EP1176569B1 - Procédé de surveillance de l'état du trafic sur un réseau routier comportant des modifications effectives du trafic - Google Patents

Procédé de surveillance de l'état du trafic sur un réseau routier comportant des modifications effectives du trafic Download PDF

Info

Publication number
EP1176569B1
EP1176569B1 EP01117818A EP01117818A EP1176569B1 EP 1176569 B1 EP1176569 B1 EP 1176569B1 EP 01117818 A EP01117818 A EP 01117818A EP 01117818 A EP01117818 A EP 01117818A EP 1176569 B1 EP1176569 B1 EP 1176569B1
Authority
EP
European Patent Office
Prior art keywords
traffic
fcd
speed
pattern
synchronized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01117818A
Other languages
German (de)
English (en)
Other versions
EP1176569A2 (fr
EP1176569A3 (fr
Inventor
Boris Prof. Dr. Kerner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1176569A2 publication Critical patent/EP1176569A2/fr
Publication of EP1176569A3 publication Critical patent/EP1176569A3/fr
Application granted granted Critical
Publication of EP1176569B1 publication Critical patent/EP1176569B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the invention relates to a method for determining the Traffic conditions in a traffic network with effective bottlenecks according to the preamble of claim 1.
  • Method for monitoring and forecasting the traffic condition e.g. on road networks are variously known and especially for various telematics applications in vehicles of interest.
  • One goal of this procedure is to look at Traffic measuring points collected traffic data a least qualitative description of the traffic condition at the respective Win the measuring point and its surroundings.
  • measuring points both stationary installed measuring points and movable measuring points into consideration, the latter especially in shape of moving in traffic measuring vehicles, so-called "Floating Cars”.
  • effective bottlenecks in the present case denotes such Places of the transport network, where appropriate at Traffic localized over a period of time permanent border or flank between downstream free Traffic and upstream synchronized traffic forms.
  • the formation of such effective bottlenecks is common, though not exclusively, through appropriate topographical Conditions of the transport network, such as bottlenecks, where the number of usable lanes decreases, through opening access lanes, through a bend, a slope, a slope, a division of a roadway into several lanes or by exits.
  • Effective bottlenecks can but also e.g. due to temporary traffic disruptions, such as by itself compared to the average vehicle speed in free traffic slow moving bottlenecks, e.g. Construction vehicles, or accident sites.
  • the traffic condition can be upstream Effective bottlenecks in different patterns dense traffic classify that from a typical sequence of the mentioned customizable dynamic state phases or made up of these areas. So forms upstream an effective bottleneck typically first Area of synchronized traffic, to the upstream connect an area of compressed synchronized traffic can, in front of which then an area becomes wider moving Can form congestion.
  • dense traffic upstream of an effective bottleneck belongs a corresponding Profile taken into account for the state phase determination Traffic parameters, such as the temporal-local course of the Vehicle speed within the pattern.
  • Empirical or otherwise obtained, stored traffic data are known to be used to traffic conditions on the transport network, i. e. for one predict future time.
  • this is the so-called hydrograph forecast, in the current measured traffic data with stored hydrographic traffic data be compared and make it a best fit Is determined on the basis of which the future Traffic status is estimated, see for example the published patent application DE 197 53 034 A1.
  • Other traffic condition forecasting methods Among others, from FCD (Floating Car Data) traffic data is used in the published patent applications DE 197 25 556 A1, DE 197 37 440 A1, DE 197 54 483 A1 and EP 0 902 405 A2 and the patent DE 195 26 148 C2 described.
  • the invention is the provision as a technical problem a method of the type mentioned, with the the current traffic condition especially in the area upstream determined by effective bottlenecks comparatively reliable can be so based on that as needed too reliable traffic forecasts are possible.
  • the invention solves this problem by providing a Method with the features of claim 1.
  • This method is characterized in particular by the fact that currently seal collected FCD traffic data to recognize patterns Traffic at effective bottlenecks.
  • the FCD traffic data contains at least one piece of information about the place and the speed, preferably over the time- and location-dependent speed course, of the respective traffic data-collecting FCD vehicle, the FCD traffic data for a respective stretch of one FCD vehicle at certain intervals and / or from several, driving this section of the route at intervals FCD vehicles are won.
