 1 bis 3) vorbehandelten Gewebeproben erhielten Noten zwischen 2,5 und 3,5 . Im Gegensatz dazu erhielten die unbehandelten Gewebeproben jeweils die Note 1. Tabelle 3

Claims

Patentansprüche
Verfahren zur Behandlung der Oberfläche textiler und nicht-textiler Materialien, bei dem reaktiv modifizierte, teilchenformige Polymerisate mit einer Teilchengrösse von 10 nm bis 100 μm aus einer wässrigen Dispersion auf die Oberfläche der Materialien aufgebracht werden und die Materialien getrocknet werden.
2. Verfahren nach Ansprach 1, dadurch gekennzeichnet, dass die Polymerisate aus einer wässrigen Dispersion mit einem Polymerisatgehalt von < 1 Gew.-% auf die Oberfläche aufgebracht werden.
3. Verfahren nach Ansprach 1 oder 2, dadurch gekennzeichnet, dass die reaktiv modifizierten, teilchenformigen Polymerisate ethylenisch ungesättigte Monomere mit reaktiven, vernetzend wirkenden Gmppen einpolymerisiert enthalten.
4. Verfahren nach Ansprach 3, dadurch gekennzeichnet, dass die reaktiven, vernetzend wirkenden Gruppen ausgewählt sind aus der Gruppe bestehend aus
Glycidylether-, Halohydrin-, Carbonsäureanhydrid-, Carbonsäurechlorid-,
Carbonsäureester-, Isocyanat-, Vinylsulfon-, N-Methylol-, Aldehyd- und
Imingruppen.
5. Verfahren nach Ansprach 4, dadurch gekennzeichnet, dass die Monomeren mit reaktiven, vernetzend wirkenden Gmppen ausgewählt sind aus der Gruppe bestehend aus Glycidyl(meth)acrylat, (Meth)acrolein, Methacrylsäureanhydrid, 2-(4-Ethoxyphenyl)-2-oxazolinylmethacrylat, Isobutoxymethylacrylamid und Maleinsäureanhydrid.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die reaktiv modifizierten, teilchenformigen Polymerisate anionische und/oder kationische Monomere mit einpolymerisiert enthalten.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die reaktiv modifizierten, teilchenformigen Polymerisate an ihrer Oberfläche anionische, kationische oder amphotere Schutzkolloide oder Emulgatoren aufweisen.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die reaktiv modifizierten, teilchenformigen Polymerisate an ihrer Oberfläche
Schutzkolloide oder Emulgatoren, die reaktive Gmppen enthalten, aufweisen.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die reaktiv modifizierten, teilchenformigen Polymerisate anionische Gruppen einpolymerisiert enthalten und/oder mit anionischen Schutzkolloiden oder
Emulgatoren dispergiert sind und an ihrer Oberfläche eine Belegung mit kationischen Polymeren aufweisen.
10. Verwendung von reaktiv modifizierten, teilchenformigen Polymerisaten, wie sie einem der Ansprüche 1 bis 9 definiert sind, als oberflächenmodifizierende Zusätze zu Wasch-, Spül-, Pflege- oder Reinigungsmitteln.
11. Verwendung von reaktiv modifizierten, teilchenformigen Polymerisaten nach Ansprach 10 als Faser- und Farbschutzadditiv.
12. Verwendung von reaktiv modifizierten, teilchenformigen Polymerisaten nach Ansprach 10 als Knitterschutzadditiv für cellulosehaltige Textilien.
13. Verwendung von reaktiv modifizierten, teilchenformigen Polymerisaten, wie sie einem der Ansprüche 1 bis 9 definiert sind, zur Hydrophobierung von Oberflächen textiler Materialien.
14. Verwendung von reaktiv modifizierten, teilchenformigen Polymerisaten, wie sie einem der Ansprüche 1 bis 9 definiert sind, zur Verbesserung der Schmutzabweisung von Oberflächen textiler Materialien.
15. Ausrüstungsmittel zur Antiknitterausrüstung von cellulosehaltigen Textilien enthaltend reaktiv modifizierte, teilchenförmge Polymerisate, wie sie in einem der Ansprüche 1 bis 9 definiert sind.
16. Verwendung von Ausrüstungsmitteln, enthaltend reaktiv modifizierte, teilchenformige Polymerisate, wie sie in einem der Ansprüche 1 bis 9 definiert sind, bei der Herstellung der Textilien, bei der Textilbehandlung, im Textilwäsche- Hauptwaschgang, im Textilwäsche- Weichspülgang, und beim Bügeln.
17. Mittel zur Behandlung von Oberflächen, enthaltend
(a) 0,05 bis 40 Gew.-% reaktiv modifizierte, teilchenformige Polymere, deren Teilchengröße 10 nm bis 100 μm beträgt,
(b) 0 bis 10 Gew.-% eines oder mehrerer kationischer Polymere,
(c) 0 bis 30 Gew.-% eines oder mehrerer wasserlöslicher Salze von Mg, Ca, Zn oder AI und/oder eines oder mehrerer kationischer Tenside,
