EP0928338A1 - Verfahren zur herstellung weiblich steriler pflanzen - Google Patents

Verfahren zur herstellung weiblich steriler pflanzen

Info

Publication number
EP0928338A1
EP0928338A1 EP97909268A EP97909268A EP0928338A1 EP 0928338 A1 EP0928338 A1 EP 0928338A1 EP 97909268 A EP97909268 A EP 97909268A EP 97909268 A EP97909268 A EP 97909268A EP 0928338 A1 EP0928338 A1 EP 0928338A1
Authority
EP
European Patent Office
Prior art keywords
ptc
gene
acetyl
plants
ptt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97909268A
Other languages
English (en)
French (fr)
Inventor
Klaus Bartsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Hoechst Schering Agrevo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7806895&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0928338(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoechst Schering Agrevo GmbH filed Critical Hoechst Schering Agrevo GmbH
Publication of EP0928338A1 publication Critical patent/EP0928338A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/829Female sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)

Definitions

  • the invention relates to the use of deacetylase genes for the production of transgenic plants using tissue-specific promoters. The development of certain parts of plants can be specifically prevented in these plants.
  • PTC Phosphinothricin
  • GS glutamine synthetase
  • PTC is a "building block" of the antibiotic phosphinothricyl-alanyl-alanine.
  • This tripeptide (PTT) is active against Gram-positive and Gram-negative bacteria and also against the fungus Botrytis cinerea.
  • PTT is produced by the strain Streptomyces viridochromogenes TÜ494, which is deposited and available from the German Collection for Microorganisms under the numbers DSM 40736 and DSM 41 12. From German Patent 2,717,440 it is known that PTC acts as a total herbicide.
  • the published application (EP-A-0257542) describes how to prepare herbicide-resistant plants using a phosphinothricin-N-acetyltansferase (pat) gene.
  • the phosphinothricin-N-acetyltransferase encoded by the pat gene modifies the intracellular PTC and detoxifies the herbicide.
  • the present invention now describes the use of deacetylase genes (dea), the expression products of which intracellularly N-acetyl-phosphinothricin (N-Ac-PTC) or w. Can deacetylate N-Ac-PTT and thus make it antibiotically active again for the production of sterile plants.
  • deacetylase genes deacetylase genes
  • N-acetylphosphinothricin tripeptide deacetylase gene can be isolated from S. viridochromogenes TÜ494.
  • the dea gene is located downstream of the pat gene on the already known 4.0 kb BamHI fragment (EP-A-0 257 542). This gene is located on a BglII-BamHI fragment and is precise in its sequence determined (Fig. 1 and Tab 1)
  • the protein sequence is defined by the DNA sequence
  • the phosphinoth ⁇ cin-N-acetyltransfera e encoded by the pat gene actually serves for acetylation of desmethyl-PTC in PTT biosynthesis and, because of its unspecificity, can detoxify PTC
  • an insufficiently specific N-acetyl-PTT-deacetylase can now be used to activate N-acetyl-phosphinoth ⁇ cin
  • the pat gene in low copy number in E coli is unable to confer PTT resistance, since the endogenous deacetylase is the effect of phosphinothricm-N-acetyltransferase
  • this deacetylase activity can be detected directly by the effective inhibition of the GS activity after the addition of N-acetylphosphinoth ⁇ cin.
  • N-Ac-PTC is converted to PTC by the deacetylase, which is then converted into b known to inhibit GS, which can be seen in the ⁇ -glutamyl transferase assay (Bender et al, J Bactenol 129, 1001- 1009, 1977) This is due to an endogenous deacetylase activity of
  • the deacetylase gene from E coli can thus be obtained by creating a gene bank in, for example, the E coli argE mutant or in a newly isolated mutant using conventional methods (Maniatis et al, Molecular Clonmg a Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982)
  • pat and dea genes can be used together with tissue-specific promoters in order to specifically prevent the development of certain plant tissues.
  • a special application is, for example, the production of sterile plants
  • RNAse gene is fused with a tapetum-specific promoter (Ma ⁇ ani et al .; Nature 347, 737-741, 1990).
  • the exclusive expression of the gene in the tapetum cells ensures the selective destruction of the tissue and thus prevents the formation of mature pollen.
  • a plant that carries this gene should only be able to form seeds after cross-fertilization
  • the invention therefore includes tissue-specific inhibition with the aid of a deacetylase gene
  • Pat activity by PTT or PTC-resistant plants is used to transform with a deacetylase gene under the control of the tissue-specific active promoter in plants. After application of PTT or PTC, expression of Deacetylase gene to abolish the phosphinoth ⁇ cin-N-acetyltransferase activity in the corresponding tissues. These are then selectively killed while the rest of the plant is resistant
  • This system can be simplified by using N-acetyl-phosphinoth ⁇ cin or N-acetyl-phosphinothncin-Tn peptide. Both substances are not active as herbicides, but are taken up by plants, transported and not immediately broken down. Deacetylase activity for N-acetyl-phosphinothncin and N - Acetyl-phosphinoth ⁇ cin-T ⁇ peptide has not yet been detected in plants. Thus, the 2-gene system described above can be reduced to a 1-gene system and thus decisively simplified, as explained further below. Any plants can be controlled with a streptomycete deacetylase gene of a tissue-specific promoter are transformed. After application of N-acetyl-phosphinoth ⁇ cin or N-acetyl-phosphinoth ⁇ cin-t ⁇ peptide, the tissue-specific expression leads to the immediate death of the corresponding tissue
  • tissue-specific promoters can be used as tissue-specific promoters, the selective expression of which has been demonstrated in certain tissues, preferably the female organs.
  • female organs includes gametophytes and him surrounding or neighboring tissues, such as gynoceum (fruit leaves), ovules, placenta, pestle (fruit nodes, pistil, scar)
