EP1239944B1 - Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas - Google Patents

Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas Download PDF

Info

Publication number
EP1239944B1
EP1239944B1 EP00985245A EP00985245A EP1239944B1 EP 1239944 B1 EP1239944 B1 EP 1239944B1 EP 00985245 A EP00985245 A EP 00985245A EP 00985245 A EP00985245 A EP 00985245A EP 1239944 B1 EP1239944 B1 EP 1239944B1
Authority
EP
European Patent Office
Prior art keywords
aromatic hydrocarbon
oxygen
containing gas
xylene
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00985245A
Other languages
English (en)
French (fr)
Other versions
EP1239944A1 (de
Inventor
Ulrich Block
Rolf Seubert
Bernhard Ulrich
Helmut Wunschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1239944A1 publication Critical patent/EP1239944A1/de
Application granted granted Critical
Publication of EP1239944B1 publication Critical patent/EP1239944B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/916Turbulent flow, i.e. every point of the flow moves in a random direction and intermixes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions

Definitions

  • the invention relates to a method and a device for generating a homogeneous mixture of a vaporous aromatic Hydrocarbon and an oxygen-containing gas for catalytic gas phase reactions, especially a homogeneous one Mixture of vaporous o-xylene and / or naphthalene and Air for the production of phthalic anhydride.
  • PSA Phthalic anhydride
  • Equipment for carrying out such a PSA production process consist essentially of the functional units for the production the o-xylene vapor-air mixture, the reactor for the reaction the o-xylene vapor-air mixture and a device for PSA separation and workup.
  • the reaction by catalytic gas phase oxidation is usually carried out on V 2 O 5 -containing catalysts.
  • o-xylene is evaporated, mixed with an excess of air and passed at 340 ° C to 440 ° C over the catalyst in the tubes of a tube bundle reactor.
  • the catalyst consists for example of a mixture of V 2 O 5 and TiO 2 with promoters on ceramic bodies, such as porcelain or SiC spheres or rings, for example, 6 x 6 mm dimension. Large reactors have 10,000 to 40,000 tubes in the tube bundle.
  • the o-xylene is oxidized to PSA with a selectivity of 78% to 80%. This oxidation itself is highly exothermic at -1,110 kJ / mol.
  • the raw materials can be more or less contaminated.
  • the air may include NO x , H 2 S, sulfur oxides such as SO 2 , NH 3 and their salts, eg with CO 2 , which may lead to constrictions of one or more nozzles.
  • corrosion particles can change the droplet size and shape of the atomized o-xylene beam. Similar effects are caused by erosion of the nozzles in long-term operation.
  • the o-xylene may also contain m- and p-xylene, toluene, ethylbenzene, isopropylbenzene, nonane and small amounts of styrene. Such compounds can affect the surface tension of o-xylene.
  • the present invention is therefore based on the object improved method and apparatus for generating a homogeneous mixture of a vaporous aromatic hydrocarbon, such as o-xylene and / or naphthalene, and an oxygen containing gas, in particular air, for catalytic gas phase reactions to provide.
  • a vaporous aromatic hydrocarbon such as o-xylene and / or naphthalene
  • an oxygen containing gas in particular air
  • the invention solves the above-mentioned problems in that in a generic method, the atomization of the liquid aromatic hydrocarbon by using a nozzle for Formation of an atomizing hollow cone, preferably a swirl nozzle, he follows.
  • the atomizing cone may initially be a continuous one Be film from the liquid hydrocarbon, the tearing into small pieces at a greater distance from the swirl nozzle, which by surface forces to single drops with a Contract diameter less than 1 mm.
  • the present invention is therefore a method for Generation of a homogeneous mixture of a vaporous aromatic Hydrocarbon, such as o-xylene and / or naphthalene and an oxygen-containing gas, such as air, for catalytic Gas phase reactions, wherein the liquid aromatic hydrocarbon to drops with a diameter of less than 1 mm atomized and in one above the boiling point of the aromatic hydrocarbon preheated, oxygen-containing gas stream einst, wherein the method is characterized in that the mixture is generated in a room that exceeds the boiling point the hydrocarbon heated side walls is limited, and the liquid aromatic hydrocarbon by means of nozzles for Forming a hollow cone, preferably by means of swirl nozzles, atomized.
  • a vaporous aromatic Hydrocarbon such as o-xylene and / or naphthalene
  • an oxygen-containing gas such as air
  • the inventive method allows the generation of a very homogeneous, strandselle mixture of gaseous oxygen, preferably in air or other oxygen-containing Gas, and a hydrocarbon vapor.
  • the inventive method is preferably used in the Production of carboxylic acids or carboxylic anhydrides by catalytic Gas-phase oxidation of aromatic hydrocarbons, such as xylenes, in particular o-xylene and / or naphthalene, in Fixed bed reactors.
  • aromatic hydrocarbons such as xylenes, in particular o-xylene and / or naphthalene
  • PSA Called phthalic anhydride
  • the aromatic hydrocarbon is o-xylene and the oxygen-containing gas air.
  • the sputtering hollow cone preferably has an opening angle of 30 ° to 70 °.
  • the atomizing hollow cone preferably has an opening angle of about 60 °.
  • the axis of the sputtering hollow cone lies in the flow direction of the oxygen-containing gas, that is about the air, but can to deviate from this by up to 30 °.
  • Another measure can be in particular, be a certain distance, about one third of the Pipe radius of the wall to comply. It is preferably used several nozzles, about 2 to 6, preferably 4 to 6 in about the same Intervals.
  • swirl nozzles for atomizing of the liquid hydrocarbon.
  • Hollow cone nozzles designated vortex nozzles preferably present the outlet opening a guide with oblique flow surfaces on, the liquid to be atomized a twist or a Give rotation around the flow axis.
