JP4175312B2 - 交通情報予測装置 - Google Patents

交通情報予測装置 Download PDF

Info

Publication number
JP4175312B2
JP4175312B2 JP2004270663A JP2004270663A JP4175312B2 JP 4175312 B2 JP4175312 B2 JP 4175312B2 JP 2004270663 A JP2004270663 A JP 2004270663A JP 2004270663 A JP2004270663 A JP 2004270663A JP 4175312 B2 JP4175312 B2 JP 4175312B2
Authority
JP
Japan
Prior art keywords
data
traffic jam
prediction
length
traffic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004270663A
Other languages
English (en)
Other versions
JP2006085511A (ja
Inventor
正俊 熊谷
匠 伏木
孝義 横田
和也 君田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004270663A priority Critical patent/JP4175312B2/ja
Priority to US11/206,817 priority patent/US7577513B2/en
Publication of JP2006085511A publication Critical patent/JP2006085511A/ja
Application granted granted Critical
Publication of JP4175312B2 publication Critical patent/JP4175312B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、交通情報の予測に関するものである。
渋滞度,旅行時間などの交通情報は、たとえば、金曜日の夕方は月〜木曜日の同時刻に比べて道路が混雑する、天気のいい休日には行楽地までの移動に時間がかかるといった具合に、曜日,祝祭日,五十日,連休,月,季節,天気など1日の属性を表す日種因子や時刻に応じた変化をする。このことから、過去の交通情報を日種因子や時刻と関連付けて統計処理することで、所望の日時の交通情報を日種因子や時刻に基づいて予測することが可能である。
交通情報のうち、旅行時間や交通量は数値的な連続量であるため、予測対象の時刻ごとに日種因子を説明変数とする回帰分析を行うことにより、多様な日種因子を加味した予測情報を得ることができる。さらに、交通情報が1日単位の周期性を持つ時系列データであることに着目して、たとえば朝のラッシュや夕方のラッシュを表すような複数の基底データの線形合成によって交通情報の1日分の時系列データを近似的に表すものとし、各基底データの合成強度について日種因子を説明変数とする回帰分析を行うことで、元の交通情報に対して低次元化された特徴空間で、効率的な回帰モデルの同定ならびに回帰モデルを用いた予測演算を行うことが可能である(たとえば、非特許文献1)。
一方、「順調,混雑,渋滞」のような指標で表される渋滞度を予測するには、それが非数値的な不連続量であるため、回帰分析をそのまま適用することは不可能であり、非数値指標の数値情報への変換などが必要になる。これに対して、日種因子や時刻を判定条件とする決定木を用いれば、非数値指標をそのままの形でデータベース化し、予測に用いることが可能である。たとえば、特許文献1では、複数の固定された道路区間上での「順調−順調−混雑−渋滞−混雑」のような渋滞パターンを、決定木モデルにより予測する。しかし、非数値情報(渋滞度)と連続的な数値情報(渋滞先頭位置,渋滞長)とが対になったデータである渋滞範囲の情報を予測対象とする場合には、過去のデータの事例が多岐にわたるため、それらを集約してデータベース化することができず、得られる決定木がきわめて大規模で過去のデータに過剰に適応したものになり、この決定木を現実的に予測に用いることはできない。
渋滞範囲の予測において、渋滞長だけを予測するのであれば、渋滞度のランク毎に、前述のように日種因子を説明変数とする回帰分析を適用することができる。しかし、渋滞先頭位置も日時によって変化し、また、道路に構造上のボトルネックが存在する地点を先頭にして渋滞が生じることが多いため、渋滞先頭位置を単純に回帰分析等の統計処理で予測することはできない。例えば、ある道路リンクにおいて、リンクの下流側から500m地点と2500m地点にボトルネック地点があったとする。ある日時における渋滞範囲は
500m地点から200mであり、別の日時における渋滞範囲が2500m地点から400mだからといって、平均的な渋滞範囲は1500m地点から300mであるという情報の提示は不適切である。渋滞範囲については、各ボトルネック地点からの渋滞長を個別に予測することが妥当だが、VICS(Vehicle Information and Communication System)データやプローブデータ等の実際の交通情報にはボトルネック地点を示す明示的な情報は含まれない。また、路上センサやプローブカーの計測情報である渋滞先頭位置の情報は、計測誤差等によって実際のボトルネック地点の周辺にある幅を持って分布するデータであるため、計測された渋滞先頭位置のそれぞれを直ちにボトルネック地点とみなして渋滞長の統計処理を行うことはできない。
特開2002−222484号公報 熊谷ほか「特徴空間射影を用いた交通情報予測手法」,情報処理学会研究報告:高度交通システム,No.14,pp.51−57,2003年9月.
