WO2017069249A1 - ガスタービンロータ、ガスタービン、及びガスタービン設備 - Google Patents

ガスタービンロータ、ガスタービン、及びガスタービン設備 Download PDF

Info

Publication number
WO2017069249A1
WO2017069249A1 PCT/JP2016/081299 JP2016081299W WO2017069249A1 WO 2017069249 A1 WO2017069249 A1 WO 2017069249A1 JP 2016081299 W JP2016081299 W JP 2016081299W WO 2017069249 A1 WO2017069249 A1 WO 2017069249A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
compressor
flow path
gas turbine
air
Prior art date
Application number
PCT/JP2016/081299
Other languages
English (en)
French (fr)
Inventor
橋本 真也
啓太 ▲高▼村
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201680059019.0A priority Critical patent/CN108138655B/zh
Priority to DE112016004845.9T priority patent/DE112016004845T5/de
Priority to US15/768,709 priority patent/US10738618B2/en
Priority to KR1020187010705A priority patent/KR102055117B1/ko
Publication of WO2017069249A1 publication Critical patent/WO2017069249A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/073Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages the compressor and turbine stages being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/97Reducing windage losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a gas turbine rotor, a gas turbine, and a gas turbine facility.
  • This application claims priority based on Japanese Patent Application No. 2015-208944 filed in Japan on October 23, 2015, the contents of which are incorporated herein by reference.
  • the gas turbine includes a compressor that compresses air to generate compressed air, a combustor that generates combustion gas by burning combustion in the compressed air, and a turbine that is driven by the combustion gas.
  • the compressor includes a compressor rotor that rotates about an axis, and a compressor casing that covers the compressor rotor.
  • the turbine includes a turbine rotor that rotates about an axis, and a turbine casing that covers the turbine rotor.
  • Each of the compressor rotor and the turbine rotor has a rotor shaft and a plurality of moving blade rows attached to the outer periphery of the rotor shaft.
  • the compressor rotor and the turbine rotor are connected to each other on the same axis to form a gas turbine rotor. Further, the compressor casing and the turbine casing are connected to each other to form a gas turbine casing.
  • the turbine rotor is exposed to high-temperature combustion gas, and thus needs to be cooled with air or the like.
  • Patent Document 1 discloses a technique for cooling a turbine rotor with compressed air from a compressor.
  • the compressed air extracted from the middle stage of the compressor is guided into the compressor rotor among the gas turbine rotors, and the compressed air is guided from the compressor rotor to the turbine rotor to cool the turbine rotor.
  • an object of the present invention is to provide a technique capable of further cooling a turbine rotor among gas turbine rotors.
  • the gas turbine rotor of the first aspect according to the invention for achieving the above object is In a gas turbine rotor that rotates about an axis in a gas turbine cabin, a compressor rotor of a compressor that rotates about the axis, and a compressor rotor that is positioned on the axis and connected to the compressor rotor, the axis being centered A turbine rotor of a turbine that rotates integrally with the compressor rotor, and the compressed air that flows axially upstream from the air discharge port of the compressor and flows inside the gas turbine casing A ventilation flow path that leads to the inside of the rotor, a cooling air flow path that guides cooling air that is cooler than the compressed air that flows through the ventilation flow path, to the portion downstream of the air discharge port in the axial direction, and the bench The compressed air that has flowed through the ventilation flow path and the cooling air that has flowed through the cooling flow path There a mixing space for mixing, leading to the mixing space, the compressed air and mixing the air flow path of the mixed
  • the ventilation passage is formed in the compressor rotor, the inside of the compressor rotor is ventilated by the compressed air flowing through the ventilation passage. For this reason, in the said gas turbine rotor, the thermal responsiveness of the compressor rotor with respect to the temperature change in the air compression flow path in which air is compressed with a compressor can be improved.
  • the compressed air and the cooling air that have flowed through the ventilation passages of the compressor rotor are mixed in the mixing space, and the mixed air generated by the mixing is guided into the turbine rotor.
  • the turbine rotor can be cooled with air having a lower temperature than when the compressed air flowing out from the compressor rotor shaft is supplied to the turbine rotor shaft as it is. Furthermore, in the gas turbine rotor, the compressed air flowing out from the ventilation flow path of the compressor rotor can be effectively used for cooling the turbine rotor.
  • the gas turbine rotor of the second aspect according to the invention for achieving the above object is In the gas turbine rotor according to the first aspect, an intermediate rotor shaft that is located on the axis and is located between the compressor rotor and the turbine rotor and connected to the compressor rotor and the turbine rotor.
  • the cooling air flow path and the mixing space are formed on the intermediate rotor shaft.
  • a gas turbine rotor of a third aspect according to the invention for achieving the above object is
  • the turbine rotor is a turbine rotor shaft that rotates about the axis, and a plurality of blades that are attached to an outer periphery of the turbine rotor shaft and are aligned in the axial direction.
  • the mixed air flow path passes through the turbine rotor shaft, and among the plurality of moving blade rows, the moving blades on the downstream side in the axial direction from the first moving blade row on the most upstream side in the axial direction Leads to a column.
  • a gas turbine rotor of a fourth aspect according to the invention for achieving the above object is In the gas turbine rotor according to the third aspect, in addition to the first cooling air flow path that is the cooling air flow path connected to the mixing space, a second cooling air flow for guiding the cooling air to the first moving blade row A road is formed.
  • the first moving blade row exposed to the hottest combustion gas among the plurality of moving blade rows of the turbine rotor can be cooled with low-temperature cooling air.
  • a gas turbine rotor according to a fifth aspect of the invention for achieving the above object is In the gas turbine rotor according to the fourth aspect, a third cooling air flow path is formed in the turbine rotor to communicate the second cooling air flow path with the mixed air flow path.
  • air mixed with cooling air and mixed air flowing through the mixed air flow path can be supplied to the moving blade row downstream in the axial direction from the first moving blade row. For this reason, in the gas turbine rotor, the moving blade row on the downstream side in the axial direction from the first moving blade row can be further cooled.
  • a gas turbine rotor according to a sixth aspect of the invention for achieving the above object is
  • the compressor rotor is attached to a compressor rotor shaft that rotates about the axis, and an outer periphery of the compressor rotor shaft.
  • a plurality of moving blade rows arranged in parallel, and the ventilation flow path is compressed air flowing between two moving blade rows adjacent in the axial direction among the plurality of moving blade rows of the compressor rotor.
  • An introduction portion that guides the inside of the compressor rotor, a plurality of branch portions that are branched from the introduction portion and formed at different positions in the axial direction, and into which compressed air from the introduction portion flows, and the plurality of the plurality of branch portions
  • a collecting portion that is connected to each of the branch portions, and into which the compressed air that has passed through the plurality of branch portions flows and that flows into the mixing space.
  • the compressor rotor can be ventilated over a wide range in the compressor rotor.