  • FCD traffic data recorded by the FCD vehicle (s) then becomes for the respective route section determines whether there is an effective bottleneck, i. a localized limit over a certain period of time Flank between downstream free traffic and upstream synchronized traffic. This is for example recognizable that the one or more FCD vehicles in the concerned Line section upstream of the effective bottleneck reported vehicle speeds one for the state below free traffic typical average speed value.
  • FCD traffic data continues to do so evaluated that they have a matching pattern seal Traffic upstream of the effective bottleneck assigned becomes. This will then seal as the currently present pattern Traffic at the relevant bottleneck. This is the current traffic condition in this area determines what e.g. for a traffic forecast by means of a Hydrograph forecast or another forecasting technique used can be.
  • FCD traffic data detects whether a range of "moving wide traffic jams" from his Pattern has replaced dense traffic at its upstream At the end he arose, which is the case when the reported vehicle speeds downstream of this Not as in the area of compressed synchronized traffic behave, but e.g. as in the area of free traffic.
  • claims 3 and 4 further developed method allow the specific recognition of driveways or departure-like ones effective bottlenecks because of the reported vehicle speeds above or before the actual, e.g. when information stored in a digital road map Increase the location of the corresponding route topography change.
  • a further developed according to claim 5 method allows the detection of non-topographical temporary Bottlenecks, such as are given by accident sites.
  • a further developed according to claim 7 method allows specifically the detection of the boundary between the area “moving wide jam “and the area” compressed synchronized Traffic "in a pattern of dense traffic a further developed according to claim 8 method the detection the boundary between the area “compressed synchronized Traffic “and the area” synchronized traffic "in one Pattern dense traffic, and claim 9 gives a preferred one Method of detecting the boundary between the area “free Traffic “and the area” synchronized traffic ".
  • a further developed according to claim 10 method allows a Determining the current traffic volume from the recorded traffic FCD traffic data for the various detected traffic condition phases “free traffic”, “synchronized traffic” and “compressed synchronized traffic” based on associated, Travel times derived from the FCD traffic data.
  • One after Claim 11 further developed method analogous to a Determining the traffic volume for recognized storage areas.
  • Fig. 1 schematically shows the flow of the present traffic condition determination method.
  • a first step 1 will be Data on the locations of topographical route characteristics used for Formation of effective bottlenecks can, for a considered Transport network recorded in advance and in a corresponding Database stored, preferably together with other data in Form of a digital road network map. This can then be in one on-vehicle memory and / or in a computer of a traffic center be carried along. Vehicle side or central side further suitable components are implemented, with which current FCD traffic data from corresponding FCD vehicles can be received and evaluated, in particular to the effect that from current FCD traffic data to current present effective bottlenecks and patterns dense traffic is closed upstream of it. This will be below explained in detail. For the rest, the evaluation of the FCD traffic data by any of the conventional methods respectively. The evaluation can then be used in particular to create automatic travel time forecasts.
  • FCD traffic data recorded by FCD vehicles on the different sections of the transport network i. to move in the traffic.
  • the FCD traffic data include in particular Data about the current speed and the current location of the respective FCD vehicle and depending on the application further conventional FCD data content.
  • the recorded FCD traffic data will be transmitted to the evaluating body which as I said in a particular vehicle or in a stationary Traffic control center can be positioned. In the evaluative Place then takes place as the one of primary interest here Process step 3, the evaluation of the suitably recorded FCD traffic data to determine the current traffic condition in particular with regard to the presence of more effective Narrowing and patterns dense traffic to effective ones Constrictions. This will be described in detail below. in the the rest can be the traffic condition at other points of the transport network if necessary following one of the usual procedures be determined. The determined current traffic condition and especially the recognized, currently existing patterns dense Traffic at effective bottlenecks can then be the basis for Form traffic forecasts, see step 4.