解決しようとする課題は、ボトルネック地点に関する明示的な情報を持たない路上センサやプローブカーの計測データを用いた渋滞の予測において、ボトルネック箇所に起因して渋滞が生じるという道路交通の特性を反映した統計処理を行うことができない点である。
過去に蓄積された渋滞範囲の時系列データについて、クラスタリングによって渋滞先頭位置のデータを複数のクラスターに集約し、各クラスターにおける代表値(クラスター内データの平均値,中央値,最小値など)をボトルネック地点の位置とみなし、各ボトルネック地点からの渋滞長を対象として、曜日,祝祭日,五十日,連休,月,季節,天気などの日種因子を説明変数とする回帰分析を行う。
本発明の交通情報予測方法には、明示的なボトルネック地点の情報が入力されなくても、路上センサやプローブカー等のセンサを備えた移動体によって計測される渋滞先頭位置の情報からボトルネック地点を特定し、各ボトルネック地点からの渋滞長を日種因子と関連付けて予測できるという利点がある。
以下、本発明を用い、渋滞先頭位置と渋滞長の過去のデータに基づいて、ボトルネック地点からの渋滞長を予測する予測方法の構成を説明する。
図1は、本発明を用いた渋滞長予測装置の構成である。交通情報データベース101は、VICSや、プローブカー等のセンサを備えた移動体によって収集された過去の交通情報を蓄積するデータベース装置である。ボトルネック地点検出装置102は、交通情報データベース101に蓄積された、過去のリンク毎の渋滞先頭位置データから、同じ道路リンク上で空間的に近い範囲にあるデータを集約して、連続したデータ範囲と見なすクラスタリングによってボトルネック地点の検出を行う。その処理を図2のフロー図に示す。ステップ201(以下、S201と記す。他も同様である。)はクラスターの初期化であり、過去に計測された渋滞先頭位置データのそれぞれを、図3(a)のように1クラスターとする。処理S202はクラスターの統合であり、各クラスターの間で、図3の(a)→(b),(b)→(c),(c)→(d),(d)→(e)のように、最短のクタスター間距離のWminを与える2つのクラスターを1つに統合する。クラスター間距離の計算手段には、一般に最近隣法,最遠隣法,群平均法,重心法などがあり、図3では最遠隣法を用いて図示しているが、その手段は1つに限定されない。S202の処理は終了条件
S203が成立するまで繰り返し実行される。その終了条件とは、図3(e)のようにクラスター間最短距離Wminが閾値W0を上回る、すなわち、ある距離範囲に存在する渋滞先頭位置の集約が全て完了することである。他にも、終了条件の設定には、リンク上の主要なボトルネック地点をn箇所検出するには、クラスターの数が閾値n以下になることを終了条件とする。また渋滞先頭位置が疎らに分布したデータの場合には、単純にクラスター間の最短距離をクラスタリングの終了条件として用いると、データ数が少ない多数のクラスターが出来ることがあるため、各クラスター内のデータの分散の大きさをクラスタリングの終了条件として用い、分散の値が閾値を上回ることを終了条件とする決め方がある。これにより、例えば正規分布やt分布のように、データがボトルネック周辺に或るピークを持って分布している場合には、分布の裾にあるデータを分布の山にあるデータと合わせて1つのクラスターとすることが出来る。S204の処理では、各クラスターの代表値を、図3(e)のようにボトルネック地点の位置として確定する。クラスターの代表値には、一般に最小値,最大値,中央値,最頻値,平均値などの計算方法があり、図3では平均値を用いて図示しているが、その方法は1つに限定されない。
検出されたボトルネック地点に対して、渋滞長補正装置103では過去の渋滞長データの補正を行う。なお、渋滞長データの精度が低い場合には、この渋滞長データの補正処理は必須ではない。また、ユーザに対して渋滞長の値そのものを提供するのであれば、この補正処理では渋滞の開始位置をずらすだけにしても良い。しかし、渋滞先頭位置から計算される渋滞終端位置の情報を提供するためには、渋滞長データを補正しておく必要がある。この補正処理は、図4のように、過去の渋滞長データL1は、計測された渋滞先頭位置からの渋滞長であって、ボトルネック地点検出装置102で確定されたボトルネック地点からの渋滞長ではないため、ボトルネック地点からの渋滞長を表すように、渋滞長データL1に、リンク下流端から渋滞先頭位置までの距離D1と、リンク下流端からボトルネック地点までの距離D2の差を加算して、
L2=L1+(D1−D2) (式1)
と計算されるL2をボトルネック位置からの渋滞長とする処理である。かかる補正処理を行った渋滞長データは、各ボトルネック地点について図3(e)のように伏した番号c
(c=1,2,3,…)、日付d、時刻tに対して、L(c,d,t)という配列で表し、補正済み渋滞長データとして予測モデル同定装置104への入力とする。日時d,tにおいて、ボトルネック地点cに対応する渋滞先頭位置データが存在しない、即ちボトルネック地点cを与えるクラスターの範囲内に渋滞先頭位置データが存在しない場合には、当該日時においてボトルネック地点cに起因する渋滞は生じていないものとみなせるため、L(c,d,t)=0である。
予測モデル同定装置104では、ボトルネック地点ごと,時刻ごとに、曜日,祝祭日,五十日,連休,月,季節,天気などの日種因子を説明変数とする回帰分析を行う。すなわち、渋滞長データL(c,d,t)において、ボトルネック地点c=C,時刻t=Tに固定した1日単位の時系列データL(C,d,T)を対象とした回帰分析により、ボトルネック地点C,時刻Tにおける渋滞長の予測モデルL(C,T,f1,f2,…,fN)を同定する。ここにf1〜fNは、N種類の日種因子のそれぞれに該当するか否かをそれぞれ1と0で表す二値説明変数であり、回帰分析で用いる日種因子のデータは、渋滞長の時系列データL(C,d,T)において、変数dに対応する日付のものを、日種因子データベース106から入力する。
渋滞長予測装置105は、予測モデル同定装置104で同定された予測モデルL(C,T,f1,f2,…,fN)に対して、予測対象日の日種因子を入力として、ボトルネックC,時刻Tの渋滞長L(C,T)を計算し、予測データとして出力する。以上の本実施例の処理において、渋滞範囲のデータに「混雑,渋滞」などの渋滞度に関する複数のランクが定義されている場合には、各渋滞度のランク毎に、個別に上記の渋滞長予測の処理を実施する。この様にすることによって、「混雑」の範囲がどの程度広がっているのか、また「渋滞」の範囲がどの程度広がっているのか区別して予測することが出来る。
なお、本発明の渋滞長予測装置から、交通情報データベース101とボトルネック地点検出装置102を取り出して、図12の構成とすれば、VICSやプローブカーによって収集された過去の交通情報から図2の処理フローに従ってボトルネック地点を検出して出力する装置として使用することができる。この場合、ボトルネック地点を検出することによって、渋滞発生箇所の概要を把握することができる。
図5は、本発明を用いた渋滞長予測装置において、実施例1のように時刻ごとの回帰分析を行う代わりに、朝のラッシュや夕方のラッシュを表すような複数の基底データの線形合成によって1日ごとの渋滞長データを近似的に表し、各基底データの合成強度について日種因子を説明変数とする回帰分析を行うことで、元の渋滞長データに対して低次元化された特徴空間で、回帰モデルの同定ならびに回帰モデルを用いた予測演算を行う装置の構成である。