  • Such swirl nozzles are for other uses, such as fast pulse transmission in water jet pumps, injection condensers, etc. known (see. Grassmann "Physical Principles of Process Engineering", publisher Sauerlander (1970), pages 355 and 805).
  • the use of hollow cone nozzles in the method according to the invention is particularly preferred is, in other embodiments of the invention also full cone nozzles or slot nozzles can be used.
  • the Use of two-fluid nozzles, which with about to be sprayed o-xylene and the propellant air can be charged possible.
  • the liquid hydrocarbon stream to drops with a diameter of less than 1 mm, preferably less than 0.8 mm atomized.
  • the liquid stream is atomized to droplets of 0.02 to 0.2 mm.
  • the formation of the sputtering hollow cone with an opening angle From 30 ° to 70 ° used swirl nozzles are beneficial within a tube through which the oxygen gas flows on a pipe with supply line for the liquid to be atomized arranged. But you can also the annular feed pipe arrange for the liquid around the oxygen pipe and insert the nozzles into the oxygen pipe from the outside. In this case, the nozzle outlet openings are in Directed towards the gas flow.
  • the axis of the hollow cone by up to 30 ° from the Deviate flow direction of the gas. This can be achieved that fewer drops of the hollow cone touch the wall.
  • Axial hollow cone nozzles type KS 1 (Lechler, Metzingen, Germany). Such nozzles enable the production a hollow cone with the preferred cone angle of 60 °. Of the Hollow cone diameter is then at a distance of 250 mm from the outlet about 200 mm. According to the invention form small drops with a diameter of less than 1 mm, preferred less than 0.8 mm, more preferably 0.02 to 0.2 mm. The latter evaporate very fast and are already at a distance from 200 to 500 mm from the nozzle exit opening completely evaporated. However, drops of 0.8 to 1 mm may be up to complete evaporation 50 to 100 cm far and fly while the Touch and moisten the wall.
  • the mixture for example, the o-xylene-air mixture to produce in a room that of above the boiling point of the hydrocarbon heated Sidewalls is limited.
  • a heated tube such as a double-jacket tube, in particular a thermoplate tube formed (such thermal sheets become in Germany for example from the companies BUCO, Geesthacht or DEG, Gelsenmün produced).
  • Hydrocarbon droplets on the heated Pipe meet, can not be deposited as a liquid film, but are evaporated immediately. This eventually creates the desired mixture of hydrocarbon vapor and, for example Air.
  • the tube gap of the double-jacket tube can be heated with high-pressure steam be, preferably with water vapor of about 20 bar with a Temperature of 214 ° C.
  • the aforesaid thermoplates can have a particularly narrow pipe gap. Thermoshelf pipes are relatively simple and thus cheaper. Intensive heating can be used with thermoplate tubes cold spots are excluded.
  • the mixing device used is preferably static mixers. These are attached in the flow-through pipe Baffles that divide the stream to be mixed several times and bring together again, causing complete homogenization he follows.
  • static mixers are used for example by Sulzer, Winterthur, Switzerland.
  • Static mixers are also in the German patent applications DE 25 250 20 A1, DE 196 223 051 A1 and DE 196 23 105 A1.
  • the subject of the present invention is also a device for producing a homogeneous mixture of a vaporous aromatic hydrocarbon and an oxygen-containing Gas with a pipe for a preheated, oxygen-containing Gas stream, an atomizing device opening into the pipe for a stream of a liquid aromatic hydrocarbon, which is characterized in that the atomizing device Having swirl nozzles, and that the tube at least downstream of the swirl nozzles has walls that at least heated to the boiling point of the hydrocarbon are.
  • the tube preferably comprises a double-jacket tube or a tube Thermoshelf. Particularly preferred is downstream of the swirl nozzles a static mixer arranged in the gas channels.
  • the temperature on the hot tube wall is adjusted so that 5 to 50% by weight of the liquid hydrocarbon, especially 5 to 40 wt.%, Particularly preferably 5 to 30 wt.% Of the pipe wall meet and can be evaporated there, with the exact proportion from the impurities of raw materials, from the hollow cone shape and Nozzle change (erosion) during operation depends.
  • functional unit can be more
  • connect functional units to make PSA e.g. the reactor for converting the o-xylene to PSA, and the device for PSA separation and PSA recovery, as they are from the State of the art are known.
  • the device has a tube 11, which a preheated air flow (in the figure Arrow 12 symbolizes) introduce.
  • a sputtering device 13 provided from the supply lines 14th for liquid o-xylene and arranged at the end of the lines Swirl nozzles 15 exist.
  • the supply lines 14 are of a the pipe 11 concentrically surrounding supply pipe (not shown) fed.
  • the swirl nozzles 15 produce a hollow cone 16 from liquid o-xylene, which in finest drops with a middle Diameter between 0.02 and 0.2 mm decays.
  • the apparatus for o-xylene evaporation in a plant for PSA production consisted of a vertical thermobalance pipe of 1200 mm diameter. Through this, the oxidation air preheated to 200 ° C with a preheater was sent to the reactor. The pressure was about 1.5 bar absolute. The air was charged with o-xylene with a loading of 100 g per Nm 3 . The air was sucked without special cleaning, only via an air filter from the environment. The thermoplate tube was heated to 214 ° C with 20 bar steam. The o-xylene was injected via 6 swirl nozzles, which were mounted on a ring of 600 mm diameter and whose axis was pointing vertically upwards. These were axial hollow cone nozzles (KS 1 of type 216.324 made of steel, Lechler). The form was 8 bar. At a distance of 4.5 m behind the nozzles static mixers were mounted in the horizontally extending pipe section.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas für katalytische Gasphasenreaktionen, insbesondere einem homogenen Gemisch aus dampfförmigem o-Xylol und/oder Naphthalin und Luft zur Herstellung von Phthalsäureanhydrid.
