EP0906494B1 - Arbre de turbine et procede de refroidissement d'un arbre de turbine - Google Patents

Arbre de turbine et procede de refroidissement d'un arbre de turbine Download PDF

Info

Publication number
EP0906494B1
EP0906494B1 EP97923804A EP97923804A EP0906494B1 EP 0906494 B1 EP0906494 B1 EP 0906494B1 EP 97923804 A EP97923804 A EP 97923804A EP 97923804 A EP97923804 A EP 97923804A EP 0906494 B1 EP0906494 B1 EP 0906494B1
Authority
EP
European Patent Office
Prior art keywords
turbine shaft
shaft
turbine
steam
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97923804A
Other languages
German (de)
English (en)
Other versions
EP0906494A1 (fr
Inventor
Andreas FELDMÜLLER
Helmut Pollak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0906494A1 publication Critical patent/EP0906494A1/fr
Application granted granted Critical
Publication of EP0906494B1 publication Critical patent/EP0906494B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means

Definitions

  • the invention relates to a turbine shaft, which extends along extends a major axis and has an outer surface, and a method for cooling a turbine shaft.
  • DE-OS 15 51 210 is a rotor for a steam turbine great performance described in disc design.
  • the disks are connected to each other by a central tie rod. They have an asymmetrical shape on the wreaths tied together trained saw toothing.
  • the object of the invention is to provide a turbine shaft, which can be cooled in a thermally highly resilient area is.
  • Another object of the invention is a method for cooling a turbine shaft arranged in a turbine specify.
  • Such a turbine shaft is therefore a fluidic one Connection between the outer surface of the turbine shaft and an internal axial gap educated. This allows cooling fluid to enter the interior of the turbine shaft introduced and through the axial gap in the axial direction be passed through the turbine shaft so that cooling of the turbine shaft in the area of the axial gap is guaranteed.
  • a steam turbine Cooling fluid preferably an action fluid (process steam), which by an inflow of connected to the turbine shaft Blades set the turbine shaft in rotation.
  • the radial channels preferably open at different Pressure levels on the outer surface of the turbine shaft, so that automatically through the pressure drop forms a flow through the turbine shaft.
  • Due to the geometric arrangement of the radial mouth Channels to the outer surface can be the volume flow of the Cooling fluid, which is branched off from the action fluid the required cooling capacity can be adjusted.
  • the required cooling capacity can be adjusted.
  • Differential pressure level no mechanical work to drive the Turbine shaft. After flowing out through the radial channel with lower pressure level back into the flow of the action fluid also performs the action fluid used as the cooling fluid mechanical work again and thus contributes to efficiency the steam turbine.
  • the cylindrical shaft segments also called rotor disks in the following referred to, preferably each have a central Connection opening through which a single connecting element, a tie rod is guided.
  • the connection opening has a larger cross section than the tie rod, so that preferably an annular axial gap between Shaft segment and tie rod for cooling fluid to flow through is formed.
  • connecting elements tilt rods
  • the respective connecting axis of the connecting elements is parallel to the main axis of the turbine shaft.
  • the respective connecting axes arranged on a circle, the The center coincides with the main axis.
  • At least one radial channel in particular are both radial channels, between two directly next to each other bordering wave segments formed.
  • a radial channel can but also through an essentially radial bore through the shaft segment from the outer surface to the connection opening be realized through.
  • Radial means here preferably perpendicular to the main axis, but closes also any connection between the outer surface and the connection opening, which at least partially in Direction of the main axis is directed.
  • the turbine shaft is preferably for a double-flow turbine is provided and accordingly has an axial central region to which the action fluid immediately after inflow got into the turbine and there in two essentially equal partial streams is divided.
  • the axial middle area is preferably axially between the radial channels arranged.
  • the middle area, which the action fluid at exposed to the highest temperature preferably has a cavity through which cooling fluid can flow.
  • the cavity is preferably rotationally symmetrical to the Main axis trained. It is closed by a shielding element which is a rotationally symmetrical one for current division Has survey.
  • the cavity can be fluidly be connected to the axial gap. It is also possible Cooling fluid over the casing of a turbine and one that Feed the shielding element to the mounting bracket.
  • the turbine shaft is preferably in a steam turbine, in particular a double-flow medium pressure turbine.
  • Flow path comprising the two axially spaced apart radial channels and the associated fluidic axial channel is cooling the central area the turbine shaft guaranteed.