  • Robert et al describe stigma-specific promoters from rapeseed (Robert et al, 1994), Sato et al Pistil-specific Promote were also described (Sato et al, 1991, Dzelzkalns et al, 1993, WO 94/25613)
  • promoters are also suitable for the process according to the invention which, although not specifically active in the female organs, are nevertheless expressed in a tissue which is essential for the development of the functional blood, embryo and semen
  • promoters which are subject to a different type of regulation (for example temporally, stress-related, environmentally dependent) and which occurs in a tissue-specific manner
  • the method can preferably be used for the production of sterile plants
  • Example 1 Fusion of the deacetylase coding region with eukaryotic transcription signals
  • the plasmid pPRI (see EP-0 257 542) was isolated from an E coli strain and digested with BamHI and BglII. The digested DNA was separated in an agarose gel and a 0 9 kb fragment was isolated from the gel.
  • the vector pROKI (Baulcombe et al, Nature 321, 446-449, 1986) was also restricted with BamHI. The two approaches were combined and ligated.
  • the ligation mixture was prepared according to E. coli S17 1 (Simon et al, Bio / Technology 1 784-791 1983) transformed Colonies growing on media containing kanamycin were transferred to nitrocellulose filters and lysed after 12 hours of incubation at 37 ° C.
  • the DNA of the bacteria was fixed on the filter.
  • the 0.9 kb fragment isolated from the agarose gel was made single-stranded by incubation at 100 ° C. Then the missing one was removed Strand synthesized with Klenow polymerase and digoxigenin-labeled nucleotides. The labeled strand was used as a sample for hybridization with the bacterial DNA bound to the filter. Hybridizing clones were detected using an antibody reaction.
  • the DNA of the positive clones was isolated by Qiagen lysis and with BamHI / EcoRI and BamHI / HindIII digested. This restriction enables the orientation of the inserted 0 9 kb fragment to be determined.
  • the plasmid with the orientation I was designated as plB17 1, that with the orientation II as plB17 2 (see FIG. 2)
  • Example 2 Detection of the deacetylation of N-acetyl-PTC and N-acetyl-PTT by the deacetylase gene
  • the plasmids plB17 1 and plB17 2 were therefore transferred to the Rhizobium meliloti strain 2011 by means of a two-factor crossing.
  • Incubation of R meliloti wild-type strains with radioactively labeled N-acetyl-PTC showed that this strain N-acetyl-PTC was not deacety ert (after incubation of plB17 1-carrying strains with N-acetyl-PTC and N-acetyl-PTT, deacetylation can be demonstrated by means of thin-layer chromatography). It was also possible to show that R meliloti is very sensitive to PTC and PTT. Therefore, deacetylation can be carried out also demonstrate the inhibition of R meliloti glutamine synthetases by the released PTC Example 3: Transfer of the modified deacetylase gene in Nicotiana tabacum
  • the deacetylase gene modified in Example 1 was transferred to A tumefaciens LBA4404 by means of a 2-factor crossing.
  • the resulting strains LBA4404 / 17 1 and LBA4404 / 17 2 were used to incubate Nicotiana tabacum leaf disks and, after 3 days, reacted to a sprout induction medium containing kanamycin. Regenerating kanamycin-resistant can be tested for the presence of the deacetylase gene by Southern hybridization. After treatment with N-acetyl-PTC or N-acetyl-PTT, the plants are then killed by the released PTC or PTT
  • Example 4 Construction of a vector for the transient expression of the modified deacetylase gene in E. coli and tobacco protoplasts
  • the modified deacetylase gene from plB17 1 and plB17 2 was excised from the plasmids by EcoRI / HindIII digestion. The restricted DNA was separated in an agarose gel and a 0.9 kb fragment was isolated in each case.
  • the vector pSVB28 (Arnold and Puhler, Gene 70, 171-179, 1988) has just f alls with EcoRI / HindIII digested the two batches were combined and ligated After transformation into the beta-galactosidase-negative E. coli strain JM83 showed all vector carrying clones a blue color, whereas clones which carry a vector with insertion of the deacetylase gene , remained white.
  • the plasmid DNA was isolated from the E. coli strains constructed in Example 4. Young tobacco leaves were incubated with digestive enzymes for 20 hours. The protoplasts falling from the skeleton were cleaned and incubated in a transfer buffer with polyethylene glycol (PEG) and the isolated DNA. The protoplasts were then washed and taken up in a culture liquid (K3 medium). After 3 days of incubation under dim lighting, the regenerating protoplasts were digested and the crude extracts were incubated with radioactively labeled N-acetyl-PTC and N-acetyl-PTT. The deacetylated PTC or PTT can be detected by thin layer chromatography.
  • PEG polyethylene glycol
  • Example 6 Method for producing male-sterile crop plants using the deacetylase gene from S. viridochromogenes under the control of a wallpaper-specific promoter.
  • the deacetylase gene from Streptomyces viridochromogenes is fused with a pistol-specific promoter and introduced into the tobacco cells by means of leaf disc transformation mediated by agrobacteria.
  • the plants regenerating from these cells are sprayed with N-acetyl-PTC or N-acetyl-PTT at any time before flowering. It can be shown that N-acetyl-PTC is stable in the plant row and is transported into all cells. Neither of the two substances has recognizable negative consequences for the wild type plant. As soon as the first pistil cells form, they begin to express the deacetylase gene.
  • the N-acetyl-PTC or N-acetyl-PTT stored in the cell is deacetylated by the enzyme and thus converted into its effective form. It inhibits the cells' glutamine synthetase and thus leads to rapid death. Functional embryos or seeds can no longer arise. Nevertheless, the development of the male reproductive system is impaired. In addition, the formation of deacetylase is interrupted. Surrounding cells are not impaired. If the plant is not treated with N-acetyl-PTC or N-acetyl-PTT, it is fully fertile. This eliminates the need to cancel the fs by a gene from the male partner of the cross. At the same time, a precisely defined mutation is present that is without Effects on the vigor and usability of the plant remains

