WO2001047622A1 - Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas - Google Patents

Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas Download PDF

Info

Publication number
WO2001047622A1
WO2001047622A1 PCT/EP2000/013165 EP0013165W WO0147622A1 WO 2001047622 A1 WO2001047622 A1 WO 2001047622A1 EP 0013165 W EP0013165 W EP 0013165W WO 0147622 A1 WO0147622 A1 WO 0147622A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic hydrocarbon
oxygen
xylene
gas
hydrocarbon
Prior art date
Application number
PCT/EP2000/013165
Other languages
English (en)
French (fr)
Inventor
Ulrich Block
Rolf Seubert
Bernhard Ulrich
Helmut Wunschmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP00985245A priority Critical patent/EP1239944B1/de
Priority to AU21720/01A priority patent/AU2172001A/en
Priority to AT00985245T priority patent/ATE262372T1/de
Priority to DE50005821T priority patent/DE50005821D1/de
Priority to MXPA02005852A priority patent/MXPA02005852A/es
Priority to JP2001548206A priority patent/JP4669184B2/ja
Publication of WO2001047622A1 publication Critical patent/WO2001047622A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/916Turbulent flow, i.e. every point of the flow moves in a random direction and intermixes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions

Definitions

  • the invention relates to a method and a device for producing a homogeneous mixture of a vaporous aromatic hydrocarbon and an oxygen-containing gas for catalytic gas phase reactions, in particular a homogeneous
  • Phthalic anhydride (PA) is an important intermediate for the production of synthetic resins 15, phthalate,
  • PSA Phthalocyanine dyes and other fine chemicals.
  • PSA is mainly produced from o-xylene and mainly by gas phase oxidation of o-xylene with air as an oxidant.
  • plants for carrying out such a PSA manufacturing process consist essentially of the functional units for the production of the o-xylene vapor-air mixture, the reactor for the implementation of the o-xylene vapor-air mixture and a device for PSA separation and processing.
  • reaction by catalytic gas phase oxidation mostly takes place on V 2 Os-containing catalysts.
  • o-xylene is evaporated, mixed with an excess of air and passed at 340 ° C to 440 ° C over the catalyst in the tubes of a tube bundle reactor.
  • the catalyst consists, for example, of a mixture of V 2 0 5 and Ti0 2 with promoters on ceramic bodies, such as porcelain or SiC balls or rings, for example 6 x 6 mm in size.
  • Ceramic bodies such as porcelain or SiC balls or rings, for example 6 x 6 mm in size.
  • Large reactors have 10,000 to 40,000 tubes in the tube bundle.
  • reaction conditions in the tubes Due to inhomogeneities in the loading, the reaction conditions in the tubes also differ. This results in an increased amount of by-products which reduce the yields and which have to be separated from the PSA and disposed of in later cleaning stages. 0
  • DE-A 1 793 453 discloses a process for producing a homogeneous mixture of vaporous o-xylene and air for the catalytic oxidation to phthalic anhydride.
  • an o-xylene stream is sprayed into drops with a diameter of less than 1 mm, for example in a size of predominantly less than 0.3 mm, and introduced into an air stream preheated above the boiling point of o-xylene.
  • This airflow is turbulent; a Reynolds number above 200,000 is recommended.
  • the dwell time from the o-xylene injection to the reactor must be at least 0.2 seconds in order to obtain a homogeneous gas mixture and thus an even exposure to all tubes.
  • the raw materials can be more or less contaminated.
  • the air can contain, inter alia, N0 X , H 2 S, sulfur oxides such as S0 2 , NH 3 and their salts, for example with C0 2 , which can lead to narrowing of one or more nozzles.
  • Corrosion particles can also change the drop size and shape of the atomized o-xylene jet. Similar effects arise from erosion of the nozzles in long-term operation.
  • the o-xylene can also contain m- and p-xylene, toluene, ethylbenzene, isopropylbenzene, nonane and small amounts of styrene. Such compounds can affect the surface tension of the Q o-xylene.
  • Drops can occur that fly farther than the aforementioned drops with a size of, for example, predominantly below 0.3 mm. These can wet the wall of the reaction tube and form a liquid film there. Another difficulty is that it is not possible in practice to install the nozzles used to atomize the o-xylene stream in such a way that no drops of the atomized o-xylene stream come into contact with the wall of the guide tube.
  • the method according to DE-A 1 793 453 can also lead to unintentional, negatively acting changes in the set parameters, such as pressure and temperature and the amount of air.
  • admixtures containing air and o-xylene can be added and the drops of the atomized o-xylene stream can touch the pipe wall. In this respect, the above-mentioned method is still in need of improvement.
  • a vaporous aromatic hydrocarbon such as o-xylene and / or naphthalene
  • an oxygen-containing gas in particular air
  • the invention solves the above-mentioned problems in that, in a generic method, the atomization of the liquid aromatic hydrocarbon takes place by using a nozzle to form a hollow atomizing cone, preferably a swirl nozzle.
  • the atomizing hollow cone can initially be a coherent film made of the liquid hydrocarbon, which at greater distance from the swirl nozzle tears into small pieces that contract to form individual drops with a diameter of less than 1 mm due to interfacial forces.
  • the present invention therefore relates to a method for
  • a homogeneous mixture of a vaporous aromatic hydrocarbon, such as o-xylene and / or naphthalene and an oxygen-containing gas, such as air, for catalytic gas phase reactions whereby the liquid aromatic hydrocarbon is atomized into drops with a diameter of less than 1 mm and in an oxygen-containing gas stream preheated above the boiling point of the aromatic hydrocarbon is injected, the process being characterized in that the liquid aromatic hydrocarbon is atomized by means of nozzles to form a hollow cone, preferably by means of swirl nozzles.
  • the method according to the invention enables the generation of a very homogeneous, streak-free mixture of gaseous oxygen, preferably in air or another gas containing oxygen, and a hydrocarbon vapor.
  • the process according to the invention is preferably used in the production of carboxylic acids or carboxylic anhydrides by catalytic gas-phase oxidation of aromatic hydrocarbons, such as xylenes, in particular o-xylene and / or naphthalene, in fixed bed reactors.
  • aromatic hydrocarbons such as xylenes, in particular o-xylene and / or naphthalene
  • PSA phthalic anhydride
  • the hollow atomizing cone preferably has an opening angle of 30 ° to 70 °.
  • the atomizing hollow cone particularly preferably has an opening angle of approximately 60 °.
  • the axis of the hollow atomizing cone lies in the direction of flow of the oxygen-containing gas, that is to say approximately the air, but can deviate from this by up to 30 °.
  • a further measure for this can in particular be to maintain a certain distance, approximately one third of the pipe radius, from the wall. It is preferable to use several nozzles, approximately 2 to 6, preferably 4 to 6, at approximately equal intervals.