  • a seventh aspect of the gas turbine according to the invention for achieving the above object is as follows: The gas turbine rotor according to any one of the first to the sixth aspects, and the gas turbine casing.
  • An eighth aspect of the gas turbine equipment according to the invention for achieving the above object is as follows: The gas turbine according to the seventh aspect; and a cooling system that cools compressed air that is air compressed by the compressor of the gas turbine to generate the cooling air.
  • the gas turbine includes the cooling A cooling air introduction member for guiding the cooling air generated in the system to the cooling air flow path of the gas turbine rotor;
  • the turbine rotor can be further cooled.
  • the gas turbine equipment of this embodiment includes a gas turbine 1 and a cooling system 200 that generates cooling air.
  • the gas turbine 1 includes a compressor 10 that compresses outside air A to generate compressed air Acom, a combustor 80 that generates combustion gas by burning fuel F from a fuel supply source in the compressed air Acom, and combustion gas. And a turbine 110 driven by
  • the compressor 10 includes a compressor rotor 20 that rotates about an axis Ar and a cylindrical compressor casing 11 that covers the compressor rotor 20.
  • the direction in which the axis Ar extends is referred to as an axial direction Da.
  • One side of the axial direction Da is defined as an axial upstream side Dau, and the other side of the axial direction Da is defined as an axial downstream side Dad.
  • a radial direction based on the axis Ar is simply referred to as a radial direction Dr.
  • a side away from the axis Ar in the radial direction Dr is defined as a radially outer side Dro
  • a side approaching the axis Ar in the radial direction Dr is defined as a radially inner Dri.
  • Compressor 10 is an axial flow compressor.
  • the compressor rotor 20 includes a compressor rotor shaft 21 extending in the axial direction Da around the axis Ar and a plurality of moving blades fixed to the outer periphery of the compressor rotor shaft 21 and arranged in the axial direction Da. And a column 51.
  • the end of the compressor casing 11 on the upstream side Dau in the axial direction is open, and this opening forms the air intake 12.
  • a stationary blade row 61 is fixed at a position on the downstream side Dad of each blade row 51 in the axial direction.
  • One stationary blade row 61 has a plurality of stationary blades 62.
  • the plurality of stationary blades 62 are arranged in the circumferential direction Dc with the axis Ar as a center to constitute one stationary blade row 61.
  • One moving blade row 51 includes a plurality of moving blades 52.
  • the plurality of rotor blades 52 are arranged in the circumferential direction Dc with the axis Ar as a center to constitute one rotor blade row 51.
  • the turbine 110 is disposed on the axially downstream side Dad of the compressor 10.
  • the turbine 110 includes a turbine rotor 120 that rotates about an axis Ar and a cylindrical turbine casing 111 that covers the turbine rotor 120.
  • the turbine rotor 120 includes a turbine rotor shaft 121 extending in the axial direction Da around the axis line Ar, and a plurality of blade rows 151 fixed to the outer periphery of the turbine rotor shaft 121 and arranged in the axial direction Da. .
  • a stationary blade row 161 is fixed at a position upstream of each rotor blade row 151.
  • One stationary blade row 161 has a plurality of stationary blades 162.
  • the plurality of stationary blades 162 are arranged in the circumferential direction Dc with the axis line Ar as a center to constitute one stationary blade row 161. Further, one moving blade row 151 has a plurality of moving blades 152. The plurality of moving blades 152 are arranged in the circumferential direction Dc with the axis Ar as a center to constitute one moving blade row 151.
  • the gas turbine 1 of the present embodiment further includes an intermediate rotor shaft 171, an intermediate rotor shaft cover 181, a cooling air pipe 189, and an intermediate casing 191.
  • the intermediate rotor shaft 171 connects the compressor rotor 20 and the turbine rotor 120. Therefore, the intermediate rotor shaft 171 is located between the compressor rotor 20 and the turbine rotor 120 in the axial direction Da.
  • the compressor rotor 20, the intermediate rotor shaft 171 and the turbine rotor 120 are located on the same axis line Ar and integrally rotate about the axis line Ar. These constitute the gas turbine rotor 2.
  • a rotor of a generator 9 is connected to the gas turbine rotor 2.
  • the intermediate casing 191 covers the outer peripheral side of the intermediate rotor shaft 171. Therefore, the intermediate casing 191 is located between the compressor casing 11 and the turbine casing 111 in the axial direction Da.
  • the compressor casing 11, the intermediate casing 191, and the turbine casing 111 are connected to each other to constitute the gas turbine casing 3.
  • the combustor 80 is attached to the intermediate casing 191. Compressed air Acom from the compressor 10 flows into the intermediate casing 191. This compressed air Acom flows into the combustor 80 from the intermediate casing 191.
  • the intermediate rotor shaft cover 181 is disposed on the radially inner side Dri of the gas turbine casing 3 and covers the radially outer side Dro of the intermediate rotor shaft 171.
  • the intermediate rotor shaft cover 181 is fixed to the gas turbine casing 3.
  • a first end of the cooling air pipe 189 is fixed to the intermediate casing 191, and a second end of the cooling air pipe 189 is fixed to the intermediate rotor shaft cover 181.
  • the cooling system 200 includes a cooling air line 201 and a cooler 205.
  • the cooling air line 201 is disposed outside the gas turbine casing 3.
  • a first end of the cooling air line 201 is connected to the intermediate casing 191, and a second end of the cooling air line 201 is connected to the cooling air pipe 189 of the gas turbine 1.
  • the compressed air Acom in the intermediate casing 191 flows into the cooling air line 201 from the first end of the cooling air line 201.
  • the cooler 205 is provided in the cooling air line 201.
  • the cooler 205 cools the compressed air Acom that has flowed into the cooling air line 201, and converts this compressed air Acom into cooling air Ac.
  • the cooler 205 is, for example, a heat exchanger that cools the compressed air Acom by exchanging heat between the compressed air Acom in the cooling air line 201 and the cooling medium.
  • the cooler 205 may include a radiator in which the compressed air Acom flows and a fan that blows air to the outside of the radiator.
  • the cooling air Ac generated by the cooler 205 flows into the cooling air pipe 189 through the cooling air line 201.
  • the compressor casing 11 includes a compressor casing main body 13 and a stationary blade holding ring 14 disposed in the compressor casing main body 13.
  • the stationary blade retaining ring 14 has an annular shape centering on the axis Ar.
  • the stationary blade retaining ring 14 is fixed to the compressor casing main body 13.
  • a plurality of stationary blades 62 are fixed to the stationary blade holding ring 14.
  • the stationary blade 62 is provided on a blade body 63 extending in the radial direction Dr, an outer shroud 64 provided on the radially outer side Dro of the blade body 63, and a radially inner side Dri of the blade body 63.
  • the outer shroud 64 is attached to the radially inner side Dri of the stationary blade holding ring 14.
