EP1244676B1 - Schwefel enthaltende silane als kupplungsmittel - Google Patents

Schwefel enthaltende silane als kupplungsmittel Download PDF

Info

Publication number
EP1244676B1
EP1244676B1 EP01939982A EP01939982A EP1244676B1 EP 1244676 B1 EP1244676 B1 EP 1244676B1 EP 01939982 A EP01939982 A EP 01939982A EP 01939982 A EP01939982 A EP 01939982A EP 1244676 B1 EP1244676 B1 EP 1244676B1
Authority
EP
European Patent Office
Prior art keywords
group
meo
ome
sulfur
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01939982A
Other languages
English (en)
French (fr)
Other versions
EP1244676A1 (de
Inventor
James D. Reedy
Kenneth M. Hartman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1244676A1 publication Critical patent/EP1244676A1/de
Application granted granted Critical
Publication of EP1244676B1 publication Critical patent/EP1244676B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Definitions

  • Sulfur-containing silane coupling agents are useful in providing rubber, including automotive tires, with improved properties, generally by coupling inorganic fillers or fibers with the rubber matrix in a fashion which leads to the improved properties.
  • the sulfur-containing silane coupling agents which have achieved commercial success to date have been produced by disadvantageous processes which involve the handling of large quantities of chlorine-containing by-products. Thus, there is an ongoing need in the art to prepare sulfur-containing silane coupling agents safely in high yields and efficiencies by processes which do not involve chlorine-containing intermediates or by-products.
  • Trichlorosilane is reacted with either allyl chloride or vinyltoluene to provide the respective intermediates, 3-chloropropyltrichlorosilane or (trichlorosilylethyl)-toluene.
  • the former is reacted with alcohol to produce a 3-chloropropyl-trialkoxysilane, which is reacted with sodium hydrosulfide or sodium tetrasulfide to produce the desired products, plus four equivalents of chlorine.
  • the latter is reacted with sulfur monochloride, and the sulfurated trichlorosilane intermediate is reacted with alcohol to produce the desired product, plus five equivalents of chlorine.
  • Both of the above embodiments suffer from additional disadvantages in that yields from the reaction of trichlorosilane with allyl chloride are well below quantitative, based on the limiting reactant, with concurrent generation of undesired by-products.
  • the reaction of trichlorosilane with vinyltoluene is susceptible to polymerization of the vinyltoluene, with subsequent reduced efficiency to (trichlorosilylethyl)toluene and formation of a polymeric by-product.
  • EP 507 727 discloses glass coating with improved adhesion and weather resistance wherein the coating comprises a silicon containing compound of the formula [(EO) 3 Si-R-X] k -T wherein E is methyl or ethyl, R is ethylene or trimethylene, X is, among other possibilities, S and T is an alkyl group.
  • EP 963 995 describes a method for preparing a short-chain polysulfide silane mixture wherein - in the average range - between 2.1 and 2.9 sulphur atoms constitute a polysulfide chain in the molecule and wherein the polysulfide chain shows connectivity to two different carbon atoms.
  • US 5,286,815 is directed to a release coating composition comprising up to 100 percent by weight of a polysiloxane polymer wherein the end groups of the polymer consist of sulphur containing silanes.
  • EP 1 035 162 discloses RTV organopolysiloxane compositions comprising an organopolysiloxane and a sulphur containing silane compound.
  • US 5,916,973 relates to sodium, potassium or lithium salts of siloxy compounds useful in rubber compositions.
  • the present invention provides a process for preparing sulfur-containing silane coupling agents, some of which are novel compositions, by the reactions of alkoxysilane acetals with nonionic, chlorine-free sulfurating agents including, but not limited to, thiols, di-and higher thiols, hydrogen sulfide, and sulfur, in the presence of an acid catalyst, and optionally in the presence of hydrogen and an reduction catalyst.
  • the process is depicted by the general reaction:
  • the process of the invention is based on the following reaction: where R is a saturated or unsaturated linear, branched, or cyclic divalent hydrocarbon group of 2 to 12 carbon atoms optionally containing divalent -O- or -S- linkages; R 1 is an alkyl group of 1 to 4 carbon atoms, an aryl group of 6 to 12 carbon atoms, or an aralkyl or alkaryl group of 7 to 13 carbon atoms; each R 2 can be R 1 or the 2 R 2 groups taken together form an R group so as to form a ring; R 3 is a hydrogen atom or R 1 ; R 4 is R 3 , -RSH, or -RSiR 1 x (OR 2 ) 3-x ; x is an integer having a value of 0, 1.
  • the sulfur-containing silane coupling agents provided by the process of the present invention may thus be monomers or oligomers and may contain more than one molecular species. Where more than one group of R, R 1 , R 2 , R 3 , or R 4 is present in a molecule, said groups R, R 1 , R 2 , R 3 , and R 4 may be the same or different.