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die Erfindung betrifft Verfahren zur Erzeugung transgener Pflanzen unter Einsatz gewebespezifischer Promotoren. In diesen Pflanzen kann die Entwicklung bestimmter Pflanzenteile gezielt verhindert werden.

Description

Verfahren zur Herstellung weiblich steriler Pflanzen
Die Erfindung betrifft die Verwendung von Deacetylasegenen zur Erzeugung transgener Pflanzen unter Einsatz gewebespezifischer Promotoren. In diesen Pflanzen kann die Entwicklung bestimmter Pflanzenteile gezielt verhindert werden.
Phosphinothricin (PTC, 2-Amino-4-methylphosphinobuttersäure) ist ein Glutaminsynthetase(GS)-lnhibitor. PTC ist ein "Baustein" des Antibiotikums Phosphinothricyl-Alanyl-Alanin. Dieses Tripeptid (PTT) ist aktiv gegen Gram-positive und Gram-negative Bakterien und auch gegen den Pilz Botrytis cinerea. PTT wird von dem Stamm Streptomyces viridochromogenes TÜ494 produziert, der bei der Deutschen Sammlung für Mikroorganismen unter den Nummern DSM 40736 und DSM 41 12 hinterlegt und erhältlich ist. Aus der Deutschen Patentschrift 2 717 440 ist bekannt, daß PTC als Totalherbizid wirkt. In der veröffentlichten Anmeldung (EP- A-0257542) ist beschrieben, wie man mit Hilfe eines Phosphinothricin-N- Acetyltansferase(pat)-Gens Herbizid-resistente Pflanzen herstellt. Die von dem pat- Gen kodierte Phosphinothricin-N-Acetyltransferase modifiziert das intrazellulär auftretende PTC und detoxifiziert das Herbizid.
Die vorliegende Erfindung beschreibt nun die Verwendung von Deacetylasegenen (dea), deren Expressionsprodukte intrazellulär N-Acetyl-Phosphinothricin (N-Ac- PTC) bz. w. N-Ac-PTT deacetylieren können und so wieder antibiotisch aktiv machen zur Herstellung weiblich steriler Pflanzen.
Ein N-Acetyl-Phosphinothricin-Tripeptid-Deacetylasegen läßt sich aus S. viridochromogenes TÜ494 isolieren. Auf dem bereits bekannten 4.0-kb BamHI- Fragment (EP-A-0 257 542) liegt stromabwärts vom pat-Gen das dea-Gen. Dieses Gen liegt auf einem Bglll-BamHI-Fragment und ist durch die Sequenz genau bestimmt (Fig 1 und Tab 1) Die Proteinsequenz ist durch die DNA-Sequenz definiert
Als Translationsstartkodon dient ein ATG-Kodon, das in Bakterien und in Pflanzen erkannt wird, die Shine-Dalgarno-Sequenz ist durch Unterstreichen hervorgehoben Dieses Gen kodiert in der PTT-Biosynthese den letzten Schritt, die Deacetyherung von inaktivem N-Acetyl-Phosphinothncin-Tπpeptid zum aktiven PTT
Von vielen Enzymen ist bekannt, daß ihre Spezifitat nicht auf ein Substrat begrenzt ist So dient die vom pat-Gen kodierte Phosphinothπcin-N-Acetyltransfera e in der PTT-Biosynthese eigentlich zur Acetylierung von Desmethyl-PTC und kann aufgrund ihrer Unspezifitat zur Detoxifizierung von PTC verwendet werden Durch Uberexpression des dea-Gens (mit Hilfe geeigneter Promotoren oder durch Klonierung auf high-copy-Vektoren) kann eine nicht hinreichend spezifische N- Acetyl-PTT-Deacetylase nun zur Aktivierung von N-Acetyl-Phosphinothπcin eingesetzt werden
Weitere dea-Gene lassen sich aus E coli gewinnen Es wurde nämlich gefunden, daß sich in E coli - im Gegensatz zu anderen Bakterien (z B Rhizobien und Streptomyceten) - nach Klonierung des pat-Gens in geeignete Expressionsvektoren (Strauch et al , Gene, 63, 65-74, 1988, Wohlleben et al , Gene, 70, 25-37, 1988) im sogenannten PAT-Assay (Doktorarbeit Inge Broer, Fakultät für Biologie der Universität Bielefeld, Expression des Phosphinthπcin-N-Acetyltransferase Gens aus Streptomyces viridochromogenes in Nicotiana tabacum, S 42-43, 1989) keine Aktivität nachweisen laßt Außerdem ist das pat-Gen in niedriger Kopienzahl in E coli nicht in der Lage, PTT-Resistenz zu verleihen, da die endogene Deacetylase die Wirkung der Phosphinothricm-N-Acetyltransferase aufhebt Schließlich kann diese Deacetylase-Aktivitat durch die effektive Hemmung der GS-Aktivitat nach Zugabe von N-Acetyl-Phosphinothπcin direkt nachgewiesen werden N-Ac-PTC wird durch die Deacetylase zu PTC umgesetzt, das dann in bekannter Weise die GS hemmt, was sich im γ-Glutamyl-Transferase-Assay (Bender et al , J Bactenol 129, 1001- 1009, 1977) messen laßt Dies liegt an einer endogenen Deacetylase-Aktivitat von