  • the evaluation of the recorded FDC traffic data begins with the determination of whether one or more, in temporal Distance behind each other a respective stretch of road driving FCD vehicles running for consecutive Positions reported on the relevant section of the route Vehicle speeds or a derived thereof average vehicle speed at the respective measuring location fall below a predetermined threshold, which is for a traffic disruption event is representative. This will detect if there is a non-free traffic condition, i. traffic jam or a range of "moving wide jams" or an area “synchronized traffic” or “compressed synchronized Traffic. As I said, this is traffic jam detection already possible with the data of a single FCD vehicle. If the data of several consecutive same section of the route driving FCD vehicles however, improves the accuracy and reliability of detection especially the traffic dynamics and the change in mean travel times as well as traffic flow behavior detectable.
  • FCD traffic data in this area will continue to do so analyzed if this condition is on an effective bottleneck based.
  • An indication of this is when the downstream end of the recognized state non-free traffic locally fixed what remains on the local presence of an effective Bottleneck indicates. It continues from the current FCD traffic data, in particular the corresponding traffic parameter profile specifically the speed profile, vehicle and / or a matching, matching pattern on the central side dense traffic. The pattern thus determined dense traffic is then considered to be the present one and for further applications.
  • These applications include a traffic warehouse construction as needed for subareas or the entire transport network and / or one Traffic forecast for this and / or a selection of the best appropriate hydrograph from a corresponding hydrograph database for traffic forecasting and / or the creation of an improved Hydrograph forecast for the transport network.
  • One measure is to evaluate the FCD velocity data of one or more FCD vehicles to determine whether a range of "moving wide jams" has come off the upstream end of a dense traffic pattern where such areas typically arise and develop has been or still belongs to the pattern.
  • the downstream flank F St, GS of the "moving wide jam” region has been removed upstream from the upstream end of the dense traffic pattern associated with an effective bottleneck at a location x S, F , as in the schematic situation diagram 2
  • the upstream flank F St, GS of the "moving wide jam” region forms the boundary to a downstream adjoining region of "compressed synchronized traffic" as shown in the situation diagram of FIG.
  • FCD speed data for example, by the fact that from this boundary F St, GS by the attainment of the "compressed synchronized traffic" over the previous speed values upstream of which compares relatively strong and short-term speed reductions almost to standstill for typically about 1min to 2min with intervening vehicle motions during which the vehicle speed is in a typical range for compressed synchronized traffic of about 20km / h to 40km / h for typical periods of about 3min to 7min alternate.
  • the present method allows a decision based on FCD traffic data on whether a localized effective bottleneck a driveaway or a departure-like effective bottleneck is as referred to below explained on Fig. 3.
  • Fig. 3 shows in the upper part schematically an environment of an effective Bottleneck and in the lower part diagrammatically the associated typical location-dependent course of vehicle flow, Vehicle density and vehicle speed.
  • Fig. 3 shows in the upper part schematically an environment of an effective Bottleneck and in the lower part diagrammatically the associated typical location-dependent course of vehicle flow, Vehicle density and vehicle speed.
  • rises in the actual area of the effective bottleneck the vehicle speed from the lower value in the upstream Area synchronized traffic steadily to the higher mean speed value in the area of free traffic while, conversely, the vehicle density is correspondingly steady decreases.
  • With a vertical line is in the upper part of the picture the place where the effective Bottleneck is actually located.
  • the present method allows detection effective bottlenecks that did not register, i.e. go back to previously stored route topography features, but e.g. temporarily from accident sites on highways caused. It is concluded that such an effective bottleneck when the measured FCD speed data is on Patterns dense traffic have indexed and the FCD speeds after leaving this area dense traffic compared with a given, typical for free traffic Threshold low average speed value rise again and a predetermined, for a phase transition of synchronized to exceed normal traffic threshold, which in this case is chosen larger than the corresponding one Threshold for the distinction described above between effective bottlenecks at access roads and departures exist.
  • an effective, unrecorded Bottleneck accepted when the location of the speed increase outside the environments of the specified, known places the relevant track topography changes.
  • the present method further allows a decision whether a recognized pattern dense traffic a single or is an overarching pattern.
