EP1319093B1 - Galvanische elektrolytbäder zur erzeugung von ternären zinn-zink-kobalt legierungsschichten - Google Patents

Galvanische elektrolytbäder zur erzeugung von ternären zinn-zink-kobalt legierungsschichten Download PDF

Info

Publication number
EP1319093B1
EP1319093B1 EP01969597A EP01969597A EP1319093B1 EP 1319093 B1 EP1319093 B1 EP 1319093B1 EP 01969597 A EP01969597 A EP 01969597A EP 01969597 A EP01969597 A EP 01969597A EP 1319093 B1 EP1319093 B1 EP 1319093B1
Authority
EP
European Patent Office
Prior art keywords
weight
zinc
tin
cobalt
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01969597A
Other languages
English (en)
French (fr)
Other versions
EP1319093A2 (de
Inventor
Klaus Leyendecker
Günter Wirth
Klaus Reissmüller
Steffen Dumke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore Galvanotechnik GmbH
Original Assignee
Degussa Galvanotechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Galvanotechnik GmbH filed Critical Degussa Galvanotechnik GmbH
Publication of EP1319093A2 publication Critical patent/EP1319093A2/de
Application granted granted Critical
Publication of EP1319093B1 publication Critical patent/EP1319093B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin

Definitions

  • the invention relates to galvanic electrolyte baths and their use.
  • Higher requirements such as resistance to salt spray testing up to the first occurrence of red rust of up to 1000 hours, may be met by coating with zinc alloys containing nickel, cobalt or iron as the alloying component followed by chromating.
  • the proportion of alloying elements may be less than 1% by weight, for example 0.4-0.6% by weight of Fe in the ZnFe system, up to 15% by weight, for example 12-15% by weight of Ni in the ZnNi system ( Zinc alloy process: properties and applications in the art , Dr. A. Jiménez, B. Kerle and H. Schmidt, Galvanotechnik 89 (1998) 4 ).
  • Tin-zinc alloy layers can also be used as anti-corrosion layers for iron.
  • values of up to 1000 hours are achieved with chromated SnZn layers until the first appearance of red rust.
  • the most favorable alloy composition is 70% by weight of Sn and 30% by weight of Zn.
  • the disadvantage seen is the low hardness of SnZn layers of only about 50 HV ( Tin-Zinc-Plating, E. Budmann and D. Stevens, Trans. IMF 76 (1998) 3 ).
  • the invention therefore an object of the invention to find galvanic electrolyte baths for the deposition of alloy systems with particularly high corrosion resistance, which meet the future requirements in terms of corrosion protection.
  • the above electrolytic baths can be used for electroplating a ternary tin-zinc-cobalt alloy layer consisting of 30 to 65% by weight of tin, 30 to 65% by weight of zinc and 0.1 to 15% by weight of cobalt.
  • the alloy layer consists of 40 to 55 wt.% Tin, 45 to 55 wt.% Zinc and 1 to 5 wt.% Cobalt.
  • the alloy layer can serve as a corrosion protection layer, as a solderable layer or as a decorative final layer. Furthermore, it can be used with a subsequent passivation as a corrosion protection layer on a ferrous material.
  • ternary tin-zinc alloys according to the invention which consist of 30 to 65 wt.% Tin, 30 to 65 wt.% Zinc and 0.1 to 15 wt.% Cobalt, as a third alloy component, the requirements meet with regard to corrosion resistance excellent.
  • the alloy layers are produced by electroplating, namely by electrolytic deposition from aqueous electrolytic electrolyte baths containing the alloy components in dissolved form.
  • the tin-zinc ternary alloys can be deposited on substrates from alkaline or neutral galvanic electrolyte baths.
  • An alkaline electrolyte is understood here to mean an electrolyte having a pH greater than 10.
  • the neutral electrolyte is an electrolyte with a pH of 6 - 10.
  • the alloy components are added to the aqueous electrolyte bath in the form of their respective medium soluble ionic compounds.
  • Tin is preferably used as sulfate, chloride, sulfonate, oxalate or in the form of sodium or potassium stannate.
  • Zinc is preferably added as sulfate, chloride, hydroxide, sulfonate or oxide.
  • cobalt is preferably added as each of sulfate, chloride, hydroxide or carbonate.
  • the galvanic electrolytes according to the invention for the production of ternary tin-zinc alloy layers may further contain customary and known additives and auxiliaries in electroplating.
  • additives and auxiliaries may be alkalis for pH adjustment, such as sodium, potassium or ammonium hydroxide, or inorganic acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, alkali metal salts of these acids as buffer and / or conductive salts, organic acids such as hydroxycarboxylic acids and / or salts thereof, for example citric acid, complexing agents such as EDTA, wetting agents, brighteners, etc.
  • citric acid complexing agents
  • complexing agents such as EDTA
  • wetting agents wetting agents
  • brighteners etc.
  • the ratio of the metals in the electrodeposited alloy layer can be influenced in a known manner by the ratio of the metals in the bath composition, by the nature and amount of the other bath components and by the deposition parameters.
  • the substrate to be coated for example a component to be protected from corrosion from an iron material
  • the substrate to be coated is immersed in a corresponding galvanic bath and wired as a cathode.
  • Anodes can be used as counterelectrodes of insoluble or, preferably in the case of neutral electrolytes, soluble materials.
  • Insoluble anodes are usually made of graphite or platinized titanium.
  • Soluble anodes suitably consist of the metals of the alloy layer to be deposited, preferably in the desired composition.
  • a temperature of about 20 - 70 ° C and a current density of about 0.1 - 5 A / dm 2 are considered, with deposition rates of about 0, 05 - 1 ⁇ m / minute.
  • the galvanic deposition of the alloy takes place at temperatures between 40-70 ° C at current densities of 1 - 5 A / dm 2 with deposition rates of 0.15 - 0.3 microns / minute.
  • As anodes graphite or platinized titanium can be used.
  • organic acids and their salts organic acids and their salts, phosphonic acids, phosphonates, gluconates, glucoheptonic acids, glucoheptonates and ethylenediaminetetraacetic acid can be used.
  • Suitable wetting agents and brighteners can be used in the appropriate media resistant surfactants, polyhydric alcohols and betaines.
  • the alloy composition of the layer can be varied.
  • an increase in the hydroxide content causes a reduction in the tin content and a corresponding increase in the other two metals in the layer.
  • An increase in the amount of complexing agent causes a decrease in the zinc content and an increase in the tin content in the layer.
  • these changes have virtually no influence.
  • the galvanic deposition of the alloy is carried out at temperatures between 40-70 ° C at current densities of 0.5 - 3 A / dm 2 with deposition rates of 0.05 - 0.3 microns / minute.
  • As anodes graphite or platinized titanium can be used. The use of soluble anodes is also possible.
  • the ratio of the alloy composition can be varied by varying the coating parameters.
  • the ternary tin-zinc alloys have very advantageous material properties, due to which they can be used both as an independent material, and in particular in the form of coatings on substrates in different ways.
  • the ternary tin-zinc alloys have a particularly high corrosion resistance. Therefore, these alloys are particularly suitable as corrosion protection coatings on iron materials. Accordingly, the corresponding galvanic electrolytes can preferably be used to produce corrosion protection coatings on iron materials.
  • coated iron sheets in combination with the usual passivation by chromating or chromitization readily achieve a resistance to the occurrence of red rust of over 3000 hours.
  • the properties of the ternary tin-zinc alloy layers can be optimized depending on the choice of the third alloy element.
  • Table 1 gives an overview of the influence of the third alloying element when either good corrosion resistance, hardness, abrasion or solderability are desired.
  • the nickel and iron alloys are given as comparative examples. ⁇ b> ⁇ u> Table 1 ⁇ / u> ⁇ /b> corrosion hardness abrasion solderability SnZnNi + - + - SnZnFe - + - + SnZnCo + + - +
  • the SnZnFe and SnZnCo alloy layers achieve the highest hardness values.
  • the highest abrasion resistance is exhibited by SnZnNi layers.
  • Such alloy layers can therefore be used advantageously as wear protection layers under mechanical stress.
  • SnZnFe and SnZnCo layers are particularly easy to solder and are therefore excellently suited in electronics as solderable layers and as contact surfaces.
  • Table 2 shows the corresponding data for exemplarily selected alloy systems.
  • the ternary tin-zinc alloys can also be used as decorative end layers.
  • the three alloy systems depending on the choice of the third alloy element, interesting and appealing, lying in the blue range colors.
  • the above-mentioned layer composition can be obtained with this electrolyte at a temperature of 60 ° C and current densities of 1-2 A / dm 2 . In this case, about 0.2 microns alloy layer are built up per minute. The density of the alloy layer is 7.27 g / cm 3 .
  • the above-mentioned layer composition can be obtained with this electrolyte at a temperature of 60 ° C and current densities of 0.5 - 1 A / dm 2 . 0.15 ⁇ m layer is built up per minute.
  • the density of the alloy layer is 7.27 g / cm 3 .
  • the above-mentioned layer composition can be obtained with this electrolyte at a temperature of 40 ° C and current densities of 1.5 A / dm 2 . In this case, about 0.4 microns alloy layer are built up per minute. The density of the alloy layer is 7.2 g / cm 3 .
  • the above-mentioned layer composition can be obtained with this electrolyte at a temperature of 40 ° C and current densities of 1.5 A / dm 2 . In this case, about 0.4 microns alloy layer are built up per minute. The density of the alloy layer is 7.25 g / cm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