(d) 0 bis 80 Gew.-% eines oder mehrerer üblicher Zusatzstoffe wie Säuren oder Basen, anorganische Builder, organische Cobuilder, weitere Tenside, polymere Farbübertragungsinhibitoren, polymere Vergrauungsinhibitoren, Soil-Release-Polymere, Enzyme, Komplexbildner, Korrosionsinhibitoren, Wachse, Silikonöle, Lichtschutzmittel, Farbstoffe, Lösemittel, Hydrotrope,
Verdicker und/oder Alkanolamine,
wobei die Summe der Komponenten (a) bis (d) 100 Gew.-% ergibt.
18. Wäschenachbehandlungs- und Wäschepflegemittel, enthaltend
(a) 0,1 bis 40 Gew.-% reaktiv modifizierte, teilchenformige Polymerisate mit einer Teilchengröße von 10 nm bis 100 μm, die in Wasser dispergiert vorliegen,
(b) 0 bis 20 Gew.-% einer oder mehrerer organischer Säuren wie Ameisensäure, Zitronensäure, Adipinsäure, Bernsteinsäure, Oxalsäure oder deren Mischungen,
(c) 0 bis 10 Gew. -% kationische Polymere, (d) 0 bis 30 Gew.-% eines oder mehrerer wasserlöslicher Salze von Mg, Ca, Zn oder AI und/oder eines oder mehrerer kationischer Tenside,
(e) 0 bis 30 Gew.-% eines oder mehrerer nichtionischer Tenside,
(f) 0 bis 30 Gew.-% weitere übliche Inhaltsstoffe wie Parfüm, Silikonöle, andere Gleitmittel, Netzmittel, filmbildende Polymere, Stabilisatoren Korrosionsschutzadditive, Konservierungsmittel, Bakterizide, Lichtschutzmittel, Farbstoff, Komplexbildner, Vergrauungsinhibitoren, Soil-Release-Polyester, F-irbübertragungsinhibitoren, nicht- wäßriges
Lösungsmittel, Hydrotrope, Verdicker und/oder Alkanolamine und
(g) Wasser zur Ergänzung auf 100 Gew.-%.
19. Feste Waschmittelformulierung, enthaltend
(a) 0,05 bis 20 Gew.-% reaktiv modifizierte, teilchenformige Polymerisate mit einer Teilchengröße 10 nm bis 100 μm,
(b) 0,1 bis 40 Gew.-% mindestens eines nichtionischen und/oder anionischen Tensids,
(c) 0 bis 50 Gew.-% eines oder mehrerer anorganischer Builder.
(d) 0 bis 20 Gew.-% eines oder mehrerer organischer Cobuilder,
(e) 0 bis 60 Gew.-% anderer üblicher Inhaltsstoffe wie kationische Tenside,
Stellmittel, Enzyme, Parfüm, Komplexbildner, Korrosionsinhibitoren,
Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Farbübertragungs- inhibitoren, Vergrauungsinhibitoren, Soil-Release-Polyester, Farbstoffe,
Auflösungsverbesserer und/oder Sprengmittel,
wobei die Summe der Komponenten (a) bis (e) 100 Gew.-% ergibt.
20. Flüssige Waschmittelformulierung, enthaltend
(a) 0,05 bis 20 Gew.-% reaktiv-modifizierte, teilchenformige Polymerisate mit einer Teilchengröße von 10 nm bis 100 μm,
(b) 0,1 bis 40 Gew.-% mindestens eines nichtionischen und/oder anionischen Tensids,
(c) 0 bis 20 Gew.-% eines oder mehrerer anorganischer Builder,
(d) 0 bis 10 Gew.-% eines oder mehrerer organischer Cobuilder,
(e) 0 bis 40 Gew.-% anderer üblicher Inhaltsstoffe wie kationische Tenside, Soda, Enzyme, Parfüm, Komplexbildner, Korrosionsinhibitoren, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Farbübertragungsinhibitoren, Vergrauungsinhibitoren, Soil-Release-Polyester, Farbstoffe, nicht-wäßrige Lösemittel Hydrotrope, Verdicker und/oder Alkanolamine und
(f) 0 bis 99,85 Gew.-% Wasser,
wobei die Summe der Komponenten (a) bis (f) 100 Gew.-% ergibt.
21. Textilbehandlungsmittel, enthaltend
a) 0,1 bis 40 Gew.-% mindestens eines reaktiv modifizierten, teilchenformigen Polymerisats,
b) 0 bis 30 Gew.-% Silicone,
c) 0 bis 30 Gew.-% kationische und/oder nichtionische Tenside,
d) 0 bis 60 Gew.-% weiterer Inhaltsstoffe wie weitere Netzmittel,
Weichmacher, Gleitmittel, wasserlösliche, filmbildende und adhesive Polymere, Duft- und Farbstoffe, Stabilisatoren, Faser- und
Farbschutzadditive, Viskositätsmodifizierer, Soil-Release-Additive, Korrosionsschutzadditive, Bakterizide, Konservierungsmittel und Spriüihilfsmittel, und
e) 0 bis 99,9 Gew.-% Wasser,
wobei die Summe der Komponenten a) bis e) 100 Gew.-% ergibt.
EP01990493A 2000-12-05 2001-12-04 Reaktiv modifizierte, teilchenförmige polymerisate zur behandlung der oberflächen textiler und nicht-textiler materialien Withdrawn EP1343934A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10060373 2000-12-05
DE10060373A DE10060373A1 (de) 2000-12-05 2000-12-05 Reaktiv modifizierte, teilchenförmige Polymerisate zur Behandlung der Oberflächen textiler und nicht-textiler Materialien
PCT/EP2001/014172 WO2002046518A2 (de) 2000-12-05 2001-12-04 Reaktiv modifizierte, teilchenförmige polymerisate zur behandlung der oberflächen textiler und nicht-textiler materialien