  • swirl nozzles are preferably used to atomize the liquid hydrocarbon.
  • These swirl nozzles which are also referred to as hollow cone nozzles, preferably have a guide body with oblique inflow surfaces in front of the outlet opening, which impart swirl or rotation about the flow axis to the liquid to be atomized.
  • Swirl nozzles of this type are known for other uses, such as rapid impulse transmission in water jet pumps, injection condensers, etc. (cf. Grassmann "Physical principles of process engineering", Verlag Sauerators (1970), pages 355 and 805).
  • hollow cone nozzles are particularly preferred in the method according to the invention, full cone nozzles or slot nozzles can also be used in other embodiments of the invention.
  • the liquid hydrocarbon stream is atomized into drops with a diameter of less than 1 mm, preferably less than 0.8 mm. Most preferably, the liquid stream is atomized into drops of 0.02 to 0.2 mm.
  • the swirl nozzles used to form the hollow atomizing cone with an opening angle of 30 ° to 70 ° are advantageously in ⁇
  • the nozzle outlet openings are directed in the direction of the gas flow.
  • the axis of the hollow cone can deviate from the direction of flow of the gas by up to 30 °. It can thereby be achieved that fewer drops of the hollow cone touch the wall.
  • Axial hollow cone nozzles of the type KS 1 (Lechler, Metzingen, Germany) are particularly suitable for the purposes of the method according to the invention. Such nozzles enable generation
  • drops of 0.8 to 1 mm can fly 50 to 100 cm until they evaporate completely, touching and wetting the wall.
  • thermoplates of this type are used in Germany, for example, produced by the companies BUCO, Geesthacht or DEG, Gelsenmün. Droplets of hydrocarbon that hit the heated pipe cannot deposit as a liquid film, but are evaporated immediately. This finally creates the desired mixture of hydrocarbon vapor and air, for example.
  • the pipe gap of the double jacket pipe can be heated with high pressure steam, preferably with water steam of approx. 20 bar with a temperature of 214 ° C.
  • the above-mentioned thermoplates can have a particularly narrow pipe gap.
  • Thermo sheet metal tubes are relatively simple and therefore more cost-effective. Intensive heating can prevent cold spots in the thermo sheet. 5
  • the steam-air mixture is then passed through a mixing device in accordance with a further advantageous process variant.
  • Static mixers are preferably used as the mixing device. These are baffles attached in the flow-through tube, which divide the flow to be mixed several times and bring it back together, as a result of which the homogenization 5 takes place completely. Static mixers of this type are manufactured, for example, by Sulzer, Winterthur, Switzerland. Static mixers are also described in German patent applications DE 25 250 20 AI, DE 196 223 051 AI and DE 196 23 105 AI.
  • the present invention also relates to a device for producing a homogeneous mixture of a vaporous aromatic hydrocarbon and an oxygen-containing gas with gas channels for a preheated, oxygen-containing gas stream, an atomization device opening into the gas channels for a stream of a liquid aromatic hydrocarbon , which is characterized in that the atomizing device has swirl nozzles, and that the gas channels have walls, at least downstream of the swirl nozzles, which can be heated at least to the boiling point of the hydrocarbon.
  • the gas channels preferably comprise a heatable tube, in particular a double-jacket tube or a tube made of thermoplate.
  • a static mixer is particularly preferably arranged downstream of the swirl nozzles in the gas channels.
  • the temperature on the hot tube wall is set so that 5 to 50% by weight of the liquid hydrocarbon, in particular 5 to 40% by weight, particularly preferably 5 to 30% by weight, meet the tube wall and can be evaporated there, the exact Proportion depends on the contamination of the raw materials, the shape of the hollow cone and the change in the nozzle (erosion) during operation.
  • further functional units may be about connect for the production of PSA, for example, 0 t he reactor for reacting the o-xylene to PSA, and the device for PSA separation and PSA obtain pure, as known from the prior art are.
  • FIG. 10 In the figure of the drawing is a device 10 for generating a homogeneous mixture of vaporous o-xylene and / or
  • the device has gas channels 11 which bring a preheated air flow (symbolized by arrow 12 in the figure).
  • the gas channels 11 are designed as a tube in the example shown.
  • a 5 atomizing device 13 is provided in the tube 11, which consists of supply lines 14 for liquid o-xylene and swirl nozzles 15 arranged at the end of the lines.
  • the feed lines 14 are fed by a supply pipe (not shown) concentrically surrounding the pipe 11.
  • the swirl nozzles 15 produce a hollow cone 16 made of liquid o-xylene, which disintegrates into the finest drops with an average diameter between 0.02 and 0.2 mm.
  • a static mixer 17 is arranged in the tube 11, through which the steam / air mixture is passed. Downstream of the swirl nozzles 15, the tube 11 is designed as a heatable double-jacket tube 18. The tube is heated with steam to a temperature above the boiling point of o-xylene. Atomized o-xylene droplets falling on the
  • the tube 11 opens into a tube bundle reactor in which phthalic anhydride is produced by catalytic gas phase oxidation of the o-xylene.
  • the device for o-xylene evaporation in a plant for the production of PSA consisted of a vertical thermoplate with a diameter of 1200 mm.
  • the oxidizing air which had been preheated to 200 ° C. using a preheater, was passed through this to the reactor.
  • the pressure was approximately 1.5 bar absolute.
  • the air was charged with o-xylene with a load of 100 g per Nm 3 .
  • the air was sucked in from the environment without any special purification, only through an air filter.
  • the thermoplate was heated to 214 ° C with 20 bar steam.
  • the o-xylene was injected via 6 swirl nozzles, which were attached to a rim 600 mm in diameter and whose axis was pointing vertically upwards. These were axial hollow cone nozzles (KS 1 type 216.324 made of steel, Lechler company). The admission pressure was 8 bar. Static mixers were installed in the horizontal pipe section at a distance of 4.5 m behind the nozzles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Accessories For Mixers (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas für katalytische Gasphasenreaktionen, insbesondere einem homogenen Gemisch aus dampfförmigem o-Xylol und/oder Naphthalin und Luft zur Herstellung von Phthalsäureanhydrid. Dabei zerstäubt man den flüssigen aromatischen Kohlenwasserstoff zu Tropfen mit einem Durchmesser von weniger als 1 mm und düst ihn in einen über den Siedepunkt des aromatischen Kohlenwasserstoffs vorgewärmten, Sauerstoff enthaltenden Gasstrom (12) ein. Erfindungsgemäß zerstäubt man den flüssigen aromatischen Kohlenwasserstoff mittels Düsen (15) zur Bildung eines Hohlkegels (16), vorzugsweise mittels Dralldüsen. Vorteilhaft wird das o-Xylol-Luft-Gemisch in einem Raum erzeugt, der von über den Siedepunkt des Kohlenwasserstoffs beheizten Seitenwänden (18) begrenzt ist.