この例では、基底データ抽出装置504は、補正済み渋滞長データを、その線形合成によって近似的に表す基底データを、主成分分析を用いて計算する。ここで、主成分分析の対象となるデータは、実施例1の補正済み渋滞長データL(c,d,t)において、ボトルネック地点をc=Cに固定したデータL(C,d,t)であり、1日分の時系列データを1サンプルとする。たとえば、旅行時間,渋滞度,渋滞長などの交通情報が1日当たりM回の同時刻において、N日間計測されたデータであるならば、1サンプル当たりM変数で、Nサンプルからなるデータ群を対象に主成分分析を行うことになる。図6はそのデータ構造を模式的に表したものである。ここでX(a,b)は、a日目において、b回目に計測されたデータの値を示している。一般にVICSの旅行時間データは一般道路では5分間隔に計測されているため、1時間あたり12回計測されている。従って、午前7時のデータは、7[時間]×12[回/時間]=84となることから、b=84になる。
図6では行方向を日付、列方向を時刻として、計測されたデータを記録した配列を表している。ここで各X(1,m)、X(2,m)、…、X(N,m)がそれぞれL(C,1,t)、L(C,2,t)、…、L(C,N,t)に相当する。X(a,b)とL(C,日付d,時刻t)との関係は、データが等時間間隔に1日当たりM回計測されている場合には、a=d,b=(t/(24×60))×M(ただしtを分単位で表記した場合)となる。
基底データ抽出装置504における主成分分析によって、寄与率の大きい順に得られるP本の結合係数ベクトルのそれぞれが基底データであり、これは交通情報合成装置508で用いるデータとして、予測データベース505に記録しておく。主成分分析によって結合係数ベクトルのそれぞれに対応して得られる主成分得点が、複数の基底データを線形合成する際の合成強度であり、予測モデル同定装置506では、合成強度を日種因子の関数としてモデル化する。すなわち、基底データ1〜Pのそれぞれに対応した合成強度の1日単位の時系列データS(p,d)(ただしpは基底データの番号、dは日付とする)について、日種因子f1〜fNを説明変数とする回帰分析により、予測モデルS(p,f1,f2,…,fN)を同定する。ここで用いる日種因子は、基底データ抽出装置への入力とした補正済み渋滞長データの日付に対応するものであり、日種因子データベース509から入力する。なお、主成分分析における結合係数ベクトルの本数P、すなわち基底データの数を決める指標としては、主成分分析における情報の近似精度を表す累積寄与率を用いることが可能であり、たとえば、累積寄与率が0.9 になるように結合係数ベクトルの数を決めた場合には、結合係数ベクトルと主成分得点とで、主成分分析の対象とした元データの90%の情報を表すことができる。
合成強度予測装置507は、予測対象日の日種因子を入力として、予測モデル同定装置506で同定され、予測データベース505に記録された予測モデルパラメータを用いて、合成強度の予測値を計算する。交通情報合成装置508では、この合成強度の予測値を係数として、基底データ抽出装置504で計算され、予測データベース505に記録されていた基底データを線形合成し、その結果を予測データとして出力する。
ボトルネック地点が複数(1〜C)ある場合には、以上の処理をボトルネック地点1〜Cについて個別に実施することで、各ボトルネック地点に起因する渋滞長の予測を行うことができる。
一方、図7のように、ボトルネック地点1〜Cの補正済み渋滞長データであるL(1,d,t)〜L(C,d,t)の結合によって得られるデータ(1サンプル当たりの変数の数がC×M個)を、基底データ抽出装置504における主成分分析の対象とすれば、ボトルネック地点1〜Cまでの渋滞長を一括して表す基底データが得られる。このようにデータを並べることは、同じ日付における複数ボトルネック地点の時系列データを単一のサンプルとして扱って、主成分分析の入力とし、各ボトルネック地点の間で相関のある情報を集約するという意味がある。図7では、Xが図6と同様に、旅行時間,渋滞度,渋滞長などの計測された交通情報であり、行方向が日付なのは図6と同様であるが、列方向には時刻の変数が、ボトルネック地点の数Cだけ繰り返されている。つまり、X(a,b)とL(ボトルネック地点番号c,日付d,時刻t)の関係は、a=d,b=(c−1)×M+(t/(24×60))×M、となる。
このデータから求めた基底データの合成強度を、予測モデル同定装置506における回帰分析の対象とすることで、ボトルネック地点1〜Cまでの渋滞長に関する合成強度の予測モデルが得られ、合成強度予測装置507,交通情報合成装置508における予測データの計算処理を、ボトルネック地点1〜Cについて一括して行うことが可能になる。このように各ボトルネック地点の渋滞長データを結合して予測を行う方法は、各ボトルネック地点毎に渋滞長データの予測を個別に行う方法に比べ、各ボトルネック地点の渋滞の間に相関がある場合に、基底データと予測モデルパラメータを集約して予測データベース505に記録するデータ量を少なくし、予測演算に必要な計算時間を短縮する効果がある。
過去の交通情報のデータが、通信の障害やセンサの異常、あるいはプローブカーの不在による欠損を含む物である場合には、正常に計測されたデータのみを用いて結合係数と主成分得点を計算する“欠損値付き主成分分析手法(PCAMD)”と呼ばれる主成分分析の拡張手法を、基底データ抽出装置504において主成分分析の代わりに用いる。欠損を含むデータの取り扱いは、補正済み渋滞長データの代わりに、図5に点線で示したように旅行時間データ,交通量データ,数値化された渋滞度データなどを基底データ抽出装置
504への入力とし、旅行時間,交通量、あるいは数値化された渋滞度の予測を行う場合も、単に入力データが違うだけで、基底データ抽出装置における処理は同一であり、
PCAMDを用いた図5の予測プロセスの適用対象は渋滞長の予測に限定されない。つまり、PCAMDは、データに欠損があって主成分分析を使うことができない場合に、基底データの計算に用いる手段であり、処理対象のデータが渋滞長であるか、旅行時間データであるかといった違いは、処理に影響せず、主成分分析を使っても、欠損のある場合に
PCAMDを使っても、同様に基底データの計算ができる。
実施例2のようにリンク毎に基底データを持つ代わりに、複数のリンクが含まれる空間領域であるメッシュ単位に代表基底データを用意すれば、予測データベース505に記録される基底データのデータ量を大幅に削減することが可能である。しかし、メッシュ毎の代表基底データとして、単に実施例2で得られるリンク毎の基底データの同時刻平均値などの統計的代表値を用いることはできない。なぜならば、各リンクの基底データから同時刻平均値を計算する過程で、各リンクの交通情報データに固有の成分が失われてしまい、各リンクの交通情報データを代表基底データの線形合成で表すことが不可能になるためである。そこで、本発明を用いた交通情報予測装置においては、図9の構成によって、各リンクの交通情報データに固有の成分を有するメッシュ毎の代表基底データを主成分分析によって計算し、それを用いた交通情報の予測を行う。
図9において、交通情報データベース701はVICSやプローブカーによって収集された過去の交通情報を蓄積するデータベース装置である。交通情報正規化装置702は、メッシュ内の複数リンクの過去の交通情報データについて、各リンクの交通情報データの分散を同程度にするために、リンク毎に交通情報の正規化を行う。正規化を行う際の基準値としては、リンク毎の交通情報データの平均値,中央値などの統計的代表値を用いることができる。また、予測対象の交通情報が旅行時間である場合には、規制速度で走行したと仮定した場合に当該リンクを走行するのに要する標準的な旅行時間を用いることなども可能であり、正規化の基準値の選び方は本実施例に限定されない。