Publications (1)

Publication Number Publication Date
EP1343934A2 true EP1343934A2 (de) 2003-09-17

Family

ID=7665835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01990493A Withdrawn EP1343934A2 (de) 2000-12-05 2001-12-04 Reaktiv modifizierte, teilchenförmige polymerisate zur behandlung der oberflächen textiler und nicht-textiler materialien

Country Status (10)

Country Link
US (1) US20040025262A1 (de)
EP (1) EP1343934A2 (de)
JP (1) JP2004515660A (de)
CN (1) CN1484719A (de)
AU (1) AU2002229606A1 (de)
BR (1) BR0115945A (de)
CA (1) CA2430682A1 (de)
DE (1) DE10060373A1 (de)
MX (1) MXPA03004964A (de)
WO (1) WO2002046518A2 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124387A1 (de) * 2001-05-18 2002-11-28 Basf Ag Hydrophob modifizierte Polyethylenimine und Polyvinylamine zur Antiknitterausrüstung von cellulosehaltigen Textilien
DE10215602A1 (de) * 2002-04-10 2003-10-30 Henkel Kgaa Textilschonendes Textilreinigungsmittel
US20050119151A1 (en) * 2002-04-10 2005-06-02 Konstanze Mayer Textile cleaning agent which is gentle on textiles
DE10242560A1 (de) * 2002-09-13 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
DE10248583A1 (de) * 2002-10-17 2004-04-29 Nanogate Technologies Gmbh Textilbehandlungsmittel
FR2846973B1 (fr) * 2002-11-07 2004-12-17 Rhodia Chimie Sa Composition d'antifroissage comprenant un copolymere a architecture controlee, pour articles en fibres textiles
CH696421A5 (de) 2003-12-18 2007-06-15 Tecpharma Licensing Ag Autoinjektor mit Arretierung des Wirkstoffbehälters.
DE102005023728A1 (de) 2005-05-23 2006-11-30 Basf Coatings Ag Lackschichtbildendes Korrosionsschutzmittel und Verfahren zu dessen stromfreier Applikation
JP2007009350A (ja) * 2005-06-29 2007-01-18 Soken Chem & Eng Co Ltd 布地用水性エマルジョン型樹脂組成物、それを用いてなる布地用水性インキ組成物及び用途
JP5014739B2 (ja) * 2006-02-16 2012-08-29 花王株式会社 繊維用汚れ放出剤
JP4891837B2 (ja) 2006-10-02 2012-03-07 花王株式会社 繊維製品処理剤組成物
DE102006053291A1 (de) 2006-11-13 2008-05-15 Basf Coatings Ag Lackschichtbildendes Korrosionsschutzmittel mit guter Haftung und Verfahren zu dessen stromfreier Applikation
DE102006053292A1 (de) * 2006-11-13 2008-05-15 Basf Coatings Ag Lackschichtbildendes Korrosionsschutzmittel mit verminderter Rißbildung und Verfahren zu dessen stromfreier Applikation
US8809392B2 (en) 2008-03-28 2014-08-19 Ecolab Usa Inc. Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents
US8871807B2 (en) 2008-03-28 2014-10-28 Ecolab Usa Inc. Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids
MX2010010236A (es) 2008-03-28 2010-10-20 Ecolab Inc Acidos sulfoperoxicarboxilicos, su preparacion y metodos de uso como agentes blanqueadores y antimicrobianos.