Diese Aktivität sollte nicht in der argE-Mutante, die literaturbekannt ist, zu finden sein (Baumberg, Molec Gen Genetics 106, 162-173, 1970) Weitere E coli Deacetylase-Mutanten sind leicht selektionierbar Nach klassischer (Delic et al , Mut Res 9, 167-182, 1970, Drake und Baltz, Ann Rev Biochem 45, 11-38, 1976) bzw Tn5-Mutagenese (Kleckner, Ann Rev Genet 15, 341-404, 1981) lassen sich auf mit PTT supplementiertem Minimalmedium solche Mutanten dadurch erkennen, daß nur sie nach Transformation mit einem in einen Niedπgkopienzahlvektor klonierten pat-Gen wachsen können
Damit laßt sich das Deacetylasegen aus E coli durch Anlegen einer Genbank in z B der E coli argE-Mutante bzw in einer neu isolierten Mutante mit herkömmlichen Verfahren (Maniatis et al , Molecular Clonmg a Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982) isolieren
Verfahren zur Isolierung weiterer Deacetylasegene ergeben sich aus dem oben Beschriebenen Z B Isolierung neuer Organismen, die trotz Anwesenheit eines pat- Gens auf einem Niedrigkopienzahlvektor PTT-sensitiv sind, und anschließende Isolierung eines Deacetylasegens
pat- und dea-Gene können in einem weiteren Aspekt der Erfindung zusammen mit gewebespezifischen Promotoren eingesetzt werden, um die Entwicklung bestimmter Pflanzengewebe gezielt zu verhindern Eine spezielle Anwendung ist z B die Herstellung weiblich steriler Pflanzen
Die Herstellung von Hybπdsaatgut in der Pflanzenzuchtung ist davon abhangig, eine Selbstbefruchtung der Mutterpflanze mit großer Sicherheit zu vermeiden In der Natur kommen für viele Pflanzenarten mannlich sterile Mutanten vor, die in der Züchtung eingesetzt werden Der molekulare Mechanismus der cytoplasmatischen männlichen Sterilität (cms) ist bis heute nicht vollständig geklart Auch gibt es für viele Kultursorten, wie z. B Beta vulgaπs keine cms-Vaπante Es ist daher von großem Interesse für die Landwirtschaft, auf molekulargenetischem Wege definierte sterile Mutanten aller wichtigen Kultursorten zu erzeugen. Die Firma PGS/Belgien hat in der Patentanmeldung PCT/EP 89/00495 eine solche Methode vorgestellt. Sie beruht auf der Zerstörung des die Pollenmutterzellen umgebenden Gewebes (Tapetum). Zu diesem Zweck wird ein RNAse-Gen mit einem Tapetum-spezifischen Promotor (Maπani et al.; Nature 347, 737-741 , 1990) fusioniert. Die ausschließliche Expression des Gens in den Tapetumzellen sorgt für die selektive Zerstörung des Gewebes und verhindert damit die Bildung reifen Pollens. Eine Pflanze, die dieses Gen tragt, sollte nur nach Fremdbefruchtung Samen bilden können
Ein wesentlicher Nachteil dieses Systems ist die Tatsache, daß Nachkommen dieser Pflanze ebenfalls mannlich steril sind und daher im Feld, wo sie auf Selbstbefruchtung angewiesen sind, keine Samen bilden können. Dies gelingt nur dann, wenn der männliche Partner der Kreuzung ein Gen tragt, das die Wirkung der RNAse in den Nachkommen aufheben kann Dies soll nach der oben genannten offengelegten Patentanmeldung durch das barstar-Gen erfolgen Tatsache hierbei ist, daß nur genetisch veränderte, das heißt transgene Partner in der Kreuzung genutzt werden können.
Nachstehend sind Verfahren zur Herstellung von weiblich (female) sterilen Pflanzen (fs-Pflanzen) vorgestellt, die es zulassen, transgene Mutterpflanzen mit beliebigen artgleichen Partnern zu kreuzen Dies wird durch Kombination eines dea-Gens unter Kontrolle eines Promotors, der selektiv in den weiblichen Organen aktiv ist gegebenenfalls in Verbindung mit einem konstitutiv expπmierten pat-Gen erreicht Durch Applikation von PTC bzw PTT wird gezielt die Glutaminsynthethase in den Zellen gehemmt und diese zum Absterben gebracht Ein noch einfacheres System besteht in der Herstellung transgener Pflanzen, die lediglich ein einziges Fremd-Gen enthalten, nämlich ein dea-Gen unter Kontrolle eines gewebespezifischen, hier weiblich spezifischen-Promotors, sowie Applikation von N-Ac-PTC bzw N-Ac-PTT auf die Pflanze
Verallgemeinert umfaßt die Erfindung folglich die gewebespezifische Inhibierung mit Hilfe eines Deacetylasegens
1) Durch Pat-Aktivitat PTT bzw PTC-resistente Pflanzen (z B erzeugt wie in EP 0257542 oder EP 0 242 236 beschrieben) werden mit einem Deacetylasegen unter Kontrolle des in Pflanzen gewebespezifisch aktiven Promotors transformiert Nach Applikation von PTT oder PTC fuhrt die Expression des Deacetylasegens zur Aufhebung der Phosphinothπcin-N-Acetyltransferase-Aktivitat in den entsprechenden Geweben Diese werden dann selektiv abgetötet, wahrend die restliche Pflanze resistent ist