  • a criterion serves determining whether the range of synchronized traffic or compressed synchronized traffic over the location of the localization an associated effective bottleneck extended is. This is based on the measured FCD speeds Recognizing that downstream of the downstream flank the area of synchronized traffic forming effective Bottleneck no significant increase in mean vehicle speed occurs, which means that a pattern is dense Traffic of a downstream effective bottleneck this has reached or overlaps the upstream effective bottleneck.
  • the evaluated FCD velocity profile can be It also recognizes how many effective bottlenecks such an overarching Pattern covered. This is done using the FCD speed data found out about how many effective Narrow down an area of synchronized traffic and / or compressed synchronized traffic or an uninterrupted and any sequence of areas moving wider Traffic jams, compressed synchronized traffic and synchronized Traffic expands.
  • F GS, S On the basis of the recorded FCD speed data, it is further possible to determine the location of the border F GS, S between an area of compressed synchronized traffic and a region of synchronized traffic downstream of it in a pattern of dense traffic.
  • a boundary F GS, S lies for both a complete dense traffic pattern with an area B S synchronized traffic, an upstream adjacent area B GS compressed synchronized traffic and an upstream area B St of moving wide congestion, as shown in FIG. 4, as well as for a reduced pattern shown in FIG. 5, dense traffic lacking the range of moving wide jams.
  • the location of the flank F GS, S is determined to be the location above which the typical speed profile of the compressed synchronized traffic described above transitions to a speed profile typical for synchronized traffic, whereupon the average vehicle speed in the synchronized traffic range is between a typical minimum synchronized speed Traffic, which is possible without compression phenomena, and a typical minimum speed for free traffic.
  • the location of a boundary F F, S between the area of synchronized traffic B s and an upstream area of free traffic B F for a reduced dense traffic pattern can be determined, which is shown in FIG. 6, and only synchronized traffic exists upstream of an effective bottleneck, followed by a downstream free traffic area again, with the downstream edge F s, F of the synchronized traffic area B S always coinciding with the location X S, F effective bottleneck corresponds.
  • the location of the flank F F, S between free traffic and downstream synchronized traffic is determined as the location above which the average vehicle speed, previously obtained from the FCD speed data, which previously corresponded to the typical value for free traffic, falls below the typical minimum value for free traffic and then within the typical speed range for synchronized traffic, ie between the typical minimum speed for synchronized traffic and the typical minimum speed for free traffic.
  • the present method makes it possible to determine the traffic volume q (j) for the different route edges j, especially for expressways of a traffic network.
  • the travel times t tr (j) of several FCD vehicles are simply determined on the basis of the corresponding location and time data and together with their distance to be determined from these data ⁇ L on the line edge j used for traffic strength determination. This is done for the various traffic state phases "free traffic”, “synchronized traffic”, “compressed synchronized traffic” and “congestion” in a suitably adapted manner as follows.
  • Q synch (j) (T, L) of the traffic intensity in function of the travel time T and the associated distance L, between which the corresponding travel time was measured by the respective FCD vehicle, used in order to use the current measured travel time t tr (j) and the current FCD vehicle distance ⁇ L to determine the current traffic volume q (j) in the synchronized traffic through the relationship q (J) Q synch (J) (t tr (J) , ⁇ L) to determine.
  • the travel time corresponds to the travel time of one or more FCD vehicles between the boundary F GS, S compressed synchronized traffic to the synchronized traffic and the boundary F S, F synchronized traffic to the free traffic, when a dense traffic type of traffic 4 or 5, and the corresponding travel time between the boundary F F, S free traffic to the synchronized traffic and the boundary F S, F of the synchronized to the free traffic in the case of a dense traffic pattern according to Fig. 6.
  • the travel time corresponds to the travel time of one or more FCD vehicles between the limits F St, GS and F GS, S in the case of the dense traffic pattern of FIG.
  • the distance ⁇ L to be used is also the length of the area of synchronized traffic B S or compressed synchronized traffic s B GS .
  • q out (j) denotes a characteristic predetermined traffic volume of vehicles leaving the traffic jam
  • the above equations 1 to 4 are on the right equation page each with an additional lane actuator n / m to provide cross-section traffic volume taking into account the number of lanes, where n the number of lanes at the beginning of the considered Section and m the number of lanes at the end of the section and is presupposed that the Lane number during the considered period of the evaluated FCD traffic data does not change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Claims (11)