  • Die Erfindung betrifft galvanische Elektrolytbäder sowie deren Verwendung.
  • Es ist bekannt, daß Eisenwerkstoffe durch Beschichtungen mit Zink und anschließender Passivierung, etwa durch eine Chromatierung (auf Basis Cr6+) oder Chromitierung (auf Basis Cr3+), die durch eine gelbe, blaue, schwarze oder olivgrüne Färbung der Oberfläche erkennbar ist, vor Korrosion geschützt werden können. Mit diesen Maßnahmen können Schutzzeiten bei der Salznebelprüfung (DIN 50021-SS) von 200 bis 600 Stunden bis zum ersten Auftreten von Rotrost erreicht werden (Korrosionsschutz durch Beschichtungen und Überzüge, D. Grimme und J. Krüger, Weka Fachverlag für technische Führungskräfte, Augsburg).
  • Höhere Anforderungen, etwa eine Beständigkeit bei der Salznebelprüfung bis zum ersten Auftreten von Rotrost von bis zu 1000 Stunden, können durch Beschichtung mit Zinklegierungen, die Nickel, Kobalt oder Eisen als Legierungskomponente enthalten, und anschließender Chromatierung erfüllt werden. Der Anteil der Legierungselemente kann von unter 1 Gew.%, zum Beispiel 0,4 - 0,6 Gew.% Fe im System ZnFe, bis zu 15 Gew.%, zum Beispiel 12 - 15 Gew.% Ni im System ZnNi, betragen (Zinklegierungsverfahren: Eigenschaften und Anwendungen in der Technik, Dr. A. Jiménez, B. Kerle und H. Schmidt, Galvanotechnik 89 (1998) 4).
  • Zinn-Zink-Legierungsschichten können ebenfalls als Korrosionsschutzschichten für Eisen eingesetzt werden. In der Salznebelprüfung werden mit chromatierten SnZn-Schichten Werte von bis zu 1000 Stunden bis zum ersten Auftreten von Rotrost erreicht. Die günstigste Legierungszusammensetzung beträgt 70 Gew.% Sn und 30 Gew.% Zn. Als Nachteil wird die geringe Härte von SnZn-Schichten von nur, etwa 50 HV gesehen (Tin-Zinc-Plating, E. Budmann und D. Stevens, Trans IMF 76 (1998) 3).
  • Die Beobachtung der Entwicklungen auf dem Gebiet des Korrosionschutzes von Eisenwerkstoffen, etwa in der Automobilindustrie, läßt erkennen, daß zukünftig höhere Anforderungen an Korrosionsschutzsysteme gestellt werden, die mit den bekannten Verfahren nicht erfüllt werden können. Derartige erhöhte Anforderungen an die Beständigkeiten bei der Salznebelprüfung können bei über 3000 Stunden liegen. Darüberhinaus sollten solche Korrosionsschutzschichten eine möglichst hohe Härte besitzen, gegen Abrieb beständig sein und insbesondere möglichst auch lötbar sein.
  • Der Erfindung lag daher die Aufgabe zugrunde, galvanische Elektrolytbäder zur Abscheidung von Legierungssystemen mit besonders hoher Korrosionsbeständigkeit aufzufinden, die bezüglich der Korrosionsschutzwirkung die zukünftigen Anforderungen erfüllen.
  • Die Erfindung betrifft neutrales Elektrolytbad mit einem pH-wert von 6 bis 10, welches die folgende Zusammensetzung aufweist:
    • 10 - 40 g/l Zinn als Sulfat, Natrium- oder Kaliumstannat,
    • 0,5 - 10 g/l Zink als Sulfat, Chlorid, Hydroxid oder Oxid,
    • 0,1 - 10 g/l Kobalt als Sulfat, Chlorid, Hydroxid oder Oxid,
    • 50 - 200 g/l Tetranatriumpyrophosphat,
    • 1 - 20 g/l Kalium- oder Natriumhydroxid,
    • 10 - 200 g/l Komplexbildner,
    • 0,1 - 10 g/l Netzmittel, und
    • 0,1 - 5 g/l Glanzbildner.
  • In einer anderen Ausführungsform der Erfindung bezieht sie sich auf ein alkalisches Elektrolytbad mit einem pH-wert größer 10, welches die folgende Zusammensetzung aufweist:
    • 10 - 50 g/l Zinn als Sulfat, Chlorid, Natrium- oder Kaliumstannat,
    • 1 - 10 g/l Zink als Sulfat, Chlorid, Hydroxid oder Oxid,
    • 0,1 -10 g/l Kobalt als Sulfat,
    • 1 - 20 g/l Kalium- oder Natriumhydroxid,
    • 10 - 200 g/l Komplexbildner,
    • 0,1 - 10 g/l Netzmittel, und
    • 0,1 - 5 g/l Glanzbildner.
  • Die vorstehenden Elektrolytbäder können zur galvanischen Erzeugung einer ternären Zinn-Zink-Kobalt-Legierungsschicht, die aus 30 bis 65 Gew.% Zinn, 30 bis 65 Gew.% Zink und 0,1 bis 15 Gew.% Kobalt besteht, verwendet werden. Bevorzugt besteht die Legierungsschicht aus 40 bis 55 Gew.% Zinn, 45 bis 55 Gew.% Zink und 1 bis 5 Gew.% Kobalt. Die Legierungsschicht kann als Korrosionsschutzschicht, als lötbare Schicht oder als dekorative Endschicht dienen. Weiterhin kann sie mit einer nachfolgenden Passivierung als Korrosionsschutzschicht auf einem Eisenwerkstoff verwendet werden.