Phthalsäureanhydrid (PSA) ist ein wichtiges zwischenprodukt zur Herstellung von synthetischen Harzen, Phthalatweichmachern, Phthalocyaninfarbstoffen und weiteren Feinchemikalien. PSA wird heutzutage vorwiegend aus o-Xylol hergestellt und zwar überwiegend durch Gasphasenoxidation von o-Xylol mit Luft als Oxidans.
Anlagen zur Durchführung eines solchen PSA-Herstellungsverfahrens bestehen im wesentlichen aus den Funktionseinheiten für die Herstellung der o-Xyloldampf-Luftmischung, dem Reaktor für die Umsetzung der o-Xyloldampf-Luftmischung und einer Einrichtung zur PSA-Abscheidung und Aufarbeitung.
Die Umsetzung durch katalytische Gasphasenoxidation erfolgt meist an V2O5-haltigen Katalysatoren. Dazu wird o-Xylol verdampft, mit einem Überschuß an Luft gemischt und bei 340 °C bis 440 °C über den Katalysator in den Rohren eines Rohrbündelreaktors geleitet. Der Katalysator besteht beispielsweise aus einem Gemisch von V2O5 und TiO2 mit Promotoren auf keramischen Körpern, wie z.B. Porzellan- oder SiC-Kugeln oder -Ringen von beispielsweise 6 x 6 mm Abmessung. Große Reaktoren haben 10.000 bis 40.000 Rohre im Rohrbündel. Üblicherweise wird das o-Xylol mit einer Selektivität von 78% bis 80% zu PSA oxidiert. Diese Oxidation selbst ist mit -1.110 kJ/Mol stark exotherm.
Bei der Verfahrensführung müssen dabei u.a. die folgenden kritischen Punkte beachtet werden: Zum einen befindet sich die Mischung von o-Xylol mit Luft (Sauerstoffüberschuß) im Explosionsbereich (Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A 20, Seite 85), des weiteren muß die große Zahl von 10.000 - 40.000 Rohren mit einer im gesamten Querschnitt gleichen und zeitlich konstanten Gasmischung angeströmt werden, damit die Reaktion in allen Rohren gleich schnell und nicht etwa in einigen besonders schnell oder besonders langsam abläuft. Außerdem kann die stark negative Reaktionsenthalpie dazu führen, daß der Katalysator bei Abweichungen von den eingestellten Bedingungen in einzelnen Rohren sintert, schmilzt oder inaktiv wird. Dies ist mit beträchtlichen Risiken für die Anlage verbunden.
Durch Inhomogenitäten in der Beaufschlagung werden außerdem die Reaktionsbedingungen in den Rohren unterschiedlich. Dadurch entstehen in erhöhtem Maße Nebenprodukte, die die Ausbeuten verringern,und die in späteren Reinigungsstufen vom PSA abgetrennt und entsorgt werden müssen.
Aus der DE-A 1 793 453 ist ein Verfahren zur Herstellung eines homogenen Gemisches aus dampfförmigen o-Xylol und Luft für die katalytische Oxidation zu Phthalsäureanhydrid bekannt. Bei dem bekannten Verfahren wird ein o-Xylolstrom zu Tropfen mit einem Durchmesser von unter 1 mm, beispielsgemäß in einer Größe von überwiegend unter 0,3 mm verstäubt und in einen über den Siedepunkt von o-Xylol vorgewärmten Luftstrom eingeleitet. Dieser Luftstrom ist turbulent; es wird eine Reynoldszahl über 200.000 empfohlen. Die Verweilzeit von der o-Xyloleindüsung bis zum Reaktor muß mindestens 0,2 Sekunden betragen, um ein homogenes Gasgemisch und damit eine gleichmäßige Beaufschlagung aller Rohre zu erhalten.
Trotz dieser Verbesserung, die das Verfahren gemäß DE-A 1 793 453 darstellt, können - besonders bei Schwankungen der Betriebsbedingungen - Veränderungen der Tropfengröße und Störungen der Verdampfung stattfinden. Unterschiedliche Ursachen können hierfür in Frage kommen:
Die Rohstoffe können mehr oder weniger verunreinigt sein. Die Luft kann unter anderem NOx, H2S, Schwefeloxide wie SO2, NH3 und deren Salze, z.B. mit CO2, enthalten, was zu Verengungen einer oder mehrerer Düsen führen kann. Auch Korrosionspartikel können die Tropfengröße und Form des zerstäubten o-Xylolstrahls verändern. Ähnliche Auswirkungen entstehen durch Erosion der Düsen im Langzeitbetrieb. Des weiteren kann das o-Xylol auch m- und p-Xylol, Toluol, Ethylbenzol, Isopropylbenzol, Nonan sowie geringe Mengen an Styrol enthalten. Derartige Verbindungen können die Oberflächenspannung des o-Xylols beeinflussen. Es können Tropfen entstehen, die weiter fliegen als die vorstehend genannten Tropfen mit einer Größe von beispielsweise überwiegend unter 0,3 mm. Diese können die Wand des Reaktionsrohres benetzen und dort einen Flüssigkeitsfilm bilden. Als weitere Schwierigkeit kommt noch hinzu, daß es in der Praxis nicht möglich ist, die Düsen, die zur Zerstäubung des o-Xylolstroms dienen, so zu installieren, daß keine Tropfen des zerstäubten o-Xylolstroms mit der Wand des Führungsrohres in Kontakt kommen.
Auch kann es bei dem Verfahren gemaß DE-A 1 793 453 zu unbeabsichtigten, negativ wirkenden Veränderungen der eingestellten Parameter wie Druck und Temperatur und der Luftmenge kommen. Des weiteren können in den Ausgangsstoffen Luft und o-Xylol enthaltene Beimengungen eingetragen werden und die Tropfen des zerstäubten o-Xylolstroms können die Rohrwand berühren. Insofern ist das vorstehend genannte Verfahren nach wie vor verbesserungsbedürftig.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren und eine Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff, wie o-xylol und/oder Naphthalin, und einem Sauerstoff enthaltenden Gas, insbesondere Luft, für katalytische Gasphasenreaktionen zur Verfügung zu stellen. Insbesondere sollen die oben beschriebenen Nachteile vermieden oder zumindest minimiert werden.