  • the alkoxysilane acetal raw materials are well-known in the art.
  • the unsaturated acetals are articles of commerce, as are the hydroalkoxysilanes, and the catalysts used for hydrosilation.
  • a particularly preferred hydroalkoxysilane is trimethoxysilane, as prepared by the direct reaction between silicon metal and methanol.
  • Preferred alkoxysilane acetal raw materials include compounds wherein R is a linear or branched divalent hydrocarbon group of 2 to 4 carbon atoms, R 1 is an alkyl group of 1 to 2 carbon atoms, R 2 is an alkyl group of 1 to 2 carbon atoms or 2 R 2 groups taken together form an R group, and R 3 is a hydrogen atom or an alkyl group of 1 to 2 carbon atoms.
  • alkoxysilane acetal include compounds wherein R is a linear divalent hydrocarbon group of 2 carbon atoms or a branched divalent hydrocarbon group of 3 carbon atoms, R 1 is a methyl group, R 2 is a methyl group or an ethyl group, and R 3 is a hydrogen or a methyl group.
  • compounds in the most preferred group include the following: (MeO) 3 SiCH 2 CH 2 CH(OMe) 2 Me(MeO) 2 SiCH 2 CH 2 CH(OMe) 2 (MeO) 3 SiCH 2 CHMeCH(OMe) 2 Me(MeO) 2 SiCH 2 CHMeCH(OMe) 2 (EtO) 3 SiCH 2 CH 2 CH(OMe) 2 Me(EtO) 2 SiCH 2 CH 2 CH(OMe) 2 (EtO) 3 SiCH 2 CH 2 CH(OEt) 2 Me(EtO) 2 SiCH 2 CH 2 CH(OEt) 2 Me 2 (MeO)SiCH 2 CHMeCH(OMe) 2 Me 2 (EtO)SiCH 2 CH 2 CH(OEt) 2 (MeO) 3 SiCH 2 CH 2 CH(O-Me) 2
  • Preferred sulfurating agents will depend on the product desired and may be selected singly or in combination from the group of thiols, di- and higher thiols, hydrogen sulfide, and sulfur, optionally in the presence of hydrogen and an effective reduction catalyst.
  • Sulfur serves as a source of hydrogen sulfide in the presence of hydrogen and an effective reduction catalyst.
  • Dithiols including 1,2-dimercaptoethane, 1,2-dimercaptopropane, and 1,3-dimercaptopropane are particularly preferred for preparing certain sulfur-containing silane coupling agents which are novel compositions.
  • the ratio between silane and sulfurating agent is not narrowly critical, but preferably is between a slight excess of sulfurating agent to near stoichiometric equivalent.
  • a suitable reduction catalyst is selected from the group of metal-containing catalysts which are effective for reduction in the presence of sulfur and its compounds.
  • Cobalt polysulfide is a preferred reduction catalyst for the process of the present invention, with a use level of 0.5 to 5 wt-% being preferred, and 1 to 3 wt-% being most preferred.
  • the process of the invention is preferably conducted in the presence of an acid catalyst, selected from the classes of protic (Bronsted) acids or nonprotic (Lewis) acids.
  • the former is exemplified by para -toluenesulfonic acid and a wide variety of carboxylic and inorganic acids.
  • the latter is exemplified by boron trifluoride, zinc salts, e.g., zinc chloride, and a number of other covalent metallic halides, including lanthanum chloride.
  • Acids in solid or supported forms may also be used, including acid forms of zeolites, acid clays, sulfonated derivatives of fluoropolymers, and acids of either of the above classes deposited on inorganic supports.
  • Acid catalyst is not a narrowly critical feature of the present invention, nor is its concentration. Any catalyst effective for the reaction can be used at an effective concentration. Acid concentrations in the range of 0.05 to 5 wt-% of the combined reactants are effective, with a concentration of 0.1 to 1 wt-% being preferred, and 0.1 to 0.5 wt-% being most preferred.
  • the process of the invention is performed at a temperature and pressure effective for the reaction, generally at an elevated temperature to assist in the removal of the alcohol by-product at ambient pressure.
  • Preferred reaction temperatures are in the range of 40° to 200°C and are not narrowly critical.
  • the process may be run at atmospheric pressure for convenience, but may also be run at subatmospheric or superatmospheric pressures. Running at superatmospheric pressure will normally be necessary if a hydrogen atmosphere is maintained during the process in the presence of a reduction catalyst.
  • equipment normally used for laboratory, pilot scale, or commercial scale synthetic chemistry, ranging form glassware to steel may be used for the process of the present invention.
  • solvents of various kinds may be used, for example, to assist in the introduction of raw materials and in the removal of the alcohol by-products.
  • solvents include aromatic and aliphatic hydrocarbons, alcohols, ketones and ethers.
  • aromatic hydrocarbons include xylene, toluene, and benzene.
  • aliphatic hydrocarbons include pentane, hexane, heptane, octane, isooctane, decane, cyclohexane and methylcyclohexane.
  • the alcohols are methanol, ethanol, isopropanol, propanol, butanol, hexanol, octanol and t-butanol.
  • the ketones are represented by methyl ethyl ketone, methyl isopropyl ketone and cyclohexanone.
  • the ethers are represented by tetrahydrofuran, dioxane, dioxolane and glyme. Certain of the solvents with low boiling points might require performing the reaction under elevated pressure.
