RU2539404C2 - Осевая газовая турбина - Google Patents

Осевая газовая турбина Download PDF

Info

Publication number
RU2539404C2
RU2539404C2 RU2010148730/06A RU2010148730A RU2539404C2 RU 2539404 C2 RU2539404 C2 RU 2539404C2 RU 2010148730/06 A RU2010148730/06 A RU 2010148730/06A RU 2010148730 A RU2010148730 A RU 2010148730A RU 2539404 C2 RU2539404 C2 RU 2539404C2
Authority
RU
Russia
Prior art keywords
rotor
blades
cooling air
gas turbine
turbine according
Prior art date
Application number
RU2010148730/06A
Other languages
English (en)
Other versions
RU2010148730A (ru
Inventor
Александр Ханин
Валерий Костеге
Антон Сумин
Original Assignee
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд
Priority to RU2010148730/06A priority Critical patent/RU2539404C2/ru
Priority to AU2011250787A priority patent/AU2011250787B2/en
Priority to MYPI2011005639A priority patent/MY157543A/en
Priority to EP11190647.5A priority patent/EP2458147A3/en
Priority to CN201110405180.8A priority patent/CN102562174B/zh
Priority to JP2011260779A priority patent/JP5841415B2/ja
Priority to US13/306,006 priority patent/US8932007B2/en
Publication of RU2010148730A publication Critical patent/RU2010148730A/ru
Application granted granted Critical
Publication of RU2539404C2 publication Critical patent/RU2539404C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Осевая газовая турбина содержит ротор и статор. Статор представляет собой корпус, охватывающий ротор снаружи с образованием между ними тракта течения горячего газа, через который протекает горячий газ, полученный в камере сгорания. Ротор содержит вал с осевыми пазами, в частности, елочного типа для закрепления в них большого количества рабочих лопаток, которые размещены в виде последовательных рядов рабочих лопаток. Между соседними рядами рабочих лопаток установлены теплозащитные экраны ротора и в результате образуется внутренняя граница тракта течения горячего газа. Вал ротора выполнен с возможностью транспортирования основного потока охлаждающего воздуха в осевом направлении вдоль теплозащитных экранов ротора и нижних частей рабочих лопаток. Вал ротора снабжает рабочие лопатки охлаждающим воздухом, поступающим во внутреннюю полость рабочих лопаток. В осевой газовой турбине обеспечены герметичные каналы для охлаждающего воздуха, которые проходят в осевом направлении через вал ротора отдельно от основного потока охлаждающего воздуха и снабжают рабочие лопатки охлаждающим воздухом. Изобретение направлено на снижение уточек охлаждающего воздуха и повышение эффективности работы турбины. 12 з.п. ф-лы, 9 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к технологии газовых турбин.
Уровень техники
Газовая турбина состоит из статора и ротора. Статор представляет собой корпус с установленными в нем теплозащитными экранами статора и направляющими лопатками. Ротор турбины, установленный коаксиально внутри корпуса статора, содержит вращающийся вал с осевыми пазами елочного типа, используемыми для крепления рабочих лопаток. На роторе закреплено некоторое количество чередующихся рядов рабочих лопаток и теплозащитных экранов ротора. Горячий газ, полученный в камере сгорания, проходит через профилированные каналы, образованные между направляющими лопатками, и, ударяясь в рабочие лопатки, приводит ротор турбины во вращение.
Для того чтобы газовая турбина работала с достаточной эффективностью, важным условием является ее работа при очень высоких температурах нагретого газа. Соответственно элементы канала для протекания горячего газа, в частности рабочие лопатки, направляющие лопатки и теплозащитные экраны турбины, испытывают очень высокие тепловые нагрузки. Кроме того, в то же самое время рабочие лопатки подвержены очень высоких механическим напряжениям, обусловленным действием центробежных сил при высоких скоростях вращения ротора.
Следовательно, важное значение имеет охлаждение элементов, образующих канал для горячего газа в газовой турбине и подверженных тепловым нагрузкам.
В уровне техники предлагалось обеспечивать каналы для текучей среды, охлаждающей рабочие лопатки, внутри вала ротора (см., например, ЕР 909878 А2 или ЕР 1098067 А2 или US 6860110 B2). Однако такая конструкция системы охлаждения требует сложной и дорогостоящей механической обработки ротора или дисков ротора.