  • Cooling fluid acting action fluid from the partial flow of one Flood at a lower pressure level in the partial flow the second flood into it. This is called the cooling fluid used action fluid returned to the entire steam process and therefore contributes to the efficiency of the overall process at.
  • the directed towards a method for cooling a turbine shaft The object is achieved in that with a turbine shaft with a plurality axially one behind the other along a main axis arranged cylindrical shaft segments with a Bracing element are clamped together, cooling fluid through a first radial channel into an axial gap between the bracing element and the shaft segment introduced and through a second radial channel from the turbine shaft is brought out.
  • This is, as already above executed a turbine shaft in a thermal during the Operation of the turbine shaft highly stressed area from the inside coolable here.
  • Such a turbine shaft is therefore also in one Steam turbine plant with steam inlet temperatures above 600 ° C suitable.
  • To carry out a corresponding Cooling capacity becomes the axial gap a volume flow of cooling fluid supplied between 1% to 4%, especially between 1.5% and 3% of the total live steam volume flow lies.
  • the turbine shaft and the method are used as examples the figure shown in the drawing.
  • the single figure shows a detail in a longitudinal section a turbine with a turbine shaft.
  • connection openings 6 each have the same cross section and are arranged centrally to each other and to the main axis 2.
  • bracing elements 7 In principle it is possible also several, in particular more than three, bracing elements 7 to be provided through respective connection openings 6 are performed.
  • the tie rod 7 attacks the outermost, not shown, shaft segments so that an axial bracing of the shaft elements 4a, 4b, 4c, 4d to each other.
  • the tie rod 7 preferably has this a thread, not shown, in which also engages clamping nut, not shown.
  • Spur tooth coupling in particular plank serration (Hirth serration).
  • connection openings 6 each have a cross section that is larger than the cross section of the tie rod 7, so that between one respective shaft segment 4a and the tie rod 7 an axial Gap 8, in particular an annular gap, remains.
  • an outer surface 3 of the Turbine shaft 1 formed.
  • the housing 18 surrounding the turbine shaft 1 has an inflow region 19 for live steam 12.
  • the inflow area Associated with 19, the turbine shaft 1 has a central region 11 in which a cavity 13 is formed. This cavity 13 and the central region 11 of the turbine shaft 1 compared to a hot one flowing through the inflow region 19 Action fluid 12 (live steam) through a shielding element 17 before direct contact with the action fluid 12 shielded.
  • the shielding element 17 is rotationally symmetrical to the main axis 2 and has one of the main axis 2 directed elevation.
  • the shielding element 17 serves to divide the action fluid 12, the Live steam, in two approximately equal partial flows.
  • the shielding element 17 is each over the first row of vanes 14 Partial stream connected to the housing 18.
  • Cooling fluid supply passes through the cooling fluid Housing 18, the first row of guide vanes 14 and the shielding element 17 into the cavity 13 and causes there a cooling of the turbine shaft 1 in the middle area 11.
  • the cooling fluid can be in the cavity 13 due to the heat exchange be heated with the action fluid 12 and over Fluid discharges, not shown, the steam process again are fed.
  • the second radial Gap 9b passes the cooling fluid 12b at a location lower Pressure into the partial flow directed to the right and thus again does work on those still to be flowed through Blade 15.
  • the cooling fluid 12b through the first radial channel 9a a pressure of about 11 bar and a temperature of about 400 ° C removed from the partial flow directed to the left and at a pressure level less than 11 bar the right-facing one Partial stream are fed again.
  • the axial Gap 8 is preferably a volume flow rate of 1% to 4%, in particular 1.5% to 3%, of the total live steam volume flow, which drives the turbine shaft.
  • the invention is characterized by a turbine shaft, which a plurality of axially one behind the other and has mutually braced shaft segments, in the interior an axially directed gap is provided.
  • This The gap is connected to two different through two radial channels Pressure levels with the current of the turbine shaft driving Action fluids fluidly connected.
  • the radial channels are preferably located where there are two shaft segments contiguous.
  • a pressure differential is operated Cooling fluid flow from the action fluid (Live steam) branched off.
  • a branched off from the live steam flow Cooling steam flow passes through the first radial channel in the axially directed gap and from there over the second radial channel back into the live steam flow.
  • the area adjacent to the axial gap Turbine shaft cooled from the inside and for cooling used cooling fluid returned to the entire steam process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (8)