  • the inner shroud 65 is provided with a seal ring 66 on the radially inner side Dri.
  • the moving blade 52 includes a blade body 53 extending in the radial direction Dr, a platform 54 provided on the radial inner side Dri of the blade body 53, and a blade root 55 provided on the radial inner side Dri of the platform 54. Have.
  • the blade root 55 is embedded in the compressor rotor shaft 21.
  • the air compression flow path 15 through which the air in the compression process passes through the compressor 10 has an annular shape around the axis Ar.
  • the outer peripheral side of the air compression passage 15 is defined by the compressor casing 11 and the outer shroud 64 of the stationary blade 62.
  • the inner peripheral side of the air compression flow path 15 is defined by the platform 54 of the moving blade 52 and the inner shroud 65 of the stationary blade 62.
  • the diffuser 16 is provided on the axially downstream side Dad of the stationary blade row 61 on the most downstream side in the axial direction Dad.
  • the diffuser 16 includes an annular outer diffuser 16o and an annular inner diffuser 16i disposed on the radially inner side Dri of the outer diffuser 16o.
  • the outer diffuser 16o extends to the axial downstream side Dad from the outer shroud 64 of the plurality of stationary blades 62 constituting the stationary blade row 61 on the most downstream downstream side Dad, and the inner diameter gradually increases.
  • the inner diffuser 16i extends to the axial downstream side Dad from the inner shroud 65 of the plurality of stationary blades 62 constituting the stationary blade row 61 on the most downstream side Dad, and the outer diameter gradually decreases.
  • An annular space between the annular outer diffuser 16 o and the annular inner diffuser 16 i forms an air discharge passage 17 that communicates with the annular air compression passage 15.
  • the end of the air discharge channel 17 on the downstream side Dad in the axial direction is open in the intermediate casing 191. This opening forms an air discharge port 18 of the compressor 10.
  • the outside air A flows into the air compression flow path 15 from the air intake 12 (see FIG. 1) due to the rotation of the compressor rotor 20, and is compressed in the air compression flow path 15 from the axial upstream side Dau to the shaft. It flows to the direction downstream side Dad.
  • Compressed air Acom which is air compressed in the air compression flow path 15, flows into the air discharge flow path 17. This compressed air Acom flows into the intermediate casing 191 from the air discharge port 18.
  • the compressor rotor shaft 21 has an annular shape around the axis Ar at each position in the axial direction Da between the plurality of moving blade rows 51, in other words, at each position in the axial direction Da of the plurality of stationary blade rows 61.
  • a plurality of cavities 33 are formed that are spaced apart from each other in the radial direction Dr.
  • a plurality of cavities 33 formed at positions in the axial direction Da between two rotor blade rows 51 adjacent in the axial direction Da constitute one cavity group 32. Therefore, a plurality of cavity groups 32 are formed in the compressor rotor shaft 21 along the axial direction Da.
  • One cavity group 32 includes an outer cavity 33o that is formed on the outermost radial direction Dro in the compressor rotor shaft 21, an intermediate cavity 33m that is formed on the radially inner side Dri from the outer cavity 33o, and a compression It is composed of three cavities 33 including an inner cavity 33 i formed at the innermost radial direction Dri in the machine rotor shaft 21.
  • the compressor rotor shaft 21 is further formed with a radially outer flow path 31 that allows the outer cavity 33o and the air compression flow path 15 to communicate with each other.
  • the compressor rotor shaft 21 includes a plurality of rotor disks 41 stacked in the axial direction Da, a spindle bolt 29 passing through the plurality of rotor disks 41 and the plurality of intermediate cavities 33m in the axial direction Da, and adjacent rotor disks 41 to each other. And a cylindrical torque pin 39 for restricting the relative rotation.
  • One rotor blade 41 is attached to one rotor disk 41. Therefore, the rotor disk 41 exists for each of the plurality of rotor blade rows 51.
  • FIG. 3 is a cross-sectional view of the rotor disk 41
  • FIG. 3B is a view taken along the arrow B in FIG. 2A.
  • a blade attachment portion 49 to which the blade roots 55 of a plurality of blades 52 constituting one blade row 51 are attached is formed.
  • Each rotor disk 41 is formed with an upstream first recess 43u, an upstream second recess 45u, and an upstream third recess 47u.
  • the upstream first concave portion 43u is recessed from the axial upstream side Dau portion in the rotor disk 41 toward the axial downstream side Dad in order to form the outer cavity 33o in the axial upstream side Dau of the rotor disk 41.
  • the upstream second concave portion 45u has a shaft in the rotor disk 41 at a position radially inward Dri from the upstream first concave portion 43u in order to form an intermediate cavity 33m in the axial upstream side Dau of the rotor disk 41.
  • the upstream third recessed portion 47u is formed at the shaft in the rotor disk 41 at a position radially inward Dri from the upstream second recessed section 45u in order to form an inner cavity 33i in the axially upstream Dau of the rotor disk 41. It dents toward the axial downstream side Dad from the direction upstream side Dau. Therefore, on the radially outer side Dro of the upstream first concave portion 43u, an annular upstream first arm portion 42u that protrudes toward the axial upstream side Dau relative to the bottom surface of the upstream first concave portion 43u. Is formed.
  • the axial upstream Dau relative to the bottom surface of the upstream first concave portion 43u and the bottom surface of the upstream second concave portion 45u.
  • An annular upstream second arm portion 44u that protrudes toward the center is formed.
  • the upstream second recessed portion 45u and the upstream third recessed portion 47u the axial upstream Dau relative to the bottom surface of the upstream second recessed portion 45u and the bottom surface of the upstream third recessed portion 47u.
  • An annular upstream third arm portion 46u that protrudes toward the center is formed.
  • annular upstream protrusion 48u that protrudes toward the upstream in the axial direction Dau relative to the bottom surface of the upstream third recess 47u is formed on the radially inner side Dri of the upstream third recess 47u. Has been.
  • the annular upstream second arm portion 44u is formed with a plurality of upstream pin grooves 44up that are recessed toward the axial downstream side Dad and communicate with the upstream first concave portion 43u and the upstream second concave portion 45u. ing.
  • the plurality of upstream pin grooves 44up are arranged in the circumferential direction Dc.
  • each rotor disk 41 is formed with a downstream first recess 43d, a downstream second recess 45d, and a downstream third recess 47d.
  • the downstream first concave portion 43d is recessed from the axial downstream side Dad portion in the rotor disk 41 toward the axial upstream side Dau in order to form the outer cavity 33o in the axial downstream side Dad of the rotor disk 41.
  • the downstream second concave portion 45d is formed in the axial direction in the rotor disk 41 at a position radially inward Dri from the downstream first concave portion 43d in order to form an intermediate cavity 33m in the axial downstream side Dad of the rotor disk 41. It is recessed from the downstream Dad portion toward the axial upstream Dau.