  1. Procédé de surveillance de l'état du trafic sur un réseau de circulation comportant un ou plusieurs goulets d'étranglement effectifs, en particulier sur un réseau routier, où
    l'état de la circulation est classifié en plusieurs phases par prise en compte de données de trafic enregistrées, lesquelles comprennent au moins les phases « circulation fluide », « circulation synchronisée » et « bouchons étendus en mouvement », et où
    l'état de la circulation en amont d'un goulet d'étranglement effectif du réseau si un flanc fixé (FS,F) pour celui-ci entre la circulation fluide en aval (BF) et la circulation synchronisée en amont (BS) est détecté, est classifié en tant que modèle de circulation dense représentatif du goulet d'étranglement effectif correspondant, ledit modèle comprenant une ou plusieurs zones (BS, BGS, BST) différentes de compositions de phase différenciées se succédant en amont et un profil associé des paramètres de trafic pris en compte pour la détermination de phase,
       caractérisé en ce que
    des données de trafic FCD contenant une information sur la localisation et la vitesse du véhicule sont enregistrées à intervalle temporel par un ou plusieurs véhicules se déplaçant dans le trafic, et en ce
    qu'à partir des données de trafic FCD enregistrées pour un segment de trajet correspondant, il est constaté si un goulet d'étranglement effectif est présenté, et, dans l'affirmative, un modèle de circulation dense adapté aux données de trafic FCD actuelles est défini en tant que modèle de circulation dense actuellement présenté sur le goulet d'étranglement effectif.
  2. Procédé selon la revendication 1, caractérisé en ce qu'à partir des données de trafic FCD enregistrées, il est constaté si une zone « bouchons étendus en mouvement » forme toujours la partie en amont d'un modèle de circulation dense détecté ou si elle s'en est éloignée en amont.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'à partir des données de trafic FCD, il est constaté si la vitesse de véhicule en aval d'un modèle de circulation dense remonte à partir d'une valeur de vitesse inférieure à une valeur de vitesse représentative d'une circulation fluide, et dépasse une valeur seuil représentative d'une transition de phase de la circulation synchronisée à la circulation fluide, et si dans ce cas le lieu de la prise de vitesse est situé après un point de localisation d'une variation topographique de trajet correspondante, ce à partir de quoi il est conclu à un goulet d'étranglement effectif de type arrivée.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'à partir des données de trafic FCD, il est constaté si la vitesse de véhicule en aval d'un modèle de circulation dense remonte à partir d'une valeur de vitesse inférieure à une valeur de vitesse représentative d'une circulation fluide, et dépasse une valeur seuil représentative d'une transition de phase de la circulation synchronisée à la circulation fluide, et si dans ce cas le lieu de la prise de vitesse est situé avant un point de localisation d'une variation topographique de trajet correspondante, ce à partir de quoi il est conclu à un goulet d'étranglement effectif de type départ.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'à partir des données de trafic FCD, il est conclu à la présence d'un goulet d'étranglement effectif non dû à la topographie si un modèle de circulation dense a été détecté et que la vitesse moyenne de véhicule remonte après dépassement du modèle, dépasse une valeur seuil prescrite correspondante et si le lieu de la prise de vitesse est situé en dehors de l'environnement de caractéristiques topographiques de trajet enregistrées correspondantes.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'il est conclu à la présence d'un modèle de circulation dense en propagation si le profil de vitesse FCD signale une zone de circulation synchronisée ou de circulation synchronisée encombrée s'étendant en aval au-delà du lieu d'un goulet d'étranglement effectif.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la localisation de la limite (FST,GS) entre une zone « bouchons étendus en mouvement » et une zone « circulation synchronisée encombrée » dans un modèle de circulation dense est déterminée en ceci que le profil de vitesse FCD passe à cet endroit à un profil où d'importantes et brèves réductions de vitesse alternent avec des périodes comparativement longues où la vitesse est comprise dans une plage de vitesses basses.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la localisation de la limite (FGS,S) entre une zone « circulation synchronisée encombrée » et une zone « circulation synchronisée » dans un modèle de circulation dense est déterminée en ceci que le profil de vitesse FCD passe à cet endroit à un profil où la vitesse moyenne de véhicule est comprise entre une vitesse minimale prescrite pour la circulation synchronisée et une vitesse minimale prescrite pour la circulation fluide.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la localisation de la limite (FF,s) entre une zone « circulation fluide » et une zone « circulation synchronisée » dans un modèle de circulation dense est déterminée en ceci que le profil de vitesse FCD passe à partir de là à un profil où la vitesse descend en dessous d'une valeur de vitesse minimale prescrite pour la circulation fluide en demeurant supérieure à une valeur de vitesse minimale prescrite pour la circulation synchronisée.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'intensité de trafic (qj) pour un bord de trajet (j) correspondant du réseau de circulation est déterminée à partir d'une fonction différemment prescrite pour les zones « circulation fluide », « circulation synchronisée » et « circulation synchronisée encombrée » selon les durées de trajet (ttr (j)) et les distances (ΔL) résultant des données de trafic FCD pour le parcours du bord de trajet concerné (j) par des véhicules FCD.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'intensité de trafic (qin (j)) est déterminée par des véhicules pénétrant dans une zone de bouchon à partir de la différence de durées de trajet (Δttr (j)) et de la différence de temps de conduite (Δt(j)) de véhicules FCD parcourant successivement le même bord de trajet (j).
EP01117818A 2000-07-28 2001-07-21 Procédé de surveillance de l'état du trafic sur un réseau routier comportant des modifications effectives du trafic Expired - Lifetime EP1176569B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10036789 2000-07-28
DE10036789A DE10036789A1 (de) 2000-07-28 2000-07-28 Verfahren zur Bestimmung des Verkehrszustands in einem Verkehrsnetz mit effektiven Engstellen