  • Es wurde nun gefunden, daß erfindungsgemäß hergestellte ternäre Zinn-Zink-Legierungen, die aus 30 bis 65 Gew.% Zinn, 30 bis 65 Gew.% Zink und 0,1 bis 15 Gew.% Kobalt, als dritte Legierungskomponente bestehen, die Anforderungen bezüglich der Korrosionsbeständigkeit vorzüglich erfüllen.
  • Die Legierungsschichten werden auf galvanischem Wege, nämlich durch elektrolytische Abscheidung aus wäßrigen galvanischen Elektrolytbädern, die die Legierungskomponenten in gelöster Form enthalten, hergestellt. Die ternären Zinn-Zink-Legierungen können aus alkalischen, oder neutralen galvanischen Elektrolytbädern auf Substrate abgeschieden werden. Unter einem alkalischen Elektrolyten wird hier ein Elektrolyt mit einem pH-Wert größer 10 verstanden. Als neutraler Elektrolyt gilt ein Elektrolyt mit einem pH-Wert von 6 - 10.
  • Die Legierungskomponenten werden dem wäßrigen Elektrolytbad in Form ihrer im jeweiligen Medium löslichen ionogenen Verbindungen zugefügt. Zinn wird vorzugsweise als Sulfat, Chlorid, Sulfonat, Oxalat oder in Form von Natrium- oder Kaliumstannat eingesetzt. Zink wird vorzugsweise als Sulfat, Chlorid, Hydroxid, Sulfonat oder Oxid zugefügt. Das als dritte Legierungskomponente fungierendes Element Kobalt wird vorzugsweise jeweils als Sulfat, Chlorid, Hydroxid oder Carbonat zugegeben.
  • Die erfindungsgemäßen galvanischen Elektrolyte zur Erzeugung von ternären Zinn-Zink-Legierungsschichten können weiterhin in der Galvanotechnik übliche und bekannte Zusatz-und Hilfsstoffe enthalten. Es können dies sein zur pH-WertEinstellung Alkalien, wie etwa Natrium-, Kalium- oder Ammoniumhydroxid, oder anorganische Säuren, wie etwa Salzsäure, Schwefelsäure, Phosphorsäure, Borsäure, Alkalisalze dieser Säuren als Puffer- und/oder Leitsalze, organische Säuren wie Hydroxycarbonsäuren und/oder deren Salze, beispielsweise Citronensäure, Komplexbildner wie zum Beispiel EDTA, Netzmittel, Glanzbildner etc. Dem Fachmann sind die Kriterien für die qualitative und quantitative Auswahl derartiger Zusatz- und Hilfsstoffe und deren Funktion in galvanischen Bädern geläufig.
  • Das Verhältnis der Metalle in der galvanisch abgeschiedenen Legierungsschicht kann in bekannter Weise durch das Verhältnis der Metalle in der Badzusammensetzung, durch Art und Menge der weiteren Badkomponenten und durch die Abscheidungsparameter beeinflußt werden.
  • Zur elektrolytischen Abscheidung der ternären Zinn-Zink-Legierungen wird das zu beschichtende Substrat, beispielsweise ein vor Korrosion zu schützendes Bauteil aus einem Eisenwerkstoff, in ein entsprechendes galvanisches Bad eingetaucht und als Kathode beschaltet. Als Gegenelektroden können Anoden aus unlöslichen oder, vorzugsweise bei neutralen Elektrolyten, löslichen Materialien eingesetzt werden. Unlösliche Anoden bestehen in der Regel aus Graphit oder platiniertem Titan. Lösliche Anoden bestehen zweckmäßigerweise aus den Metallen der abzuscheidenden Legierungsschicht, vorzugsweise in der gewünschten Zusammensetzung.
  • Als Rahmenbedingungen für die Abscheidung der ternäre Zinn-Zink-Legierungen aus den erfindungsgemäßen Elektrolyten können eine Temperatur von etwa 20 - 70 °C und eine Stromdichte von etwa 0,1 - 5 A/dm2 angesehen werden, wobei sich Abscheidegeschwindigkeiten von etwa 0,05 - 1 µm/Minute ergeben.
  • Ein erfindungsgemäßer alkalischer Elektrolyt weist folgende Rahmenzusammensetzung auf:
    • 10 - 50 g/l Zinn als Sulfat, Chlorid, Natrium- oder Kaliumstannat,
    • 1 - 10 g/l Zink als Sulfat, Chlorid, Hydroxid oder Oxid,
    • 0,1 - 10 g/l Kobalt als Sulfat,
    • 1 - 20 g/l Kalium- oder Natriumhydroxid,
    • 10 - 200 g/l Komplexbildner,
    • 0,1 - 10 g/l Netzmittel, und