EP2283107A1 (de) * 2008-06-10 2011-02-16 Unilever N.V. Verfahren zur bearbeitung eines stoffes
DE102009007632A1 (de) 2009-02-05 2010-08-12 Basf Coatings Ag Beschichtungsmittel für korrosionsstabile Lackierungen
CN101831801B (zh) * 2010-05-07 2012-05-09 黄山华芮科技有限公司 一种耐久性纤维素纤维及其应用
GB201018318D0 (en) 2010-10-29 2010-12-15 Xeros Ltd Improved cleaning method
US20120129749A1 (en) * 2010-11-23 2012-05-24 Henkel Ag & Co. Kgaa Copolymers comprising carboxylic acid groups, sulfo groups and polyalkylene oxide groups as a scale-inhibiting additive to washing and cleaning products
GB201100627D0 (en) 2011-01-14 2011-03-02 Xeros Ltd Improved cleaning method
US9321664B2 (en) 2011-12-20 2016-04-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
CA2867565C (en) 2012-03-30 2021-01-19 Victor KEASLER Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water
JP6053109B2 (ja) * 2012-07-05 2016-12-27 花王株式会社 水不溶性高分子ビルダー
GB201212098D0 (en) 2012-07-06 2012-08-22 Xeros Ltd New cleaning material
US8822719B1 (en) 2013-03-05 2014-09-02 Ecolab Usa Inc. Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring
US10165774B2 (en) 2013-03-05 2019-01-01 Ecolab Usa Inc. Defoamer useful in a peracid composition with anionic surfactants
US20140256811A1 (en) 2013-03-05 2014-09-11 Ecolab Usa Inc. Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids
GB201319782D0 (en) 2013-11-08 2013-12-25 Xeros Ltd Cleaning method and apparatus
DK3129544T3 (en) * 2014-04-09 2019-03-18 Invista Textiles Uk Ltd Water repellent, soil resistant, fluorine-free compositions
WO2016087255A1 (en) * 2014-12-02 2016-06-09 Synthomer Deutschland Gmbh Polymer latex composition for fibre binding
CN104457814A (zh) * 2014-12-24 2015-03-25 常熟市亨达电子器材厂 矿用触控传感器
CN110997799B (zh) * 2017-07-14 2023-08-04 阿科玛股份有限公司 基于高强度聚偏二氟乙烯的上胶增强纤维
CN108411616A (zh) * 2018-04-04 2018-08-17 佛山慧创正元新材料科技有限公司 一种抗皱防螨织物整理方法
CN110552200A (zh) * 2018-05-31 2019-12-10 句容市华冠服帽厂 一种防水纺织品的制备方法及防水纺织品
CN108914577A (zh) * 2018-07-12 2018-11-30 合肥连森裕腾新材料科技开发有限公司 一种抗菌纳米植物纤维材料
WO2021026410A1 (en) 2019-08-07 2021-02-11 Ecolab Usa Inc. Polymeric and solid-supported chelators for stabilization of peracid-containing compositions
CN113818259B (zh) * 2021-09-26 2023-12-22 辽东学院 一种提高植物染料上染率及染色牢度的工艺方法
CN115976838B (zh) * 2023-02-14 2024-10-29 重庆交通大学 一种亲水性硅油组合物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028339A1 (en) 1996-12-23 1998-07-02 Ciba Specialty Chemicals Water Treatments Limited Particles having surface properties and methods of making them