  • the downstream third concave portion 47d is formed in the axial direction in the rotor disk 41 at a position radially inward Dri from the downstream second concave portion 45d in order to form an inner cavity 33i in the axial downstream side Dad of the rotor disk 41. It is recessed from the downstream Dad portion toward the axial upstream Dau. Therefore, on the radially outer side Dro of the downstream first concave portion 43d, an annular downstream first arm portion 42d that protrudes toward the axial downstream side Dad relative to the bottom surface of the downstream first concave portion 43d. Is formed.
  • the axial downstream Dad is relatively relative to the bottom surface of the downstream first recess 43d and the bottom surface of the downstream second recess 45d.
  • An annular downstream second arm portion 44d that protrudes toward the center is formed.
  • the axial downstream Dad is relatively relative to the bottom surface of the downstream second concave portion 45d and the bottom surface of the downstream third concave portion 47d.
  • An annular downstream third arm portion 46d that protrudes toward the center is formed.
  • An annular downstream protrusion 48d that protrudes toward the axial downstream Dad relative to the bottom surface of the downstream third recess 47d is formed on the radially inner side Dri of the downstream third recess 47d. ing.
  • the annular downstream second arm portion 44d is formed with a plurality of downstream pin grooves 44dp that are recessed toward the upstream in the axial direction Dau and communicate with the downstream first recess 43d and the downstream second recess 45d. ing.
  • the plurality of downstream pin grooves 44dp are arranged in the circumferential direction Dc.
  • the outer cavity 33o includes a downstream first concave portion 43d in the axially upstream Dau rotor disk 41 of two rotor disks 41 adjacent in the axial direction Da, and an upstream upstream first in the axially downstream Dad rotor disk 41. It is defined by one recess 43u.
  • the intermediate cavity 33m includes a downstream second concave portion 45d in the axially upstream Dau rotor disk 41 of two rotor disks 41 adjacent in the axial direction Da, and an upstream upstream first in the axially downstream Dad rotor disk 41. Defined by two recesses 45u.
  • the inner cavity 33i includes a downstream third recess 47d in the axially upstream Dau rotor disk 41 of the two rotor disks 41 adjacent to each other in the axial direction Da, and an upstream upstream side in the axially downstream Dad rotor disk 41. It is defined by three recesses 47u.
  • the radially outer flow path 31 includes a downstream first arm portion 42d in the axially upstream Dau rotor disk 41 of two rotor disks 41 adjacent in the axial direction Da, and an axially downstream Dad rotor disk 41. And the upstream first arm portion 42u.
  • a plurality of downstream pin grooves 44dp in the axially upstream Dau rotor disk 41 and a plurality of upstream pin grooves 44up in the axially downstream Dad rotor disk 41. are opposed to each other in the axial direction Da.
  • the pin hole in which the torque pin 39 is mounted is defined by the downstream pin groove 44dp and the upstream pin groove 44up.
  • the pin hole to which the torque pin 39 is attached has a cylindrical shape corresponding to the shape of the cylindrical torque pin 39.
  • the rotor disk 41 is formed with a bolt through hole 38 through which the spindle bolt 29 is inserted from the bottom surface of the upstream second recess 45u to the bottom surface of the downstream second recess 45d.
  • the compressor rotor shaft 21 receives air flowing between two blade rows 51 adjacent to each other in the axial direction Da among the plurality of blade rows 51.
  • two moving blade rows 51 adjacent in the axial direction Da include a moving blade row 51 on the most downstream side in the axial direction Dad and a moving blade row 51 on the most upstream side in the axial direction Dau among the plurality of moving blade rows 51.
  • these two moving blade rows 51 are referred to as an intermediate moving blade row 51a.
  • the rotor disk 41 to which the intermediate blade row 51a is attached is referred to as an intermediate rotor disk 41a.
  • the rotor disk 41 on the axial upstream side Dau (left side in the figure) depicted in FIG. 3A is the intermediate rotor disk 41a on the axial downstream side Dad of the two intermediate rotor disks 41a.
  • the rotor disk 41 on the axial downstream side Dad (right side in the figure) depicted in FIG. 3A is a rotor disk adjacent to the axial downstream downstream Dad of the intermediate rotor disk 41a of the axial downstream side Dad. 41.
  • the ventilation channel 22 has an introduction part 23, a plurality of branch parts 27, and a collecting part 28.
  • the introduction part 23 includes an inflow part 24 and a distribution part 26.
  • the inflow portion 24 is formed with an inlet 25 through which the compressed air Acom flowing between the two intermediate rotor blade rows 51a flows as the compressor bleed air Bcom.
  • the inflow portion 24 extends from the inflow port 25 to the radially inner side Dri.
  • the distribution part 26 extends from the inflow part 24 to the axial upstream side Dau and the axial downstream side Dad.
  • the plurality of branch portions 27 branch from the distribution portion 26 of the introduction portion 23 and are formed at different positions in the axial direction Da.
  • the flow paths of the plurality of branch portions 27 extend in the radial direction Dr.
  • the collective portion 28 is connected to each of the ends on the radially inner side Dri of the plurality of branch portions 27.
  • the collective portion 28 extends in the axial direction Da.
  • the air that has passed through the plurality of branch portions 27 flows into the collecting portion 28, and the air that has flowed in flows out to the outside.
  • the inlet 25 of the inflow portion 24 is formed by a radially outer Dro opening in a radially outer flow path 31 formed between two intermediate rotor disks 41a.
  • the two intermediate rotor disks 41a are formed with through holes 37 penetrating in the axial direction Da.
  • one or a plurality of rotor disks 41 in the axial upstream side Dau than the intermediate rotor disk 41a in the axial upstream side Dau are also connected to the through holes 37 in the intermediate rotor disk 41a. 37 is formed.
  • a through hole 37 is formed. Each of these through holes 37 penetrates from the groove bottom of the upstream pin groove 44up of the rotor disk to the groove bottom of the downstream pin groove 44dp.
  • a plurality of downstream pin grooves 44dp in the intermediate rotor disk 41a on the axial upstream side Dau and a plurality of upstream pin grooves 44up in the intermediate rotor disk 41a on the axial downstream side Dad are formed.
  • the torque pin 39 is not provided in any one or more of the plurality of pin holes. Therefore, this pin hole forms a first intermediate flow path 34 that communicates the outer cavity 33o and the intermediate cavity 33m formed between the two intermediate rotor disks 41a.
  • the through holes 37 formed in the two intermediate rotor disks 41 a communicate with the first intermediate flow path 34.
  • the pin hole is used as the first intermediate flow path 34, but another hole may be formed in addition to the pin hole, and this may be used as the first intermediate flow path 34.
  • the pin hole described above is provided with a torque pin 39a extending from the intermediate position in the radial direction Dr of the pin hole to the radially outer side Dro. Therefore, the opening on the radially outer side Dro of the pin hole is blocked by the torque pin 39a, while the opening on the radially inner side Dri of the pin hole is not blocked by the torque pin 39a.