  • the reaction mixtures produced by the process of this invention will typically comprise a mixture of subject silanes and alcohol. Depending on the particular alcohol, transesterification with the alkoxy silane may occur.
  • the alcohol may be removed by distillation or vacuum stripping. It is preferred to separate the alcohol to reduce its concentration to less than about 0.5%. There is typically no need to separate the individual silanes; however, where desired, this can be accomplished by chromatography or high or ultra-high-vacuum distillation.
  • the products prepared according to the invention are employed in natural and synthetic rubber compositions and blends of known and novel formulation, in amounts consistent with those previously employed for other silane coupling agents for the use in sulfur-vulcanizable, silica-reinforced tire rubber compositions.
  • exemplary of suitable amounts will be at least 2 parts per hundred parts rubber (PHR) and, preferably from about 4 to about 20 PHR, e.g., 6 to 12 PHR.
  • PHR parts per hundred parts rubber
  • the amount will also be related to the amount of silica employed, preferably the ratio by weight of silica to silane being in the range of from 4:1 to about 40:1, more narrowly from about 6:1 to about 10:1.
  • Molar ratios of added sulfur for vulcanization to sulfur in the silane can be varied within the range of from above 0 to about 100:1 or more, preferably from 2:1 to 20:1, more narrowly from 5:1 to 10:1.
  • the required amount of silane will decrease as its relative sulfur content increases.
  • suitable rubber compositions are sulfur-vulcanizable synthetic rubber compositions.
  • suitable rubber polymers include solution styrene-butadiene rubber (SSBR), styrene-butadiene rubber (SBR), natural rubber (NR), polybutadiene (BR), ethylene-propylene co- and ter- polymers (EP, EPDM), and acrylonitrile-butadiene rubber (NBR).
  • the rubber composition preferably is comprised of at least one diene-based elastomer, or rubber. Suitable conjugated dienes are isoprene and 1,3-butadiene and suitable vinyl aromatic compounds are styrene and alpha methyl styrene.
  • the rubber is a sulfur curable rubber.
  • Such diene based elastomer, or rubber may be selected, for example, from at least one of cis-1,4-polyisoprene rubber (natural and/or synthetic), and preferably natural rubber), emulsion polymerization prepared styrene/butadiene copolymer rubber, organic solution polymerization prepared styrene/butadiene rubber, 3,4-polyisoprene rubber, isoprene/butadiene rubber, styrene/isoprene/butadiene terpolymer rubber, cis-1,4-polybutadiene, medium vinyl polybutadiene rubber (35-50 percent vinyl), high vinyl polybutadiene rubber (50-75 percent vinyl), styrene/isoprene copolymers, emulsion polymerization prepared styrene/butadiene/acrylonitrile terpolymer rubber and butadiene/acrylonitrile copolymer rubber.
  • E-SBR emulsion polymerization derived styrene/butadiene
  • An E-SBR emulsion polymerization derived styrene/butadiene
  • E-SBR emulsion polymerization derived styrene/butadiene
  • Emulsion polymerization prepared styrene/butadiene/acrylonitrile terpolymer rubbers containing 2 to 40 weight percent bound acrylonitrile in the terpolymer are also contemplated as diene based rubbers for use in this invention.
  • the rubber compositions in addition to at least one elastomer of synthetic or natural origin, will contain a mineral filler, particularly silica, in amounts effective for reinforcing the rubber in its vulcanized state.
  • a mineral filler particularly silica
  • the silica can be of the types known, for example described in U.S. Patent Nos. 4,704,414, 5,227,425 and 5,753,732, and will be employed in amounts suitable for reinforcing tires, especially those having low rolling resistance.
  • the silica will be employed at a level of from about 5 to about 100 parts per hundred parts of rubber, preferably at least 30 parts silica. Higher or lesser amounts can be employed where appropriate.
  • Precipitated silicas are preferred fillers.
  • the silica may be characterized by having a BET surface area, as measured using nitrogen gas, preferably in the range of 40 to 600, and more usually in a range of 50 to 300 m 2 /g.
  • the silica typically may also be characterized by having a dibutylphthalate (DBP) absorption value in a range of 100 to 350, and more usually 150 to 300.
  • DBP dibutylphthalate
  • the silica, as well as the aforesaid alumina and aluminosilicate may be expected to have a CTAB surface area in a range of 100 to 220.
  • the average mercury porosity specific surface area for the silica should be in a range of 100 to 300 m 2 /g.
  • the rubber composition may be compounded by methods known in the rubber compounding art, such as mixing the various sulfur-vulcanizable constituent rubbers with various commonly used additive materials such as, for example, curing aids, such as sulfur, activators, retarders and accelerators, processing additives, such as oils, resins including tackifying resins, silicas, plasticizers, fillers, pigments, fatty acid, zinc oxide, waxes, antioxidants and antiozonants, peptizing agents, and reinforcing materials such as, for example, carbon black.