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746455A (en) * 1986-06-27 1988-05-24 Kao Corporation Liquid detergent composition for clothing articles
EP0279134B1 (de) * 1986-12-24 1990-10-24 Rhone-Poulenc Chimie Latex gegen Wiederverschmutzung beim Waschen von Textilien
JPH0633415B2 (ja) * 1988-12-02 1994-05-02 花王株式会社 皮膚洗浄剤組成物
DE3902067A1 (de) * 1989-01-25 1990-07-26 Roehm Gmbh Filmbildende, selbstvernetzende waessrige kunststoffdispersion
US5476660A (en) * 1994-08-03 1995-12-19 Lever Brothers Company, Division Of Conopco, Inc. Deposition of materials to surfaces using zwitterionic carrier particles
GB2295404A (en) * 1994-10-21 1996-05-29 Ici Plc Creaseproofing treatment of fabrics
EP0927204B1 (de) * 1996-09-18 2002-11-20 Eastman Chemical Company Selbstvernetzende wässrige dispersionen
ATE278758T1 (de) * 1998-08-03 2004-10-15 Procter & Gamble Zusammensetzung zum knitterfestmachen
DE10027636A1 (de) * 2000-06-06 2001-12-13 Basf Ag Verwendung von kationisch modifizierten, teilchenförmigen, hydrophoben Polymeren als Zusatz zu Spül-, Pflege-, Wasch- und Reinigungsmitteln
DE10027634A1 (de) * 2000-06-06 2001-12-13 Basf Ag Verwendung von kationisch modifizierten, teilchenförmigen, hydrophoben Polymeren als Zusatz zu Spül- oder Pflegemitteln für Textilien und als Zusatz zu Waschmitteln

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028339A1 (en) 1996-12-23 1998-07-02 Ciba Specialty Chemicals Water Treatments Limited Particles having surface properties and methods of making them

Also Published As

Publication number Publication date
DE10060373A1 (de) 2002-06-06
CA2430682A1 (en) 2002-06-13
JP2004515660A (ja) 2004-05-27
AU2002229606A1 (en) 2002-06-18
BR0115945A (pt) 2004-02-17
CN1484719A (zh) 2004-03-24
MXPA03004964A (es) 2003-09-05
WO2002046518A3 (de) 2002-09-26
WO2002046518A2 (de) 2002-06-13
US20040025262A1 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
WO2002046518A2 (de) Reaktiv modifizierte, teilchenförmige polymerisate zur behandlung der oberflächen textiler und nicht-textiler materialien
EP1402106A2 (de) Verfahren zur schmutzablösungsfördernden behandlung von oberflächen textiler und nicht-textiler materialien
EP1287104B1 (de) Verwendung von kationisch modifizierten, teilchenförmigen, hydrophoben polymeren als zusatz zu spül- oder pflegemitteln für textilien und als zusatz zu waschmitteln
EP1395697B1 (de) Hydrophob modifizierte polyethylenimine und polyvinylamine zur antiknitterausrüstung von cellulosehaltigen textilien
US20030158344A1 (en) Hydrophobe-amine graft copolymer
WO2001094517A1 (de) Verwendung von kationisch modifizierten, teilchenförmigen, hydrophoben polymeren als zusatz zu spül-, reinigungs- und imprägniermitteln für harte oberflächen
DE4016002A1 (de) Verwendung von wasserloeslichen oder wasserdispergierbaren gepfropften proteinen als zusatz zu wasch- und reinigungsmitteln
JP2004531654A (ja) セルロールを含有するテキスタイルの防しわ加工のためのポリシロキサン含有ポリマー
DE112014006990T5 (de) Sulfonatgruppenhaltiges polymer und verfahren zur herstellung hiervon
DE10008930A1 (de) Antiknitterausrüstung von cellulosehaltigen Textilien und Wäschenachbehandlungsmittel
EP0937126A1 (de) Verwendung von quaternierten vinylimidazol-einheiten enthaltenden polymerisaten als farbfixierenden und farbübertragungsinhibierenden zusatz zu wäschenachbehandlungsmitteln und zu waschmitteln
EP1402104A1 (de) Verfahren zur schmutzablösungsfördernden behandlung von oberflächen textiler und nicht-textiler materialien
DE60315005T2 (de) Textilpflegemittel
CA2555667A1 (en) Compositions useful as fabric softeners
DE60312250T2 (de) Amin enthaltende Copolymere für den Schutz von Textilien und Geweben
DE10331053A1 (de) Verwendung einer Polymerzusammensetzung zur Modifizierung der Oberflächeneigenschaften von Substraten
WO2003018650A1 (de) Verwendung von amphoteren polymeren als schmutzablösungsfördern- der zusatz zu mitteln für die behandlung von oberflächen
JP7254424B2 (ja) 衣料用仕上げ剤組成物

Legal Events

Date Code Title Description
TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030707

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040817