代表基底データ抽出装置703は、実施例2の基底データ抽出装置504と同様にして、主成分分析(データが欠損を含む場合にはPCAMD)による基底データの計算を行う。ただし、基底データ抽出装置504では、図6のようにリンク毎の1日分のデータを1サンプルとして、Nサンプルからなるデータ群を対象に主成分分析を行うのに対し、代表基底データ抽出装置703では、図8のようにメッシュ内の複数リンクのデータを結合したデータ群を対象に主成分分析を行う。図8において、1日当たりM回の同時刻に計測されたデータを1サンプルとするのは図6と同様だが、R本のリンクについてそれぞれN日分のデータがあるものとすると、主成分分析の対象となるデータのサンプル数はN×Rである。すなわち、図8のX((r−1)N+n,m)のデータが、リンクrにおけるn日目の1日分の交通情報データに相当する。かかるデータ群の主成分分析によって得られる結合係数が、メッシュ単位の代表基底データであり、各リンクの交通情報データに固有の成分を有する。なお、各リンクの分散が大きく違わない場合には、交通情報正規化装置
702による正規化処理を行わなくても、各リンクそれぞれのデータ特性を十分に反映した代表基底データが得られるので、交通情報正規化装置702の処理は必ずしも必要ではない。
代表基底データ抽出装置703で計算された代表基底データは、予測データベース705に記録される。合成強度計算装置704は、予測データベース705に記録された代表基底データと、交通情報データベースに記録されたリンク毎の過去の交通情報データから、代表基底データに関して各リンクに固有の合成強度を計算する。リンク毎に固有の合成強度は、代表基底データと交通情報データの内積によって得られる。たとえば、代表基底データpをM次元行ベクトルV(p)、リンクrのd日目における1日分の交通情報データをM次元行ベクトルY(r,d)とすると、代表基底データpに関するリンクrのd日目の合成強度は
S(p,r,d)=V(p)・Y(r,d) (式2)
である。
予測モデル同定装置706は、合成強度計算装置で計算されたリンク毎の合成強度の1日単位の時系列データS(p,r,d)について、実施例2における予測モデル同定装置506と同様に、日種因子データベース709に記録された過去の日種因子f1〜fNを説明変数とする回帰分析によって、予測モデルS(p,r,f1,f2,…,fN)を同定する。合成強度予測装置707は、予測対象日の日種因子を入力として、予測モデル同定装置706で同定され、予測データベース705に記録された予測モデルパラメータを用いて、リンク毎の合成強度の予測値を計算する。交通情報合成装置708は、リンク毎の合成強度の予測値を係数として、代表基底データ抽出装置703で計算された代表基底データを線形合成し、その結果を当該リンクの予測データとして出力する。
代表基底データ抽出装置703においてメッシュ毎の代表基底データを計算する際、メッシュ内の全リンクを対象として主成分分析を行った場合には、メッシュ内の全リンクをその線形合成によって表すことのできる代表基底データが得られる。一方では、基本的な渋滞のパターンが表れるのが幹線道路とその周辺であることから、たとえば「幹線道路とそれに直接交わる道路のリンク」と定義される部分集合を代表基底データ抽出装置703の処理対象としても、メッシュ内のほぼ全てのリンクを表現可能な代表基底データが得られる。また、1日を通してほぼ渋滞のないリンクもあるため、そのようなリンクをたとえば標準偏差の大きさを閾値として除外した後の部分集合からも、メッシュ内のほぼ全てのリンクを表現可能な代表基底データが得られる。このように、代表基底データ抽出装置
703で主成分分析の対象とするリンク集合の選び方は、メッシュ内の全リンク集合あるいは特定の部分集合に限定されない。また、本実施例では空間的なメッシュを代表基底データの共有単位としたが、VICSリンクのようにリンク毎に振られた番号を用いて、たとえば1番〜100番といったリンク番号の範囲を単位として、代表基底データを共有することも可能であり、代表基底データの共有単位の選び方は本実施例に限定されるものではない。
本実施例で予測対象とする交通情報データは、旅行時間データ,交通量データ,数値化された渋滞度データなどであり、1つに限定されるものではない。なお、渋滞長データを予測対象とする場合には、実施例1のようにボトルネック位置からの渋滞長を示すように補正されたデータを交通情報正規化装置702,合成強度計算装置704への入力とする。
実施例1〜3において、渋滞範囲のデータとしてVICSデータを用いる場合には、
VICSデータ自体に時刻毎の渋滞先頭位置と渋滞長のデータが含まれており、これらのデータはある分布を持っていることから、渋滞先頭位置データを蓄積,集約してボトルネック地点を検出することが出来る。また、プローブデータの使用に際して、プローブデータが位置と速度の詳細な履歴を持っている場合には、それを元に、たとえば速度がある閾値を連続して下回った領域を渋滞と判定するといった処理により、容易に渋滞先頭位置と渋滞長を生成し、ボトルネック地点検出装置102と渋滞長補正装置103への入力とすることが可能である。ここで、位置と速度の詳細な履歴とは、具体的な例では数秒単位で収集されるプローブデータを指す。この場合例えば、1秒単位でプローブデータを収集するのであれば、時速40kmでも約10m間隔で計測ができる。プローブデータとして送られてくるデータには、最低限、移動体の位置と速度が含まれているものとする。なお、実施例1乃至3で前提としているオフラインでの統計処理を行う場合には、データの送信タイミングは、1日1回といった頻度でも可能である。この場合、データは収集されてから送信されるまで車載器側に蓄積される。
一方で、プローブデータのが疎らな場合、プローブデータには渋滞先頭位置の情報が無く、たとえば、プローブデータの収集時間間隔が2分に1回であるような場合には、時速10kmで走行していたとしても2分間で約300m近くを走行するため、このようなプローブデータを元に渋滞先頭位置を明確にすることはできない。そこで本発明の渋滞長予測装置を用いれば、渋滞位置を蓄積,集約してボトルネック地点を検出することによって、収集時間間隔の疎らなプローブデータからもボトルネック地点からの渋滞長予測を行うことができる。
図10は収集時間間隔の疎らなプローブデータを入力として、ボトルネック地点からの渋滞長を予測して出力する装置の構成図である。プローブデータベース801は、プローブカーによって収集された位置データと速度データを蓄積するデータベースである。渋滞位置検出装置802は、たとえば速度データがある閾値を下回ったなら渋滞と判定するといった処理により、渋滞と判定された速度データに対応する位置データを、渋滞位置データとしてボトルネック地点検出装置803に入力する。ここで渋滞についてVICSと同じ定義を用いれば、たとえば規制速度60kmのリンクの場合には、20km/h未満を「渋滞」、40km/h未満を「混雑」と判定するための閾値として用いることになる。ボトルネック地点検出装置803は、図1のボトルネック地点検出装置102と同様の処理によって渋滞位置データのクラスタリングを行い、その代表値をボトルネック地点として確定する。ただし、ボトルネック地点検出装置102が、クラスタリングの初期化において渋滞先頭位置データのそれぞれを1つのクラスターとするのに対して、ボトルネック地点検出装置803は渋滞位置検出装置802から入力された渋滞位置データのそれぞれを1つのクラスターとして、クラスタリングを開始する。この場合、渋滞位置データの分布範囲は渋滞先頭位置データの分布よりも広いので、閾値W0は実施例1で説明した渋滞先頭位置データのクラスタリングに比べて大きく設定する。またこの場合も、一般道路では主要道路の交差点間の距離をW0とするなど、実際の道路の状況に合わせてW0の値を決める。