  • curing aids such as sulfur, activators, retarders and accelerators
  • processing additives such as oils, resins including tackifying resins, silicas, plasticizers, fillers, pigments, fatty acid, zinc oxide, waxes, antioxidants and antiozonants, peptizing agents, and reinforcing materials such as, for example, carbon black.
  • processing additives such as oils, resins including tackifying resins, silicas, plasticizers, fillers
  • a rubber composition may prepared by a process such as by:
  • the rubber compositions of the invention are employed to form various rubber articles, including shoe soles and tire parts, such as treads and sidewalls in the normal fashion as conventional silica-reinforced, sulfur vulcanizable rubber compositions.
  • Alkoxysilane acetals were prepared by the platinum-catalyzed hydrosilations of acrolein dimethyl acetal, acrolein 1,2-propylene acetal, and methacrolein dimethyl acetal with trimethoxysilane or methyldimethoxysilane.
  • Example 1 The procedure and apparatus of Example 1 were used with 77.2 g (0.345 m) of (3,3-dimethoxypropyl)trimethoxysilane, 37.5 g (0.371 m) of ethane-1,2-dithiol and 0.23 g of lanthanum chloride as catalyst.
  • the crude product (89.6 g) contained 20% of methanol and raw materials, plus 14.5% of 2-(2-trimethoxysilylethyl)-1,3-dithiolane, 37.3% of the monosubstitution product, (MeO) 3 Si(CH 2 ) 2 CH(OMe)S(CH 2 ) 2 SH, and 19.6% of a dimeric product, [(MeO) 3 Si(CH 2 ) 2 CH(OMe)SCH 2 ] 2 , as determined by GC/MS.
  • Example 1 The procedure and apparatus of Example 1 were used with 36.2 g (0.177 m) of (3,3-dimethoxypropyl)methyldimethoxysilane, 18.31 g (0.195 m) of ethane-1,2-dithiol, and 0.13 g of zinc chloride catalyst. Reaction and work-up as in Example 1 provided crude product containing lesser amounts of raw materials and 69.4% of the title compound, as determined by GC/MS.
  • Example 1 The procedure and apparatus of Example 1 were used with 22.4 g (0.207 m) of propane-1,3-dithiol, 46.4 g (0.207 m) of (3,3-dimethoxypropyl)trimethoxysilane, 0.14 g of p -toluene-sulfonic acid, and 100 ml of xylenes solvent. Methanol was removed by distillation as the contents of the flask were heated at reflux (143°) for 2 hours. The crude product, excluding solvent, contained 75% of the title product and 7.4% of the monosubstituted product, (MeO) 3 Si(CH 2 ) 2 CH(OMe)S(CH 2 ) 3 SH, as determined by GC/MS.
  • Example 1 The procedure and apparatus of Example 1 were used with 25.0 g (0.102 m) of (3,3-dimethoxy-2-methylpropyl)trimethoxysilane (boiling point, 125°/25 mm, prepared by the hydrosilation of methacrolein dimethyl acetal with trimethoxysilane, as characterized by GC/MS and NMR), 9.6 g (0.102 m) of ethane-1,2-dithiol, and 0.07 g of anhydrous zinc chloride catalyst.
  • An apparatus was assembled consisting of a 500 ml three-necked flask fitted with a mechanical stirrer, distillation head and receiver, sparge tube to introduce hydrogen sulfide, and a sodium methylate scrubber to remove hydrogen sulfide from the exiting gases.
  • To the flask were charged 108.3 g (0.426 m) of (3,3-dimethoxypropyl)-trimethoxysilane, 0.3 g of p -toluenesulfonic acid, and 200 g of toluene solvent.
  • the flask and contents were heated at 100-120° for 9 hours while hydrogen sulfide was introduced at 0.04 liters/minute.
  • the flask contents were heated to 140° and volatiles (including 3-mercaptopropyltrimethoxysilane) removed at 1 mm vacuum.
  • Example 2 The procedure and apparatus of Example 1 were used with 98.1 g (0.50 m) of 3-.mercaptopropyltrimethoxysilane, 52.5 g (0.227 m) of (3,3-dimethoxypropyl)-trimethoxysilane, and 0.75 g of zinc chloride catalyst. The reactants were heated at 135°C for 2.75 hours and 11.8 g (93.3% methanol) of volatiles were removed.
  • the crude product, 129 g, was analyzed by GC/MS and contained 27.3% 3-mercaptopropyl-trimethoxysilane, 35% cis/trans-(MeO) 3 Si(CH 2 ) 3 S-CH CHCH 2 Si(OMe) 3 , and 12% of the dithioacetal [(MeO) 3 Si(CH 2 ) 3 S] 2 CH(CH 2 ) 2 Si(OMe) 3 , as determined by GC/MS.
  • Example 9 Certain of the experiments of Example 9 were repeated using hydrogen sulfide rather than sulfur as the source of sulfur. Good results were obtained when run with 121.5 g of the alkoxysilane acetal, 0.5 wt-% of acetic acid, 2.5 wt-% of cobalt polysulfide catalyst, 34g (1.85 m) of hydrogen sulfide, and hydrogen at 1600 psi as charged at room temperature. Heating up to 200° and holding for 2.25 hours provided 158.3 g of crude product from which a 61 % yield of 3-mercaptopropyltrimethoxysilane (based on acetal) was recovered by distillation. Nondistilled product was largely the same trithiane as observed in Example 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubricants (AREA)
  • Braking Arrangements (AREA)
  • Mechanical Operated Clutches (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Claims (14)