    • 0,1 - 5 g/l Glanzbildner.
  • Die galvanische Abscheidung der Legierung erfolgt bei Temperaturen zwischen 40 - 70 °C bei Stromdichten von 1 - 5 A/dm2 mit Abscheidegschwindigkeiten von 0,15 - 0,3 µm/Minute. Als Anoden können Graphit oder platiniertes Titan eingesetzt werden.
  • Als Komplexbildner können organische Säuren und deren Salze, Phosphonsäuren, Phosphonate, Glukonate, Glukoheptonsäuren, Glukoheptonate und Etylendiamintetraessigsäure eingesetzt werden. Als Netzmittel und Glanzbildner können in den entsprechenden Medien beständige Tenside, mehrwertige Alkohole und Betaine verwendet werden.
  • Durch Änderung des Verhältnisses der einzelnen Komponenten im Bad kann die Legierungszusammensetzung der Schicht variiert werden. So bewirkt eine Erhöhung des Hydroxidgehaltes eine Verringerung des Zinngehaltes und eine entsprechende Erhöhung der beiden anderen Metalle in der Schicht. Eine Erhöhung der Menge an Komplexbildner bewirkt eine Verringerung des Zinkgehaltes und eine Erhöhung des Zinnanteiles in der Schicht. Auf das dritte Legierungsmetall haben diese Änderungen praktisch keinen Einfluß.
  • Ein erfindungsgemäßer neutraler Elektrolyt kann folgende typische Rahmenzusammensetzung aufweisen:
    • 10 - 40 g/l Zinn als Sulfat, Natrium- oder Kaliumstannat,
    • 0,5 - 10 g/l Zink als Sulfat, Chlorid, Hydroxid oder Oxid,
    • 0,1 - 10 g/l Kobalt als Sulfat,
    • Chlorid, Hydroxid oder Oxid,
    • 50 - 200 g/l Tetranatriumpyrophosphat,
    • 1 - 20 g/l Kalium- oder Natriumhydroxid,
    • 10 - 200 g/l Komplexbildner,
    • 0,1 - 10 g/l Netzmittel, und
    • 0,1 - 5 g/l Glanzbildner.
  • Die galvanische Abscheidung der Legierung erfolgt bei Temperaturen zwischen 40 - 70 °C bei Stromdichten von 0,5 - 3 A/dm2 mit Abscheidegeschwindigkeiten von 0,05 - 0,3 µm/Minute. Als Anoden können Graphit oder platiniertes Titan eingesetzt werden. Der Einsatz von löslichen Anoden ist ebenfalls möglich.
  • Das Verhältnis der Legierungszusammensetzung kann durch Variation der Beschichtungsparameter variiert werden.
  • Die ternären Zinn-Zink-Legierungen besitzen sehr vorteilhafte Materialeigenschaften, aufgrund derer sie sowohl als eigenständiger Werkstoff, als auch insbesondere in Form von Beschichtungen auf Substraten in unterschiedlicher Weise eingesetzt werden können.
  • Generell weisen die ternären Zinn-Zink-Legierungen eine besonders hohe Korrosionsbeständigkeit auf. Daher eignen sich diese Legierungen besonders als Korrosionsschutzschichten auf Eisenwerkstoffen. Die entsprechenden galvanischen Elektrolyte können demnach bevorzugt zur Erzeugung von Korrosionsschutzschichten auf Eisenwerkstoffen eingesetzt werden. So erreichen damit beschichtete Eisenbleche in Kombination mit der üblichen Passivierung durch Chromatierung oder Chromitierung ohne weiteres eine Beständigkeit gegen das Auftreten von Rotrost von über 3000 Stunden.
  • Weitere Eigenschaften können durch die Wahl des jeweiligen dritten Legierungselementes gesteuert werden. Die Eigenschaften der ternären Zinn-Zink-Legierungsschichten können je nach Wahl des dritten Legierungselementes optimiert werden. Tabelle 1 gibt eine Übersicht über den Einfluß des dritten Legierungselements, wenn entweder gute Korrosionsbeständigkeit, Härte, Abrieb oder Lötbarkeit gewünscht sind. Hierbei sind die Nickel- und Eisenlegierungen als Vergleichsbeispiele angegeben. Tabelle 1
    Korrosion Härte Abrieb Lötbarkeit
    SnZnNi + - + -
    SnZnFe - + - +
    SnZnCo + + - +
  • Unter den drei Legierungssystemen erreichen die SnZnFe- und SnZnCo-Legierungsschichten die höchsten Härtewerte. Die größte Abriebfestigkeit zeigen SnZnNi-Schichten. Derartige Legierungsschichten können daher vorteilhaft als Verschleißschutzschichten bei mechanischer Beanspruchung eingesetzt werden. SnZnFe- und SnZnCo-Schichten lassen sich besonders gut löten und eignen sich daher vorzüglich in der Elektronik als lötbare Schichten und als Kontaktoberflächen. Tabelle 2 zeigt für beispielhaft ausgewählte Legierungssysteme die entsprechenden Daten. Tabelle 2