Publications (3)

Publication Number Publication Date
EP1176569A2 EP1176569A2 (fr) 2002-01-30
EP1176569A3 EP1176569A3 (fr) 2003-05-14
EP1176569B1 true EP1176569B1 (fr) 2005-12-14

Family

ID=7650520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01117818A Expired - Lifetime EP1176569B1 (fr) 2000-07-28 2001-07-21 Procédé de surveillance de l'état du trafic sur un réseau routier comportant des modifications effectives du trafic

Country Status (5)

Country Link
US (1) US6522970B2 (fr)
EP (1) EP1176569B1 (fr)
JP (1) JP3578734B2 (fr)
DE (2) DE10036789A1 (fr)
ES (1) ES2253306T3 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622883A (zh) * 2012-03-21 2012-08-01 北京世纪高通科技有限公司 判定交通事件解除的方法及装置
CN103348395A (zh) * 2011-02-03 2013-10-09 丰田自动车株式会社 交通拥堵检测设备和车辆控制设备
CN103473928A (zh) * 2013-09-24 2013-12-25 重庆大学 基于rfid技术的城市交通拥堵判别方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944075C2 (de) * 1999-09-14 2002-01-31 Daimler Chrysler Ag Verfahren zur Verkehrszustandsüberwachung für ein Verkehrsnetz mit effektiven Engstellen
CA2390920C (fr) * 2002-06-19 2006-02-07 Michael L. Meagher Systeme et methode de gestion des donnees d'expedition de biens
AT412594B (de) * 2002-07-24 2005-04-25 Oesterreichisches Forschungs U Verfahren und system zur ermittlung von verkehrsdaten
DE10249618A1 (de) * 2002-10-21 2004-05-13 DDG GESELLSCHAFT FüR VERKEHRSDATEN MBH Verfahren zur Generierung impliziter Informationen aus FC-Daten
DE10261172B4 (de) * 2002-12-20 2005-05-25 Daimlerchrysler Ag Verfahren und System zur zentralenbasierten, zeitlich vorausschauende Störungserkennung durch Störflanken-Detektion mittels abschnittsbezogener Reisezeitenschätzung
US6810321B1 (en) * 2003-03-17 2004-10-26 Sprint Communications Company L.P. Vehicle traffic monitoring using cellular telephone location and velocity data
DE10350679A1 (de) * 2003-10-30 2005-06-02 Daimlerchrysler Ag Verfahren zur gangliniengestützten Verkehrsprognose
WO2005064567A1 (fr) * 2003-12-19 2005-07-14 Bayerische Motoren Werke Aktiengesellschaft Identification d'etat du trafic par un procede de valeurs seuils
JP4175312B2 (ja) * 2004-09-17 2008-11-05 株式会社日立製作所 交通情報予測装置
EP1657691A1 (fr) * 2004-11-15 2006-05-17 Alcatel Procédé et système pour déterminer information de trafic
DE102005024953A1 (de) * 2005-05-31 2006-12-07 Siemens Ag Verfahren zur Ermittlung von Abbiegeraten in einem Straßennetz
DE102005055245A1 (de) * 2005-11-19 2007-05-31 Daimlerchrysler Ag Verfahren zur Erstellung einer Verkehrsmusterdatenbank
DE102005055244A1 (de) * 2005-11-19 2007-05-31 Daimlerchrysler Ag Verfahren zur verkehrsdatenbasierten Unfallerkennung
JP4982143B2 (ja) * 2006-09-27 2012-07-25 クラリオン株式会社 交通状況予測装置
US8718928B2 (en) * 2008-04-23 2014-05-06 Verizon Patent And Licensing Inc. Traffic monitoring systems and methods
CN102222407B (zh) * 2010-04-13 2014-12-17 深圳市赛格导航科技股份有限公司 一种路况信息发布方法和路况信息发布系统
DE102011109685A1 (de) * 2011-08-08 2013-02-28 Daimler Ag Verfahren zur Prognose von Staufronten und zur Staufrontenwarnung in einem Fahrzeug
JP5860831B2 (ja) * 2013-03-29 2016-02-16 アイシン・エィ・ダブリュ株式会社 走行支援システム、走行支援方法及びコンピュータプログラム
DE102013014872A1 (de) 2013-09-06 2015-03-12 Audi Ag Verfahren, Auswertesystem und kooperatives Fahrzeug zum Prognostizieren von mindestens einem Stauparameter
US9582999B2 (en) * 2013-10-31 2017-02-28 Here Global B.V. Traffic volume estimation
US9697731B2 (en) * 2014-01-20 2017-07-04 Here Global B.V. Precision traffic indication
US9870425B2 (en) * 2014-02-27 2018-01-16 Excalibur Ip, Llc Localized selectable location and/or time for search queries and/or search query results