また、統合の完了したクラスターから代表値を計算する際には、平均値や中央値ではなく、最小値あるいはクラスター内の平均値E,標準偏差σ,定数kに対してE−kσと定義される下側kσ点のような、クラスターの下側統計的代表値を用いる。これは、渋滞先頭位置ではなく渋滞位置をクラスタリング対象データとしているため、平均値や中央値を用いると、クラスタリングの代表値が渋滞範囲の中間的な位置を示すためである。一方、最小値あるいは下側kσ点などを用いれば、クラスタリングの代表値が渋滞範囲の中でもリンク下流側の位置を示し、それをボトルネック地点とみなすことができる。たとえば渋滞位置データの分布を正規分布と仮定すると、k=1の場合には、下側kσ点とは、渋滞位置データの約65%が分布する範囲の下限値を示し、k=2とした場合には、渋滞位置データの約95%が分布する範囲の下限値を示すことになる。このkの値は、渋滞位置データの分布形状によって決められる。
渋滞長算出装置804では、各リンク毎に速度データが閾値を下回ったとして渋滞と判定されたそれぞれの渋滞位置データ全てについて、リンク下流端から渋滞位置検出装置
802で検出された渋滞位置までの距離D1と、リンク下流端からボトルネック地点検出装置803で検出されたボトルネック地点までの距離D2とから、渋滞長(D1−D2)を計算し、予測モデル同定装置805に出力する。予測モデル同定装置805は図1の予測モデル同定装置104と同様のものであり、日種因子データベース807に記録された日種因子の履歴を用いて、日種因子を説明変数とする回帰分析により渋滞長の予測モデルを同定する。渋滞長予測装置806は図1の渋滞長予測装置105と同様のものであり、予測モデル同定装置805で同定された予測モデルを用いて、予測対象日の日種因子から渋滞長を予測する。
図11は、図10に示した渋滞長予測装置の出力結果の表示例である。地図901上のマーカー902は過去に計測されたプローブデータのうち、渋滞位置検出装置802によって渋滞と判定されたプローブデータの位置を表すマーカーである。903はボトルネック地点検出装置803によって検出されたボトルネック地点を先頭にして、渋滞長予測装置806で計算された渋滞長の長さ分だけ描画された、渋滞範囲を表す線分である。渋滞位置検出装置802における渋滞判定の基準として10km/h,20km/h,40
km/hという具合に複数設定した速度に応じて、図10で説明した処理をそれぞれの速度について実施すれば、判定基準を10km/hとした場合の渋滞長予測値、判定基準を20km/hとした場合の渋滞長予測値、...という具合に、速度に応じた渋滞長の予測値を得る事が出来る。そして各基準の速度に応じた渋滞長の予測値を示す線分903の色を変えて表示すれば、線分904のようにどの程度の混雑がどの程度の範囲に広がっているのか提示することができる。ボトルネック地点と渋滞長がプローブデータから生成されているため、渋滞範囲を表す線分903の端点は、VICSで定義されているリンクや財団法人日本デジタル道路地図協会(DRM)によるデジタル道路地図のリンクのノード位置や、路上センサの設置位置にあるとは限らない。
日付指定部905は、予測対象日を指定するインターフェースである。日付が指定された場合には、日付と日種因子の対応が記述された日種因子データベース807と同様のデータベースを参照し、日付を日種因子に変換した上で、渋滞長予測装置806への入力とする。また、日付指定部905に代えて、日種因子指定部906より、予測対象日を日種因子の組み合わせで指定することも可能であり、その場合には、指定された日種因子が渋滞長予測装置806への入力になる。
本発明は交通情報サービスにおける詳細な予測情報の提供に利用可能であり、特に、交通情報プロバイダにおいて本発明を利用することで、大規模なデータを効率的に取り扱い、全国域の予測情報を提供するシステムを構築することが可能になる。
渋滞先頭位置のデータからボトルネック地点を検出し、ボトルネック地点を基準とした渋滞長を予測するシステムのブロック図である。 渋滞先頭位置のデータからボトルネック地点を検出する手法の処理フローである。 渋滞先頭位置のデータからボトルネック地点を検出する手法の概念図である。 渋滞先頭位置のデータから検出されたボトルネック地点を基準として、渋滞長のデータを補正する計算の概念図である。 交通情報データを基底データの線形合成で表して予測するシステムのブロック図である。 交通情報データを基底データの線形合成で表して予測するシステムで用いるデータのフォーマット例である。 交通情報データを基底データの線形合成で表して予測するシステムで用いるデータの他のフォーマット例である。 交通情報データを基底データの線形合成で表して予測するシステムで用いるデータの他のフォーマット例である。 複数のリンクの交通情報データを、各リンクで共通の代表基底データの線形合成で表して予測するシステムのブロック図である。 収集時間間隔の疎らなプローブデータからボトルネック地点を検出し、ボトルネック地点を基準とした渋滞長を予測するシステムのブロック図である。 収集時間間隔の疎らなプローブデータからボトルネック地点を検出し、ボトルネック地点を基準とした渋滞長を予測した結果の表示例である。 VICSやプローブカーによって収集された過去の交通情報からボトルネック地点を検出して出力する装置のブロック図である。
符号の説明
101,701,1001…交通情報データベース、102,803,1002…ボトルネック地点検出装置、103…渋滞長補正装置、104,506,706,805…予測モデル同定装置、105,806…渋滞長予測装置、106,509,709,807…日種因子データベース、504…基底データ抽出装置、505,705…予測データベース、507,707…合成強度予測装置、508,708…交通情報合成装置、702…交通情報正規化装置、703…代表基底データ抽出装置、704…合成強度計算装置、801…プローブデータベース、802…渋滞位置検出装置、804…渋滞長算出装置。

Claims (7)

  1. 渋滞範囲の先頭位置を示す渋滞先頭位置データと、前記渋滞先頭位置からの渋滞範囲の長さを示す渋滞長データとを記録した交通情報データベースと、
    前記渋滞先頭位置データについてクラスタリングを行い求めたクラスターの代表値をボトルネック地点位置データとして出力するボトルネック地点検出装置と、
    前記渋滞長データを対応する前記ボトルネック地点からの渋滞範囲の長さを表すように補正する渋滞長補正装置と、
    前記渋滞長補正装置により補正された渋滞長データから主成分分析により基底と合成強度を求める基底データ抽出装置と、
    曜日,平日/休日,季節,五十日,または天気の分類の少なくとも1つを含む日種因子を説明変数とする回帰分析により、前記合成強度の予測モデルを同定する予測モデル同定装置と、
    予測対象日の日種因子を前記予測モデルの入力として、予測対象日の合成強度の予測値を計算する合成強度予測装置と、
    前記基底を当該合成強度の予測値により線形結合して渋滞長予測データを求める交通情報合成装置と、
    を有する交通情報予測装置。
  2. 請求項1において、前記渋滞長補正装置が、前記ボトルネック地点位置データと前記渋滞先頭位置データとの差分を、前記渋滞長データに加算した値を補正済み渋滞長データとすることを特徴とする交通情報予測装置。
  3. 移動体で収集された位置データと速度データとを記録したデータベースと、
    前記速度データと基準値との比較によって渋滞の判定を行い、渋滞範囲の先頭位置を示す渋滞先頭位置データと、前記渋滞先頭位置からの渋滞範囲の長さを示す渋滞長データを求める渋滞領域判定装置と、
    前記渋滞先頭位置データについてクラスタリングを行い求めたクラスターの代表値をボトルネック地点位置データとして出力するボトルネック地点検出装置と、
    前記渋滞長データを対応する前記ボトルネック地点からの渋滞範囲の長さを表すように補正する渋滞長補正装置と、