Die Erfindung löst die vorstehend genannten Probleme dadurch, daß bei einem gattungsgemäßen Verfahren die Zerstäubung des flüssigen aromatischen Kohlenwasserstoffs durch Verwendung einer Düse zur Bildung eines Zerstäubungshohlkegels, vorzugsweise einer Dralldüse, erfolgt. Der Zerstäubungshohlkegel kann anfangs ein zusammenhängender Film aus dem flüssigen Kohlenwasserstoff sein, der bei größerem Abstand von der Dralldüse in kleine Fetzen zerreißt, die sich durch Grenzflächenkräfte zu einzelnen Tropfen mit einem Durchmesser von weniger als 1 mm zusammenziehen.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff, wie o-Xylol und/oder Naphthalin und einem Sauerstoff enthaltenden Gas, wie Luft, für katalytische Gasphasenreaktionen, wobei man den flüssigen aromatischen Kohlenwasserstoff zu Tropfen mit einem Durchmesser von weniger als 1 mm zerstäubt und in einen über den Siedepunkt des aromatischen Kohlenwasserstoffs vorgewärmten, Sauerstoff enthaltenden Gasstrom eindüst, wobei das Verfahren dadurch gekennzeichnet ist, daß man das Gemisch in einem Raum erzeugt, der von über den Siedepunkt des Kohlenwasserstoffs beheizten Seitenwänden begrenzt ist, und den flüssigen aromatischen Kohlenwasserstoff mittels Düsen zur Ausbildung eines Hohlkegels, vorzugsweise mittels Dralldüsen, zerstäubt.
Das erfindungsgemäße Verfahren ermöglicht die Erzeugung eines sehr homogenen, strähnenfreien Gemischs aus gasförmigem Sauerstoff, vorzugsweise in Luft oder einem anderen Sauerstoff enthaltenden Gas, und einem Kohlenwasserstoffdampf.
Das erfindungsgemäße Verfahren wird bevorzugt verwendet bei der Herstellung von Carbonsäuren oder Carbonsäureanhydriden durch katalytische Gasphasenoxidation von aromatischen Kohlenwasserstoffen, wie Xylolen, insbesondere o-Xylol und/oder Naphthalin, in Festbettreaktoren. Beispielhaft sei hier die Herstellung von Phthalsäureanhydrid (PSA) genannt.
Im folgenden wird, rein exemplarisch, auf die besonders bevorzugte Verwendung des erfindungsgemäßen Verfahrens bei der Herstellung von PSA durch katalytische Gasphasenoxidation Bezug genommen. Dabei ist der aromatische Kohlenwasserstoff o-Xylol und das sauerstoffhaltige Gas Luft.
Bei dem erfindungsgemäßen Verfahren weist der Zerstäubungshohlkegel bevorzugt einen Öffnungswinkel von 30° bis 70° auf. Besonders bevorzugt besitzt der Zerstäubungshohlkegel einen Öffnungswinkel von ungefähr 60°.
Die Achse des Zerstäubungshohlkegels liegt in der Strömungsrichtung des sauerstoffhaltigen Gases, also etwa der Luft, kann aber um bis zu 30° von dieser abweichen. Dies bedeutet, daß die Mittelachse des Zerstäubungshohlkegels des Kohlenwasserstoffstroms in einem Winkel von -30° bis +30° zur Mittelachse des vorgewärmten Gasstroms steht. Man erreicht dadurch, daß weniger Tropfen des Hohlkegels die Wand berühren. Eine weitere Maßnahme dazu kann insbesondere sein, einen bestimmten Abstand, etwa ein Drittel des Rohrradius von der Wand einzuhalten. Man verwendet vorzugsweise mehrere Düsen, etwa 2 bis 6, bevorzugt 4 bis 6 in etwa gleichen Abständen.
Erfindungsgemäß werden vorzugsweise sog. Dralldüsen zum Zerstäuben des flüssigen Kohlenwasserstoffs verwendet. Diese auch als Hohlkegeldüsen bezeichneten Dralldüsen weisen vorzugsweise vor der Austrittsöffnung einen Leitkörper mit schrägen Anströmflächen auf, die der zu zerstäubenden Flüssigkeit einen Drall oder eine Rotation um die Strömungsachse verleihen. Derartige Dralldüsen sind für andere Verwendungszwecke, wie schnelle Impulsübertragung bei Wasserstrahlpumpen, Einspritzkondensatoren etc. bekannt (vgl. Grassmann "Physikalische Grundlagen der Verfahrenstechnik", Verlag Sauerländer (1970), Seite 355 und 805). Obwohl die Verwendung von Hohlkegeldüsen im erfindungsgemäßen Verfahren besonders bevorzugt ist, können in anderen Ausführungsformen der Erfindung auch Vollkegeldüsen oder Schlitzdüsen verwendet werden. Auch die Verwendung von zweistoffdüsen, welche etwa mit dem zu versprühenden o-Xylol und dem Treibmittel Luft beschickt werden können, ist möglich.
Wenn man zum Erzeugen des erfindungsgemäßen Zerstäubungshohlkegels eine Drall- oder Hohlkegeldüse verwendet, so wird diese bevorzugt mit einem Vordruck von 2 bis 20 bar betrieben, damit sichergestellt ist, daß ein Zerstäubungshohlkegel mit dem erfindungsgemäß bevorzugten Öffnungswinkel von 30° bis 70° entsteht.
Bei dem erfindungsgemäßen Verfahren wird der flüssige Kohlenwasserstoffstrom zu Tropfen mit einem Durchmesser von kleiner als 1 mm, bevorzugt kleiner als 0,8 mm zerstäubt. Besonders bevorzugt wird der Flüssigkeitsstrom zu Tropfen von 0,02 bis 0,2 mm zerstäubt.
Die zur Bildung des Zerstäubungshohlkegels mit einem Öffnungswinkel von 30° bis 70° verwendeten Dralldüsen werden vorteilhaft innerhalb eines von dem Sauerstoffgas durchströmten Rohres kranzförmig auf einem Rohr mit Zuleitung für die zu zerstäubende Flüssigkeit angeordnet. Man kann aber auch das ringförmige Zuleitungsrohr für die Flüssigkeit um das Sauerstoffleitungsrohr anordnen und die Düsen von außen in das Sauerstoffleitungsrohr hineinführen. In diesem Fall sind die Düsenaustrittsöffnungen in Richtung der Gasströmung gerichtet. Wie vorstehend bereits gesagt, kann jedoch die Achse des Hohlkegels um bis zu 30° von der Strömungsrichtung des Gases abweichen. Dadurch kann erreicht werden, daß weniger Tropfen des Hohlkegels die Wand berühren.
Für die Zwecke des erfindungsgemäßen Verfahrens sind insbesondere Axial-Hohlkegeldüsen des Typs KS 1 (Firma Lechler, Metzingen, Deutschland) geeignet. Derartige Düsen ermöglichen die Erzeugung eines Hohlkegels mit dem bevorzugten Kegelwinkel von 60°. Der Hohlkegeldurchmesser beträgt dann in einer Entfernung von 250 mm von der Austrittsöffnung ca. 200 mm. Erfindungsgemäß bilden sich kleine Tropfen mit einem Durchmesser von kleiner als 1 mm, bevorzugt kleiner als 0,8 mm, besonders bevorzugt 0,02 bis 0,2 mm. Letztere verdampfen sehr schnell und sind bereits in einer Entfernung von 200 bis 500 mm von der Düsenaustrittsöffnung vollständig verdampft. Tropfen von 0,8 bis 1 mm können aber bis zur völligen Verdampfung 50 bis 100 cm weit fliegen und dabei die Wand berühren und benetzen.
Wegen dieser Benetzungsmöglichkeit ist vorgesehen, das Gemisch, beispielsweise das o-Xylol-Luft-Gemisch, in einem Raum zu erzeugen, der von über den Siedepunkt des Kohlenwasserstoffs beheizten Seitenwänden begrenzt ist. Vorteilhaft werden die Seitenwände des Raums von einem beheizten Rohr, etwa einem Doppelmantelrohr, insbesondere einem Thermoblechrohr gebildet (derartige Thermoblechrohre werden in Deutschland beispielsweise von den Firmen BUCO, Geesthacht oder DEG, Gelsenkirchen hergestellt). Kohlenwasserstofftröpfchen, die auf das beheizte Rohr treffen, können sich nicht als flüssiger Film ablagern, sondern werden sofort verdampft. Dadurch entsteht schließlich das gewünschte Gemisch aus Kohlenwasserstoffdampf und beispielsweise Luft.