Description

Verfahren und Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas
5
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas für katalytische Gasphasenreaktionen, insbesondere einem homoge¬
10 nen Gemisch aus dampfförmigem o-Xylol und/oder Naphthalin und Luft zur Herstellung von Phthalsäureanhydrid.
Phthalsäureanhydrid (PSA) ist ein wichtiges Zwischenprodukt zur 15 Herstellung von synthetischen Harzen, Phthalatweichmachern,
Phthalocyaninfarbstoffen und weiteren Feinchemikalien. PSA wird heutzutage vorwiegend aus o-Xylol hergestellt und zwar überwiegend durch Gasphasenoxidation von o-Xylol mit Luft als Oxidans .
20 Anlagen zur Durchführung eines solchen PSA-Herstellungsverfa rens bestehen im wesentlichen aus den Funktionseinheiten für die Herstellung der o-Xyloldampf-Luftmischung, dem Reaktor für die Umsetzung der o-Xyloldampf-Luftmischung und einer Einrichtung zur PSA-Abscheidung und Aufarbeitung.
25
Die Umsetzung durch katalytische Gasphasenoxidation erfolgt meist an V2Os-haltigen Katalysatoren. Dazu wird o-Xylol verdampft, mit einem Überschuß an Luft gemischt und bei 340 °C bis 440 °C über den Katalysator in den Rohren eines Rohrbündelreaktors geleitet.
30 Der Katalysator besteht beispielsweise aus einem Gemisch von V205 und Ti02 mit Promotoren auf keramischen Körpern, wie z.B. Porzellan- oder SiC-Kugeln oder -Ringen von beispielsweise 6 x 6 mm Abmessung. Große Reaktoren haben 10.000 bis 40.000 Rohre im Rohrbündel. Üblicherweise wird das o-Xylol mit einer Selektivität von
35 78% bis 80% zu PSA oxidiert. Diese Oxidation selbst ist mit -1.110 kJ/Mol stark exotherm.
Bei der Verfahrensführung müssen dabei u.a. die folgenden kritischen Punkte beachtet werden: Zum einen befindet sich die Mi-
40 schung von o-Xylol mit Luft (SauerstoffÜberschuß) im Explosionsbereich (Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A 20, Seite 85), des weiteren muß die große Zahl von 10.000 - 40.000 Rohren mit einer im gesamten Querschnitt gleichen und zeitlich konstanten Gasmischung angeströmt werden, damit die
45 Reaktion in allen Rohren gleich schnell und nicht etwa in einigen besonders schnell oder besonders langsam abläuft. Außerdem kann die stark negative Reaktionsenthalpie dazu führen, daß der Kata- lysator bei Abweichungen von den eingestellten Bedingungen in einzelnen Rohren sintert, schmilzt oder inaktiv wird. Dies ist mit beträchtlichen Risiken für die Anlage verbunden.
Durch Inhomogenitäten in der Beaufschlagung werden außerdem die Reaktionsbedingungen in den Rohren unterschiedlich. Dadurch entstehen in erhöhtem Maße Nebenprodukte, die die Ausbeuten verringern und die in späteren Reinigungsstufen vom PSA abgetrennt und entsorgt werden müssen. 0
Aus der DE-A 1 793 453 ist ein Verfahren zur Herstellung eines homogenen Gemisches aus dampfförmigen o-Xylol und Luft für die katalytische Oxidation zu Phthalsäureanhydrid bekannt. Bei dem bekannten Verfahren wird ein o-Xylolstrom zu Tropfen mit einem 5 Durchmesser von unter 1 mm, beispielsgemäß in einer Größe von überwiegend unter 0,3 mm verstäubt und in einen über den Siedepunkt von o-Xylol vorgewärmten Luftstrom eingeleitet. Dieser Luftstrom ist turbulent; es wird eine Reynoldszahl über 200.000 empfohlen. Die Verweilzeit von der o-Xyloleindüsung bis zum Reak0 tor muß mindestens 0,2 Sekunden betragen, um ein homogenes Gasgemisch und damit eine gleichmäßige Beaufschlagung aller Rohre zu erhalten.
g Trotz dieser Verbesserung, die das Verfahren gemäß DE-A 1 793 453 darstellt, können - besonders bei Schwankungen der Betriebsbedingungen - Veränderungen der Tropfengröße und Störungen der Verdampfung stattfinden. Unterschiedliche Ursachen können hierfür in Frage kommen: 0
Die Rohstoffe können mehr oder weniger verunreinigt sein. Die Luft kann unter anderem N0X, H2S, Schwefeloxide wie S02, NH3 und deren Salze, z.B. mit C02, enthalten, was zu Verengungen einer oder mehrerer Düsen führen kann. Auch Korrosionspartikel können 5 die Tropfengröße und Form des zerstäubten o-Xylolstrahls verändern. Ähnliche Auswirkungen entstehen durch Erosion der Düsen im Langzeitbetrieb. Des weiteren kann das o-Xylol auch m- und p-Xy- lol, Toluol, Ethylbenzol, Isopropylbenzol, Nonan sowie geringe Mengen an Styrol enthalten. Derartige Verbindungen können die Q Oberflächenspannung des o-Xylols beeinflussen. Es können Tropfen entstehen, die weiter fliegen als die vorstehend genannten Tropfen mit einer Größe von beispielsweise überwiegend unter 0,3 mm. Diese können die Wand des Reaktionsrohres benetzen und dort einen Flüssigkeitsfilm bilden. Als weitere Schwierigkeit kommt noch _ hinzu, daß es in der Praxis nicht möglich ist, die Düsen, die zur Zerstäubung des o-Xylolstroms dienen, so zu installieren, daß keine Tropfen des zerstäubten o-Xylolstroms mit der Wand des Führungsrohres in Kontakt kommen. Auch kann es bei dem Verfahren gemäß DE-A 1 793 453 zu unbeabsichtigten, negativ wirkenden Veränderungen der eingestellten Parameter wie Druck und Temperatur und der Luftmenge kommen. Des weiteren können in den Ausgangsstoffen Luft und o-Xylol enthaltene Beimengungen eingetragen werden und die Tropfen des zerstäubten o-Xylolstroms können die Rohrwand berühren. Insofern ist das vorstehend genannte Verfahren nach wie vor verbesserungsbedürftig.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren und eine Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff, wie o-Xylol und/oder Naphthalin, und einem Sauer- stoff enthaltenden Gas, insbesondere Luft, für katalytische Gasphasenreaktionen zur Verfügung zu stellen. Insbesondere sollen die oben beschriebenen Nachteile vermieden oder zumindest minimiert werden.
Die Erfindung löst die vorstehend genannten Probleme dadurch, daß bei einem gattungsgemäßen Verfahren die Zerstäubung des flüssigen aromatischen Kohlenwasserstoffs durch Verwendung einer Düse zur Bildung eines Zerstäubungshohlkegels, vorzugsweise einer Dralldüse, erfolgt. Der Zerstäubungshohlkegel kann anfangs ein zusam- menhängender Film aus dem flüssigen Kohlenwasserstoff sein, der bei größerem Abstand von der Dralldüse in kleine Fetzen zerreißt, die sich durch Grenzflächenkräfte zu einzelnen Tropfen mit einem Durchmesser von weniger als 1 mm zusammenziehen.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur
Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff, wie o-Xylol und/oder Naphthalin und einem Sauerstoff enthaltenden Gas, wie Luft, für katalytische Gasphasenreaktionen, wobei man den flüssigen aromatischen Kohlenwasserstoff zu Tropfen mit einem Durchmesser von weniger als 1 mm zerstäubt und in einen über den Siedepunkt des aromatischen Kohlenwasserstoffs vorgewärmten, Sauerstoff enthaltenden Gasstrom eindüst, wobei das Verfahren dadurch gekennzeichnet ist, daß man den flüssigen aromatischen Kohlenwasserstoff mittels Düsen zur Ausbildung eines Hohlkegels, vorzugsweise mittels Dralldüsen, zerstäubt.
Das erfindungsgemäße Verfahren ermöglicht die Erzeugung eines sehr homogenen, strähnenfreien Gemischs aus gasförmigem Sauerstoff, vorzugsweise in Luft oder einem anderen Sauerstoff enthaltenden Gas, und einem Kohlenwasserstoffdampf . Das erfindungsgemäße Verfahren wird bevorzugt verwendet bei der Herstellung von Carbonsäuren oder Carbonsäureanhydriden durch katalytische Gasphasenoxidation von aromatischen Kohlenwasserstoffen, wie Xylolen, insbesondere o-Xylol und/oder Naphthalin, in Festbettreaktoren. Beispielhaft sei hier die Herstellung von Phthalsäureanhydrid (PSA) genannt.
Im folgenden wird, rein exemplarisch, auf die besonders bevorzugte Verwendung des erfindungsgemäßen Verfahrens bei der Her- Stellung von PSA durch katalytische Gasphasenoxidation Bezug genommen. Dabei ist der aromatische Kohlenwasserstoff o-Xylol und das Sauerstoffhaltige Gas Luft.
Bei dem erfindungsgemäßen Verfahren weist der Zerstäubungshohlkegel bevorzugt einen Öffnungswinkel von 30° bis 70° auf. Besonders bevorzugt besitzt der Zerstäubungshohlkegel einen Öffnungswinkel von ungefähr 60°.
Die Achse des Zerstäubungshohlkegels liegt in der Strömungsrichtung des Sauerstoffhaltigen Gases, also etwa der Luft, kann aber um bis zu 30° von dieser abweichen. Dies bedeutet, daß die Mittelachse des Zerstäubungshohlkegels des Kohlenwasserstoffstroms in einem Winkel von -30° bis +30° zur Mittelachse des vorgewärmten Gasstroms steht. Man erreicht dadurch, daß weniger Tropfen des Hohlkegels die Wand berühren. Eine weitere Maßnahme dazu kann insbesondere sein, einen bestimmten Abstand, etwa ein Drittel des Rohrradius von der Wand einzuhalten. Man verwendet vorzugsweise mehrere Düsen, etwa 2 bis 6, bevorzugt 4 bis 6 in etwa gleichen Abständen.
Erfindungsgemäß werden vorzugsweise sog. Dralldüsen zum Zerstäuben des flüssigen Kohlenwasserstoffs verwendet. Diese auch als Hohlkegeldüsen bezeichneten Dralldüsen weisen vorzugsweise vor der Austrittsöffnung einen Leitkörper mit schrägen Anströmflächen auf, die der zu zerstäubenden Flüssigkeit einen Drall oder eine Rotation um die Strömungsachse verleihen. Derartige Dralldüsen sind für andere Verwendungszwecke, wie schnelle Impulsübertragung bei Wasserstrahlpumpen, Einspritzkondensatoren etc. bekannt (vgl. Grassmann "Physikalische Grundlagen der Verfahrenstechnik", Verlag Sauerländer (1970), Seite 355 und 805). Obwohl die Verwendung von Hohlkegeldüsen im erfindungsgemäßen Verfahren besonders bevorzugt ist, können in anderen Ausführungsformen der Erfindung auch Vollkegeldüsen oder Schlitzdüsen verwendet werden. Auch die Verwendung von Zweistoffdüsen, welche etwa mit dem zu versprühenden o-Xylol und dem Treibmittel Luft beschickt werden können, ist möglich. Wenn man zum Erzeugen des erfindungsgemäßen Zerstäubungshohlkegels eine Drall- oder Hohlkegeldüse verwendet, so wird diese bevorzugt mit einem Vordruck von 2 bis 20 bar betrieben, damit sichergestellt ist, daß ein Zerstäubungshohlkegel mit dem erfin- 5 dungsgemäß bevorzugten Öffnungswinkel von 30° bis 70° entsteht.
Bei dem erfindungsgemäßen Verfahren wird der flüssige Kohlenwasserstoffstrom zu Tropfen mit einem Durchmesser von kleiner als 1 mm, bevorzugt kleiner als 0,8 mm zerstäubt. Besonders bevorzugt !0 wird der Flüssigkeitsstrom zu Tropfen von 0,02 bis 0,2 mm zerstäubt.
Die zur Bildung des Zerstäubungshohlkegels mit einem Öffnungswinkel von 30° bis 70° verwendeten Dralldüsen werden vorteilhaft in¬
15 nerhalb eines von dem Sauerstoffgas durchströmten Rohres kranzförmig auf einem Rohr mit Zuleitung für die zu zerstäubende Flüssigkeit angeordnet. Man kann aber auch das ringförmige Zulei- tungsrohr für die Flüssigkeit um das Sauerstoffleitungsrohr anordnen und die Düsen von außen in das Sauerstoffleitungsrohr hin¬
20 einführen. In diesem Fall sind die Düsenaustrittsöffnungen in Richtung der Gasströmung gerichtet. Wie vorstehend bereits gesagt, kann jedoch die Achse des Hohlkegels um bis zu 30° von der Strömungsrichtung des Gases abweichen. Dadurch kann erreicht werden, daß weniger Tropfen des Hohlkegels die Wand berühren.
25
Für die Zwecke des erfindungsgemäßen Verfahrens sind insbesondere Axial-Hohlkegeldüsen des Typs KS 1 (Firma Lechler, Metzingen, Deutschland) geeignet. Derartige Düsen ermöglichen die Erzeugung
30 eines Hohlkegels mit dem bevorzugten Kegelwinkel von 60°. Der Hohlkegeldurchmesser beträgt dann in einer Entfernung von 250 mm von der Austrittsöffnung ca. 200 mm. Erfindungsgemäß bilden sich kleine Tropfen mit einem Durchmesser von kleiner als 1 mm, bevorzugt kleiner als 0,8 mm, besonders bevorzugt 0,02 bis 0,2 mm. Letztere verdampfen sehr schnell und sind bereits in einer Ent¬
35 fernung von 200 bis 500 mm von der Düsenaustrittsöffnung vollständig verdampft. Tropfen von 0,8 bis 1 mm können aber bis zur völligen Verdampfung 50 bis 100 cm weit fliegen und dabei die Wand berühren und benetzen.
40
Wegen dieser Benetzungsmöglichkeit ist gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, das Gemisch, beispielsweise das o-Xylol-Luft-Gemisch, in einem Raum zu erzeugen, der von über den Siedepunkt des Kohlen- 4g Wasserstoffs beheizten Seitenwänden begrenzt ist. Vorteilhaft werden die Seitenwände des Raums von einem beheizten Rohr, etwa einem Doppelmantelrohr, insbesondere einem Thermoblechrohr gebildet (derartige Thermoblechrohre werden in Deutschland beispiels- weise von den Firmen BUCO, Geesthacht oder DEG, Gelsenkirchen hergestellt). Kohlenwasserstofftropfchen, die auf das beheizte Rohr treffen, können sich nicht als flüssiger Film ablagern, sondern werden sofort verdampft. Dadurch entsteht schließlich das 5 gewünschte Gemisch aus Kohlenwasserstoffdampf und beispielsweise Luft.