Durch Verwendung von N-Acetyl-Phosphinothπcin bzw N-Acetyl-Phosphinothncin- Tnpeptid kann dieses System vereinfacht werden Beide Substanzen sind nicht als Herbizid aktiv, werden aber von Pflanzen aufgenommen, transportiert und nicht sofort abgebaut Eine Deacetylaseaktivitat für N-Acetyl-Phosphinothncin und N- Acetyl-Phosphinothπcin-Tπpeptid ist bisher in Pflanzen nicht nachgewiesen So laßt sich das oben beschriebene 2-Gen-System auf ein 1 -Gen-System reduzieren und damit entscheidend vereinfachen, wie unten weiter ausgeführt Beliebige Pflanzen können mit einem Streptomyceten-Deacetylasegen unter Kontrolle eines gewebespezifischen Promotors transformiert werden Nach Applikation von N- Acetyl-Phosphinothπcin oder N-Acetyl-Phosphinothπcin-Tπpeptid fuhrt die gewebespezifische Expression zum sofortigen Absterben des entsprechenden Gewebes
Als gewebespezifische Promotoren können alle beschriebenen Promotoren Verwendung finden, deren selektive Expression in bestimmten Geweben, vorzugsweise den weiblichen Organen nachgewiesen ist Der Begriff weibliche Organe umfaßt in diesem Zusammenhang den Gametophyten sowie das ihn umgebende oder benachbarte Gewebe, wie z B Gynoceum (Fruchtblatter), Samenanlagen, Plazenta, Pistill (Fruchtknoten, Griffel, Narbe)
So beschreiben z B Robert et al Stigma-spezifische Promotoren aus Raps (Robert et al , 1994), Sato et al Pistil-spezifische Promote wurden ebenfalls beschrieben (Sato et al , 1991 , Dzelzkalns et al , 1993, WO 94/ 25613)
Für das erfindungsgemaße Verfahren kommen jedoch auch Promotoren in Frage, die zwar nicht speziell in den weiblichen Organen aktiv sind, die jedoch in einem Gewebe expπmiert werden, das essentiell für die Entwicklung der funktionellen Blute, des Embryos und des Samens sind
Natürlich sind auch alle neu isolierten Promotoren mit ähnlichen Eigenschaften geeignet Außer gewebespezifischen Promotoren können auch solche Promotoren eingesetzt werden, die einer anderen Art der Regulation (z B zeitlich, streßbedingt, umweltabhangig) unterworfen sind und die gewebespezifisch auftritt
Diese Verfahren ermöglichen des weiteren die Analyse der Differenzierung der Zeilregulation sowie die Erzeugung von Pflanzen, in denen die Entwicklung bestimmter Pflanzenteile gezielt verhindert wurde Das Verfahren kann vorzugsweise zur Herstellung weiblich steriler Pflanzen eingesetzt werden
Beispiel 1 : Fusion des Deacetylasekodierbereichs mit eukaryontischen Transkriptionssignalen
Aus einem E coli Stamm wurde das Plasmid pPRI (siehe EP-0 257 542) isoliert und mit BamHI und Bglll gespalten Die verdaute DNA wurde in einem Agarosegel aufgetrennt und ein 0 9 kb Fragment aus dem Gel isoliert Der Vektor pROKI (Baulcombe et al , Nature 321 , 446-449, 1986) wurde ebenfalls mit BamHI restringiert Die beiden Ansätze wurden vereinigt und ligiert Das Ligation gemisch wurde nach E coli S17 1 (Simon et al , Bio/Technology 1 784-791 1983) transformiert Auf kanamycinhaltigen Medien wachsende Kolonien wurden auf Nitrozellulosefilter übertragen und nach 12h Inkubation bei 37°C lysiert Die DNA der Bakterien wurde auf dem Filter fixiert das aus dem Agarosegel isolierte 0,9kb Fragment wurde durch Inkubation bei 100°C einzelstrangig gemacht Anschließend wurde der fehlende Strang mit Klenowpolymerase und Digoxigenin markierten Nukleotiden aufsynthetisiert Der markierte Strang wurde als Probe zur Hybridisierung mit der auf den Filter gebundenen bakteriellen DNA genutzt Hybridisierende Klone ließen sich mit Hilfe einer Antikorperreaktion nachweisen Die DNA der positiven Klone wurde mittels Qiagen-Lyse isoliert und mit BamHI/EcoRI sowie BamHI/Hindlll verdaut Diese Restriktion ermöglicht die Bestimmung der Orientierung des inserierten 0 9kb Fragmentes Das Plasmid mit der Orientierung I wurde als plB17 1 , das mit der Orientierung II als plB17 2 bezeichnet (siehe Fig 2)
Beispiel 2: Nachweis der Deacetylierung von N-Acetyl-PTC und N-Acetyl-PTT durch das Deacetylasegen
Es konnte gezeigt werden, daß die in dem Vektor pROKI ktonierten eukaryontischen Transkriptionssignale auch eine Expression in R meliloti, A tumefaciens und E coli ermöglichen
Die Plasmide plB17 1 und plB17 2 wurden daher mittels 2-Faktor-Kreuzung in den Rhizobium meliloti Stamm 2011 transferπert Durch Inkubation von R meliloti Wildtypstammen mit radioaktiv markiertem N-Acetyl-PTC konnte gezeigt werden, daß dieser Stamm N-Acetyl-PTC nicht deacety ert (Nach Inkubation von plB17 1 tragenden Stammen mit N-Acetyl-PTC und N-Acetyl-PTT kann die Deacetylierung mittels Dunnschichtchromatographie nachgewiesen werden) Es konnte ebenfalls gezeigt werden, das R meliloti sehr sensitiv auf PTC und PTT reagiert Daher laßt sich die Deacetylierung auch über die Hemmung der R meliloti Glutaminsynthetasen durch das freigesetzte PTC nachweisen Beispiel 3: Transfer des modifizierten Deacetylasegens in Nicotiana tabacum