Der Rohrspalt des Doppelmantelrohres kann mit Hochdruckdampf beheizt werden, vorzugsweise mit Wasserdampf von ca. 20 bar mit einer Temperatur von 214 °C. Die vorstehend genannten Thermoblechrohre können einen besonders engen Rohrspalt aufweisen. Thermoblechrohre sind relativ einfach aufgebaut und dadurch kostengünstiger. Durch ein intensive Beheizung können bei Thermoblechrohren kalte Stellen ausgeschlossen werden.
Zu einer vollständigen Homogenisierung wird die Dampf-Luftmischung anschließend gemäß einer weiteren vorteilhaften Verfahrensvariante durch eine Mischeinrichtung geleitet.
Als Mischeinrichtung werden bevorzugt statische Mischer eingesetzt. Dabei handelt es sich um im durchströmten Rohr angebrachte Leitbleche, die den zu durchmischenden Strom mehrfach teilen und wieder zusammen führen, wodurch die vollständige Homogenisierung erfolgt. Derartige statische Mischer werden beispielsweise von der Fa. Sulzer, Winterthur, Schweiz, hergestellt. Statische Mischer werden auch in den deutschen Patentanmeldungen DE 25 250 20 A1, DE 196 223 051 A1 und DE 196 23 105 A1 beschrieben.
Gegenstand der vorliegenden Erfindung ist außerdem eine Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas mit einem Rohr für einen vorgewärmten, Sauerstoff enthaltenden Gasstrom, einer in das Rohr mündenden Zerstäubungseinrichtung für einen Strom eines flüssigen aromatischen Kohlenwasserstoffs, die dadurch gekennzeichnet ist, daß die Zerstäubungseinrichtung Dralldüsen aufweist, und daß das Rohr zumindest stromabwärts von den Dralldüsen Wände aufweist, die wenigstens bis auf die Siedetemperatur des Kohlenwasserstoffs beheizbar sind.
Bevorzugt umfasst das Rohr ein Doppelmantelrohr oder ein Rohr aus Thermoblech. Besonders bevorzugt ist stromabwärts von den Dralldüsen ein statischer Mischer in den Gaskanälen angeordnet.
Die Temperatur an der heißen Rohrwand wird so eingestellt, daß 5 bis 50 Gew.% des flüssigen Kohlenwasserstoffs, insbesondere 5 bis 40 Gew.%, besonders bevorzugt 5 bis 30 Gew.% auf die Rohrwand treffen und dort verdampft werden können, wobei der genaue Anteil von den Verunreinigungen der Rohstoffe, von der Hohlkegelform und Düsenveränderung (Erosion) während des Betriebs abhängt.
An die vorstehend genannte Funktionseinheit können sich weitere Funktionseinheiten etwa zur Herstellung von PSA anschließen, z.B. der Reaktor zur Umsetzung des o-Xylols zu PSA, und die Vorrichtung zur PSA-Abscheidung und PSA-Reingewinnung, wie sie aus dem Stand der Technik bekannt sind.
Die Erfindung wird im folgenden anhand einer in der beigefügten Zeichnung schematisch dargestellten Ausführungsform und durch ein Anwendungsbeispiel näher erläutert.
In der Figur der Zeichnung ist eine Vorrichtung 10 zur Erzeugung eines homogenen Gemisches aus dampfförmigem o-Xylol und/oder Naphthalin und Luft dargestellt. Die Vorrichtung weist ein Rohr 11 auf, welches einen vorgewärmten Luftstrom (in der Figur durch Pfeil 12 symbolisiert) heranführen. In dem Rohr 11 ist eine Zerstäubungseinrichtung 13 vorgesehen, die aus Zufuhrleitungen 14 für flüssiges o-Xylol und aus am Ende der Leitungen angeordneten Dralldüsen 15 bestehen. Die Zufuhrleitungen 14 werden von einem das Rohr 11 konzentrisch umgebenden (nicht dargestellten) Versorgungsrohr gespeist. Die Dralldüsen 15 erzeugen einen Hohlkegel 16 aus flüssigem o-Xylol, der in feinste Tropfen mit einem mittleren Durchmesser zwischen 0,02 und 0,2 mm zerfällt. Die feinen Tropfen verdampfen in dem vorgewärmten Luftstrom sehr schnell, so daß ein homogenes Gemisch aus Luft und o-Xyloldampf entsteht. Zur weiteren Verbesserung der Homogenität ist in dem Rohr 11 ein statischer Mischer 17 angeordnet, durch den das Dampf/Luft-Gemisch geleitet wird. Stromabwärts von den Dralldüsen 15 ist das Rohr 11 als beheizbares Doppelmantelrohr 18 ausgebildet. Das Rohr wird mit Wasserdampf auf eine Temperatur oberhalb des Siedepunktes von o-Xylol erhitzt. Tröpfchen aus zerstäubtem o-Xylol, die auf die Rohrwand treffen, werden somit dort sofort verdampft und lagern sich nicht als Flüssigkeitsfilm ab. Bei 19 mündet das Rohr 11 in einen Rohrbündelreaktor, in welchem Phthalsäureanhydrid durch katalytische Gasphasenoxidation des o-Xylols hergestellt wird.
Beispiel
Die Vorrichtung zur o-Xylolverdampfung bei einer Anlage zur PSA-Herstellung bestand aus einem senkrechten Thermoblechrohr von 1200 mm Durchmesser. Durch dieses wurde die Oxidationsluft, die mit einer Vorwärmvorrichtung auf 200°C vorgewärmt war, zum Reaktor geleitet. Der Druck betrug ungefähr 1,5 bar absolut. Die Luft wurde mit o-Xylol mit einer Beladung von 100 g je Nm3 beaufschlagt. Die Luft wurde ohne besondere Reinigung, lediglich über einen Luftfilter aus der Umgebung angesaugt. Das Thermoblechrohr war mit 20 bar-Dampf auf 214 °C beheizt. Das o-Xylol wurde über 6 Dralldüsen, die auf einem Kranz von 600 mm Durchmesser angebracht waren und deren Achse senkrecht nach oben wies, eingedüst. Es handelte es sich dabei um Axial-Hohlkegeldüsen (KS 1 vom Typ 216.324 aus Stahl, Firma Lechler). Der Vordruck betrug 8 bar. Im Abstand von 4,5 m hinter den Düsen waren im waagerecht verlaufenden Rohrstück statische Mischer angebracht.
Mit diesem Dralldüsen-Heißwand-Mischer-System wurde eine homogene, strähnenfreie o-Xyloldampf-Luft-Mischung erzeugt, deren Homogenität auch durch schwankende Betriebsparameter nicht gestört wurde. Dies wurde an der langzeitkonstanten PSA-Ausbringung festgestellt. Ferner wurden keine die Anlagensicherheit beeinträchtigende, durch Gemischinhomogenitäten verursachte Zündungen innerhalb der Produktionsanlage beobachtet. Schäden oder Notabschaltungen durch hohe Temperaturen in einzelnen Reaktorbereichen oder in Reaktorrohren wurden nicht beobachtet. Zwischen den jährlichen wartungsbedingten Routineabschaltungen lag die Anlagenverfügbarkeit bei über 99%.