  1. Arbre (1) de turbine dans une turbine (10) à vapeur à double flux, notamment dans une partie de turbine moyenne pression à double flux, comprenant une partie (11) médiane axiale pour l'entrée et la division du courant d'un fluide (12) d'action, l'arbre de la turbine s'étendant le long d'un axe (2) principal et ayant une surface (3) extérieure, caractérisé par une pluralité de tronçons (4a, 4b, 4c, 4d, 4e) cylindriques d'arbre disposés axialement les uns derrière les autres le long de l'axe (2) principal et ayant le long d'un axe (5) commun de liaison respectivement une ouverture (6) de communication dans laquelle est guidé un élément (7) de serrage, il est formé un intervalle (8) axial entre l'élément (6) de serrage et au moins un tronçon (4a, 4b, 4c) d'arbre et il est prévu deux canaux (9a, 9b) radiaux à distance axialement l'un de l'autre qui communiquent du point de vue de la technique des fluides avec l'intervalle (8) axial et débouchent respectivement à la surface (3) extérieure, la partie (11) moyenne étant disposée axialement entre les canaux (9a, 9b) radiaux.
  2. Arbre (1) de turbine suivant la revendication 1, dans lequel l'élément (7) de serrage est un tirant central pour lequel l'axe (2) principal et l'axe (5) de liaison coïncident.
  3. Arbre (1) de turbine suivant la revendication 1, dans lequel il est prévu au moins trois éléments (7) de liaison, dont les axes (5) respectifs de communication sont dirigés parallèlement à l'axe (3) principal.
  4. Arbre (1) de turbine suivant l'une des revendications précédentes, dans lequel il est prévu au moins un canal (9a, 9b) radial entre deux tronçons (4b, 4c, 4d, 4e) d'arbre adjacents.
  5. Arbre (1) de turbine suivant l'une des revendications précédentes, dans lequel il est prévu dans la partie (11) médiane une cavité (13) dans laquelle peut passer du fluide (12b) de refroidissement.
  6. Arbre (1) de turbine suivant la revendication 5, dans lequel la cavité communique du point de vue de la technique des fluides avec l'intervalle (8) axial.
  7. Procédé de refroidissement d'un Arbre (1) de turbine d'une turbine (15) à vapeur ayant une pluralité de tronçons (4a, 4b, 4c, 4d, 4e) cylindriques d'arbre disposés les uns derrière les autres axialement le long d'un axe (2) principal, qui sont serrés entre eux au moyen d'un élément (7) de serrage, de la vapeur (12a) de refroidissement étant introduite par un premier canal (9a) radial dans un intervalle (8) axial entre l'élément (7) de serrage et un tronçon (4a) d'arbre et sortant de l'arbre (1) de la turbine par un deuxième canal (9b) radial.
  8. Procédé suivant la revendication 9, dans lequel il est apporté à l'intervalle (8) axial un courant en volume de vapeur représentant de 1,0. % à 4,0 %, notamment de 1,5 % à 3 % du courant total en volume de vapeur fraíche.
EP97923804A 1996-06-21 1997-05-12 Arbre de turbine et procede de refroidissement d'un arbre de turbine Expired - Lifetime EP0906494B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19624805 1996-06-21
DE19624805 1996-06-21
PCT/DE1997/000953 WO1997049901A1 (fr) 1996-06-21 1997-05-12 Arbre de turbine et procede de refroidissement d'un arbre de turbine

Publications (2)

Publication Number Publication Date
EP0906494A1 EP0906494A1 (fr) 1999-04-07
EP0906494B1 true EP0906494B1 (fr) 2002-12-18

Family

ID=7797593

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97923804A Expired - Lifetime EP0906494B1 (fr) 1996-06-21 1997-05-12 Arbre de turbine et procede de refroidissement d'un arbre de turbine
EP97928113A Expired - Lifetime EP0906493B1 (fr) 1996-06-21 1997-06-09 Turbomachine et procede de refroidissement d'une turbomachine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP97928113A Expired - Lifetime EP0906493B1 (fr) 1996-06-21 1997-06-09 Turbomachine et procede de refroidissement d'une turbomachine

Country Status (12)