Der Rohrspalt des Doppelmantelrohres kann mit Hochdruckdampf beheizt werden, vorzugsweise mit Wasserdampf von ca. 20 bar mit ei- ° ner Temperatur von 214 °C. Die vorstehend genannten Thermoblech- rohre können einen besonders engen Rohrspalt aufweisen. Ther o- blechrohre sind relativ einfach aufgebaut und dadurch kostengünstiger. Durch ein intensive Beheizung können bei Thermoblechroh- ren kalte Stellen ausgeschlossen werden. 5
Zu einer vollständigen Homogenisierung wird die Dampf-Luftmischung anschließend gemäß einer weiteren vorteilhaften Verfahrensvariante durch eine Mischeinrichtung geleitet. 0
Als Mischeinrichtung werden bevorzugt statische Mischer eingesetzt. Dabei handelt es sich um im durchströmten Rohr angebrachte Leitbleche, die den zu durchmischenden Strom mehrfach teilen und wieder zusammen führen, wodurch die vollständige Homogenisierung 5 erfolgt. Derartige statische Mischer werden beispielsweise von der Fa. Sulzer, Winterthur, Schweiz, hergestellt. Statische Mischer werden auch in den deutschen Patentanmeldungen DE 25 250 20 AI, DE 196 223 051 AI und DE 196 23 105 AI beschrieben.
0 Gegenstand der vorliegenden Erfindung ist außerdem eine Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas mit Gaskanälen für einen vorgewärmten, Sauerstoff enthaltenden Gasstrom, einer in die Gaskanäle mündenden Zerstäu- 5 bungseinrichtung für einen Strom eines flüssigen aromatischen Kohlenwasserstoffs, die dadurch gekennzeichnet ist, daß die Zerstäubungseinrichtung Dralldüsen aufweist, und daß die Gaskanäle zumindest stromabwärts von den Dralldüsen Wände aufweisen, die wenigstens bis auf die Siedetemperatur des Kohlenwasserstoffs be- 0 heizbar sind.
Bevorzugt umfassen die Gaskanäle ein beheizbares Rohr, insbesondere ein Doppelmantelrohr oder ein Rohr aus Thermoblech. Besonders bevorzugt ist stromabwärts von den Dralldüsen ein statischer 5 Mischer in den Gaskanälen angeordnet. Die Temperatur an der heißen Rohrwand wird so eingestellt, daß 5 bis 50 Gew.% des flüssigen Kohlenwasserstoffs, insbesondere 5 bis 40 Gew.%, besonders bevorzugt 5 bis 30 Gew.% auf die Rohrwand treffen und dort verdampft werden können, wobei der genaue Anteil von den Verunreinigungen der Rohstoffe, von der Hohlkegelform und Düsenveränderung (Erosion) während des Betriebs abhängt.
An die vorstehend genannte Funktionseinheit können sich weitere Funktionseinheiten etwa zur Herstellung von PSA anschließen, z.B. 0 der Reaktor zur Umsetzung des o-Xylols zu PSA, und die Vorrichtung zur PSA-Abscheidung und PSA-Reingewinnung, wie sie aus dem Stand der Technik bekannt sind.
Die Erfindung wird im folgenden anhand einer in der beigefügten 5 Zeichnung schematisch dargestellten Ausführungsform und durch ein Anwendungsbeispiel näher erläutert.
In der Figur der Zeichnung ist eine Vorrichtung 10 zur Erzeugung 0 eines homogenen Gemisches aus dampfförmigem o-Xylol und/oder
Naphthalin und Luft dargestellt. Die Vorrichtung weist Gaskanäle 11 auf, welche einen vorgewärmten Luftstrom (in der Figur durch Pfeil 12 symbolisiert) heranführen. Die Gaskanäle 11 sind im dargestellten Beispiel als Rohr ausgebildet. In dem Rohr 11 ist eine 5 Zerstäubungseinrichtung 13 vorgesehen, die aus Zufuhrleitungen 14 für flüssiges o-Xylol und aus am Ende der Leitungen angeordneten Dralldüsen 15 bestehen. Die Zufuhrleitungen 14 werden von einem das Rohr 11 konzentrisch umgebenden (nicht dargestellten) Versorgungsrohr gespeist. Die Dralldüsen 15 erzeugen einen Hohlkegel 16 aus flüssigem o-Xylol, der in feinste Tropfen mit einem mittleren Durchmesser zwischen 0,02 und 0,2 mm zerfällt. Die feinen Tropfen verdampfen in dem vorgewärmten Luftstrom sehr schnell, so daß ein homogenes Gemisch aus Luft und o-Xyloldampf entsteht. Zur weiteren Verbesserung der Homogenität ist in dem Rohr 11 ein statischer Mischer 17 angeordnet, durch den das Dampf/Luft-Gemisch geleitet wird. Stromabwärts von den Dralldüsen 15 ist das Rohr 11 als beheizbares Doppelmantelrohr 18 ausgebildet. Das Rohr wird mit Wasserdampf auf eine Temperatur oberhalb des Siedepunktes von o-Xylol erhitzt. Tröpfchen aus zerstäubtem o-Xylol, die auf die
Rohrwand treffen, werden somit dort sofort verdampft und lagern 0 sich nicht als Flüssigkeitsfilm ab. Bei 19 mündet das Rohr 11 in einen Rohrbündelreaktor, in welchem Phthalsäureanhydrid durch katalytische Gasphasenoxidation des o-Xylols hergestellt wird.
g Beispiel Die Vorrichtung zur o-Xylolverdampfung bei einer Anlage zur PSA- Herstellung bestand aus einem senkrechten Thermoblechrohr von 1200 mm Durchmesser. Durch dieses wurde die Oxidationsluft, die mit einer Vorwärmvorrichtung auf 200°C vorgewärmt war, zum Reaktor geleitet. Der Druck betrug ungefähr 1,5 bar absolut. Die Luft wurde mit o-Xylol mit einer Beladung von 100 g je Nm3 beaufschlagt. Die Luft wurde ohne besondere Reinigung, lediglich über einen Luftfilter aus der Umgebung angesaugt. Das Thermoblechrohr war mit 20 bar-Dampf auf 214 °C beheizt. Das o-Xylol wurde über 6 Dralldüsen, die auf einem Kranz von 600 mm Durchmesser angebracht waren und deren Achse senkrecht nach oben wies, eingedüst. Es handelte es sich dabei um Axial-Hohlkegeldüsen (KS 1 vom Typ 216.324 aus Stahl, Firma Lechler) . Der Vordruck betrug 8 bar. Im Abstand von 4,5 m hinter den Düsen waren im waagerecht verlaufen- den Rohrstück statische Mischer angebracht.
Mit diesem Dralldüsen-Heißwand-Mischer-System wurde eine homogene, strähnenfreie o-Xyloldampf-Luft-Mischung erzeugt, deren Homogenität auch durch schwankende Betriebsparameter nicht gestört wurde. Dies wurde an der langzeitkonstanten PSA-Ausbringung festgestellt. Ferner wurden keine die Anlagensicherheit beeinträchtigende, durch Gemischinhomogenitäten verursachte Zündungen innerhalb der Produktionsanlage beobachtet. Schäden oder Notabschaltungen durch hohe Temperaturen in einzelnen Reaktorbereichen oder in Reaktorrohren wurden nicht beobachtet. Zwischen den jährlichen wartungsbedingten Routineabschaltungen lag die Anlagenverfügbarkeit bei über 99%.