Claims (11)

  1. Verfahren zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas für katalytische Gasphasenreaktionen, wobei man
    den flüssigen aromatischen Kohlenwasserstoff zu Tropfen mit einem Durchmesser von weniger als 1 mm zerstäubt und
    in einen über den Siedepunkt des aromatischen Kohlenwasserstoffs vorgewärmten, Sauerstoff enthaltenden Gasstrom eindüst dadurch gekennzeichnet, daß man das Gemisch in einem Raum erzeugt, der von über den Siedepunkt des Kohlenwasserstoffs beheizten Seitenwänden begrenzt ist, und
    den flüssigen aromatischen Kohlenwasserstoff mittels Düsen zur Bildung eines Hohlkegels zerstäubt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Zerstäubungshohlkegel einen Öffnungswinkel von 30° bis 70° besitzt.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Mittelachse des Zerstäubungshohlkegels in einem Winkel von -30° bis +30° zur Mittelachse des vorgewärmten Gasstroms steht.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man den flüssigen aromatischen Kohlenwasserstoff mittels Dralldüsen zerstäubt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Seitenwände des Raums von einem beheizten Rohr gebildet werden.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß an den beheizten Seitenwänden 5 bis 50 Gew.% des zerstäubten Kohlenwasserstoffs verdampft werden.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man das Gemisch nach dem Verdampfen des aromatischen Kohlenwasserstoffs durch einen statischen Mischer leitet.
  8. Verfahren nach einem der vorhergehenden Ansprüche zur Verwendung bei der Phthalsäureanhydridsynthese, wobei der aromatische Kohlenwasserstoff o-Xylol und/oder Naphthalin ist und das Sauerstoff enthaltende Gas Luft ist.
  9. Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas mit
    einem Rohr (11) für einen vorgewärmten, Sauerstoff enthaltenden Gasstrom (12),
    einer in das Rohr (11) mündenden Zerstäubungseinrichtung (13) für einen Strom eines flüssigen aromatischen Kohlenwasserstoffs,
    dadurch gekennzeichnet, daß die Zerstäubungseinrichtung (13) Dralldüsen (15) aufweist,
    und daß das Rohr (11) zumindest stromabwärts von den Dralldüsen (15) Wände (18) aufweist, die wenigstens bis auf die Siedetemperatur des Kohlenwasserstoffs beheizbar sind.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Rohr (11) ein Doppelmantelrohr oder ein Rohr aus Thermoblech umfasst.
  11. Vorrichtung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß stromabwärts von den Dralldüsen ein statischer Mischer in dem Rohr angeordnet ist.
EP00985245A 1999-12-23 2000-12-22 Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas Expired - Lifetime EP1239944B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19962616 1999-12-23
DE19962616A DE19962616A1 (de) 1999-12-23 1999-12-23 Verfahren und Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas
PCT/EP2000/013165 WO2001047622A1 (de) 1999-12-23 2000-12-22 Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas

Publications (2)

Publication Number Publication Date
EP1239944A1 EP1239944A1 (de) 2002-09-18
EP1239944B1 true EP1239944B1 (de) 2004-03-24

Family

ID=7934237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00985245A Expired - Lifetime EP1239944B1 (de) 1999-12-23 2000-12-22 Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas

Country Status (13)

Country Link
US (1) US20030013931A1 (de)
EP (1) EP1239944B1 (de)
JP (1) JP4669184B2 (de)
KR (1) KR100655339B1 (de)
CN (1) CN1174793C (de)
AT (1) ATE262372T1 (de)
AU (1) AU2172001A (de)
DE (2) DE19962616A1 (de)
ES (1) ES2218265T3 (de)
MX (1) MXPA02005852A (de)
MY (1) MY125936A (de)
TW (1) TW581710B (de)
WO (1) WO2001047622A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835443B1 (fr) * 2002-02-01 2004-03-05 Commissariat Energie Atomique Procede et dispositif de melange de gaz
DE102004052827B4 (de) * 2004-11-02 2010-05-06 Lurgi Gmbh Vorrichtung zur Erzeugung eines o-Xylol-Luft-Gemisches für die Phthalsäureanhydrid-Herstellung
DE102005030416B4 (de) * 2005-06-30 2007-06-21 Stockhausen Gmbh Anordnung und Verfahren zur Erwärmung und Begasung eines polymerisationsfähigen Stoffes sowie Vorrichtung und Verfahren zur Herstellung hochreiner (Meth)Acrylsäure
DE102005059971A1 (de) * 2005-12-15 2007-06-21 Fisia Babcock Environment Gmbh Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom, insbesondere zum Einbringen eines Reduktionsmittels in ein Stickoxide enthaltendes Rauchgas
DE102006004068A1 (de) * 2006-01-28 2007-08-09 Fisia Babcock Environment Gmbh Verfahren und Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom
GB0718995D0 (en) * 2007-09-28 2007-11-07 Exxonmobil Chem Patents Inc Improved vaporisation in oxidation to phthalic anhydride
GB0718994D0 (en) 2007-09-28 2007-11-07 Exxonmobil Chem Patents Inc Improved mixing in oxidation to phthalic anhydride
US8648007B2 (en) * 2008-04-22 2014-02-11 Fina Technology, Inc. Vaporization and transportation of alkali metal salts
CN103949171A (zh) * 2014-04-28 2014-07-30 德合南京智能技术有限公司 一种气体与溶液快速混合的方法及装置
EP2955219B1 (de) * 2014-06-12 2020-03-25 The Procter and Gamble Company Wasserlöslicher Beutel mit geprägtem Bereich
JP6941473B2 (ja) * 2017-04-26 2021-09-29 株式会社日本製鋼所 ディスプレイの製造方法、ディスプレイ及び液晶テレビ
CN107096405A (zh) * 2017-06-08 2017-08-29 江苏天宇石化冶金设备有限公司 一种高效气液混合器
CN112546889B (zh) * 2020-11-16 2021-07-20 哈尔滨工业大学 一种用于储释热系统热稳定输出的气体混合装置
KR102469555B1 (ko) * 2020-11-26 2022-11-22 현대제철 주식회사 입자 및 가스 물질 처리장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1350202A (en) * 1918-07-05 1920-08-17 G A Buhl Company Liquid and gas contact apparatus
FR2019460A1 (en) * 1968-09-19 1970-07-03 Zieren Chemiebau Gmbh Dr A Control apparatus for bore pipes and similar bodies
DE2517756A1 (de) * 1975-04-22 1976-11-04 Christian Coulon Verfahren und einrichtung zum zerstaeuben und verbrennen von fluessigen brennstoffen
US4157241A (en) * 1976-03-29 1979-06-05 Avion Manufacturing Co. Furnace heating assembly and method of making the same
CH608587A5 (en) * 1977-03-16 1979-01-15 Michel Suaton Swirl device for burner using liquid fuel atomised at high pressure
DE3044518A1 (de) * 1980-11-26 1982-07-01 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von phthalsaeureanhydrid
JPS5895103A (ja) * 1981-11-30 1983-06-06 ガデリウス株式会社 圧力噴霧式多孔型減温器
DE3371599D1 (en) * 1982-01-29 1987-06-25 Shell Int Research Process for contacting a gas with atomized liquid
JPS63248445A (ja) * 1987-04-03 1988-10-14 Kawasaki Steel Corp 無水フタル酸製造用触媒の再生方法
US5108583A (en) * 1988-08-08 1992-04-28 Mobil Oil Corporation FCC process using feed atomization nozzle
DE3925580A1 (de) * 1989-08-02 1991-02-07 Hoechst Ag Verfahren und vorrichtung zum herstellen von gas/dampf-gemischen
JPH0775658B2 (ja) * 1990-05-10 1995-08-16 株式会社新潟鐵工所 気体混合装置
US5242577A (en) * 1991-07-12 1993-09-07 Mobil Oil Corporation Radial flow liquid sprayer for large size vapor flow lines and use thereof
AU4638293A (en) * 1992-06-18 1994-01-24 Amoco Corporation Method for preparing aromatic carboxylic acids
JPH07332847A (ja) * 1994-06-03 1995-12-22 Mitsubishi Chem Corp 噴霧乾燥方法
JPH08198807A (ja) * 1995-01-30 1996-08-06 Mitsubishi Chem Corp テレフタル酸の製造方法
WO1998037967A1 (de) * 1997-02-27 1998-09-03 Basf Aktiengesellschaft Verfahren zur herstellung von schalenkatalysatoren für die katalytische gasphasenoxidation von aromatischen kohlenwasserstoffen
JP3745489B2 (ja) * 1997-03-18 2006-02-15 富士写真フイルム株式会社 乳化物の製造方法
DE19755275A1 (de) * 1997-12-12 1999-06-17 Basf Ag Verfahren zum Verdampfen von Flüssigkeiten in Gasströmen
JP4026784B2 (ja) * 1998-01-08 2007-12-26 富士重工業株式会社 筒内噴射式エンジン