    前記渋滞長補正装置により補正された渋滞長データから主成分分析により基底と合成強度を求める基底データ抽出装置と、
    曜日,平日/休日,季節,五十日,または天気の分類の少なくとも1つを含む日種因子を説明変数とする回帰分析により、前記合成強度の予測モデルを同定する予測モデル同定装置と、
    予測対象日の日種因子を前記予測モデルの入力として、予測対象日の合成強度の予測値を計算する合成強度予測装置と、
    前記基底を当該合成強度の予測値により線形結合して渋滞長予測データを求める交通情報合成装置と、
    を有する交通情報予測装置。
  4. 請求項3に記載の交通情報予測装置において、前記渋滞長予測データを図示する表示装置を有し、
    前記表示装置が前記渋滞長予測データの長さを有する線分を前記ボトルネック地点位置データを起点として地図上に表示することを特徴とする交通情報予測装置。
  5. 請求項3に記載の交通情報予測装置において、前記渋滞長予測データを図示する表示装置を有し、
    前記表示装置は、前記渋滞長予測データの長さを有する線分を前記ボトルネック地点位置データを起点として地図上に表示、前記渋滞位置検出装置における渋滞判定の基準値に応じて前記線分の色や太さを変えることを特徴とする交通情報予測装置。
  6. 請求項において、日付を入力するインターフェース装置と、
    日付と日種因子との対応を記録した日種因子データベースと、を備え、
    前記インターフェース装置から入力された日付に対応した日種因子を前記日種因子データベースから読み出し、前記合成強度予測装置への入力とすることを特徴とする交通情報予測装置。
  7. 請求項において、日種因子を入力するインターフェース装置を備え、入力された日種因子を前記合成強度予測装置への入力とすることを特徴とする交通情報予測装置。
JP2004270663A 2004-09-17 2004-09-17 交通情報予測装置 Expired - Lifetime JP4175312B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004270663A JP4175312B2 (ja) 2004-09-17 2004-09-17 交通情報予測装置
US11/206,817 US7577513B2 (en) 2004-09-17 2005-08-19 Traffic information prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270663A JP4175312B2 (ja) 2004-09-17 2004-09-17 交通情報予測装置

Publications (2)

Publication Number Publication Date
JP2006085511A JP2006085511A (ja) 2006-03-30
JP4175312B2 true JP4175312B2 (ja) 2008-11-05

Family

ID=36075124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270663A Expired - Lifetime JP4175312B2 (ja) 2004-09-17 2004-09-17 交通情報予測装置

Country Status (2)

Country Link
US (1) US7577513B2 (ja)
JP (1) JP4175312B2 (ja)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329711B2 (ja) * 2005-03-09 2009-09-09 株式会社日立製作所 交通情報システム
US7752302B2 (en) * 2005-12-01 2010-07-06 Discrete Wireless Autonomous and dependent data collection for traffic analysis
JP4950590B2 (ja) * 2006-08-07 2012-06-13 クラリオン株式会社 交通情報提供装置、交通情報提供システム、交通情報の送信方法、および交通情報の要求方法
JP4933991B2 (ja) * 2006-09-05 2012-05-16 クラリオン株式会社 交通情報収集・配信方法、交通情報収集・配信システム、センタ装置および車載端末装置
JP4929933B2 (ja) * 2006-09-06 2012-05-09 株式会社デンソー 渋滞要因判断システム
JP4982143B2 (ja) * 2006-09-27 2012-07-25 クラリオン株式会社 交通状況予測装置
CN100456335C (zh) * 2006-10-12 2009-01-28 华南理工大学 基于交通流相特征的城市交通系统状态可视化评价方法及其应用
JP4932524B2 (ja) * 2006-10-20 2012-05-16 日本電気株式会社 旅行時間予測装置、旅行時間予測方法、交通情報提供システム及びプログラム
JP4729469B2 (ja) * 2006-11-10 2011-07-20 日立オートモティブシステムズ株式会社 交通情報システム
JP4733623B2 (ja) * 2006-12-18 2011-07-27 クラリオン株式会社 予測交通情報提供装置、車載端末および予測交通情報提供システム
KR100865939B1 (ko) 2006-12-29 2008-10-30 포스데이타 주식회사 교통정보 안내 시스템 및 방법
JP4495746B2 (ja) * 2007-05-09 2010-07-07 日本電信電話株式会社 渋滞旅行時間予測データベース作成装置,渋滞旅行時間予測データベース作成方法,その方法を実装した渋滞旅行時間予測データベース作成プログラム及びそのプログラムを記録した記録媒体、渋滞旅行時間予測装置,渋滞旅行時間予測方法,その方法を実装した渋滞旅行時間予測プログラム及びそのプログラムを記録した記録媒体
US7696866B2 (en) * 2007-06-28 2010-04-13 Microsoft Corporation Learning and reasoning about the context-sensitive reliability of sensors
US7948400B2 (en) * 2007-06-29 2011-05-24 Microsoft Corporation Predictive models of road reliability for traffic sensor configuration and routing
JP4446316B2 (ja) * 2007-07-25 2010-04-07 日立オートモティブシステムズ株式会社 交通情報システム
JP4547408B2 (ja) * 2007-09-11 2010-09-22 日立オートモティブシステムズ株式会社 交通状況予測装置,交通状況予測方法
US7755509B2 (en) * 2007-09-20 2010-07-13 Traffic.Com, Inc. Use of pattern matching to predict actual traffic conditions of a roadway segment
JP4935698B2 (ja) * 2008-01-31 2012-05-23 住友電気工業株式会社 交通情報処理装置、コンピュータプログラム及び交通情報処理方法