Claims

Patentansprüche
1. Verfahren zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas für katalytische Gasphasenreaktionen, wobei man den flüssigen aromatischen Kohlenwasserstoff zu Tropfen mit einem Durchmesser von weniger als 1 mm zerstäubt und in einen über den Siedepunkt des aromatischen Kohlenwasserstoffs vorgewärmten, Sauerstoff enthaltenden Gasstrom eindüst dadurch gekennzeichnet, daß man den flüssigen aromatischen Kohlenwasserstoff mittels Dü- sen zur Bildung eines Hohlkegels, vorzugsweise Dralldüsen, zerstäubt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Zerstäubungshohlkegel einen Öffnungswinkel von 30° bis 70° besitzt.
3. Verfahren nach einem der Ansprüche 1 oder 2 , dadurch gekennzeichnet, daß die Mittelachse des Zerstäubungshohlkegels in einem Winkel von -30° bis +30° zur Mittelachse des vorgewärm- ten Gasstroms steht.
4. Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, daß man das Gemisch in einem Raum erzeugt, der von über den Siedepunkt des Kohlenwasserstoffs beheizten Seiten- wänden begrenzt ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Seitenwände des Raums von einem beheizten Rohr, insbesondere einem Thermoblechrohr gebildet werden.
6. Verfahren nach einem der Ansprüche 4 oder 5 , dadurch gekennzeichnet, daß an den beheizten Seitenwänden 5 bis 50 Gew.%, bevorzugt 5 bis 40 Gew.%, besonders bevorzugt 5 bis 30 Gew.% des zerstäubten Kohlenwasserstoffs verdampft werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man das Gemisch nach dem Verdampfen des aromatischen Kohlenwasserstoffs durch einen statischen Mischer leitet.
8. Verfahren nach einem der vorhergehenden Ansprüche zur Verwendung bei der Phthalsäureanhydridsynthese, wobei der aromatische Kohlenwasserstoff o-Xylol und/oder Naphthalin ist und das Sauerstoff enthaltende Gas Luft ist.
5
9. Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas mit
Gaskanälen (11) für einen vorgewärmten, Sauerstoff enthalten-
10 den Gasstrom (12), einer in die Gaskanäle (11) mündenden Zerstäubungseinrichtung (13) für einen Strom eines flüssigen aromatischen Kohlenwasserstoffs, dadurch gekennzeichnet,
15 daß die Zerstäubungseinrichtung (13) Dralldüsen (15) aufweist, und daß die Gaskanäle (11) zumindest stromabwärts von den Dralldüsen (15) Wände (18) aufweisen, die wenigstens bis auf die Siedetemperatur des Kohlenwasserstoffs beheizbar sind.
20
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Gaskanäle (11) ein beheizbares Rohr, insbesondere ein Doppelmantelrohr oder ein Rohr aus Thermoblech umfassen.
25 11. Vorrichtung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß stromabwärts von den Dralldüsen ein statischer Mischer in den Gaskanälen angeordnet ist.
30
35
40
45
PCT/EP2000/013165 1999-12-23 2000-12-22 Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas WO2001047622A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP00985245A EP1239944B1 (de) 1999-12-23 2000-12-22 Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas
AU21720/01A AU2172001A (en) 1999-12-23 2000-12-22 Method and device for production of a homogeneous mixture of a vapour-forming aromatic hydrocarbon and an oxygen-containing gas
AT00985245T ATE262372T1 (de) 1999-12-23 2000-12-22 Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas
DE50005821T DE50005821D1 (de) 1999-12-23 2000-12-22 Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas
MXPA02005852A MXPA02005852A (es) 1999-12-23 2000-12-22 Metodo y dispositivo para la produccion de una mezcla homogenea de un hidrocarburo aromatico que forma vapor y un gas que contiene oxigeno.
JP2001548206A JP4669184B2 (ja) 1999-12-23 2000-12-22 蒸気状芳香族炭化水素及び酸素含有ガスからなる均質混合物を製造するための方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19962616A DE19962616A1 (de) 1999-12-23 1999-12-23 Verfahren und Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas
DE19962616.2 1999-12-23