Другая известная из уровня техники система охлаждения показана на фиг.1. Газовая турбина 10 на фиг.1 содержит ряд ступеней, из которых на фиг.1 показаны первые три. Газовая турбина содержит ротор 13, который вращается вокруг центральной оси машины. Ротор 13 содержит вал 15 с осевыми пазами елочного типа, используемыми для крепления большого количества рабочих лопаток В1, В2 и ВЗ. Рабочие лопатки В1, В2 и В3 на фиг.1 расположены в три ряда. Между соседними рядами рабочих лопаток размещены теплозащитные экраны R1, R2 ротора. Рабочие лопатки B1, B2 и В3 и теплозащитные экраны ротора равномерно распределены вокруг периметра окружности вала ротора. Каждая из рабочих лопаток B1, B2 и В3 имеет внутреннюю платформу, которая вместе с соответствующими внутренними платформами других рабочих лопаток того же ряда образует вокруг оси машины замкнутое кольцо.
Внутренние платформы рабочих лопаток B1, B2 и В3 вместе с теплозащитными экранами R1 и R2 ротора образуют внутреннюю границу газового тракта турбины или тракта 12 течения горячего газа. С внешней стороны тракт 12 течения горячего газа ограничен окружающим его статором 11 с закрепленными в нем теплозащитными экранами S1, S2 и S3 и направляющими лопатками V1, V2 и V3. Внутренняя граница газового тракта отделяет полость ротора, служащую для транспортирования основного потока охлаждающего воздуха 17, от потока горячего газа, протекающего через тракт 12 горячего газа. Для улучшения герметичности тракта охлаждающего воздуха между соседними рабочими лопатками В1-В3 и теплозащитными экранами R1 и R2 ротора установлены герметизирующие пластины 19.
Как можно видеть на фиг.1, воздух охлаждает вал 15 ротора при его прохождении в осевом направлении вдоль общего воздушного тракта между шейками рабочих лопаток В1-В3 и теплозащитными экранами R1 и R2 ротора. Этот воздух проходит последовательно через внутреннюю полость в рабочей лопатке B1 и затем поочередно через внутренние полости в рабочей лопатке B2 и рабочей лопатке В3.
Однако рабочие лопатки, используемые в современных турбинах, работают в более тяжелых условиях, чем направляющие лопатки, поскольку первые в дополнение к воздействию высоких температур и силового давления газа подвержены нагрузкам, обусловленным действием центробежных сил. Для создания эффективной рабочей лопатки, имеющей большой срок службы, необходимо решить сложную техническую проблему.
Для успешного решения этой проблемы необходимо знать, как можно более точно давление охлаждающего воздуха на входе во внутреннюю полость рабочих лопаток. В этой связи серьезный недостаток конструкции ротора, представленной на фиг.1, заключается в том, что потери давления охлаждающего воздуха увеличиваются непредсказуемым образом при прохождении охлаждающего воздуха из рабочей лопатки В1 первой ступени к рабочей лопатке В3 третьей ступени. Это связано с утечками воздуха в газовый тракт 12 турбины через щели между соседними рабочими лопатками и теплозащитными экранами ротора. Указанный недостаток является значительным препятствием при проектировании охлаждаемых лопаток, поскольку общее поперечное сечение вышеупомянутых щелей зависит от разброса допусков при изготовлении элементов конструкции и от не всегда эффективной уплотнительной пластины 19.
Раскрытие изобретения
В связи с изложенным задача настоящего изобретения заключается в создании газовой турбины, которая устраняет вышеуказанные недостатки и обеспечивает простым путем стабильные и предсказуемые параметры охлаждающего воздуха на входе в любой ряд рабочих лопаток. Эта и другие задачи решаются с помощью газовой турбины по п.1 формулы изобретения.
Газовая турбина согласно изобретению представляет собой осевую газовую турбину, содержащую ротор и статор, при этом статор содержит корпус, охватывающий ротор снаружи с образованием между ними тракта течения горячего газа, через который протекает горячий газ, полученный в камере сгорания, ротор содержит вал с осевыми пазами, в частности елочного типа, для размещения в них большого количества рабочих лопаток, которые размещены в виде последовательных рядов рабочих лопаток, причем между соседними рядами рабочих лопаток установлены теплозащитные экраны ротора, и в результате образуется внутренняя граница тракта течения горячего газа, при этом вал ротора выполнен с возможностью транспортирования через него основного потока охлаждающего воздуха в осевом направлении вдоль теплозащитных экранов ротора и нижних частей рабочих лопаток, причем вал ротора снабжает рабочие лопатки охлаждающим воздухом, поступающим во внутреннюю полость рабочих лопаток.