Country Link
US (2) US6102654A (fr)
EP (2) EP0906494B1 (fr)
JP (2) JP3943136B2 (fr)
KR (2) KR20000022066A (fr)
CN (2) CN1106496C (fr)
AT (2) ATE230065T1 (fr)
CZ (2) CZ423498A3 (fr)
DE (2) DE59709016D1 (fr)
ES (1) ES2206724T3 (fr)
PL (2) PL330755A1 (fr)
RU (2) RU2182976C2 (fr)
WO (2) WO1997049901A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785586A1 (fr) * 2005-10-20 2007-05-16 Siemens Aktiengesellschaft Rotor d'une turbomachine

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452688A1 (fr) 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Rotor pour une turbine à vapeur, procédé et utilisation de refroidissement d'un tel rotor
EP1445427A1 (fr) 2003-02-05 2004-08-11 Siemens Aktiengesellschaft Turbine à vapeur et procédé d'opération d'une turbine à vapeur
US6854954B2 (en) * 2003-03-03 2005-02-15 General Electric Company Methods and apparatus for assembling turbine engines
CN100406685C (zh) * 2003-04-30 2008-07-30 株式会社东芝 中压蒸汽轮机、蒸汽轮机发电厂及其运转方法
US7056084B2 (en) * 2003-05-20 2006-06-06 Kabushiki Kaisha Toshiba Steam turbine
JP4509664B2 (ja) * 2003-07-30 2010-07-21 株式会社東芝 蒸気タービン発電設備
DE10355738A1 (de) * 2003-11-28 2005-06-16 Alstom Technology Ltd Rotor für eine Turbine
EP1624155A1 (fr) 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Turbine à vapeur et procédé d'opération d'une turbine à vapeur
US7357618B2 (en) * 2005-05-25 2008-04-15 General Electric Company Flow splitter for steam turbines
US20070065273A1 (en) 2005-09-22 2007-03-22 General Electric Company Methods and apparatus for double flow turbine first stage cooling
EP1780376A1 (fr) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Turbine à vapeur
US7322789B2 (en) * 2005-11-07 2008-01-29 General Electric Company Methods and apparatus for channeling steam flow to turbines
US7874795B2 (en) * 2006-09-11 2011-01-25 General Electric Company Turbine nozzle assemblies
EP1911933A1 (fr) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Rotor pour une turbomachine
US7670108B2 (en) * 2006-11-21 2010-03-02 Siemens Energy, Inc. Air seal unit adapted to be positioned adjacent blade structure in a gas turbine
US8257015B2 (en) * 2008-02-14 2012-09-04 General Electric Company Apparatus for cooling rotary components within a steam turbine
US8113764B2 (en) 2008-03-20 2012-02-14 General Electric Company Steam turbine and a method of determining leakage within a steam turbine
US8096748B2 (en) * 2008-05-15 2012-01-17 General Electric Company Apparatus and method for double flow turbine first stage cooling
US8087871B2 (en) * 2009-05-28 2012-01-03 General Electric Company Turbomachine compressor wheel member
US20110158819A1 (en) * 2009-12-30 2011-06-30 General Electric Company Internal reaction steam turbine cooling arrangement
US8657562B2 (en) * 2010-11-19 2014-02-25 General Electric Company Self-aligning flow splitter for steam turbine
RU2539404C2 (ru) * 2010-11-29 2015-01-20 Альстом Текнолоджи Лтд Осевая газовая турбина
EP2503101A2 (fr) * 2011-03-22 2012-09-26 General Electric Company Système de régulation d'un liquide de refroidissement dans une turbomachine
US8888436B2 (en) 2011-06-23 2014-11-18 General Electric Company Systems and methods for cooling high pressure and intermediate pressure sections of a steam turbine
US8899909B2 (en) 2011-06-27 2014-12-02 General Electric Company Systems and methods for steam turbine wheel space cooling
US8888437B2 (en) 2011-10-19 2014-11-18 General Electric Company Dual-flow steam turbine with steam cooling