Publications (1)

Publication Number Publication Date
WO2001047622A1 true WO2001047622A1 (de) 2001-07-05

Family

ID=7934237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/013165 WO2001047622A1 (de) 1999-12-23 2000-12-22 Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas

Country Status (13)

Country Link
US (1) US20030013931A1 (de)
EP (1) EP1239944B1 (de)
JP (1) JP4669184B2 (de)
KR (1) KR100655339B1 (de)
CN (1) CN1174793C (de)
AT (1) ATE262372T1 (de)
AU (1) AU2172001A (de)
DE (2) DE19962616A1 (de)
ES (1) ES2218265T3 (de)
MX (1) MXPA02005852A (de)
MY (1) MY125936A (de)
TW (1) TW581710B (de)
WO (1) WO2001047622A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2190807A1 (de) 2007-09-28 2010-06-02 ExxonMobil Chemical Patents Inc. Verbesserte verdampfung bei der oxidation zu phthalsäureanhydrid
US8703974B2 (en) 2007-09-28 2014-04-22 Exxonmobil Chemical Patents Inc. Vaporization in oxidation to phthalic anhydride

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835443B1 (fr) * 2002-02-01 2004-03-05 Commissariat Energie Atomique Procede et dispositif de melange de gaz
DE102004052827B4 (de) * 2004-11-02 2010-05-06 Lurgi Gmbh Vorrichtung zur Erzeugung eines o-Xylol-Luft-Gemisches für die Phthalsäureanhydrid-Herstellung
DE102005030416B4 (de) * 2005-06-30 2007-06-21 Stockhausen Gmbh Anordnung und Verfahren zur Erwärmung und Begasung eines polymerisationsfähigen Stoffes sowie Vorrichtung und Verfahren zur Herstellung hochreiner (Meth)Acrylsäure
DE102005059971A1 (de) * 2005-12-15 2007-06-21 Fisia Babcock Environment Gmbh Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom, insbesondere zum Einbringen eines Reduktionsmittels in ein Stickoxide enthaltendes Rauchgas
DE102006004068A1 (de) * 2006-01-28 2007-08-09 Fisia Babcock Environment Gmbh Verfahren und Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom
US8648007B2 (en) * 2008-04-22 2014-02-11 Fina Technology, Inc. Vaporization and transportation of alkali metal salts
CN103949171A (zh) * 2014-04-28 2014-07-30 德合南京智能技术有限公司 一种气体与溶液快速混合的方法及装置
EP2955219B1 (de) * 2014-06-12 2020-03-25 The Procter and Gamble Company Wasserlöslicher Beutel mit geprägtem Bereich
JP6941473B2 (ja) * 2017-04-26 2021-09-29 株式会社日本製鋼所 ディスプレイの製造方法、ディスプレイ及び液晶テレビ
CN107096405A (zh) * 2017-06-08 2017-08-29 江苏天宇石化冶金设备有限公司 一种高效气液混合器
CN112546889B (zh) * 2020-11-16 2021-07-20 哈尔滨工业大学 一种用于储释热系统热稳定输出的气体混合装置
KR102469555B1 (ko) * 2020-11-26 2022-11-22 현대제철 주식회사 입자 및 가스 물질 처리장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1350202A (en) * 1918-07-05 1920-08-17 G A Buhl Company Liquid and gas contact apparatus
FR2019460A1 (en) * 1968-09-19 1970-07-03 Zieren Chemiebau Gmbh Dr A Control apparatus for bore pipes and similar bodies
FR2384206A1 (fr) * 1977-03-16 1978-10-13 Suaton Michel Dispositif turbulateur pour bruleur a combustible liquide pulverise a haute pression
US4157241A (en) * 1976-03-29 1979-06-05 Avion Manufacturing Co. Furnace heating assembly and method of making the same
EP0085445A2 (de) * 1982-01-29 1983-08-10 Shell Internationale Researchmaatschappij B.V. Verfahren zum Mischen eines Gases mit einer zerstäubten Flüssigkeit
DE19755275A1 (de) * 1997-12-12 1999-06-17 Basf Ag Verfahren zum Verdampfen von Flüssigkeiten in Gasströmen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2517756A1 (de) * 1975-04-22 1976-11-04 Christian Coulon Verfahren und einrichtung zum zerstaeuben und verbrennen von fluessigen brennstoffen
DE3044518A1 (de) * 1980-11-26 1982-07-01 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von phthalsaeureanhydrid
JPS5895103A (ja) * 1981-11-30 1983-06-06 ガデリウス株式会社 圧力噴霧式多孔型減温器
JPS63248445A (ja) * 1987-04-03 1988-10-14 Kawasaki Steel Corp 無水フタル酸製造用触媒の再生方法
US5108583A (en) * 1988-08-08 1992-04-28 Mobil Oil Corporation FCC process using feed atomization nozzle
DE3925580A1 (de) * 1989-08-02 1991-02-07 Hoechst Ag Verfahren und vorrichtung zum herstellen von gas/dampf-gemischen
JPH0775658B2 (ja) * 1990-05-10 1995-08-16 株式会社新潟鐵工所 気体混合装置
US5242577A (en) * 1991-07-12 1993-09-07 Mobil Oil Corporation Radial flow liquid sprayer for large size vapor flow lines and use thereof
RU2128641C1 (ru) * 1992-06-18 1999-04-10 Амоко Корпорейшн Способ получения ароматических карбоновых кислот и способ получения очищенной нафталиндикарбоновой кислоты
JPH07332847A (ja) * 1994-06-03 1995-12-22 Mitsubishi Chem Corp 噴霧乾燥方法
JPH08198807A (ja) * 1995-01-30 1996-08-06 Mitsubishi Chem Corp テレフタル酸の製造方法
US6288273B1 (en) * 1997-02-27 2001-09-11 Basf Aktiengesellschaft Method for producing shell catalysts for catalytic gas-phase oxidation of aromatic hydrocarbons
JP3745489B2 (ja) * 1997-03-18 2006-02-15 富士写真フイルム株式会社 乳化物の製造方法
JP4026784B2 (ja) * 1998-01-08 2007-12-26 富士重工業株式会社 筒内噴射式エンジン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1350202A (en) * 1918-07-05 1920-08-17 G A Buhl Company Liquid and gas contact apparatus
FR2019460A1 (en) * 1968-09-19 1970-07-03 Zieren Chemiebau Gmbh Dr A Control apparatus for bore pipes and similar bodies
US4157241A (en) * 1976-03-29 1979-06-05 Avion Manufacturing Co. Furnace heating assembly and method of making the same
FR2384206A1 (fr) * 1977-03-16 1978-10-13 Suaton Michel Dispositif turbulateur pour bruleur a combustible liquide pulverise a haute pression
EP0085445A2 (de) * 1982-01-29 1983-08-10 Shell Internationale Researchmaatschappij B.V. Verfahren zum Mischen eines Gases mit einer zerstäubten Flüssigkeit
DE19755275A1 (de) * 1997-12-12 1999-06-17 Basf Ag Verfahren zum Verdampfen von Flüssigkeiten in Gasströmen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2190807A1 (de) 2007-09-28 2010-06-02 ExxonMobil Chemical Patents Inc. Verbesserte verdampfung bei der oxidation zu phthalsäureanhydrid
US8703974B2 (en) 2007-09-28 2014-04-22 Exxonmobil Chemical Patents Inc. Vaporization in oxidation to phthalic anhydride
US9156018B2 (en) 2007-09-28 2015-10-13 Exxonmobil Chemical Patents Inc. Vaporisation in oxidation to phthalic anhydride