Согласно изобретению обеспечиваются герметичные каналы для охлаждающего воздуха, которые проходят в осевом направлении через вал ротора отдельно от основного потока охлаждающего воздуха и снабжают рабочие лопатки охлаждающим воздухом.
В соответствии с одним воплощением изобретения статор содержит держатель направляющих лопаток, в котором закреплены теплозащитные экраны статора и направляющие лопатки, при этом теплозащитные экраны статора расположены напротив рабочих лопаток, а направляющие лопатки расположены напротив теплозащитных экранов ротора.
Согласно другому воплощению изобретения каждый ряд рабочих лопаток содержит одинаковое определенное количество рабочих лопаток, установленных под одинаковым углом, и имеется, по меньшей мере, один герметичный канал для подвода охлаждающего воздуха, предусмотренный для одного углового расположения рядов рабочих лопаток, при этом указанный герметичный канал охлаждения проходит через соответствующие рабочие лопатки всех рядов рабочих лопаток, установленных в одном и том же угловом положении.
В соответствии с другим воплощением изобретения герметичные каналы для охлаждающего воздуха образованы с помощью коаксиальных цилиндрических отверстий, проходящих в осевом направлении через теплозащитные экраны ротора и нижние части рабочих лопаток, и с использованием соединительных муфт, которые герметичным образом соединяют указанные отверстия соседних рабочих лопаток и теплозащитных экранов ротора.
В частности, герметичные каналы охлаждения закрыты на их концах с помощью заглушки.
Согласно другому воплощению изобретения соединительные муфты выполнены так, что они допускают относительное перемещение соединяемых элементов без потери герметичности соединения.
В частности, соединительные муфты имеют, по меньшей мере, один конец со сферическим участком (имеющим сферическую внешнюю поверхность), который допускает вращательное движение соединительных муфт внутри цилиндрического отверстия подобно соединению с шаровым шарниром.
В соответствии с другим воплощением изобретения соединительные муфты имеют уменьшенную массу при сохранении своей жесткости за счет обеспечения большого количества распределенных по периметру окружности продольных ребер.
Указанные продольные ребра могут быть выполнены на внутренней поверхности соединительных муфт.
В качестве альтернативы продольные ребра могут быть выполнены на внешней поверхности соединительных муфт, при этом высота ребер в радиальном направлении меньше высоты в радиальном направлении участков со сферической поверхностью.
Краткое описание чертежей:
Настоящее изобретение далее будет пояснено более подробно посредством различных воплощений и со ссылками на приложенные чертежи.
Фиг.1 - первые три ступени известной газовой турбины, в которой охлаждающий воздух, поступающий в рабочие лопатки, отбирается непосредственно из основного потока охлаждающего воздуха, протекающего вдоль вала ротора.
Фиг.2 - система охлаждения рабочих лопаток в соответствии с одним воплощением изобретения, отображенная на чертеже, который является эквивалентным фиг.1.
Фиг.3 - система охлаждения рабочих лопаток в соответствии с фиг.2, вид в перспективе.
Фиг.4 - увеличенное изображение фрагмента системы охлаждения рабочих лопаток в соответствии с фиг.2.
Фиг.5 отображает на уменьшенном виде, представленном на фиг.4, секущую плоскость А-А, вдоль которой проведены сечения, представленные на фиг.6 и фиг.7.
Фиг.6 - первое поперечное сечение по секущей плоскости А-А на фиг.5.
Фиг.7 - второе поперечное сечение по секущей плоскости А-А на фиг.5.
Фиг.8 - два различных вида (a) и (b) первого воплощения соединительной муфты в соответствии с фиг.2-5.
Фиг.9 - второе воплощение соединительной муфты в соответствии с фиг.2-5, вид в разрезе.