CN103942953A (zh) * 2014-03-13 2014-07-23 华南理工大学 一种基于浮动车数据的城市路网动态交通拥挤预测方法
CN104050803B (zh) * 2014-06-23 2016-10-26 北京航空航天大学 一种区域高速路网运行状态评价方法
CN105139647B (zh) * 2015-07-27 2017-12-08 福建工程学院 一种道路拥堵实时检测的方法
CN105355049B (zh) * 2015-11-05 2017-12-01 北京航空航天大学 一种基于宏观基本图的高速公路运行状态评价方法
CN105702031B (zh) * 2016-03-08 2018-02-23 北京航空航天大学 基于宏观基本图的路网关键路段识别方法
CN105913661B (zh) * 2016-06-15 2018-09-18 北京航空航天大学 一种基于收费数据的高速公路路段交通状态判别方法
DE102017202943A1 (de) * 2016-08-25 2018-03-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen einer prädizierten Fahrzeugbewegung
CN106408943A (zh) * 2016-11-17 2017-02-15 华南理工大学 一种基于宏观基本图的路网交通拥堵甄别方法
US10332391B2 (en) 2016-12-06 2019-06-25 Here Global B.V. Split lane traffic jam detection and remediation
CN108280992A (zh) * 2017-01-05 2018-07-13 北京行易道科技有限公司 处理车辆数据的方法和装置
CN107248282B (zh) * 2017-06-29 2021-07-02 浩鲸云计算科技股份有限公司 获取道路运行状态等级的方法
CN110738373A (zh) * 2019-10-15 2020-01-31 中国城市规划设计研究院 一种土地交通生成和分布预测方法及系统
WO2021097759A1 (fr) * 2019-11-21 2021-05-27 Beijing Didi Infinity Technology And Development Co., Ltd. Systèmes et procédés de gestion de la circulation sur la base de données de trajectoire de véhicule
CN111524353B (zh) * 2020-04-28 2021-08-17 中国计量大学 一种交通文本数据用于速度预测及行程规划方法
CN113506439B (zh) * 2021-07-09 2022-12-09 阿波罗智联(北京)科技有限公司 路网交通瓶颈的识别方法、装置及电子设备
CN116524724B (zh) * 2023-06-29 2023-09-22 中南大学 一种考虑交通公平性的瓶颈路段拥堵缓解方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE182709T1 (de) * 1995-04-28 1999-08-15 Inform Inst Operations Res & M Verfahren zur störungserkennung im strassenverkehr
DE19526148C2 (de) * 1995-07-07 1997-06-05 Mannesmann Ag Verfahren und System zur Prognose von Verkehrsströmen
JP3435623B2 (ja) * 1996-05-15 2003-08-11 株式会社日立製作所 交通流監視装置
DE19754483A1 (de) 1996-12-16 1998-06-18 Mannesmann Ag Verfahren zur Vervollständigung und/oder Verifizierung von den Zustand eines Verkehrsnetzes betreffenden Daten; Verkehrszentrale
US6236932B1 (en) 1996-12-16 2001-05-22 Mannesmann Ag Process for completing and/or verifying data concerning the state of a road network; traffic information centre
DE19737440A1 (de) * 1997-02-14 1998-08-27 Mannesmann Ag Verfahren zur Bestimmung von Verkehrsdaten und Verkehrsinformationszentrale
DE19725556A1 (de) 1997-06-12 1998-12-24 Mannesmann Ag Verfahren und Vorrichtung zur Verkehrszustandsprognose
ES2221105T3 (es) 1997-09-11 2004-12-16 Siemens Aktiengesellschaft Procedimiento para la determinacion de informaciones de trafico.
DE19753034A1 (de) * 1997-11-18 1999-06-17 Ddg Ges Fuer Verkehrsdaten Mbh Verfahren zur Prognose eines den Zustand eines Systems repräsentierenden Parameters, insbesondere eines den Zustand eines Verkehrsnetzes repräsentierenden Verkehrsparameters und Vorrichtung zum Durchführen des Verfahrens
DE19835979B4 (de) * 1998-08-08 2005-01-05 Daimlerchrysler Ag Verfahren zur Verkehrszustandsüberwachung und Fahrzeugzuflußsteuerung in einem Straßenverkehrsnetz
DE19944075C2 (de) * 1999-09-14 2002-01-31 Daimler Chrysler Ag Verfahren zur Verkehrszustandsüberwachung für ein Verkehrsnetz mit effektiven Engstellen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348395A (zh) * 2011-02-03 2013-10-09 丰田自动车株式会社 交通拥堵检测设备和车辆控制设备
CN103348395B (zh) * 2011-02-03 2015-06-17 丰田自动车株式会社 交通拥堵检测设备和车辆控制设备
CN102622883A (zh) * 2012-03-21 2012-08-01 北京世纪高通科技有限公司 判定交通事件解除的方法及装置
CN103473928A (zh) * 2013-09-24 2013-12-25 重庆大学 基于rfid技术的城市交通拥堵判别方法
CN103473928B (zh) * 2013-09-24 2015-09-16 重庆大学 基于rfid技术的城市交通拥堵判别方法