US20130259662A1 (en) * 2012-03-29 2013-10-03 General Electric Company Rotor and wheel cooling assembly for a steam turbine system
US20130323009A1 (en) * 2012-05-31 2013-12-05 Mark Kevin Bowen Methods and apparatus for cooling rotary components within a steam turbine
CN103603694B (zh) * 2013-12-04 2015-07-29 上海金通灵动力科技有限公司 一种降低汽轮机主轴轴承处工作温度的结构
EP2918788A1 (fr) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Procédé de refroidissement d'une turbine à vapeur
US10208609B2 (en) 2014-06-09 2019-02-19 General Electric Company Turbine and methods of assembling the same
EP3009597A1 (fr) * 2014-10-15 2016-04-20 Siemens Aktiengesellschaft Refroidissement contrôlé d'arbres de turbines
EP3056663A1 (fr) * 2015-02-10 2016-08-17 Siemens Aktiengesellschaft Turbine à vapeur axiale, en particulier dans une construction à double flux
RU2665797C1 (ru) * 2016-07-04 2018-09-04 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Способ и устройство охлаждения вала авиационного газотурбинного двигателя
CN109236378A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的单流高温转子
CN109236379A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的双流高温转子
JP7271408B2 (ja) * 2019-12-10 2023-05-11 東芝エネルギーシステムズ株式会社 タービンロータ
CN111520195B (zh) * 2020-04-03 2022-05-10 东方电气集团东方汽轮机有限公司 一种汽轮机低压进汽室导流结构及其参数设计方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2657901A (en) * 1945-06-08 1953-11-03 Power Jets Res & Dev Ltd Construction of turbine rotors
CH259566A (de) * 1947-08-09 1949-01-31 Sulzer Ag Läufer für Kreiselmaschinen, insbesondere Gasturbinen.
US2826895A (en) * 1953-09-03 1958-03-18 Fairchild Engine & Airplane Bearing cooling system
CH430757A (de) * 1963-01-18 1967-02-28 Siemens Ag Dampfturbine
DE1551210A1 (de) * 1966-06-18 1970-01-15 Siemens Ag Scheibenlaeufer fuer Turbinen,die zum Antrieb von Wechselstromgeneratoren dienen
JPS5650084B2 (fr) * 1972-04-26 1981-11-26
US4242041A (en) * 1979-01-15 1980-12-30 Westinghouse Electric Corp. Rotor cooling for double axial flow turbines
DE3071161D1 (en) * 1980-05-19 1985-11-14 Bbc Brown Boveri & Cie Cooled turbine stator
US4312624A (en) * 1980-11-10 1982-01-26 United Technologies Corporation Air cooled hollow vane construction
JPS57188702A (en) * 1981-05-15 1982-11-19 Toshiba Corp Steam turbine rotor cooling method
JPS5830405A (ja) * 1981-08-19 1983-02-22 Hitachi Ltd 軸流機械のロ−タ取付装置
JPS58155203A (ja) * 1982-03-12 1983-09-14 Toshiba Corp 蒸気タ−ビン
DE3209506A1 (de) * 1982-03-16 1983-09-22 Kraftwerk Union AG, 4330 Mülheim Axial beaufschlagte dampfturbine, insbesondere in zweiflutiger ausfuehrung
JPS59153901A (ja) * 1983-02-21 1984-09-01 Fuji Electric Co Ltd 蒸気タ−ビンロ−タの冷却装置
JPS59155503A (ja) * 1983-02-24 1984-09-04 Toshiba Corp 軸流タ−ビンのロ−タ冷却装置
DE3424139C2 (de) * 1984-06-30 1996-02-22 Bbc Brown Boveri & Cie Gasturbinenrotor
US5020318A (en) * 1987-11-05 1991-06-04 General Electric Company Aircraft engine frame construction
JP2756117B2 (ja) * 1987-11-25 1998-05-25 株式会社日立製作所 ガスタービンロータ
US5054996A (en) * 1990-07-27 1991-10-08 General Electric Company Thermal linear actuator for rotor air flow control in a gas turbine
US5224818A (en) * 1991-11-01 1993-07-06 General Electric Company Air transfer bushing
US5292227A (en) * 1992-12-10 1994-03-08 General Electric Company Turbine frame
JPH06330702A (ja) * 1993-05-26 1994-11-29 Ishikawajima Harima Heavy Ind Co Ltd タービンディスク
DE4324034A1 (de) * 1993-07-17 1995-01-19 Abb Management Ag Gasturbine mit gekühltem Rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785586A1 (fr) * 2005-10-20 2007-05-16 Siemens Aktiengesellschaft Rotor d'une turbomachine