Осуществление изобретения
На фиг.2 и фиг.3 показана газовая турбина с системой охлаждения рабочих лопаток, соответствующей одному воплощению изобретения. Газовая турбина 20 на фиг.2 содержит ряд ступеней, первые три из которых показаны на этой фигуре. Газовая турбина 20, подобно представленной на фиг.1, содержит ротор 13 с валом 15 и рабочими лопатками В1, В2 и В3. Рабочие лопатки В1, В2 и В3 также образуют три ряда рабочих лопаток. Между соседними рядами рабочих лопаток размещены теплозащитные экраны R1 и R2 ротора. Рабочие лопатки В1, В2 и В3 и теплозащитные экраны R1 и R2 ротора равномерно распределены вокруг периметра вала 15 ротора. Каждая из рабочих лопаток В1, В2 и В3 выполнена с внутренней платформой, которая вместе с соответствующими платформами других рабочих лопаток того же ряда лопаток образует вокруг оси машины замкнутое кольцо.
Внутренние платформы В1, В2 и В3 рабочих лопаток вместе с теплозащитными экранами R1 и R2 ротора формируют внутренний граничный контур газового тракта турбины или тракта 12 течения горячего газа. Напротив теплозащитных экранов R1, R2 находятся направляющие лопатки V2 и V3. Первый ряд рабочих лопаток V1 располагается на входе тракта течения горячего газа, в который поступает горячий газ 16. Внутренний граничный контур отделяет полость транспортирования воздуха для охлаждения ротора, через которую проходит основной поток охлаждающего воздуха 17, от потока горячего газа, протекающего в тракте 12 горячего газа. Для повышения герметичности тракта охлаждающего воздуха между соседними рабочими лопатками В1-В3 и теплозащитными экранами R1 и R2 ротора устанавливают герметизирующие пластины 19.
Основное отличие и преимущество предложенной конструкции, показанной на фиг.2, заключается в наличии герметичных каналов 21 подачи охлаждающего воздуха, отделенных от основного потока 17 охлаждающего воздуха, проходящего вдоль вала 15. Количество каналов 21 для охлаждающего воздуха соответствует количеству рабочих лопаток B1, B2 и В3, установленных в окружном направлении в каждом ряду рабочих лопаток. По этой причине количество рабочих лопаток и распределение рабочих лопаток по периметру окружности одинаково в каждой ступени турбины или в каждом ряду рабочих лопаток (см. фиг.6 и фиг.7).
Каналы 21 подачи охлаждающего воздуха используются для раздельного снабжения рабочих лопаток B1, B2 и В3 охлаждающим воздухом. Эти каналы сформированы за счет выполненных коаксиальных цилиндрических отверстий 28, проходящих через рабочую лопатку B1, теплозащитный экран R1 ротора, рабочую лопатку B2, теплозащитный экран R2 ротора и рабочую лопатку В3. Каждый канал 21 заканчивается заглушкой 24, установленной на конце соответствующего отверстия 28 рабочей лопатки В3. Герметизация каналов 21 достигается с помощью цилиндрических соединительных муфт 22, 23 (см. фиг.4, фиг.5), каждая из которых установлена одним из ее концов в выемке, выполненной в соответствующей рабочей лопатке, а другим концом - в выемке, выполненной в соответствующем близлежащем теплозащитном экране. Соединительные муфты 22, 23 спрофилированы так, что они не препятствуют радиальным и осевым перемещениям прилегающих к ним элементов конструкции (см. фиг.4).
Отверстия 28 в рабочих лопатках В1-В3 и теплозащитных экранах R1 и R2 ротора выполнены цилиндрическими. Форма придана отверстиям посредством механической обработки так, чтобы обеспечить минимальный зазор в зоне контакта между указанной выемкой и цилиндрическими соединительными муфтами 22, 23. В результате как переток, так и перемешивание основного потока 17 и потока в канале 21 предотвращаются за счет близкого к нулю зазора в зонах контакта между соединительными муфтами, с одной стороны, и между рабочими лопатками В1-В3 и теплозащитными экранами R1 и R2 ротора - с другой стороны.
С учетом вышеизложенного могут быть достигнуты следующие преимущества предложенной конструкции:
1. Отсутствуют утечки в газовый тракт 12 турбины из каналов 21 подачи охлаждающего воздуха в рабочие лопатки.
2. Воздух из канала 21 подачи охлаждающего воздуха не вытекает и не смешивается с основным потоком 17 охлаждающего воздуха, проходящего вдоль вала 15 ротора.