  1. Verfahren zur Herstellung eines Schwefelsilans, umfassend das Umsetzen eines Alkoxysilanacetals mit einem Sulfurierungsmittel in Anwesenheit eines Katalysators, wobei das Schwefel-haltige Silan die Formel [R1 x(R2O)3-xSiRCR3(Y)jS]n(X)j aufweist, worin
    R eine gesättigte oder ungesättigte lineare, verzweigte oder cyclische zweiwertige Kohlenwasserstoffgruppe mit 2 bis 12 Kohlenstoffatomen ist, die gegebenenfalls zweiwertige -O- oder -S-Verknüpfungen enthält;
    R1 eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, eine Arylgruppe mit 6 bis 12 Kohlenstoffatomen oder eine Aralkyl- oder Alkarylgruppe mit 7 bis 13 Kohlenstoffatomen ist;
    jedes R2 für R1 stehen kann oder die 2 Gruppen R2 zusammengenommen eine Gruppe R unter Bildung eines Rings bilden;
    R3 ein Wasserstoffatom oder R1 ist;
    R4 für R3, -RSH oder -RSiR1 x(OR2)3-x steht;
    x eine ganze Zahl mit einem Wert von 0, 1 oder 2 ist;
    n eine ganze Zahl mit einem Wert von 1 bis 4 ist;
    j = 0 oder 1; wenn n = 1, j = 1, wenn n > 1, j = 0; X für R4 steht und Y für -SR4 oder -OR2 steht oder alternativ X und Y zusammengenommen -SR- sind, welches einen 1,3-Dithiacycloalkan-Ring mit dem Kohlenstoff bildet, der R3 trägt, wenn n = 1, oder X und Y beide Wasserstoffatome sind, wenn n = 1 und R3 ein Wasserstoffatom ist.
  2. Verfahren nach Anspruch 1, in dem R eine gesättigte lineare oder verzweigte zweiwertige Kohlenwasserstoffgruppe mit 2 oder 3 Kohlenstoffatomen ist; R2 eine Methylgruppe ist, R2 für R1, eine Ethylgruppe steht oder 2 Gruppen R2 zusammengenommen eine Gruppe R bilden; R3 ein Wasserstoffatom oder eine Methylgruppe ist; R4 ein Wasserstoffatom, die Gruppe -RSH oder die Gruppe -RSiR1 x(OR2)3-x ist; und x eine ganze Zahl mit einem Wert von 0 oder 1 ist; n eine ganze Zahl mit einem Wert von 1 oder 3 ist.
  3. Verfahren nach Anspruch 1, in dem das Alkoxysilanacetal aus der Gruppe ausgewählt ist, die aus (MeO)3SiCH2CH2CH(OMe)2, Me(MeO)2SiCH2CH2CH(OMe)2, (MeO)3SiCH2CHMeCH(OMe)2, Me(MeO)2SiCH2CHMeCH(OMe)2, (EtO)3SiCH2CH2CH(OMe)2, Me(EtO)2SiCH2CH2CH(OMe)2, (EtO)3SiCH2CH2CH(OEt)2 und Me(EtO)2SiCH2CH2CH(OEt)2 besteht und das Sulfurierungsmittel aus der Gruppe ausgewählt ist, die aus Schwefelwasserstoff, HSRSH und HSRSiR1 x(OR2)3-x und Schwefel besteht.
  4. Verfahren nach Anspruch 1, in dem der Katalysator aus der Gruppe der Brönsted-Säuren und Lewis-Säuren in flüssiger oder fester Form ausgewählt ist und in einer Konzentration von 0,05 bis 5 Gewichtsprozent der vereinigten Reaktanten vorliegt.
  5. Verfahren nach Anspruch 1, in dem das Sulfurierungsmittel Schwefelwasserstoff oder Schwefel in Anwesenheit von Wasserstoffgas und eines Reduktionskatalysators ist und das Hauptprodukt HSRSiR1 x(OR2)3-x ist, worin R eine gesättigte lineare oder verzweigte zweiwertige Kohlenwasserstoffgruppe ist, R1 eine Methylgruppe ist, R2 eine Methylgruppe oder eine Ethylgruppe ist und x eine ganze Zahl mit einem Wert von 0 oder 1 ist.
  6. Verfahren nach Anspruch 5, in dem der Reduktionskatalysator Cobaltpolysulfid ist und das Hauptprodukt HS(CH2)3Si(OMe)3 ist.
  7. Verfahren nach Anspruch 6, zusätzlich umfassend den Schritt der Entfernung von Alkohol aus dem Schwefelsilan nach der Umsetzung.
  8. Silan, das ein Mitglied ist, das aus der Gruppe ausgewählt ist, die besteht aus (die Definitionen von R, R1, R2, R3, x sind in Anspruch 1 angegeben): [R1x(R2O)3-xSiRC(R3)2S]cR'Si(OR2)3-xR1x, worin R' ein (c+1)-wertiger Kohlenwasserstoff ist und c = 2 bis 3; [R1x(R2O)3-xSiRC(R3)(OR2)S]2R; R1x(R2O)3-xSiRC(R3)2SRSH; [R1x(R2O)3-xSiRCR3(-)S(-)]q, worin q = > 2; und R1x(R2O)3-xSiR-cyclo(C(R3)SRS-).
  9. Silan nach Anspruch 8 gemäß der Formel R1 x(R2O)3-xSiRC(R3)2SRSH.
  10. Silan nach Anspruch 8 gemäß der Formel R1 x(R2O)3-xSiR-cyclo(C(R3)SRS-).
  11. Silan, bestehend aus einer Formel, die aus der Gruppe ausgewählt ist, die besteht aus (MeO)3Si(CH2)2CH(SCH2)2; (EtO)3Si(CH2)2CHSCH2CHMeS; (MeO)3Si(CH2)2CH(SCH2)2CH2; Me(MeO)2Si(CH2)2CH(SCH2)2; (MeO)3SiCH2CHMeCH(SCH2)2; [(MeO)3Si(CH2)3S]2CH(CH2)2Si(OMe)3; (MeO)3Si(CH2)2CH(OMe)S(CH2)2SH; [(MeO)3Si(CH2)2CHS]3; [Me(MeO)2Si(CH2)2CHS]3; [(MeO)3Si(CH2)2CH(OMe)SCH2]2; [(EtO)3Si(CH2)2CHS]3; und (MeO)3Si(CH2)3S(CH2)2SH.
  12. Kautschuk-Zusammensetzung, umfassend Kautschuk, Siliciumdioxid und ein Silan nach Anspruch 9.
  13. Kautschuk-Zusammensetzung, umfassend Kautschuk, Siliciumdioxid und ein Silan nach Anspruch 10.
  14. Kautschuk-Zusammensetzung, umfassend Kautschuk, Siliciumdioxid und ein Silan nach Anspruch 11.
EP01939982A 2000-01-05 2001-01-03 Schwefel enthaltende silane als kupplungsmittel Expired - Lifetime EP1244676B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US478283 2000-01-05
US09/478,283 US6518335B2 (en) 2000-01-05 2000-01-05 Sulfur-containing silane coupling agents
PCT/US2001/000242 WO2001049695A1 (en) 2000-01-05 2001-01-03 Sulfur-containing silane as coupling agents