    Schicht SnZnNi SnZnFe SnZnCo
    Zusammensetzung Sn 44 % Sn 52 % Sn 46 %
    Zn 56 % Zn 44 % Zn 51 %
    Ni 0,2 % Fe 4 % Co 3 %
    Härte 50 165 179
    (HV 0,025)
    Abrieb 4,9 9,1 7,2
    (mg Gewichtsverlust / 1000 Hübe nach Bosch-Weinmann)
    Lötbarkeit 0,3 - 0,4 0,8 - 1,2 0,3 - 0,6
    (ZCT in sek)
  • Neben diesen funktional geprägten Einsatzgebieten können die ternären Zinn-Zink-Legierungen auch als dekorative Endschichten verwendet werden. So weisen die drei Legierungssysteme, je nach Wahl des dritten Legierungselementes, interessante und ansprechende, im Blaubereich liegende Farbstellungen auf.
  • BEISPIELE Beispiel 1
  • Ein alkalischer Elektrolyt zur Abscheidung einer Legierung bestehend aus 45 Gew.% Sn, 52 Gew.% Zn und 3 Gew.% Kobalt hat folgende Zusammensetzung:
    • 30 g/l Zinn als Natriumstannat
    • 2,4 g/l Zink als Zinkoxid
    • 1 g/l Kobalt als Kobaltsulfat
    • 8 g/l Kaliumhydroxid
    • 50 g/l Natriumcitrat
    • 100 ml/l Natriumphosphonat
    • 2,5 ml/l anionisches Tensid
    • 1 g/l Butindiol
  • Es stellt sich ein pH-Wert von 11 ein. Die oben genannte Schichtzusammensetzung kann mit diesem Elektrolyten bei einer Temperatur von 60 °C und Stromdichten von 1 - 2 A/dm2 erzielt werden. In diesem Fall werden pro Minute etwa 0,2 µm Legierungsschicht aufgebaut. Die Dichte der Legierungsschicht beträgt 7,27 g/cm3.
  • Eine Beschichtung von Eisenblechen mit dieser Legierung in einer Dicke von 8 µm mit Chromatierung (Basis Cr6+) zeigte folgende Beständigkeit in der Salznebelprüfung nach DIN 50021 - SS:
    • Erstes Auftreten von Weißrost in der Zeitperiode 1800 - 3000 Stunden.
    • Nach 3000 Stunden wurde die Prüfung abgebrochen, da bis 3000 Stunden kein Rotrost aufgetreten ist.
    Beispiel 2
  • Ein neutraler Elektrolyt zur Abscheidung einer Legierung bestehend aus 48 Gew.% Sn, 49 Gew.% Zn und 3 Gew.% Kobalt hat folgende Zusammensetzung:
    • 25 g/l Zinn als Zinnsulfat
    • 2,4 g/l Zink als Zinkoxid
    • 1 g/l Kobalt als Kobaltsulfat
    • 130 g/l Tetranatriumpyrophosphat
    • 2,5 ml/l anionisches Tensid
    • 1g/l Butindiol
  • Es stellt sich ein pH-Wert von 8,5 ein. Die oben genannte Schichtzusammensetzung kann mit diesem Elektrolyten bei einer Temperatur von 60 °C und Stromdichten von 0,5 - 1 A/dm2 erzielt werden. Pro Minute werden 0,15 µm Schicht aufgebaut. Die Dichte der Legierungsschicht beträgt 7,27 g/cm3.
  • Beispiel 3 (Vergleichsbeispiel)
  • Ein schwach saurer Elektrolyt zur Abscheidung einer Legierung bestehend aus 49,2 Gew.% Sn, 50,5 Gew.% Zn und 0,3 Gew.% Nickel hat folgende Zusammensetzung:
    • 5 g/l Zinn als Zinnsulfat
    • 6,8 g/l Zink als Zinksulfat
    • 12 g/l Nickel als Nickelsulfat
    • 80 g/l Natriumcitrat
    • 25 g/l Borsäure
    • 10 ml/l anionisches Tensid
    • 1 ml/l Beta-Naphtolethoxylat
  • Es stellt sich ein pH-Wert von 4,5 ein. Die oben genannte Schichtzusammensetzung kann mit diesem Elektrolyten bei einer Temperatur von 40 °C und Stromdichten von 1,5 A/dm2 erzielt werden. In diesem Fall werden pro Minute etwa 0,4 µm Legierungsschicht aufgebaut. Die Dichte der Legierungsschicht beträgt 7,2 g/cm3.
  • Beispiel 4 (Vergleichsbeispiel)
  • Ein schwach saurer Elektrolyt zur Abscheidung einer Legierung bestehend aus 52 Gew.% Sn, 44 Gew.% Zn und 4 Gew.% Eisen hat folgende Zusammensetzung:
    • 5 g/l Zinn als Zinnsulfat
    • 6,8 g/l Zink als Zinksulfat
    • 10 g/l Eisen als Eisensulfat
    • 80 g/l Natriumcitrat
    • 25 g/l Borsäure
    • 10 ml/l anionisches Tensid
    • 1 ml/l Beta-Naphtolethoxylat
  • Es stellt sich ein pH-Wert von 4,4 ein. Die oben genannte Schichtzusammensetzung kann mit diesem Elektrolyten bei einer Temperatur von 40 °C und Stromdichten von 1,5 A/dm2 erzielt werden. In diesem Fall werden pro Minute etwa 0,4 µm Legierungsschicht aufgebaut. Die Dichte der Legierungsschicht beträgt 7,25 g/cm3.