Das in Beispiel 1 modifizierte Deacetylasegen wurde mittels einer 2-Faktor Kreuzung nach A tumefaciens LBA4404 transferiert Mit den so entstandenen Stammen LBA4404/17 1 und LBA4404/17 2 wurden Nicotiana tabacum Blattscheiben inkubiert und nach 3 Tagen auf ein Kanamycin haltiges Sprossinduktionsmedium umgesetzt Regenerierende kanamycinresistente Sprosse können durch Southern-hybπdisierung auf die Anwesenheit des Deacetylasegens getestet werden Nach Behandlung mit N-Acetyl-PTC oder N-Acetyl-PTT werden dann die Pflanzen durch das freigesetzte PTC bzw PTT abgetötet
Beispiel 4: Konstruktion eines Vektors zur transienten Expression des modifizierten Deacetylasegens in E. coli und Tabakprotoplasten
Das modifizierte Deacetylasegen aus plB17 1 und plB17 2 wurde durch EcoRI/Hindlll Verdauung aus den Plasmiden herausgeschnitten Die restringierte DNA wurde im Agarosegel aufgetrennt und jeweils ein 0,9 kb Fragment isoliert Der Vektor pSVB28 (Arnold und Puhler, Gene 70, 171-179, 1988) wurde ebenfalls mit EcoRI/Hindlll verdaut Die beiden Ansätze wurden vereinigt und ligiert Nach Transformation in den ß-Galactosidase-negativen E coli Stamm JM83 zeigten alle Vektor tragenden Klone eine Blaufärbung, wahrend Klone, die einen Vektor mit Insertion des Deacetylasegens tragen, weiß blieben Aus den so identifizierten Klonen wurde die DNA isoliert und mit EcoRI/Hindlll verdaut Anhand des Restriktionsmusters ließen sich die Klone mit dem modifizierten Deacetylasegen erkennen Die konstruierten Vektoren tragen die Bezeichnung plB27 1 und plB27 2 (siehe Fig 2) Sie liegen in E coli mit großer Kopienzahl vor Beispiel 5: Transiente Expression des modifizierten Deacetylasegens in Tabakprotoplasten
Aus den in Beispiel 4 konstruierten E. coli Stämmen wurde die Plasmid-DNA isoliert. Junge Tabakblätter wurden mit Verdauungsenzymen für 20h inkubiert. Die aus dem Blattgerippe fallenden Protoplasten wurden gereinigt und in einem Transferpuffer mit Polyethylenglycol (PEG) und der isolierten DNA inkubiert. Anschließend wurden die Protoplasten gewaschen und in einer Kulturflüssigkeit (K3-Medium) aufgenommen Nach 3 Tagen Inkubation bei schwacher Beleuchtung wurden die regenerierenden Protoplasten aufgeschlossen und die Rohextrakte mit radioaktiv markiertem N- Acetyl-PTC und N-Acetyl-PTT inkubiert. Das deacetylierte PTC bzw. PTT läßt sich über Dünnschichtchromatographie nachweisen.
Beispiel 6: Verfahren zur Erzeugung männlich steriler Kulturpflanzen unter Verwendung des Deacetylasegens aus S. viridochromogenes unter Kontrolle eines tapetumspezifischen Promotors.
Das Deacetylasegen aus Streptomyces viridochromogenes wird mit einem pistilspezifischen Promotor fusioniert und über Agrobakterien vermittelte Blattscheiben-Transformation in Tabakzellen eingebracht. Die aus diesen Zellen regenerierenden Pflanzen werden zu einem beliebigen Zeitpunkt vor der Blüte mit N-Acetyl-PTC oder N-Acetyl-PTT gespritzt. Es kann gezeigt werden, daß N-Acetyl- PTC in der Pflanzenzeile stabil ist und in alle Zellen transportiert wird. Keine der beiden Substanzen hat erkennbare negative Folgen für die Wildtyppflanze. Sobald sich die ersten Pistilzellen bilden, beginnen sie mit der Expression des Deacetylasegens. Das in der Zelle gespeicherte N-Acetyl-PTC oder N-Acetyl-PTT wird durch das Enzym deacetyliert und damit in seine wirksame Form überführt. Es hemmt die Glutaminsynthetase der Zellen und führt so zu einem schnellen Absterben. Funktionsfähige Embryonen oder Samen können nicht mehr entstehen. Trotzdem wird die Entwicklung der männlichen Fortpflanzungsorgane beeinträchtigt. Zusätzlich ist auch die Bildung der Deacetylase unterbrochen. Umliegende Zellen werden nicht beeinträchtigt Wird die Pflanze nicht mit N-Acetyl-PTC oder N-Acetyl- PTT behandelt, ist sie voll fertil Damit erübrigt sich eine Aufhebung der fs durch ein Gen des mannlichen Partners der Kreuzung Gleichzeitig hegt eine genau definierte Mutation vor, die ohne Auswirkungen auf die Wuchsigkeit und Nutzbarkeit der Pflanze bleibt
Referenzen:
Dzelzkalns et al., The Plant Cell, Vol 5, 855-863, August 1993. Robert et al., Plant Molecular Biology 26, 1217-1222, 1994. Sato et al. , The Plant Cell, Vol. 3, 867-876, September 1991.