3. Обеспечивается возможность влияния на параметры подачи охлаждающего воздуха в рабочие лопатки В1-В3 посредством изменения внутреннего диаметра соединительных муфт 22, 23.
4. Обеспечивается возможность оказывать влияние на тепловое состояние вала 15 ротора за счет регулирования массового расхода воздуха, протекающего между шейками рабочих лопаток В1-В3 и теплозащитными экранами R1 и R2 ротора (т.е. основного потока 17, см. фиг.2), независимо от интенсивности потока воздуха, проходящего вдоль канала 21 подачи воздуха в рабочую лопатку. Регулирование основного потока 17 воздуха может быть осуществлено за счет изменения как геометрических параметров шеек рабочих лопаток, так и теплозащитных экранов ротора (см. фиг.5-7, где на фиг.6 показано максимальное проходное сечение для основного потока 17 охлаждающего воздуха, а на фиг.7 показано минимальное проходное сечение основного потока 17.охлаждающего воздуха).
Таким образом, комбинация рабочих лопаток В1-В3 и теплозащитных экранов R1 и R2 ротора со сквозными каналами (отверстиями 28) и с герметизирующими соединительными муфтами 22, 23 позволяет создать современную газовую турбину с высокими рабочими характеристиками.
Предложенная конструкция ротора с продольной подачей охлаждающего воздуха к рабочим лопатками В1-В3 через отдельный канал 21 в соответствии с фиг.2 создает также преимущество по сравнению с типичной известной конструкцией (фиг.1), поскольку в соответствии с изложенным выше пунктом 4, она может быть использована даже без установки соединительных муфт 22, 23.
Фиг.4 иллюстрирует примеры воплощений соединительных муфт, которые обеспечивают средства формирования почти герметичного канала 21 для транспортирования охлаждающего воздуха между элементами ротора.
Герметичность канала 21 достигается с помощью выемок цилиндрической формы, выполненных на концах отверстий 28 в соседних теплозащитных экранах ротора и рабочих лопатках. Цилиндрическая форма этих выемок была выбрана в связи с тем, что такая выемка может быть изготовлена посредством механической обработки с высокой точностью самым простым способом.
Когда такие выемки, выполненные в соседних элементах, смещены друг относительно друга из-за неточности изготовления или вследствие тепловых деформаций теплозащитных экранов ротора и рабочих лопаток в процессе работы турбины, сферические участки 25 на обоих концах соединительных муфт 22, 23 позволяют поддерживать каналы герметичными даже в том случае, если относительное взаимное расположение упомянутых выемок отклоняется от правильного взаимного расположения как в окружном, так и в радиальном направлениях. Сферические участки 25 на концах соединительных муфт 22, 23 также могут быть механически обработаны с высокой точностью.
В отличие от элементов статора подобного типа соединительные муфты 22, 23 в процессе работы турбины подвержены действию больших по величине центробежных сил. В связи с этим желательно уменьшить их вес, поскольку в ином случае соответствующие выемки во время работы постепенно могут быть подвергнуты истиранию при контактировании с другими элементами. Для уменьшения веса соединительных муфт без снижения их прочности или для повышения прочности без увеличении веса на этих соединительных муфтах могут быть выполнены ребра. В соответствии с фиг.8 указанные ребра 26 могут быть выполнены на внутренней поверхности соединительных муфт 22'. Согласно фиг.9 такие ребра 27 могут быть также выполнены на внешней поверхности соединительных муфт 23'. В последнем случае сферические участки 25 должны иметь большую высоту в радиальном направлении, чем ребра 27.
Преимущества предложенной конструкции могут быть кратко сформулированы еще раз следующим образом:
1. Отсутствуют утечки воздуха в газовый тракт турбины из каналов подачи охлаждающего воздуха в рабочие лопатки.
2. Отсутствуют утечки и не происходит смешивание воздуха, который поступает в канал подачи охлаждающего воздуха, с основным потоком охлаждающего воздуха, проходящего вдоль ротора.
3. Проходное сечение канала для подачи охлаждающего воздуха можно регулировать за счет изменения внутренних диаметров соединительных муфт.
4. Предложенная конструкция соединительных муфт позволяет уменьшить утечки охлаждающего воздуха и повысить эффективность работы турбины.