  • a portion of the pin hole on the radially outer side Dro forms a second intermediate flow path 34a communicating with the intermediate cavity 33m.
  • the one or more pin holes are provided with torque pins 39a extending from the intermediate positions of the pin holes in the radial direction Dr to the radially outer side Dro. Therefore, the opening on the radially outer side Dro of the pin hole is blocked by the torque pin 39a, while the opening on the radially inner side Dri of the pin hole is not blocked by the torque pin 39a.
  • a portion of the pin hole on the radially outer side Dro also forms a second intermediate flow path 34a communicating with the intermediate cavity 33m.
  • a part of pin hole is utilized as the 2nd intermediate flow path 34a here, it is good also as a 2nd intermediate flow path 34a by forming another hole other than a pin hole.
  • each rotor disk 41 including the intermediate rotor disk 41a communicates with the second intermediate flow path 34a.
  • the inflow portion 24 of the ventilation channel 22 is a portion of the radially outer channel 31, the outer cavity 33 o, and the radially outer Dro of the first intermediate channel 34 formed between the two intermediate rotor disks 41 a. It is formed.
  • the distribution portion 26 of the ventilation flow path 22 is formed by a through hole 37 formed in each rotor disk 41 including the intermediate rotor disk 41a.
  • the rotor disk 41 on the most upstream side Dau and all the rotor disks 41 on the downstream side Dad in the axial direction from the rotor disk 41 include an inner cavity.
  • a hole penetrating in the axial direction Da is formed at a position radially inward Dri from 33i.
  • the gathering portion 28 of the ventilation channel 22 is formed by this hole.
  • one branch section 27 includes a radial inner side Dri portion of the first intermediate flow path 34 and an intermediate cavity 33 m communicating with the first intermediate flow path 34.
  • the first inner flow path 35 communicating with the intermediate cavity 33m, the inner cavity 33i communicating with the first inner flow path 35, and the second inner flow path 36 communicating with the inner cavity 33i are formed.
  • the other branch section 27 includes a second intermediate flow path 34a, an intermediate cavity 33m communicating with the second intermediate flow path 34a, and the intermediate cavity 33m.
  • the first inner flow path 35 communicated with the first inner flow path 35, the inner cavity 33i communicated with the first inner flow path 35, and the second inner flow path 36 communicated with the inner cavity 33i.
  • the intermediate rotor shaft 171 includes a cylindrical cylindrical portion 172 centered on the axis, and an upstream flange portion 173 that protrudes radially inward from the axial upstream side Dau of the cylindrical portion 172. And a downstream flange portion 175 that protrudes radially inward from the axially downstream portion Dad of the cylindrical portion 172.
  • the radially inner side Dri of the cylindrical portion 172, the upstream flange portion 173, and the downstream flange portion 175 is hollow. This hollow portion forms a mixing space 177.
  • a bolt through hole 174 into which the spindle bolt 29 of the compressor 10 is inserted is formed in the upstream flange portion 173.
  • the intermediate rotor shaft 171 and the compressor rotor shaft 21 are connected by this spindle bolt 29.
  • a bolt through hole 176 into which a spindle bolt 129 of the turbine 110 described later is inserted is formed in the downstream flange portion 175.
  • the intermediate rotor shaft 171 and the turbine rotor shaft 121 are connected by this spindle bolt 129.
  • the intermediate rotor shaft 171 is formed with a first cooling air passage 178 penetrating from the radially outer side Dro of the intermediate rotor shaft 171 to the mixing space 177 through the downstream flange portion 175.
  • the intermediate rotor shaft cover 181 is disposed in the intermediate casing 191.
  • the intermediate rotor shaft cover 181 includes a cylindrical inner cover 183 that covers the radially outer side Dro of the intermediate rotor shaft 171 and a cylindrical outer cover 182 that covers the radially outer side Dro of the inner cover 183.
  • the axially upstream end Dau of the outer cover 182 is fixed to the gas turbine casing 3 via the diffuser 16 of the compressor 10.
  • the end of the outer cover 182 in the axial downstream side Dad is fixed to the gas turbine casing 3 via the first stationary blade row 161a on the most axially upstream side among the plurality of stationary blade rows 161 of the turbine 110. ing.
  • the inner cover 183 covers the region including the opening of the first cooling air flow path 178 on the outer peripheral surface of the intermediate rotor shaft 171 on the radial outer side Dro of the intermediate rotor shaft 171.
  • the end of the inner cover 183 on the upstream side Dau in the axial direction is connected to the inner peripheral surface of the outer cover 182.
  • All of the portion of the inner cover 183 on the downstream side Dad in the axial direction from the end of the axial upstream Dau is spaced from the inner peripheral surface of the outer cover 182 to the radially inner side Dri.
  • a space between the inner peripheral surface of the outer cover and the outer peripheral surface of the inner cover forms an air introduction space 184.
  • a cooling air pipe 189 is connected to the outer cover 182.
  • the inner cover 183 is formed with a through hole 185 penetrating from the radially outer side Dro to the radially inner side Dri at substantially the same position as the opening of the first cooling air flow path 178 of the intermediate rotor shaft 171 in the axial direction Da. ing. Further, an upstream seal 186 and a downstream seal 187 are provided on the inner peripheral surface of the inner cover 183 to seal the space between the intermediate rotor shaft 171 and the inner cover 183.
  • the upstream seal 186 is provided on the upstream side Dau in the axial direction from the through hole 185 of the inner cover 183.
  • the downstream seal 187 is provided on the downstream side Dad in the axial direction with respect to the through hole 185 of the inner cover 183.
  • the cooling air introduction member 188 that guides the cooling air Ac from the cooling system 200 to the gas turbine rotor 2 includes a cooling air pipe 189 and an intermediate rotor shaft cover 181.
  • the assembly portion 28 of the ventilation flow path 22 formed in the compressor rotor shaft 21 communicates with the mixing space 177. Therefore, the compressor bleed air Bcom that has passed through the ventilation flow path 22 of the compressor rotor shaft 21 flows into the mixing space 177. Further, the cooling air Ac from the cooling air pipe 189 flows into the air introduction space 184 of the intermediate rotor shaft cover 181. The cooling air Ac in the air introduction space 184 flows into the mixing space 177 of the intermediate rotor shaft 171 through the through hole 185 of the inner cover 183 and the first cooling air flow path 178 of the intermediate rotor shaft 171. Therefore, the cooling air Ac from the cooling system 200 and the compressor bleed air Bcom from the compressor rotor shaft 21 are mixed in the mixing space 177.
  • the turbine casing 111 is disposed in the turbine casing main body 112, the blade ring 113 disposed in the turbine casing main body 112, and the radially inner Dri of the blade ring 113.