Claims (8)

  1. Neutrales Elektrolytbad mit einem pH-Wert von 6 bis 10, welches die folgende Zusammensetzung aufweist:
    10 - 40 g/l Zinn als Sulfat, Natrium- oder Kaliumstannat,
    0,5 - 10 g/l Zink als Sulfat, Chlorid, Hydroxid oder Oxid,
    0,1 - 10 g/l Kobalt als Sulfat, Chlorid, Hydroxid oder Oxid,
    50 - 200 g/l Tetranatriumpyrophosphat,
    1 - 20 g/l Kalium- oder Natriumhydroxid,
    10 - 200 g/l Komplexbildner,
    0,1 - 10 g/l Netzmittel, und
    0,1 - 5 g/l Glanzbildner.
  2. Alkalisches Elektrolytbad mit einem pH-Wert größer 10, welches die folgende Zusammensetzung aufweist:
    10 - 50 g/l Zinn als Sulfat, Chlorid, Natrium- oder Kaliumstannat,
    1 - 10 g/l Zink als Sulfat, Chlorid, Hydroxid oder Oxid,
    0,1 - 10 g/l Kobalt als Sulfat,
    1 - 20 g/l Kalium- oder Natriumhydroxid,
    10 - 200 g/l Komplexbildner,
    0,1 - 10 g/l Netzmittel, und
    0,1 - 5 g/l Glanzbildner.
  3. Verwendung eines Elektrolytbads nach Anspruch 1 oder 2 zur galvanischen Erzeugung einer ternären Zinn-Zink-Kobalt-Legierungsschicht, die aus 30 bis 65 Gew.% Zinn, 30 bis 65 Gew.% Zink und 0,1 bis 15 Gew.% Kobalt besteht.
  4. Verwendung nach Anspruch 3, wobei die Legierungsschicht aus 40 bis 55 Gew.% Zinn, 45 bis 55 Gew.% Zink und 1 bis 5 Gew.% Kobalt besteht.
  5. Verwendung eines Elektrolytbads nach Anspruch 1 oder 2 zur galvanischen Erzeugung einer ternären Zinn-Zink-Kobalt-Korrosionsschutzschicht, die aus 30 bis 65 Gew.% Zinn, 30 bis 65 Gew.% Zink und 0,1 bis 15 Gew.% Kobalt besteht.
  6. Verwendung eines Elektrolytbads nach Anspruch 1 oder 2 zur galvanischen Erzeugung einer ternären Zinn-Zink-Kobalt-Legierungsschicht, die aus 30 bis 65 Gew.% Zinn, 30 bis 65 Gew.% Zink und 0,1 bis 15 Gew.% Kobalt besteht, wobei die Legierungsschicht mit einer nachfolgenden Passivierung eine Korrosionsschutzschicht auf einem Eisenwerkstoff ist.
  7. Verwendung eines Elektrolytbads nach Anspruch 1 oder 2 zur galvanischen Erzeugung einer ternären Zinn-Zink-Kobalt-Legierungsschicht, die aus 30 bis 65 Gew.% Zinn, 30 bis 65 Gew.% Zink und 0,1 bis 15 Gew.% Kobalt besteht, wobei die Legierungsschicht eine lötbare Schicht ist.
  8. Verwendung eines Elektrolytbads nach Anspruch 1 oder 2 zur galvanischen Erzeugung einer ternären Zinn-Zink-Kobalt-Legierungsschicht, die aus 30 bis 65 Gew.% Zinn, 30 bis 65 Gew.% Zink und 0,1 bis 15 Gew.% Kobalt besteht, wobei die Legierungsschicht eine dekorative Endschicht ist.
EP01969597A 2000-09-16 2001-08-16 Galvanische elektrolytbäder zur erzeugung von ternären zinn-zink-kobalt legierungsschichten Expired - Lifetime EP1319093B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10045991A DE10045991A1 (de) 2000-09-16 2000-09-16 Ternäre Zinn-Zink-Legierungen, galvanische Bäder und galvanisches Verfahren zur Erzeugung von ternären Zinn-Zink-Legierungsschichten
DE10045991 2000-09-16
PCT/EP2001/009452 WO2002022913A2 (de) 2000-09-16 2001-08-16 Ternäre zinn-zink legierungen enthaltend eisen, kobalt oder nickel, galvanische bäder und galvanisches verfahren zu ihrer erzeugung