Claims (13)

1. Осевая газовая турбина (20), содержащая ротор (13) и статор (11), при этом статор (11) представляет собой корпус, охватывающий ротор (13) снаружи с образованием между ними тракта (12) течения горячего газа, через который протекает горячий газ, полученный в камере сгорания, ротор (13) содержит вал (15) с осевыми пазами, в частности, елочного типа для закрепления в них большого количества рабочих лопаток (В1-В3), которые размещены в виде последовательных рядов рабочих лопаток, причем между соседними рядами рабочих лопаток установлены теплозащитные экраны (R1, R2) ротора, и в результате образуется внутренняя граница тракта (12) течения горячего газа, при этом вал (15) ротора выполнен с возможностью транспортирования основного потока охлаждающего воздуха (17) в осевом направлении вдоль теплозащитных экранов (R1, R2) ротора и нижних частей рабочих лопаток (В1-В3), причем вал (15) ротора снабжает рабочие лопатки (В1-В3) охлаждающим воздухом (18), поступающим во внутреннюю полость рабочих лопаток (В1-В3), отличающаяся тем, что обеспечены герметичные каналы (21) для охлаждающего воздуха, которые проходят в осевом направлении через вал (15) ротора отдельно от основного потока охлаждающего воздуха (17) и снабжают рабочие лопатки (В1-В3) охлаждающим воздухом (18).
2. Газовая турбина по п.1, отличающаяся тем, что статор (11) содержит держатель (14) направляющих лопаток, в котором закреплены теплозащитные экраны (S1-S3) статора и направляющие лопатки (V1-V3), при этом теплозащитные экраны (S1-S3) статора расположены напротив рабочих лопаток (В1-В3), а направляющие лопатки (V1-V3) расположены напротив теплозащитных экранов (R1, R2) ротора.
3. Газовая турбина по п.1 или 2, отличающаяся тем, что каждый ряд рабочих лопаток содержит одинаковое определенное количество рабочих лопаток (В1-В3), установленных под одинаковым углом, и имеется, по меньшей мере, один герметичный канал (21) охлаждения, предусмотренный для одного углового расположения рабочих лопаток для рядов рабочих лопаток, при этом указанный герметичный канал (21) для охлаждающего воздуха проходит через соответствующие рабочие лопатки всех рядов рабочих лопаток, установленных в одном и том же угловом положении.
4. Газовая турбина по п.3, отличающаяся тем, что герметичные каналы (21) для охлаждающего воздуха образованы с помощью коаксиальных цилиндрических отверстий (28), проходящих в осевом направлении через теплозащитные экраны (R1, R2) ротора и нижние части рабочих лопаток (В1-В3), и с использованием соединительных муфт (22, 22'; 23, 23'), которые герметичным образом соединяют указанные отверстия (28) соседних рабочих лопаток и теплозащитных экранов ротора.
5. Газовая турбина по п.4, отличающаяся тем, что герметичные каналы (21) охлаждения закрыты на их концах с помощью заглушки (24).
6. Газовая турбина по п.4 или 5, отличающаяся тем, что соединительные муфты (22, 22'; 23, 23') выполнены так, что они допускают относительное перемещение соединяемых элементов без потери герметичности соединения.
7. Газовая турбина по п.6, отличающаяся тем, что соединительные муфты (22, 22'; 23, 23') имеют на каждом конце сферический участок (25), который допускает вращательное движение соединительных муфт внутри цилиндрического отверстия подобно соединению с шаровым шарниром.
8. Газовая турбина по одному из пп.4, 5 или 7, отличающаяся тем, что соединительные муфты (22, 22'; 23, 23') имеют уменьшенную массу при сохранении их жесткости за счет обеспечения большого количества распределенных по периметру окружности продольных ребер (26, 27).
9. Газовая турбина по п.6, отличающаяся тем, что соединительные муфты (22, 22'; 23, 23') имеют уменьшенную массу при сохранении их жесткости за счет обеспечения большого количества распределенных по периметру окружности продольных ребер (26, 27).
10. Газовая турбина по п.8, отличающаяся тем, что продольные ребра (26) могут быть выполнены на внутренней поверхности соединительных муфт (22, 22'; 23, 23').
11. Газовая турбина по п.9, отличающаяся тем, что продольные ребра (26) могут быть выполнены на внутренней поверхности соединительных муфт (22, 22'; 23, 23').
12. Газовая турбина по п.8, отличающаяся тем, что в качестве альтернативы продольные ребра (27) могут быть выполнены на внешней поверхности соединительных муфт (22, 22'; 23, 23'), при этом высота ребер (27) в радиальном направлении меньше высоты в радиальном направлении сферических участков (25).
13. Газовая турбина по п.9, отличающаяся тем, что в качестве альтернативы продольные ребра (27) могут быть выполнены на внешней поверхности соединительных муфт (22, 22'; 23, 23'), при этом высота ребер (27) в радиальном направлении меньше высоты в радиальном направлении сферических участков (25).
RU2010148730/06A 2010-11-29 2010-11-29 Осевая газовая турбина RU2539404C2 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2010148730/06A RU2539404C2 (ru) 2010-11-29 2010-11-29 Осевая газовая турбина
AU2011250787A AU2011250787B2 (en) 2010-11-29 2011-11-15 Gas turbine of the axial flow type
MYPI2011005639A MY157543A (en) 2010-11-29 2011-11-22 Axial flow gas turbine
EP11190647.5A EP2458147A3 (en) 2010-11-29 2011-11-24 Gas turbine of the axial flow type
CN201110405180.8A CN102562174B (zh) 2010-11-29 2011-11-29 轴向流类型的燃气轮机
JP2011260779A JP5841415B2 (ja) 2010-11-29 2011-11-29 軸流型のガスタービン
US13/306,006 US8932007B2 (en) 2010-11-29 2011-11-29 Axial flow gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010148730/06A RU2539404C2 (ru) 2010-11-29 2010-11-29 Осевая газовая турбина