Claims

Patentansprüche:
1. Verfahren zur Herstellung transgener Pflanzen mit selektiv zerstörbaren Pflanzenteilen, dadurch gekennzeichnet, daß man ein Deacetylasegen unter Kontrolle eines gewebespezifischen Promotors bringt und die betreffenden Gewebeteile durch geeignete rechtzeitige Behandlung mit N-Acetyl-PTC oder N-Acetyl-PTT zum Absterben bringt.
2. Verfahren zur Herstellung transgener Pflanzen mit selektiv zerstörbaren Pflanzenteilen, dadurch gekennzeichnet, daß die Pflanze eine PTC-Resistenz besitzt und zusätzlich ein Deacetylasegen unter Kontrolle eines gewebespezifischen Promotors erhält und die betreffenden Gewebeteile durch geeignete rechtzeitige Behandlung mit PTC oder PTT zum Absterben bringt.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Deacetylasegen aus einem Bodenmikroorganismus stammt und die Pflanze mit N- Acetyl-PTC bzw. PTC behandelt wird.
4. Verfahren gemäß Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß das Deacetylasegen unter der Kontrolle eines Promoters exprimiert wird, der spezifisch in den weiblichen Organen aktiv ist.
5. Verfahren gemäß mindestens einem der Ansprüche 1 , 2, 3 oder 4, dadurch gekennzeichnet, daß weiblich sterile Pflanzen erzeugt werden.
6. Weiblich sterile Pflanzen oder deren Teile herstellbar nach einem Verfahren gemäß Anspruch 1.
EP97909268A 1996-09-26 1997-09-15 Verfahren zur herstellung weiblich steriler pflanzen Ceased EP0928338A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19639463 1996-09-26
DE19639463A DE19639463A1 (de) 1996-09-26 1996-09-26 Verfahren zur Herstellung weiblich steriler Pflanzen
PCT/EP1997/005037 WO1998013504A1 (de) 1996-09-26 1997-09-15 Verfahren zur herstellung weiblich steriler pflanzen

Publications (1)

Publication Number Publication Date
EP0928338A1 true EP0928338A1 (de) 1999-07-14

Family

ID=7806895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97909268A Ceased EP0928338A1 (de) 1996-09-26 1997-09-15 Verfahren zur herstellung weiblich steriler pflanzen

Country Status (9)