Publications (2)

Publication Number Publication Date
EP1319093A2 EP1319093A2 (de) 2003-06-18
EP1319093B1 true EP1319093B1 (de) 2008-12-31

Family

ID=7656548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01969597A Expired - Lifetime EP1319093B1 (de) 2000-09-16 2001-08-16 Galvanische elektrolytbäder zur erzeugung von ternären zinn-zink-kobalt legierungsschichten

Country Status (7)

Country Link
US (1) US20040091385A1 (de)
EP (1) EP1319093B1 (de)
JP (1) JP4817352B2 (de)
CN (1) CN1239751C (de)
DE (2) DE10045991A1 (de)
HK (1) HK1054576A1 (de)
WO (1) WO2002022913A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3878978B2 (ja) 2002-10-24 2007-02-07 コーア株式会社 鉛非含有はんだ、および鉛非含有の継手
JP2005026188A (ja) 2003-07-03 2005-01-27 Koa Corp 電流ヒューズ及び電流ヒューズの製造方法
JP4901120B2 (ja) * 2005-03-29 2012-03-21 兵庫県 亜鉛を含むめっき皮膜
CN100554528C (zh) * 2006-03-29 2009-10-28 哈尔滨工业大学 具有良好耐化学性及粘结力的电解铜箔镀层表面处理方法
EP2085502A1 (de) * 2008-01-29 2009-08-05 Enthone, Incorporated Elektrolytzusammensetzung und Verfahren zur Abscheidung einer Zinn-Zink-Legierung
KR20110028010A (ko) * 2009-09-11 2011-03-17 삼성전기주식회사 미립 주석 분말 및 그 제조 방법
EP2531632A2 (de) * 2010-02-01 2012-12-12 Crucible Intellectual Property, LLC Thermisches sprühtpulver und beschichtung auf nickelbasis sowie herstellungsverfahren dafür
CN102212809B (zh) * 2011-05-12 2012-07-18 北京化工大学 一种镍基合金加热管的防腐蚀方法
US20130098691A1 (en) 2011-10-25 2013-04-25 Longyear Tm, Inc. High-strength, high-hardness binders and drilling tools formed using the same
CN102690975B (zh) * 2012-06-11 2014-12-03 东莞市闻誉实业有限公司 一种三元锡-锌合金及其电镀方法
CN103849912A (zh) * 2012-11-29 2014-06-11 沈阳工业大学 一种电镀光亮锡锌镍合金工艺
WO2014094120A1 (en) * 2012-12-18 2014-06-26 Lanxess Inc. Electronic devices comprising butyl rubber
CN103436825A (zh) * 2013-08-23 2013-12-11 哈尔滨理工大学 纳米氧化锡涂覆陶瓷相增强体/铝基复合材料的制备方法
CN106521580A (zh) * 2016-11-02 2017-03-22 苏州市汉宜化学有限公司 四价锡Sn‑Co‑Zn三元合金代铬电镀液及电镀方法
CN112779576B (zh) * 2020-12-25 2022-06-21 南通正海磁材有限公司 一种钕铁硼磁体复合镀层及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH103474A (fr) * 1923-04-13 1924-02-16 Enrico Scala Giuseppe Soudure pour aluminium et procédé de fabrication de celle-ci.
US3791801A (en) * 1971-07-23 1974-02-12 Toyo Kohan Co Ltd Electroplated steel sheet
US3881919A (en) * 1974-01-07 1975-05-06 Whyco Chromium Co Ternary alloys
JPS51131427A (en) * 1975-05-05 1976-11-15 Whyco Chromium Co Ternary alloy
SU670638A1 (ru) * 1977-02-14 1979-06-30 Ярославский политехнический институт Электролит дл нанесени покрытий из сплавов на основе олова
CA1193222A (en) * 1981-02-25 1985-09-10 Wim M.J.C. Verberne Electroplating cobalt alloy with zinc or tin from amine bath
JPS5848694A (ja) * 1981-09-16 1983-03-22 Nippon Steel Corp アルコ−ルを含有もしくはアルコ−ル系燃料容器用Sn−Zn系合金電気メツキ鋼板
JPS58153796A (ja) * 1982-03-05 1983-09-12 Sumitomo Metal Ind Ltd 電気メツキ鋼板
JPS59170289A (ja) * 1983-03-15 1984-09-26 Sumitomo Metal Ind Ltd 鉄系電気メツキ法
US4488942A (en) * 1983-08-05 1984-12-18 Omi International Corporation Zinc and zinc alloy electroplating bath and process
JPS63186860A (ja) * 1987-01-27 1988-08-02 Nippon Steel Corp 耐錆性、溶接性に優れた表面処理鋼板の製造方法
JPH01172593A (ja) * 1987-12-25 1989-07-07 Kawasaki Steel Corp 塗装後密着性が優れたZn−Ni−Sn合金めっき鋼板の製造方法
US5429882A (en) * 1993-04-05 1995-07-04 The Louis Berkman Company Building material coating
DE19644235C1 (de) * 1996-10-24 1998-02-12 Grillo Werke Ag Schrot für Munitionszwecke