Publications (2)

Publication Number Publication Date
RU2010148730A RU2010148730A (ru) 2012-06-10
RU2539404C2 true RU2539404C2 (ru) 2015-01-20

Family

ID=45033868

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010148730/06A RU2539404C2 (ru) 2010-11-29 2010-11-29 Осевая газовая турбина

Country Status (7)

Country Link
US (1) US8932007B2 (ru)
EP (1) EP2458147A3 (ru)
JP (1) JP5841415B2 (ru)
CN (1) CN102562174B (ru)
AU (1) AU2011250787B2 (ru)
MY (1) MY157543A (ru)
RU (1) RU2539404C2 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034445A1 (en) * 2011-08-03 2013-02-07 General Electric Company Turbine bucket having axially extending groove
US9938831B2 (en) * 2011-10-28 2018-04-10 United Technologies Corporation Spoked rotor for a gas turbine engine
US9267513B2 (en) * 2012-06-06 2016-02-23 General Electric Company Method for controlling temperature of a turbine engine compressor and compressor of a turbine engine
US10001061B2 (en) 2014-06-06 2018-06-19 United Technologies Corporation Cooling system for gas turbine engines
US10006364B2 (en) * 2014-08-20 2018-06-26 United Technologies Corporation Gas turbine rotors
EP3093432B1 (en) * 2015-05-15 2021-04-21 Ansaldo Energia Switzerland AG Method for cooling a gas turbine and gas turbine for conducting said method
EP3106613A1 (en) * 2015-06-06 2016-12-21 United Technologies Corporation Cooling system for gas turbine engines
CN106640208A (zh) * 2015-10-31 2017-05-10 熵零股份有限公司 一种叶轮机构
US10641174B2 (en) 2017-01-18 2020-05-05 General Electric Company Rotor shaft cooling
US11060530B2 (en) 2018-01-04 2021-07-13 General Electric Company Compressor cooling in a gas turbine engine
US11525400B2 (en) 2020-07-08 2022-12-13 General Electric Company System for rotor assembly thermal gradient reduction
US11692485B2 (en) 2021-02-18 2023-07-04 Generai, Electric Company Gas turbine engine with spoolie fluid transfer connection
US11674396B2 (en) 2021-07-30 2023-06-13 General Electric Company Cooling air delivery assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU346496A1 (ru) * Институт горного дела А. А. Скочинского СПОСОБ УПРАВЛ1еНИЯ ПОДПОРОМ СТОЕК СЕКЦИИ МЕХАНИЗИРОВАННОЙ КРЕПИ
US6185924B1 (en) * 1997-10-17 2001-02-13 Hitachi, Ltd. Gas turbine with turbine blade cooling
RU2182976C2 (ru) * 1996-06-21 2002-05-27 Сименс Акциенгезелльшафт Турбинный вал, а также способ охлаждения турбинного вала
EP0965726B1 (en) * 1996-11-29 2004-06-30 Hitachi, Ltd. Refrigerant recovery type gas turbine
US6860110B2 (en) * 2001-02-14 2005-03-01 Hitachi, Ltd. Gas turbine shaft and heat shield cooling arrangement

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB612097A (en) * 1946-10-09 1948-11-08 English Electric Co Ltd Improvements in and relating to the cooling of gas turbine rotors
US2684831A (en) * 1947-11-28 1954-07-27 Power Jets Res & Dev Ltd Turbine and like rotor
GB789197A (en) * 1956-01-06 1958-01-15 British Thomson Houston Co Ltd Improvements in cooling systems for high temperature turbines
US2977090A (en) * 1956-06-12 1961-03-28 Daniel J Mccarty Heat responsive means for blade cooling
US3748060A (en) * 1971-09-14 1973-07-24 Westinghouse Electric Corp Sideplate for turbine blade
US5593274A (en) * 1995-03-31 1997-01-14 General Electric Co. Closed or open circuit cooling of turbine rotor components
KR100389990B1 (ko) * 1995-04-06 2003-11-17 가부시끼가이샤 히다치 세이사꾸쇼 가스터빈
US5558496A (en) * 1995-08-21 1996-09-24 General Electric Company Removing particles from gas turbine coolant
JP3448145B2 (ja) * 1995-11-24 2003-09-16 三菱重工業株式会社 熱回収式ガスタービンロータ
US5755556A (en) * 1996-05-17 1998-05-26 Westinghouse Electric Corporation Turbomachine rotor with improved cooling
US6393829B2 (en) * 1996-11-29 2002-05-28 Hitachi, Ltd. Coolant recovery type gas turbine
JP3442959B2 (ja) * 1997-02-21 2003-09-02 三菱重工業株式会社 ガスタービン動翼の冷却媒体通路
US5984636A (en) * 1997-12-17 1999-11-16 Pratt & Whitney Canada Inc. Cooling arrangement for turbine rotor
SE512085C2 (sv) * 1998-05-28 2000-01-24 Abb Ab Rotormaskininrättning
US6422818B2 (en) * 1998-08-07 2002-07-23 General Electric Company Lubricating system for thermal medium delivery parts in a gas turbine
KR100697471B1 (ko) * 1999-05-14 2007-03-20 제너럴 일렉트릭 캄파니 가스 터빈 로터의 유지 슬리브
DE60026236T2 (de) * 1999-08-24 2006-11-23 General Electric Co. Dampfkühlungssystem für eine Gasturbine
EP1079068A3 (en) * 1999-08-27 2004-01-07 General Electric Company Connector tube for a turbine rotor cooling circuit
JP2001123802A (ja) * 1999-10-28 2001-05-08 Hitachi Ltd タービンロータ
JP3518447B2 (ja) 1999-11-05 2004-04-12 株式会社日立製作所 ガスタービン,ガスタービン装置およびガスタービン動翼の冷媒回収方法
JP3361501B2 (ja) * 2000-03-02 2003-01-07 株式会社日立製作所 閉回路翼冷却タービン
JP2002309906A (ja) * 2001-04-11 2002-10-23 Mitsubishi Heavy Ind Ltd 蒸気冷却型ガスタービン
JP3762661B2 (ja) * 2001-05-31 2006-04-05 株式会社日立製作所 タービンロータ
US6506021B1 (en) * 2001-10-31 2003-01-14 General Electric Company Cooling system for a gas turbine
JP2003206701A (ja) * 2002-01-11 2003-07-25 Mitsubishi Heavy Ind Ltd ガスタービンのタービンローターおよびガスタービン
JP5027245B2 (ja) * 2006-12-19 2012-09-19 アルストム テクノロジー リミテッド タービン機械、殊にガスタービン
US8047786B2 (en) * 2008-01-10 2011-11-01 General Electric Company Apparatus for plugging turbine wheel holes
JP5322664B2 (ja) * 2009-01-14 2013-10-23 株式会社東芝 蒸気タービン及びその冷却方法
US8113784B2 (en) * 2009-03-20 2012-02-14 Hamilton Sundstrand Corporation Coolable airfoil attachment section