Also Published As

Publication number Publication date
DE19962616A1 (de) 2001-06-28
CN1411392A (zh) 2003-04-16
CN1174793C (zh) 2004-11-10
KR100655339B1 (ko) 2006-12-08
ATE262372T1 (de) 2004-04-15
MY125936A (en) 2006-09-29
AU2172001A (en) 2001-07-09
WO2001047622A1 (de) 2001-07-05
ES2218265T3 (es) 2004-11-16
US20030013931A1 (en) 2003-01-16
MXPA02005852A (es) 2002-10-23
EP1239944A1 (de) 2002-09-18
TW581710B (en) 2004-04-01
JP4669184B2 (ja) 2011-04-13
JP2003518433A (ja) 2003-06-10
KR20020062374A (ko) 2002-07-25
DE50005821D1 (de) 2004-04-29

Similar Documents

Publication Publication Date Title
EP1239944B1 (de) Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas
DE2429291C2 (de) Verfahren und Vorrichtung zur chemischen und/oder physikalischen Behandlung von Fluiden
DE4430307A1 (de) Verfahren und Vorrichtung zur gleichzeitigen Dispergierung und Zerstäubung von mindestens zwei Flüssigkeiten
EP2252567B1 (de) Verfahren und vorrichtung zur thermischen partiellen oxidation von kohlenwasserstoffen
DE2107960A1 (de) Verfahren und Vorrichtung zum Vermischen eines Gases und einer Flüssigkeit
DE1567685A1 (de) Verfahren und Vorrichtung zur Herstellung gasfoermiger,Wasserstoff und Kohlenmonoxyd enthaltender Mischungen
DE1926919B2 (de) Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff enthaltenden Gasgemischen
WO2019081682A1 (de) Verfahren und anlage zur bildung und zur katalytischen umsetzung eines eduktgemischs - ausführung des reaktors
WO2002023089A1 (de) Zerstäubungsbrenner für die thermische spaltung von schwefelhaltigem reststoff
EP3368473B1 (de) Vorrichtung und verfahren zum erzeugen von synthesegas
DE2506438A1 (de) Verfahren zur thermischen spaltung von abfallschwefelsaeure
DE2127397A1 (de) Verfahren und Vorrichtung zur Gewinnung von Schwefel aus einem Schwefelwasserstoffenthaltenden sauren Gas
DE2363569A1 (de) Verfahren und vorrichtung zur herstellung von gasen durch unvollstaendige verbrennung von kohlenwasserstoffen
EP0137548B1 (de) Verfahren zum Vermischen einer fein zerteilten Flüssigkeit mit einem Gas und Erzeugen einer explosiven Mischung
DE2410847C3 (de) Verwendung eines Ultraschallzerstäubers für die Zerstäubung von Schwefel
DE2156116A1 (de) Verfahren und Vorrichtung zur Herstellung von Ruß
DE2320609C3 (de) Ejektormischvorrichtung
DE2309821C2 (de) Verfahren und Brenner zur Herstellung einer hauptsächlich Wasserstoff und Kohlenmonoxid enthaltenden Gasmischung
DE2253385C2 (de) Brenner zur Herstellung von Synthesegas
DE10212081A1 (de) Vorrichtung zur Zufuhr von Edukten in einen Reaktionsraum
DE1049365B (de) Verfahren und Vorrichtung zur Umsetzung gas- bzw. dampfförmiger oder/ und flüssiger Stoffe, gegebenenfalls zusammen mit festen feinverteilten Stoffen
EP0983965B1 (de) Verfahren und Vorrichtung zur Herstellung von Distickstoffpentoxid
EP0017891B1 (de) Verfahren zur Herstellung von russfreien oder russarmen Verbrennungsgasen
DE2655321B2 (de) Verfahren zur Herstellung von ruBarmen und schwefelfreien Verbrennungs-
DE1793453C2 (de) Verfahren zur Herstellung eines homogenen Gemisches aus dampfförmigem o-XyIoI und Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005821

Country of ref document: DE

Date of ref document: 20040429

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040324

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218265

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041222

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041222

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091216

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180124

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181231

Year of fee payment: 19

Ref country code: BE

Payment date: 20181221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181221

Year of fee payment: 19

Ref country code: DE

Payment date: 20190228

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50005821

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231