Publications (2)

Publication Number Publication Date
EP1244676A1 EP1244676A1 (de) 2002-10-02
EP1244676B1 true EP1244676B1 (de) 2004-10-13

Family

ID=23899277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01939982A Expired - Lifetime EP1244676B1 (de) 2000-01-05 2001-01-03 Schwefel enthaltende silane als kupplungsmittel

Country Status (8)

Country Link
US (1) US6518335B2 (de)
EP (1) EP1244676B1 (de)
JP (1) JP2003519237A (de)
CN (1) CN1184223C (de)
AT (1) ATE279420T1 (de)
DE (1) DE60106381T2 (de)
TW (1) TW526203B (de)
WO (1) WO2001049695A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001673B4 (de) * 2007-07-03 2011-07-14 The Yokohama Rubber Co., Ltd. Schwefelhaltiger konjugierter Diolefin-Copolymerkautschuk und diesen umfassende Kautschukzusammensetzung

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706214B2 (en) * 2001-07-16 2004-03-16 Gerald Wojcik Composition and process for inhibiting corrosion of metallic substrates
EP1565476B1 (de) 2002-10-30 2015-03-25 Bridgestone Corporation Verwendung von schwefelhaltigen initiatoren zur anionischen polymerisation von monomeren
US7138537B2 (en) * 2003-04-02 2006-11-21 General Electric Company Coupling agents for mineral-filled elastomer compositions
DE102004030737A1 (de) * 2004-06-25 2006-01-12 Degussa Ag Verfahren und Vorrichtung zur Extraktion von Stoffen aus silanmodifizierten Füllstoffen
WO2006013060A1 (en) * 2004-08-04 2006-02-09 Phosphonics Ltd Substituted organopolysiloxanes and use thereof
DE102004061014A1 (de) 2004-12-18 2006-06-29 Degussa Ag Kautschukmischungen
DE102005020535B3 (de) * 2005-05-03 2006-06-08 Degussa Ag Verfahren zur Herstellung von Mercaptoorganyl(alkoxysilanen)
US20060264590A1 (en) * 2005-05-20 2006-11-23 Bridgestone Corporation Anionic polymerization initiators and polymers therefrom
US7868110B2 (en) * 2005-05-20 2011-01-11 Bridgestone Corporation Anionic polymerization initiators and polymers therefrom
DE102005038791A1 (de) * 2005-08-17 2007-02-22 Degussa Ag Organosiliciumverbindungen, ihre Herstellung und ihre Verwendung
CN100387605C (zh) * 2005-11-11 2008-05-14 浙江大学 一种含硫与氮元素的双硅烷偶联剂及其制备方法
CN100371337C (zh) * 2005-11-11 2008-02-27 浙江大学 含硫代氨基甲酸酯结构单元的硅烷偶联剂及其制备方法
DE102005060122A1 (de) * 2005-12-16 2007-06-21 Degussa Gmbh Verfahren zur Herstellung von (Mercaptoorganyl)alkylpolyethersilanen
DE102006027235A1 (de) * 2006-06-09 2008-01-17 Evonik Degussa Gmbh Kautschukmischungen
US7968634B2 (en) * 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing silated core polysulfides
US8592506B2 (en) * 2006-12-28 2013-11-26 Continental Ag Tire compositions and components containing blocked mercaptosilane coupling agent
US7968635B2 (en) * 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing free-flowing filler compositions
US7781606B2 (en) * 2006-12-28 2010-08-24 Momentive Performance Materials Inc. Blocked mercaptosilane coupling agents, process for making and uses in rubber
US7687558B2 (en) * 2006-12-28 2010-03-30 Momentive Performance Materials Inc. Silated cyclic core polysulfides, their preparation and use in filled elastomer compositions
US7696269B2 (en) * 2006-12-28 2010-04-13 Momentive Performance Materials Inc. Silated core polysulfides, their preparation and use in filled elastomer compositions
US7737202B2 (en) * 2006-12-28 2010-06-15 Momentive Performance Materials Inc. Free-flowing filler composition and rubber composition containing same
US7968636B2 (en) * 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing silated cyclic core polysulfides
US7968633B2 (en) * 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing free-flowing filler compositions
US7960460B2 (en) * 2006-12-28 2011-06-14 Momentive Performance Materials, Inc. Free-flowing filler composition and rubber composition containing same
US20080236716A1 (en) * 2007-03-30 2008-10-02 Bergman Brian R Elastomer Having Feather Material
US8124206B2 (en) * 2008-10-30 2012-02-28 Momentive Performance Materials, Inc. Sulfur-containing cycloaliphatic compound, filled sulfur-vulcanizable elastomer composition containing sulfur-containing cycloaliphatic compound and articles fabricated therefrom
JP5513011B2 (ja) * 2009-05-20 2014-06-04 株式会社ブリヂストン 有機ケイ素化合物及びそれを用いたゴム組成物、並びにタイヤ、プライマー組成物、塗料組成物及び接着剤組成物
JP5513012B2 (ja) * 2009-05-20 2014-06-04 株式会社ブリヂストン 有機ケイ素化合物及びそれを用いたゴム組成物、並びにタイヤ、プライマー組成物、塗料組成物及び接着剤組成物
JP5512997B2 (ja) * 2009-04-06 2014-06-04 株式会社ブリヂストン 有機ケイ素化合物、並びにそれを用いたゴム組成物及びタイヤ
JP5088409B2 (ja) * 2010-10-15 2012-12-05 横浜ゴム株式会社 ゴム組成物および空気入りタイヤ
US8378123B2 (en) * 2011-03-25 2013-02-19 Duquesne University Of The Holy Ghost Composition, synthesis, and use of new substituted pyran and pterin compounds
CN103204870B (zh) * 2012-01-13 2015-08-12 中国科学院化学研究所 一种多臂含硫桥联倍半硅氧烷单体及其制备方法与应用
CN103665382B (zh) * 2012-09-24 2016-05-11 微宏动力系统(湖州)有限公司 硅硫聚合物、固体电解质及固态锂离子电池
CN105037413B (zh) * 2015-08-07 2017-10-03 荆州市江汉精细化工有限公司 一种含硫硅烷共聚物及其制备方法
DE102017221269A1 (de) * 2017-11-28 2019-05-29 Evonik Degussa Gmbh Silanmischungen und Verfahren zu deren Herstellung
DE102017221259A1 (de) * 2017-11-28 2019-05-29 Evonik Degussa Gmbh Silanmischungen und Verfahren zu deren Herstellung