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU346496A1 (ru) * Институт горного дела А. А. Скочинского СПОСОБ УПРАВЛ1еНИЯ ПОДПОРОМ СТОЕК СЕКЦИИ МЕХАНИЗИРОВАННОЙ КРЕПИ
RU2182976C2 (ru) * 1996-06-21 2002-05-27 Сименс Акциенгезелльшафт Турбинный вал, а также способ охлаждения турбинного вала
EP0965726B1 (en) * 1996-11-29 2004-06-30 Hitachi, Ltd. Refrigerant recovery type gas turbine
US6185924B1 (en) * 1997-10-17 2001-02-13 Hitachi, Ltd. Gas turbine with turbine blade cooling
EP0909878B1 (en) * 1997-10-17 2004-01-07 Hitachi, Ltd. Gas turbine
US6860110B2 (en) * 2001-02-14 2005-03-01 Hitachi, Ltd. Gas turbine shaft and heat shield cooling arrangement

Also Published As

Publication number Publication date
RU2010148730A (ru) 2012-06-10
EP2458147A2 (en) 2012-05-30
US20120134778A1 (en) 2012-05-31
US8932007B2 (en) 2015-01-13
JP5841415B2 (ja) 2016-01-13
AU2011250787B2 (en) 2015-08-13
AU2011250787A1 (en) 2012-06-14
MY157543A (en) 2016-06-15
CN102562174A (zh) 2012-07-11
JP2012117536A (ja) 2012-06-21
CN102562174B (zh) 2016-06-08
EP2458147A3 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
RU2539404C2 (ru) Осевая газовая турбина
RU2599413C2 (ru) Канал для охлаждения корпуса
US9476315B2 (en) Axial flow turbine
US8348608B2 (en) Turbomachine rotor cooling
US20040182085A1 (en) Combustion chamber
US9982553B2 (en) Seal assembly including a notched seal element for arranging between a stator and a rotor
RU2576600C2 (ru) Устройство направляющих лопаток для турбины и способ его изготовления
CN204591358U (zh) 转子轮组件及涡轮发动机
BRPI1011134B1 (pt) Turbomáquina com duplo corpo
CN106255806A (zh) 涡轮组件和相应的操作方法
RU2499890C2 (ru) Газовая турбина, снабженная предохранительной пластиной между ножкой лопатки и диском
US20170234142A1 (en) Rotor Blade Trailing Edge Cooling
US9476355B2 (en) Mid-section of a can-annular gas turbine engine with a radial air flow discharged from the compressor section
EP3133243B1 (en) Gas turbine blade
US10196903B2 (en) Rotor blade cooling circuit
WO2017069249A1 (ja) ガスタービンロータ、ガスタービン、及びガスタービン設備
KR102323262B1 (ko) 증기 터빈 및 증기 터빈 조립 방법
CN110431286B (zh) 用于涡轮机的尖端平衡狭缝
RU2567524C2 (ru) Система и способ для отбора рабочей текучей среды от внутреннего объема турбомашины и турбомашина, содержащая такую систему
CN107438701A (zh) 涡轮机翼型件的在两个压力下的冷却
CN107709709B (zh) 用于涡轮机的组件
RU2573085C2 (ru) Лопатка газовой турбины
JP2020097926A (ja) ガスタービンエンジンのシュラウド冷却のためのシステムおよび方法
JPH11247603A (ja) 流体機械のロータ
EP2488728B1 (en) Turbine for converting energy and method for operating the same

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181130