Also Published As

Publication number Publication date
US20040091385A1 (en) 2004-05-13
DE10045991A1 (de) 2002-04-04
JP2004509229A (ja) 2004-03-25
JP4817352B2 (ja) 2011-11-16
EP1319093A2 (de) 2003-06-18
HK1054576A1 (en) 2003-12-05
CN1239751C (zh) 2006-02-01
WO2002022913A3 (de) 2002-07-25
CN1468327A (zh) 2004-01-14
WO2002022913A2 (de) 2002-03-21
DE50114623D1 (de) 2009-02-12

Similar Documents

Publication Publication Date Title
EP1319093B1 (de) Galvanische elektrolytbäder zur erzeugung von ternären zinn-zink-kobalt legierungsschichten
DE3506709C3 (de) Verfahren zur galvanischen Abscheidung einer Zink-Eisen-Legierung aus einem alkalischen Bad
EP1408141B1 (de) Verfahren und Elektrolyt zur galvanischen Abscheidung von Bronzen
DE3821073A1 (de) Verfahren zum galvanischen beschichten von aus aluminium oder aluminiumlegierungen gefertigten gegenstaenden mit einem vorzugsweise loetbaren metallueberzug
DE10354760A1 (de) Verfahren zur Abscheidung von Nickel und Chrom(VI)freien metallischen Mattschichten
DE2337848C3 (de) Bad und Verfahren für die elektrolytische Abscheidung von Gold und Goldlegierungen
EP3067444B1 (de) Abscheidung von dekorativen palladium-eisen-legierungsbeschichtungen auf metallischen substanzen
EP3870739A1 (de) Thermisch stabile silberlegierungsschichten
DE3530223A1 (de) Galvanisierbad fuer chromhaltige legierungen
EP0346740B1 (de) Alkalisches wässriges Bad zur galvanischen Abscheidung von Zink - Eisen - Legierungen
EP4259856A1 (de) Silber-bismut-elektrolyt zur abscheidung von hartsilberschichten
DE19837431C2 (de) Beschichtung von Bauteilen aus gehärtetem Stahl oder Eisenguß und Verfahren zur Aufbringung derselben
EP0126921B1 (de) Bad für die galvanische Abscheidung von Goldlegierungen
EP3964610A1 (de) Galvanikbad für palladium-ruthenium-beschichtungen
DE3219666A1 (de) Bad zur galvanischen abscheidung von ruthenium auf einem substrat und ein verfahren zur abscheidung von ruthenium auf einem substrat mit diesem bad
DE10243139A1 (de) Dunkle Schichten
WO2015039647A1 (de) Galvanisches bad
DE2439656C2 (de) Wäßriges saures Bad zur galvanischen Abscheidung einer Zinn-Nickel-Legierung
EP4146848B1 (de) Silberelektrolyt zur abscheidung von silberdispersionsschichten
DE3443420C2 (de)
DE4040526C2 (de) Bad zur galvanischen Abscheidung von Goldlegierungen
EP4151779A1 (de) Chrom-indium-, chrom-bismut- und chrom-antimon-beschichtung, verfahren zur herstellung und verwendung
DD264462A1 (de) Palladium/nickel-legierungselektrolyt
WO2022207539A1 (de) Platinelektrolyt
DE102020131371A1 (de) Rutheniumlegierungsschicht und deren Schichtkombinationen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030411

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: ELECTROPLATING SOLUTIONS FOR THE PREPARATION OF TERNARY TIN ZINC COBALT ALLOY LAYERS

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50114623

Country of ref document: DE

Date of ref document: 20090212

Kind code of ref document: P

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1054576

Country of ref document: HK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130814

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130814

Year of fee payment: 13

Ref country code: FR

Payment date: 20130808

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114623

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114623

Country of ref document: DE

Effective date: 20150303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901