  • a split ring 114 is fixed to the radially inner side Dri of the turbine casing main body 112.
  • the split ring 114 is disposed at a position on the radially outer side Dro of each rotor blade row 151 of the turbine 110.
  • a plurality of stationary blades 162 and a plurality of split rings 114 are fixed to the radially inner side Dri of the blade ring 113.
  • the stationary blade 162 of the turbine 110 includes a blade body 163 extending in the radial direction Dr, an outer shroud 164 provided on the radially outer side Drro of the blade body 163, and a radially inner side of the blade body 163. And an inner shroud 165 provided on the Dri.
  • the outer shroud 164 is attached to the radially inner side Dri of the blade ring 113.
  • the inner shroud 165 is provided with a seal ring 166 on the radially inner side Dri.
  • the rotor blade 152 of the turbine 110 includes a blade body 153 that extends in the radial direction Dr, a platform 154 that is provided on the radially inner side of the blade body 153, and a blade root 155 that is provided on the radially inner side of the platform 154. And having.
  • the blade root 155 is embedded in the turbine rotor shaft 121.
  • An air flow path 156 is formed in the moving blade 152. The air flow path 156 opens at the outer surface of the blade root 155 and extends to the blade body 153 through the blade root 155 and the platform 154.
  • the combustion gas flow path 115 through which the combustion gas G from the combustor 80 passes through the turbine 110 has an annular shape around the axis Ar.
  • the outer peripheral side of the combustion gas channel 115 is defined by the split ring 114 and the outer shroud 164 of the stationary blade 162.
  • the inner peripheral side of the combustion gas flow path 115 is defined by the platform 154 of the moving blade 152 and the inner shroud 165 of the stationary blade 162.
  • the turbine rotor shaft 121 has an annular shape around the axis Ar at each position in the axial direction Da between the plurality of rotor blade rows 151, in other words, at each position in the axial direction Da of the plurality of stationary blade rows 161.
  • a plurality of cavities 133 are formed and spaced apart from each other in the radial direction Dr.
  • a plurality of cavities 133 formed at positions in the axial direction Da between two rotor blade rows 151 adjacent in the axial direction Da constitute one cavity group 132. Therefore, a plurality of cavity groups 132 are formed in the turbine rotor shaft 121 along the axial direction Da.
  • One cavity group 132 includes two outer cavities 133o that are formed on the most radially outer side Dro in the turbine rotor shaft 121, and inner cavities 133i that are formed on the radially inner side Dri from the outer cavities 133o.
  • the cavity 133 is configured.
  • the turbine rotor shaft 121 includes a plurality of rotor disks 141 stacked in the axial direction Da, and a spindle bolt 129 penetrating the plurality of rotor disks 141 and the plurality of inner cavities 133i in the axial direction Da.
  • Each of the plurality of rotor disks 141 is formed with a gear coupling (not shown) for restricting relative rotation between adjacent rotor disks 141 in the axial direction Da.
  • One rotor blade 141 is attached to one rotor disk 141. Therefore, the rotor disk 141 exists for each of the plurality of blade rows 151.
  • a plurality of cavities 133 constituting one cavity group 132 are formed between two rotor disks 141 adjacent in the axial direction Da, similarly to the cavity 33 of the compressor rotor shaft 21.
  • a blade attachment portion 149 to which the blade roots 155 of the plurality of blades 152 constituting one blade row 151 are attached is formed on the outer side Dro of each rotor disk 141 in the radial direction.
  • Each rotor disk 141 is formed with an upstream first recess 143u and an upstream second recess 145u.
  • the upstream first recessed portion 143u is recessed from the axial upstream side Dau portion in the rotor disk 141 toward the axial downstream side Dad in order to form the outer cavity 133o in the axial upstream side Dau of the rotor disk 141.
  • the upstream second concave portion 145u has a shaft in the rotor disk 141 at a position radially inward Dri from the upstream first concave portion 143u in order to form an inner cavity 133i in the axial upstream Dau of the rotor disk 141. It dents toward the axial downstream side Dad from the direction upstream side Dau.
  • annular upstream first arm portion 142u that protrudes relatively toward the axial upstream side Dau with respect to the bottom surface of the upstream first recessed portion 143u. Is formed. Further, between the upstream first concave portion 143u and the upstream second concave portion 145u, the axial upstream Dau relative to the bottom surface of the upstream first concave portion 143u and the bottom surface of the upstream second concave portion 145u. An annular upstream second arm portion 144u that protrudes toward the center is formed.
  • the annular upstream second arm portion 144u is formed with a plurality of upstream communication grooves 144up that are recessed toward the axial downstream side Dad and communicate with the upstream first recess 143u and the upstream second recess 145u. ing.
  • the plurality of upstream communication grooves 144up are arranged in the circumferential direction Dc.
  • the upstream communication groove 144up is formed by, for example, notching the tip of the gear coupling tooth in the rotor disk 141.
  • each rotor disk 141 is formed with a downstream first recess 143d and a downstream second recess 145d.
  • the downstream first concave portion 143d is recessed from the axial downstream side Dad portion in the rotor disk 141 toward the axial upstream side Dau in order to form an outer cavity 133o in the axial downstream side Dad of the rotor disk 141.
  • the downstream second concave portion 145d is formed in the axial direction in the rotor disk 141 at a position radially inward Dri from the downstream first concave portion 143d in order to form an inner cavity 133i in the axial downstream side Dad of the rotor disk 141. It is recessed from the downstream Dad portion toward the axial upstream Dau.
  • annular downstream first arm portion 142d that protrudes toward the axial downstream side Dad relative to the bottom surface of the downstream first concave portion 143d. Is formed. Further, between the downstream-side first recess 143d and the downstream-side second recess 145d, the axially downstream Dad relative to the bottom surface of the downstream-side first recess 143d and the bottom surface of the downstream-side second recess 145d. An annular downstream second arm portion 144d that protrudes toward the center is formed.
  • the annular downstream second arm portion 144d is formed with a plurality of downstream communication grooves 144dp that are recessed toward the upstream in the axial direction Dau and communicate with the downstream first recess 143d and the downstream second recess 145d. ing.
  • the plurality of downstream communication grooves 144dp are arranged in the circumferential direction Dc.
  • the downstream communication groove 144dp is formed, for example, by notching the tip of the gear coupling tooth in the rotor disk 141.
  • the outer cavity 133o includes a downstream first concave portion 143d in the rotor disk 141 on the upstream side Dau in the axial direction of two rotor disks 141 adjacent in the axial direction Da and a first upstream side in the rotor disk 141 on the downstream side in the axial direction Dad. Defined by one recess 143u. Of the two rotor disks 141 adjacent in the axial direction Da, the inner cavity 133i includes a downstream second recess 145d in the axially upstream Dau rotor disk 141 and an upstream upstream first disk in the axially downstream Dad rotor disk 141. Defined by two recesses 145u.