EP2104081A1 (en) * 2008-03-19 2009-09-23 Harman Becker Automotive Systems GmbH Method for providing a traffic pattern for navigation map data and navigation map data
JP4977177B2 (ja) * 2009-06-26 2012-07-18 クラリオン株式会社 統計交通情報生成装置およびそのプログラム
US8738795B2 (en) * 2010-08-23 2014-05-27 Cisco Technology, Inc. Media-aware and TCP-compatible bandwidth sharing for video streaming
JP5315363B2 (ja) 2011-01-19 2013-10-16 株式会社ゼンリン 道路網解析システム
JP5263312B2 (ja) * 2011-02-03 2013-08-14 トヨタ自動車株式会社 渋滞判定装置、及び車両制御装置
CN102184638B (zh) * 2011-04-28 2013-07-10 北京市劳动保护科学研究所 行人交通数据的数据预处理方法
CN102404164A (zh) * 2011-08-09 2012-04-04 江苏欣网视讯科技有限公司 一种基于arma模型和混沌时间序列模型的流量分析方法
US8706458B2 (en) * 2011-10-05 2014-04-22 International Business Machines Corporation Traffic sensor management
WO2013186866A1 (ja) * 2012-06-13 2013-12-19 三菱電機株式会社 データ保存装置及びデータ保存システム及びデータ保存方法及びコンピュータ読み取り可能な記録媒体
JP5941987B2 (ja) * 2012-08-08 2016-06-29 株式会社日立製作所 交通量予測装置および方法
CN103810849B (zh) * 2012-11-15 2015-10-28 北京掌城科技有限公司 一种基于浮动车数据的交通流变化趋势提取方法
US20140159923A1 (en) * 2012-12-07 2014-06-12 Cisco Technology, Inc. Elastic Clustering of Vehicles Equipped with Broadband Wireless Communication Devices
JP6230306B2 (ja) * 2013-07-09 2017-11-15 株式会社ゼンリンデータコム 混雑度パターンの特定及び混雑度の予測のための情報処理装置、情報処理方法及びプログラム
US9495868B2 (en) * 2013-11-01 2016-11-15 Here Global B.V. Traffic data simulator
US9368027B2 (en) * 2013-11-01 2016-06-14 Here Global B.V. Traffic data simulator
CN103646542B (zh) * 2013-12-24 2016-01-20 北京四通智能交通系统集成有限公司 一种交通影响范围的预测方法和装置
JP6369229B2 (ja) * 2014-08-29 2018-08-08 富士通株式会社 渋滞箇所の抽出プログラム、渋滞箇所の抽出方法および情報処理装置
JP6423212B2 (ja) * 2014-09-12 2018-11-14 株式会社ゼンリン 運転支援システム、データ構造
CN104269057B (zh) * 2014-09-29 2016-08-24 银江股份有限公司 一种基于浮动车od数据的卡口传感器部署方法
US9361797B1 (en) 2014-12-11 2016-06-07 Here Global B.V. Detecting road condition changes from probe data
CN105788289A (zh) * 2014-12-17 2016-07-20 上海宝康电子控制工程有限公司 基于计算机软件系统实现交通路况评估分析的方法和系统
JP6355571B2 (ja) * 2015-01-23 2018-07-11 アイシン・エィ・ダブリュ株式会社 車両制御システム、方法およびプログラム
US10055504B2 (en) 2015-04-09 2018-08-21 International Business Machines Corporation Aggregation of traffic impact metrics
CN107369318A (zh) 2016-05-11 2017-11-21 杭州海康威视数字技术股份有限公司 一种速度预测方法及装置
CN105938655B (zh) * 2016-06-16 2019-02-22 上海交通大学 基于高斯混合模型的实时交通状态评估方法
CN106530704B (zh) * 2016-11-25 2019-01-25 杭州电子科技大学 一种基于多元数据融合的浮动车聚集检测方法
CN106504534B (zh) * 2016-11-28 2019-06-14 北京世纪高通科技有限公司 一种预测道路路况的方法、装置及用户设备
US10332391B2 (en) 2016-12-06 2019-06-25 Here Global B.V. Split lane traffic jam detection and remediation
CN106649709B (zh) * 2016-12-20 2020-02-07 北京航空航天大学 一种基于数据挖掘的车辆停留行为模式预测与评估方法
CN106960571B (zh) * 2017-03-30 2020-10-16 百度在线网络技术(北京)有限公司 道路拥堵瓶颈点确定方法、装置、服务器及存储介质
CN107123266B (zh) * 2017-06-09 2020-09-25 青岛海信网络科技股份有限公司 一种基于交通大数据的瓶颈路段车流量调节方法和装置
CN107749164B (zh) * 2017-11-23 2020-08-11 浪潮软件科技有限公司 一种车辆聚集分析方法及装置
CN108205890B (zh) * 2017-12-29 2021-03-09 迈锐数据(北京)有限公司 一种交通数据处理方法和装置
CN108269401B (zh) * 2018-01-30 2021-02-23 银江股份有限公司 一种基于数据驱动的高架桥交通拥堵预测方法
CN108492561B (zh) * 2018-04-04 2020-06-19 北京工业大学 一种基于矩阵分解的路网交通状态时空特征分析方法
CN108776704B (zh) * 2018-06-12 2021-05-11 东方电子股份有限公司 一种基于回归分析的时序数据索引方法
CN109215343B (zh) * 2018-09-20 2020-08-04 山东交通学院 基于社团发现的路网拥堵区域动态识别方法及系统
CN109410575B (zh) * 2018-10-29 2020-05-01 北京航空航天大学 一种基于胶囊网络和嵌套式长短时记忆神经网络的路网状态预测方法
JP7188181B2 (ja) * 2019-02-26 2022-12-13 富士通株式会社 渋滞予測プログラム、渋滞予測方法及び渋滞予測装置
CN111915893B (zh) * 2019-04-15 2021-05-11 北京嘀嘀无限科技发展有限公司 一种道路瓶颈点识别方法、装置、电子设备及存储介质
CN110223510B (zh) * 2019-04-24 2021-03-26 长安大学 一种基于神经网络lstm的多因素短期车流量预测方法