Country Link
US (2) US6759572B2 (de)
EP (1) EP0928338A1 (de)
JP (1) JP2001501088A (de)
CN (1) CN1231699A (de)
BR (1) BR9711552A (de)
CA (1) CA2265938A1 (de)
DE (1) DE19639463A1 (de)
HU (1) HUP9904347A3 (de)
WO (1) WO1998013504A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19652284A1 (de) 1996-12-16 1998-06-18 Hoechst Schering Agrevo Gmbh Neue Gene codierend für Aminosäure-Deacetylasen mit Spezifität für N-Acetyl-L-Phosphinothricin, ihre Isolierung und Verwendung
US6555733B2 (en) 1996-12-16 2003-04-29 Hoechst Schering Agrevo Gmbh Genes coding for amino acid deacetylases with specificity for N-acetyl-L-phosphinothricin, their isolation and use
US6815577B1 (en) 1997-03-03 2004-11-09 Syngenta Participations Ag Method of hybrid seed production using conditional female sterility
ES2263200T3 (es) * 1997-03-03 2006-12-01 Syngenta Participations Ag Metodo para la produccion de semillas hibridas utilizando la esterilidad condicional femenina.
EP0987330A1 (de) * 1998-09-01 2000-03-22 Hoechst Schering AgrEvo GmbH Änderung der Entwicklung und Differenzierung von Pflanzen durch gewebespezifisches Deac-Gen Expressionssystem
EP0987331A1 (de) * 1998-09-01 2000-03-22 Hoechst Schering AgrEvo GmbH Pathogenizitätskontrolle von Pflanzen durch pathogeninduzierbare Expression von Deac-Gen
US6384304B1 (en) 1999-10-15 2002-05-07 Plant Genetic Systems N.V. Conditional sterility in wheat
EP1370650A2 (de) * 2001-03-12 2003-12-17 Bayer CropScience N.V. Neuartige gene zur konditionellen zellablation
US7152786B2 (en) * 2002-02-12 2006-12-26 Digimarc Corporation Identification document including embedded data
MXPA04007931A (es) 2002-02-26 2004-11-26 Syngenta Ltd Metodos para producir selectivamente plantas esteriles masculinas o femeninas.
US20050044596A1 (en) * 2003-03-19 2005-02-24 Smith Alan G. Methods to confer enhanced floral properties to plants
BRPI0412410A (pt) * 2003-07-08 2006-08-22 Syngenta Ltd método de seletivamente produzir plantas estéreis masculinas ou femininas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE197816T1 (de) 1989-08-04 2000-12-15 Aventis Cropscience Nv Pflanzen mit modifizierten blüten, samen oder embryos
DE4126414A1 (de) 1991-08-09 1993-02-11 Hoechst Ag Deacetylasegene zur erzeugung von phosphinothricin oder phosphinothricyl-alanyl-alanin, verfahren zu ihrer isolierung und ihre verwendung
DE4308061A1 (de) * 1993-03-13 1994-09-15 Hoechst Ag Neue Aminosäure-Deacetylase mit Spezifität für L-N-Acetyl-Phosphinothricin, ihre Herstellung und Verwendung
WO1994025613A1 (en) 1993-05-03 1994-11-10 Cornell Research Foundation, Inc. Isolated dna elements that direct pistil-specific and anther-specific gene expression and methods of using same
ES2263200T3 (es) * 1997-03-03 2006-12-01 Syngenta Participations Ag Metodo para la produccion de semillas hibridas utilizando la esterilidad condicional femenina.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9813504A1 *

Also Published As

Publication number Publication date
US6852909B2 (en) 2005-02-08
AU716327B2 (en) 2000-02-24
DE19639463A1 (de) 1998-04-02
JP2001501088A (ja) 2001-01-30
CA2265938A1 (en) 1998-04-02
AU4703397A (en) 1998-04-17
US20020002710A1 (en) 2002-01-03
US20030051274A1 (en) 2003-03-13
BR9711552A (pt) 1999-08-24
CN1231699A (zh) 1999-10-13
WO1998013504A1 (de) 1998-04-02
US6759572B2 (en) 2004-07-06
HUP9904347A3 (en) 2002-01-28
HUP9904347A2 (hu) 2000-05-28

Similar Documents

Publication Publication Date Title
DE69333801T2 (de) Verfahren zur Herstellung von hybridem Saatgut
DE69333880T2 (de) Erhaltung von männlichen sterilen pflanzen
DE69133512T2 (de) Verfahren zur Transformation monokotyler Pflanzen
DE69034190T2 (de) Molekulare verfahren zur vermehrung von hybriden saaten
DE69535040T2 (de) Reversibles kern-genetisches system für männliche sterilität in transgenen pflanzen
DE69534503T2 (de) Kontrolle der pflanzengenexpression
DE69632576T2 (de) Binärer bac-vektor
EP0298918B1 (de) Induzierbare Virusresistenz bei Pflanzen
EP0869182B1 (de) Pflanzen, die für ein Deacetylasegen transgen sind
EP0375091A1 (de) Wundinduzierbare und kartoffelknollenspezifische transkriptionale Regulation
DE69832489T2 (de) Induktion von männlicher sterilität in pflanzen durch erhöhte expression von streptavidin
DD284048A5 (de) Verfahren zur herstellung einer pflanzenzelle bzw. eines pflanzenteils oder einer pflanze mit einer derartigen pflanzenzelle
DE69731608T2 (de) Verbessertes barstar-gen
DE69835144T2 (de) Verfahren zur herstellung von hybridem saatgut mittels bedingter weiblicher sterilität
DE60028578T2 (de) Veränderte pflanzen
DE69333310T2 (de) Anthere-spezifische cDNA-Sequenzen, genomische DNA-sequenzen und rekombinante DNA-sequenzen
DE3810286A1 (de) Transgene pflanze mit modifizierter physiologie, morphologie und modifiziertem hormonmetabolismus, gewebekulturen dieser pflanze und verfahren zu ihrer herstellung
DE69834428T2 (de) Promotor des h3c4 gens aus mais, verbunden mit erstem actin-intron aus reis; chimäres gen welches dieses beinhaltet und transformierte pflanzen
EP0928338A1 (de) Verfahren zur herstellung weiblich steriler pflanzen
DE60207714T2 (de) Am semidwarfing von pflanzen beteiligtes gen sd1 und seine verwendungen
DE60037941T9 (de) SCHNELLES, VON DER VARIETäT UNABHäNGIGES PFLANZENTRANSFORMATIONSVERFAHREN
DE69834637T2 (de) Verbesserungen der spezifität der genexpression
EP0469273A1 (de) Fertile transgene Maispflanzen mit artfremdem Gen sowie Verfahren zu ihrer Herstellung
DE69924005T2 (de) Transgene pflanzen mit konditional lethalem gen
WO2016156583A1 (de) Männlich sterile pflanze der gattung triticum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVENTIS CROPSCIENCE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVENTIS CROPSCIENCE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER CROPSCIENCE GMBH

17Q First examination report despatched

Effective date: 20030611

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20040612