Also Published As

Publication number Publication date
EP1239944A1 (de) 2002-09-18
US20030013931A1 (en) 2003-01-16
CN1411392A (zh) 2003-04-16
MY125936A (en) 2006-09-29
ES2218265T3 (es) 2004-11-16
AU2172001A (en) 2001-07-09
TW581710B (en) 2004-04-01
ATE262372T1 (de) 2004-04-15
JP2003518433A (ja) 2003-06-10
EP1239944B1 (de) 2004-03-24
DE50005821D1 (de) 2004-04-29
KR100655339B1 (ko) 2006-12-08
MXPA02005852A (es) 2002-10-23
KR20020062374A (ko) 2002-07-25
DE19962616A1 (de) 2001-06-28
JP4669184B2 (ja) 2011-04-13
CN1174793C (zh) 2004-11-10

Similar Documents

Publication Publication Date Title
EP1239944B1 (de) Verfahren und vorrichtung zur erzeugung eines homogenen gemisches aus einem dampfförmigen aromatischen kohlenwasserstoff und einem sauerstoff enthaltenden gas
DE2429291C2 (de) Verfahren und Vorrichtung zur chemischen und/oder physikalischen Behandlung von Fluiden
DE4430307A1 (de) Verfahren und Vorrichtung zur gleichzeitigen Dispergierung und Zerstäubung von mindestens zwei Flüssigkeiten
EP2252567B1 (de) Verfahren und vorrichtung zur thermischen partiellen oxidation von kohlenwasserstoffen
DE1567685A1 (de) Verfahren und Vorrichtung zur Herstellung gasfoermiger,Wasserstoff und Kohlenmonoxyd enthaltender Mischungen
DE1926919B2 (de) Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff enthaltenden Gasgemischen
EP0364712B1 (de) Verfahren zum Entfernen von Stickoxyden aus Rauchgasen
EP1327106B1 (de) Zerstäubungsbrenner für die thermische spaltung von schwefelhaltigem reststoff
CH511631A (de) Verfahren und Vorrichtung zum Vermischen von Gasen und Flüssigkeiten mit einem flüssigen Medium sowie Anwendung des Verfahrens
EP3368473B1 (de) Vorrichtung und verfahren zum erzeugen von synthesegas
DE2506438A1 (de) Verfahren zur thermischen spaltung von abfallschwefelsaeure
DE2711726A1 (de) Verfahren und vorrichtung zum verspruehen einer fluessigkeit
EP3338883B1 (de) Vorrichtung und verfahren zum eintragen von gas in eine mehrzahl von prozessfluiden
EP0137548B1 (de) Verfahren zum Vermischen einer fein zerteilten Flüssigkeit mit einem Gas und Erzeugen einer explosiven Mischung
DE2363569A1 (de) Verfahren und vorrichtung zur herstellung von gasen durch unvollstaendige verbrennung von kohlenwasserstoffen
DE2320609C3 (de) Ejektormischvorrichtung
DE2309821C2 (de) Verfahren und Brenner zur Herstellung einer hauptsächlich Wasserstoff und Kohlenmonoxid enthaltenden Gasmischung
DE2410847A1 (de) Vorrichtung zur verbrennung von schwefel
DE10212081A1 (de) Vorrichtung zur Zufuhr von Edukten in einen Reaktionsraum
DE2253385A1 (de) Verfahren und brenner zur synthesegasherstellung
CH697389B1 (de) Integrierter Reaktor.
DE1793453C2 (de) Verfahren zur Herstellung eines homogenen Gemisches aus dampfförmigem o-XyIoI und Luft
EP0983965B1 (de) Verfahren und Vorrichtung zur Herstellung von Distickstoffpentoxid
EP0017891B1 (de) Verfahren zur Herstellung von russfreien oder russarmen Verbrennungsgasen
DE2249961C3 (de) Verfahren zur Synthesegasherstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/005852

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 00817394X

Country of ref document: CN

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 548206

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000985245

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027008183

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10168953

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027008183

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000985245

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000985245

Country of ref document: EP