CN109762014B (zh) * 2019-03-05 2021-03-26 湖北江瀚新材料股份有限公司 一种固体含硫硅烷的制备方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB921810A (en) 1961-02-15 1963-03-27 Pittsburgh Plate Glass Co Improvements in and relating to vulcanizates
BE787691A (fr) 1971-08-17 1973-02-19 Degussa Composes organosiliciques contenant du soufre
US3873489A (en) 1971-08-17 1975-03-25 Degussa Rubber compositions containing silica and an organosilane
US3978103A (en) 1971-08-17 1976-08-31 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Sulfur containing organosilicon compounds
DE2360471A1 (de) 1973-12-05 1975-06-12 Dynamit Nobel Ag Verfahren zur herstellung von polysulfidbruecken enthaltenden alkylalkoxisilanen
SU580840A3 (ru) 1974-02-07 1977-11-15 Дегусса (Фирма) Способ получени серосодержащих кремнийорганических соединений
DE2542534C3 (de) 1975-09-24 1979-08-02 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zur Herstellung von schwefelhaltigen Organosiliciumverbindungen
DE2712866C3 (de) 1977-03-24 1980-04-30 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zum Herstellen von schwefelhaltigen Organosiliciumverbindungen
DE2856229A1 (de) 1978-12-27 1980-07-03 Degussa Bis-(silylaethyl)-oligosulfide und verfahren zur herstellung derselben
DE3311340A1 (de) 1983-03-29 1984-10-11 Degussa Ag, 6000 Frankfurt Verfahren zur herstellung von schwefelhaltigen organosiliciumverbindungen
DE3437473A1 (de) 1984-10-12 1986-04-17 Degussa Ag, 6000 Frankfurt An der oberflaeche modifizierte synthetische, silikatische fuellstoffe, ein verfahren zur herstellung und deren verwendung
EP0217178A3 (de) 1985-09-24 1987-09-16 Sunstar Giken Kabushiki Kaisha Verfahren zur Herstellung telechelischer Vinylpolymere mit einer Alkoxysilylgruppe.
DE3820971A1 (de) * 1988-06-22 1989-12-28 Degussa Aramidfaser-verstaerkte epoxidharze
DD299589A7 (de) 1990-07-13 1992-04-30 Nuenchritz Chemie Verfahren zur herstellung von oligo[4-(2-organo-organooxysilylalkyl)-cyclohexan-1,2-diyl]-bis-oligosulfiden
FR2673187B1 (fr) 1991-02-25 1994-07-01 Michelin & Cie Composition de caoutchouc et enveloppes de pneumatiques a base de ladite composition.
US5266715A (en) 1991-03-06 1993-11-30 Ciba-Geigy Corporation Glass coating with improved adhesion and weather resistance
US5286815A (en) 1992-02-07 1994-02-15 Minnesota Mining And Manufacturing Company Moisture curable polysiloxane release coating compositions
US5405985A (en) 1994-07-08 1995-04-11 The Goodyear Tire & Rubber Company Preparation of sulfur-containing organosilicon compounds
US5468893A (en) 1994-07-08 1995-11-21 The Goodyear Tire & Rubber Company Preparation of sulfur-containing organosilicon compounds
US5580919A (en) 1995-03-14 1996-12-03 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and use in tires
US5674932A (en) 1995-03-14 1997-10-07 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and use in tires
WO1997007165A1 (en) * 1995-08-16 1997-02-27 Osi Specialties, Inc. Stable silane compositions on silica carrier
DE19541404A1 (de) 1995-11-07 1997-05-15 Degussa Verfahren zur selektiven Synthese von Silylalkyldisulfiden
JPH09176323A (ja) 1995-12-22 1997-07-08 Pola Chem Ind Inc フッ素化シリコーン樹脂及びその製造方法
US5675014A (en) * 1996-01-22 1997-10-07 The Goodyear Tire & Rubber Company Process for the preparation of organosilicon disulfide compounds
CA2197832A1 (en) 1996-03-07 1997-09-07 Rene Jean Zimmer Na, k and li salts of siloxy compounds
JPH09316330A (ja) 1996-05-31 1997-12-09 Pola Chem Ind Inc ポリシロキサン含有組成物
DE19702046A1 (de) 1996-07-18 1998-01-22 Degussa Gemische von Organosilanpolysulfanen und ein Verfahren zur Herstellung von diese Gemische enthaltenden Kautschukmischungen
US5753732A (en) 1997-03-06 1998-05-19 The Goodyear Tire & Rubber Company Unsaturated amine-functional silane compounds and their use in rubber compositions
DE19734295C1 (de) * 1997-08-08 1999-02-25 Degussa Verfahren zur Herstellung von Organosiliciumdisulfanen hoher Reinheit
CN101139355A (zh) 1997-08-21 2008-03-12 通用电气公司 用于填充橡胶的封端巯基硅烷偶联剂
CA2216062A1 (en) 1997-09-19 1999-03-19 Bayer Inc. Silica-containing rubber composition
JPH11349594A (ja) 1998-06-08 1999-12-21 Shin Etsu Chem Co Ltd 短鎖ポリスルフィドシラン混合物の製造方法
DE19848482C1 (de) * 1998-10-21 2000-06-08 Degussa Verfahren zur Herstellung von Organosiliciumdisulfanen
DE19857223C5 (de) * 1998-12-11 2010-02-04 Evonik Degussa Gmbh Verfahren zur Herstellung von Propylsilanen
JP3518399B2 (ja) 1999-03-12 2004-04-12 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
US6218561B1 (en) * 2000-06-26 2001-04-17 The Goodyear Tire & Rubber Company Process for the preparation of bis organosilicon disulfide compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001673B4 (de) * 2007-07-03 2011-07-14 The Yokohama Rubber Co., Ltd. Schwefelhaltiger konjugierter Diolefin-Copolymerkautschuk und diesen umfassende Kautschukzusammensetzung
DE112008001673B9 (de) * 2007-07-03 2012-04-05 The Yokohama Rubber Co., Ltd. Schwefelhaltiger konjugierter Diolefin-Copolymerkautschuk und diesen umfassende Kautschukzusammensetzung