CN111854777B (zh) * 2019-04-30 2023-04-14 长城汽车股份有限公司 导航路线行驶时间的更新方法、导航方法、系统及车辆
JP2021071748A (ja) * 2019-10-29 2021-05-06 日本電気株式会社 情報処理システム、情報処理方法及びプログラム
CN110738856B (zh) * 2019-11-12 2020-09-22 中南大学 一种基于移动聚类的城市交通拥堵精细识别方法
WO2021097759A1 (en) * 2019-11-21 2021-05-27 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for traffic control based on vehicle trajectory data
CN111862592B (zh) * 2020-05-27 2021-12-17 浙江工业大学 一种基于rgcn的交通流预测方法
CN112530163B (zh) * 2020-11-23 2022-03-01 腾讯科技(深圳)有限公司 交通事故预测方法、装置、电子设备及存储介质
CN113077629B (zh) * 2021-04-30 2022-01-28 中科三清科技有限公司 动态车流量测算方法、装置、电子设备及存储介质
US20240212492A1 (en) * 2022-12-27 2024-06-27 Itron, Inc. Pedestrian and vehicle congestion relief system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250594A (ja) * 1992-03-04 1993-09-28 Hitachi Ltd 道路交通シミュレーションシステム
JP4108150B2 (ja) * 1996-09-03 2008-06-25 富士通テン株式会社 道路情報送信装置及び道路情報表示装置
JPH10124791A (ja) * 1996-10-23 1998-05-15 Sumitomo Electric Ind Ltd 旅行時間予測方法および装置
DE19944075C2 (de) * 1999-09-14 2002-01-31 Daimler Chrysler Ag Verfahren zur Verkehrszustandsüberwachung für ein Verkehrsnetz mit effektiven Engstellen
JP3460658B2 (ja) * 2000-01-28 2003-10-27 株式会社日立製作所 交通情報推定装置
JP2001304891A (ja) * 2000-04-27 2001-10-31 Toshiba Corp 道路交通状況の予測システム、車載用ナビゲーションシステム及び道路状況予測方法
DE10036789A1 (de) * 2000-07-28 2002-02-07 Daimler Chrysler Ag Verfahren zur Bestimmung des Verkehrszustands in einem Verkehrsnetz mit effektiven Engstellen
JP3628616B2 (ja) 2001-01-29 2005-03-16 日本電信電話株式会社 交通状況予測方法、装置、交通状況予測プログラム、および該プログラムを記録した記録媒体
JP4052186B2 (ja) 2003-06-16 2008-02-27 株式会社日立製作所 交通情報提供装置,交通情報提供方法

Also Published As

Publication number Publication date
US7577513B2 (en) 2009-08-18
US20060064234A1 (en) 2006-03-23
JP2006085511A (ja) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4175312B2 (ja) 交通情報予測装置
JP4491472B2 (ja) 交通情報システム
US7555381B2 (en) Traffic information providing device, traffic information providing system, traffic information transmission method, and traffic information request method
US8694242B2 (en) Traveling information creating device, traveling information creating method and program
KR101413505B1 (ko) 이력 및 현재 데이터에 기초하는 예상된 도로 교통 조건의 예측 방법 및 장치
CN110268454B (zh) 确定车辆的定制安全速度
JP4177228B2 (ja) 予測装置
JP4997011B2 (ja) 自動車の燃料消費量推定システム、経路探索システム、及び運転指導システム
EP2619059B1 (en) Driver profiling system and method
EP3745087B1 (en) Method, apparatus, and computer program product for determining lane level vehicle speed profiles
JP2006079483A (ja) 交通情報提供装置,交通情報提供方法
JP2008123474A (ja) 旅行時間予測装置、旅行時間予測方法、交通情報提供システム及びプログラム
WO2008005187A2 (en) Inferring road speeds for context-sensitive routing
JP2007140745A (ja) 渋滞予測システム及び渋滞要因推定システム、並びに渋滞予測方法及び渋滞要因推定方法
CN110751311A (zh) 偶发性交通拥堵持续时间的数据提取与实时预测方法
JP7451303B2 (ja) 交通状況予測装置、および、交通状況予測方法
JP2011113547A (ja) 交通情報推定装置、交通情報推定のためのコンピュータプログラム、及び交通情報推定方法
CN115953901A (zh) 一种动态路线的行车安全评估方法及系统
Cohen et al. Travel time estimation between loop detectors and FCD: A compatibility study on the Lille network, France
JP4313457B2 (ja) 移動時間予測システム、プログラム記録媒体、移動時間予測方法、情報提供装置、および情報入手装置
JP4733623B2 (ja) 予測交通情報提供装置、車載端末および予測交通情報提供システム
Zhao et al. Truck travel time reliability and prediction in a port drayage network
JP4240309B2 (ja) 旅行時間提供方法、装置及びプログラム
JP7264859B2 (ja) ナビゲーションシステム、その検索ルートの推奨方法、およびプログラム
JPH09270091A (ja) 旅行時間予測装置及び旅行時間予測方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4175312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350