Also Published As

Publication number Publication date
DE59710625D1 (de) 2003-09-25
US6048169A (en) 2000-04-11
ATE247766T1 (de) 2003-09-15
EP0906493A1 (fr) 1999-04-07
EP0906494A1 (fr) 1999-04-07
RU2182976C2 (ru) 2002-05-27
EP0906493B1 (fr) 2003-08-20
CN1100193C (zh) 2003-01-29
PL330755A1 (en) 1999-05-24
CZ422798A3 (cs) 1999-04-14
RU2182975C2 (ru) 2002-05-27
JP3939762B2 (ja) 2007-07-04
CN1106496C (zh) 2003-04-23
JP2000512706A (ja) 2000-09-26
ES2206724T3 (es) 2004-05-16
DE59709016D1 (de) 2003-01-30
PL330425A1 (en) 1999-05-10
KR20000022065A (ko) 2000-04-25
US6102654A (en) 2000-08-15
CZ423498A3 (cs) 1999-04-14
WO1997049900A1 (fr) 1997-12-31
JP3943136B2 (ja) 2007-07-11
CN1227619A (zh) 1999-09-01
WO1997049901A1 (fr) 1997-12-31
ATE230065T1 (de) 2003-01-15
JP2000512708A (ja) 2000-09-26
CN1228134A (zh) 1999-09-08
KR20000022066A (ko) 2000-04-25

Similar Documents

Publication Publication Date Title
EP0906494B1 (fr) Arbre de turbine et procede de refroidissement d'un arbre de turbine
DE19620828C1 (de) Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
EP0170938B1 (fr) Dispositif d'optimisation de l'interstice de l'étanchéité et de l'interstice des aubes pour compresseurs de propulseurs à turbine à gaz, en particulier moteurs à réaction à turbine à gaz
DE69820544T2 (de) Rotor für gasturbine mit dampfkühlung
EP1945911B1 (fr) Turbine à gaz
EP1111189B1 (fr) Chemin d'air de refroidissement pour le rotor d'une turbine à gaz
DE2844701A1 (de) Fluessigkeitsgekuehlter turbinenrotor
EP1505254B1 (fr) Turbine à gaz et méthode pour la refroidir
EP0122872B1 (fr) Turbine de vapeur de moyenne pression pour une installation de vapeur de haute température avec réchauffage intermédiaire
DE10355738A1 (de) Rotor für eine Turbine
DE2654525C1 (de) Stroemungsmaschine mit einer Regeleinrichtung zur Konstanthaltung des Radialspielraums zwischen den Rotorschaufelspitzen und der Statorkonstruktion
EP0508067B1 (fr) Dispositif de réglage de la section d'écoulement dans une turbomachine
EP1413711B1 (fr) Turbine à gaz et méthode de refroidissement d'une turbine à gaz
EP2078137B1 (fr) Rotor pour une turbomachine
DE69632837T2 (de) Gasturbine bei der das kühlmittel wiederverwendet wird
DE69824505T2 (de) Gasturbine mit Dampfkühlung
EP0873466B1 (fr) Arbre de turbine a vapeur a refroidissement interne
DE10392802B4 (de) Dampfturbine
DE60224746T2 (de) Dampfrohrleitungsstruktur einer Gasturbine
WO2000060219A1 (fr) Turbomachine avec un systeme d'elements de paroi pouvant etre refroidi et procede de refroidissement d'un systeme d'elements de paroi
EP1788191B1 (fr) Turbine à vapeur et procédé pour le refroidissement d'une turbine à vapeur
WO2006072528A1 (fr) Turbine a gaz comportant un generateur de prerotation et procede d'utilisation d'une turbine a gaz
EP2551453A1 (fr) Dispositif de refroidissement d'un compresseur d'un turbomoteur
EP3150799A1 (fr) Dispositif de guidage de l'écoulement et turbomachine avec au moins un dispositif de guidage de l'écoulement
DE19957225A1 (de) Kühlluft-Führungssystem insbesondere im Hochdruck-Turbinenabschnitt eines Gasturbinen-Triebwerkes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20011205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021218

REF Corresponds to:

Ref document number: 230065

Country of ref document: AT

Date of ref document: 20030115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Kind code of ref document: P

Ref document number: 59709016

Country of ref document: DE

Date of ref document: 20030130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030318

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030627

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160512

Year of fee payment: 20

Ref country code: IT

Payment date: 20160527

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160720

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709016

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170511