  • the downstream first arm part 142d in the axially upstream Dau rotor disk 141 and the upstream first arm part 142u in the axially downstream Dad rotor disk 141 are opposed to and spaced apart from each other in the axial direction Da.
  • a plurality of downstream communication grooves 144dp in the axial upstream Dau rotor disk 141 and a plurality of upstream communication grooves 144up in the axial downstream Dad rotor disk 141 are opposed to each other in the axial direction Da.
  • the communication hole is defined by the downstream communication groove 144dp and the upstream communication groove 144up.
  • the pin hole to which the torque pin is attached has a cylindrical shape corresponding to the shape of the cylindrical torque pin.
  • the rotor disk 141 is formed with a bolt through hole 138 through which the spindle bolt 129 is inserted from the bottom surface of the upstream second recess 145u to the bottom surface of the downstream second recess 145d.
  • the spindle bolt 129 has a circular cross-sectional shape perpendicular to the axial direction Da.
  • the bolt through hole 138 has an oval cross section in the axial direction Da. Therefore, when the spindle bolt 129 is inserted through the bolt through hole 138, a gap 138s is formed between a part of the outer peripheral surface of the spindle bolt 129 and a part of the inner peripheral surface of the bolt through hole 138.
  • the gap 138s forms a first mixed air flow path 134 that penetrates from the bottom surface of the upstream second recess 145u to the bottom surface of the downstream second recess 145d.
  • the cross-sectional shape of the bolt through hole may be any shape as long as a gap 138s is formed between a part of the outer peripheral surface of the spindle bolt 129 and a part of the inner peripheral surface of the bolt through hole 138. It may be a shape in which two circles having different center positions and partially overlapping each other are combined.
  • a second cooling air flow path 122 is formed in the first rotor disk 141a.
  • the second cooling air flow path 122 penetrates the outer surface of the blade attachment portion 149 from the surface facing the air introduction space 184 in the first rotor disk 141a.
  • the cooling air Ac in the air introduction space 184 passes through the second cooling air flow path 122 and the blade attachment portion 149, and moves through each motion of the first rotor blade row 151a attached to the first rotor disk 141a. Sent to the wing 152.
  • the portion of the first rotor disk 141a on the radially inner side Dri from the upstream second arm portion 144u, more specifically, the surface forming the upstream second concave portion 45u faces the mixing space 177. Therefore, the mixed air Am flows into the first mixed air flow path 134 formed in the first rotor disk 141a and opened at the bottom surface of the upstream second concave portion 45u. This mixed air Am flows from the first mixed air flow path 134 of the first rotor disk 141a into the inner cavity 133i formed between the first rotor disk 141a and the second rotor disk 141b. Thereafter, the mixed air Am flows into the inner cavities 133 i formed between the rotor disks 141 through the first mixed air flow paths 134 formed in the rotor disks 141.
  • the plurality of communication holes formed between the first rotor disk 141a and the plurality of rotor disks 141 on the downstream side in the axial direction Dad from the first rotor disk 141a are adjacent to each other in the axial direction Da.
  • a second mixed air flow path 135 is formed to communicate the outer cavity 133 o and the inner cavity 133 i formed between the rotor disks 141. Therefore, the mixed air Am in the inner cavity 133i formed between the first rotor disk 141a and the plurality of rotor disks 141 on the downstream side in the axial direction Dad from the first rotor disk 141a is the second mixed air. It flows into the outer cavity 133o formed between each of these rotor disks 141 through the flow path 135.
  • the communication hole formed by cutting out the tip of the gear coupling tooth in the rotor disk 141 is used as the second mixed air flow path 135, but a separate hole is formed. This may be the second mixed air flow path 135.
  • a plurality of rotor disks 141 on the downstream side Dad in the axial direction of the first rotor disk 141a are formed with a third mixed air flow path 136 penetrating from the surface forming the upstream first recess 143u to the outer surface of the blade mounting portion 149.
  • the mixed air Am in the inner cavity 133i formed between the first rotor disk 141a and the plurality of rotor disks 141 on the downstream side in the axial direction Dad from the first rotor disk 141a is the third mixed air.
  • the air flows into the air flow path 156 of the rotor blade 152 attached to the plurality of rotor disks 141 on the downstream side Dad in the axial direction from the first rotor disk 141a via the flow path 136.
  • the mixed air flow path 137 of the turbine rotor shaft 121 through which the mixed air Am flows includes a first mixed air flow path 134, an inner cavity 133i, a second mixed air flow path 135, an outer cavity 133o, and a third mixed air flow. And a path 136.
  • the combustor 80 is also supplied with fuel F from a fuel supply source.
  • the fuel F burns into the compressed air Acom, and high-temperature and high-pressure combustion gas G is generated.
  • the high-temperature and high-pressure combustion gas G flows from the combustor 80 into the combustion gas flow path 115 of the turbine 110 as shown in FIGS.
  • the combustion gas G rotates the turbine rotor 120 in the process of flowing through the combustion gas flow path 115.
  • the temperature of the combustion gas G when flowing from the combustor 80 into the combustion gas flow path 115 of the turbine 110 becomes several hundreds of degrees Celsius.
  • the temperature of the combustion gas G gradually decreases in the process in which the combustion gas G flows through the combustion gas channel 115.
  • the compressed air Acom that has flowed into the intermediate compartment 191 flows into the cooler 205 through the cooling air line 201 of the cooling system 200 as shown in FIGS. 1 and 5.
  • this compressed air Acom flows into the cooler 205, it is cooled to become cooling air Ac.
  • the temperature of the compressed air Acom flowing into the intermediate casing 191 is, for example, 500 ° C.
  • the temperature of the compressed air Acom cooled by the cooler 205, that is, the cooling air Ac is set to 200 ° C., for example.
  • the cooling air Ac flows into the air introduction space 184 of the intermediate rotor shaft cover 181 through the cooling air line 201 and the cooling air pipe 189 provided in the intermediate casing 191.
  • a part of the cooling air Ac flowing into the air introduction space 184 is attached to the first rotor disk 141a via the second cooling air flow path 122 formed in the first rotor disk 141a of the turbine 110. It flows into the air flow path 156 of each blade 152 of the first blade row 151a.
  • the cooling air Ac cools the moving blade 152 in the process of flowing through the air flow path 156 of the moving blade 152.
  • the cooling air Ac flows out of the moving blade 152, that is, into the combustion gas passage 115 through the air passage 156. Therefore, in the present embodiment, the plurality of moving blades 152 attached to the first rotor disk 141a, that is, the plurality of first stage moving blades 152 are cooled by, for example, 200 ° C. cooling air Ac.
  • a part of the compressed air Acom flowing in the air compression flow path 15 of the compressor 10 is a ventilation formed on the compressor rotor shaft 21 as a compressor bleed air Bcom as shown in FIGS. It flows into the ventilation channel 22 from the inlet 25 of the channel 22.