Also Published As

Publication number Publication date
US20020045985A1 (en) 2002-04-18
JP3578734B2 (ja) 2004-10-20
JP2002117481A (ja) 2002-04-19
DE50108367D1 (de) 2006-01-19
EP1176569A2 (fr) 2002-01-30
ES2253306T3 (es) 2006-06-01
US6522970B2 (en) 2003-02-18
EP1176569A3 (fr) 2003-05-14
DE10036789A1 (de) 2002-02-07

Similar Documents

Publication Publication Date Title
EP1176569B1 (fr) Procédé de surveillance de l'état du trafic sur un réseau routier comportant des modifications effectives du trafic
EP1212738B1 (fr) Procede de surveillance de l'etat du trafic sur un reseau routier comprenant des reductions effectives de trafic
DE19835979B4 (de) Verfahren zur Verkehrszustandsüberwachung und Fahrzeugzuflußsteuerung in einem Straßenverkehrsnetz
EP1853453B1 (fr) Procede pour determiner la plausibilite d'objets dans des systemes d'assistance a la conduite
DE19647127C2 (de) Verfahren zur automatischen Verkehrsüberwachung mit Staudynamikanalyse
DE19650844C2 (de) Verfahren zur Ermittlung von Fahrtroutendaten
EP1303845B1 (fr) Procede de determination d'informations relatives a la situation du trafic
DE102008003039A1 (de) Verfahren zur Verkehrszustandsbestimmung in einem Fahrzeug
DE10057796B4 (de) Verfahren zur fahrzeugindividuellen Verkehrszustandsprognose
DE10062856B4 (de) Verfahren zur fahrzeugindividuellen Verkehrsprognose
EP3523175A1 (fr) Procédé, dispositif et véhicule sur voie, notamment véhicule ferroviaire, pour l'analyse d'image basée sur la voie de circulation en trafic sur voie, notamment pour l'analyse d'image basée sur le rail en trafic ferroviaire
EP2447924B1 (fr) Système d'établissement de la situation de trafic sur une voie de circulation
WO2005064564A1 (fr) Determination du niveau de vitesse attendu
EP3787950B1 (fr) Procédé et dispositif de détection de véhicules suivant un véhicule
DE10051777A1 (de) Verfahren zur dynamischen Verkehrszustandsprognose
DE19954971B4 (de) System zur Beeinflussung des Verkehrsflusses von Fahrzeugen
DE3128578C2 (fr)
DE102005055244A1 (de) Verfahren zur verkehrsdatenbasierten Unfallerkennung
DE10025039C2 (de) Verfahren zur Ermittlung von Verkehrsregelungsphasendauern
DE10133001A1 (de) Verfahren zur Ermittlung von Verkehrslageinformationen
DE19944077C2 (de) Verfahren und Vorrichtung zur Verkehrszustandsüberwachung
EP1695314B1 (fr) Identification de zones de croisement lors d'une identification de l'etat du trafic
DE10359977B4 (de) Verfahren zum Ermitteln einer Reisezeit
DE10350679A1 (de) Verfahren zur gangliniengestützten Verkehrsprognose
DE102022128927A1 (de) Verfahren zur Verkehrsbeeinflussung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030402

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040906

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50108367

Country of ref document: DE

Date of ref document: 20060119

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2253306

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090724

Year of fee payment: 9

Ref country code: FR

Payment date: 20090716

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090720

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090728

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100723

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100721

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100721

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108367

Country of ref document: DE

Effective date: 20130201