Also Published As

Publication number Publication date
WO2001049695A1 (en) 2001-07-12
CN1184223C (zh) 2005-01-12
JP2003519237A (ja) 2003-06-17
EP1244676A1 (de) 2002-10-02
US20020002220A1 (en) 2002-01-03
ATE279420T1 (de) 2004-10-15
TW526203B (en) 2003-04-01
DE60106381T2 (de) 2005-02-24
CN1394208A (zh) 2003-01-29
DE60106381D1 (de) 2004-11-18
US6518335B2 (en) 2003-02-11

Similar Documents

Publication Publication Date Title
EP1244676B1 (de) Schwefel enthaltende silane als kupplungsmittel
KR100853604B1 (ko) 메르캅토실란
EP2114961B1 (de) Polysulfide mit silyliertem kern, ihre herstellung und ihre verwendung in gefüllten elastomerzusammensetzungen
US7531588B2 (en) Silane compositions, processes for their preparation and rubber compositions containing same
US7560583B2 (en) Mercaptofunctional silane and process for its preparation
KR100899909B1 (ko) 충진된 엘라스토머 조성물용 하이브리드 규소-함유 커플링제
JP2010514907A (ja) シリル化コアポリスルフィドを含有するタイヤ組成物および部品
MX2008010598A (es) Composicion de carga de flujo libre basada en silano organofuncional.
EP0794188B1 (de) Na, K und Li Salze von Siloxy-Verbindungen
KR20090103909A (ko) 실레이트된 고리형 코어 폴리설파이드들, 그들의 제조 및 충전 엘라스토머 조성물들에의 용도
MX2008010600A (es) Composicion de caucho que contiene silano organofuncional.
JP2010500408A (ja) メルカプト官能性シラン
US7550524B2 (en) Elastomer composition containing mercaptofunctional silane and process for making same
CN1231486C (zh) 低硫多硫化物硅烷及其制备方法
JP5164374B2 (ja) 有機珪素化合物を含むゴム組成物及びそれを用いた空気入りタイヤ
CA2261252A1 (en) Asymmetrical siloxy compounds
JP4143821B2 (ja) ポリスルフィドシランの製造方法
US4956498A (en) Coupling agents for vulcanizable mixtures of unsaturated rubbers and silicon-containing fillers
US20010056142A1 (en) Asymmetrical siloxy disulfide compounds
MXPA97001545A (en) Na, k and li salts of sil compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20021031

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC COMPANY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60106381

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050103

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050714

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140129

Year of fee payment: 14

Ref country code: NL

Payment date: 20140126

Year of fee payment: 14

Ref country code: BE

Payment date: 20140127

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140117

Year of fee payment: 14

Ref country code: IT

Payment date: 20140123

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140127

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60106381

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150103