  • a part of the compressed air Acom flowing in the air compression flow path 15 of the compressor 10 flows between the intermediate rotor disks 41a adjacent in the axial direction Da as the compressor bleed air Bcom.
  • the compressor bleed air Bcom that has flowed into the ventilation flow path 22 from the inlet 25 of the ventilation flow path 22 passes through the inflow section 24 that extends in the radial direction Dr in the ventilation flow path 22 and extends in the axial direction Da. 26 flows in.
  • the compressor bleed air Bcom that has flowed into the distribution unit 26 flows into a plurality of branch portions 27 that are formed at different positions in the axial direction Da.
  • the compressor bleed air Bcom that has flowed into each branch portion 27 flows into the collecting portion 28 extending in the axial direction Da, and flows out to the mixing space 177 in the intermediate rotor shaft 171 through this collecting portion 28.
  • This clearance is generally called chip clearance CC and is preferably as small as possible from the viewpoint of compressor performance.
  • the compressor rotor 20, particularly the compressor rotor shaft 21, has a larger dimension in the radial direction Dr than the thickness dimension in the radial direction Dr of the compressor casing 11. For this reason, the compressor rotor 20 has a larger heat capacity than the compressor casing 11, and the thermal responsiveness to the temperature change of the compressed air Acom flowing through the air compression passage 15 is lower than that of the compressor casing 11. Therefore, when the temperature of the compressed air Acom flowing through the air compression passage 15 changes, the chip clearance CC changes due to the difference in thermal responsiveness between the compressor rotor 20 and the compressor casing 11.
  • the steady clearance is the tip clearance CC when the stable operation of the gas turbine 1 is continued and the compressor rotor 20 and the compressor casing 11 are both kept at the same temperature.
  • the steady clearance is large, the flow rate of the compressed air Acom passing between the radially outer Dro end of the moving blade 52 and the inner peripheral surface of the compressor casing 11 increases during steady operation of the gas turbine 1. For this reason, when the steady clearance is large, not only the compressor performance during steady operation of the gas turbine 1 is lowered, but also the gas turbine performance is lowered.
  • the compressor bleed air Bcom extracted from the air compression flow path 15 is caused to flow into the compressor rotor shaft 21, and the compressor rotor shaft 21 is ventilated, whereby the air compression flow
  • the thermal responsiveness of the compressor rotor 20 with respect to the temperature change of the compressed air Acom flowing through the passage 15 is enhanced, and the change in the tip clearance CC is reduced.
  • the steady clearance can be reduced. Therefore, in this embodiment, the compressor performance at the time of steady operation of the gas turbine 1 can be enhanced, and as a result, the gas turbine performance can be enhanced.
  • cooling air Ac generated by the cooling system 200 also flows into the mixing space 177 in the intermediate rotor shaft 171.
  • the cooling air Ac generated by the cooler 205 of the cooling system 200 passes through the cooling air line 201, the cooling air pipe 189 provided in the intermediate casing 191, and the air introduction space 184 of the intermediate rotor shaft cover 181. Flows in. A part of the cooling air Ac flowing into the air introduction space 184 flows into the mixing space 177 in the intermediate rotor shaft 171 via the first cooling air flow path 178 formed in the intermediate rotor shaft 171.
  • the temperature of the cooling air Ac is, for example, 200 ° C. as described above.
  • the temperature of the compressor bleed air Bcom from the compressor rotor shaft 21 flowing into the mixing space 177 is 400 ° C., for example.
  • the compressor bleed air Bcom from the compressor rotor shaft 21 and the cooling air Ac from the cooling system 200 are mixed to become, for example, 300 ° C. mixed air Am.
  • the mixed air Am passes through the first mixed air flow path 134 formed in the first rotor disk 141 a of the turbine 110, and then the first rotor disk 141 a and the second rotor disk 141 b.
  • the mixed air Am flows into the air flow paths 156 of the plurality of blades 152 attached to the second rotor disk 141b via the third mixed air flow path 136 formed in the second rotor disk 141b.
  • the mixed air Am cools the moving blade 152 in the process of flowing through the air flow path 156 of the moving blade 152.
  • the mixed air Am flows out of the moving blade 152, that is, into the combustion gas flow path 115 through the air flow path 156.
  • Another part of the mixed air Am flowing into the inner cavity 133i between the first rotor disk 141a and the second rotor disk 141b passes through the first mixed air flow path 134 formed in the second rotor disk 141b. And flows into the inner cavity 133i between the second rotor disk 141b and the third rotor disk 141c. Part of the mixed air Am flowing into the inner cavity 133i flows into the outer cavity 133o between the second rotor disk 141b and the third rotor disk 141c via the second mixed air flow path 135. This mixed air Am flows into the air flow paths 156 of the plurality of blades 152 attached to the third rotor disk 141c via the third mixed air flow path 136 formed in the third rotor disk 141c. The mixed air Am cools the moving blade 152 in the process of flowing through the air flow path 156 of the moving blade 152. The mixed air Am flows out of the moving blade 152, that is, into the combustion gas flow path 115 through the air flow path 156.
  • the turbine rotor shaft 121 is cooled by, for example, 300 ° C. mixed air Am. Further, in the present embodiment, the plurality of rotor blades 152 attached to the second rotor disk 141b and the third rotor disk 141c are also cooled by the 300 ° C. mixed air Am.
  • each moving blade 152 of the first moving blade row 151a of the turbine 110 is cooled by the cooling air Ac (for example, 200 ° C.) from the cooling system 200.
  • each blade 152 of the blade row 151 on the downstream side in the axial direction Dad from the first blade row 151a of the turbine 110 is compressed by the cooling air Ac from the cooling system and the compressor rotor shaft 21. Cool with mixed air Am (for example, 300 ° C.) with the machine bleed air Bcom.
  • the moving blade 152 of the turbine 110 can be cooled with air having a lower temperature than when the moving blade 152 of the turbine 110 is cooled by the compressor bleed air Bcom flowing out from the compressor rotor shaft 21. it can.
  • each moving blade 152 of the first moving blade row 151a exposed to the hottest combustion gas G is cooled by the cooling air Ac at 200 ° C. Therefore, in this embodiment, the temperature of the combustion gas G produced
  • the compressed air Acom in the air compression flow path 15 is introduced into the compressor rotor shaft 21 from one place in the axial direction Da of the compressor rotor shaft 21 as the compressor bleed air Bcom. That is, the ventilation flow path 22 of the said embodiment makes the inflow port 25 one place of the axial direction Da.
  • the compressor rotor Acom from the plurality of locations in the axial direction Da of the compressor rotor shaft 21a with the compressed air Acom in the air compression flow path 15 as the compressor bleed air Bcom.
  • the ventilation flow path 22a of this modification uses the multiple inlets 25 in the axial direction Da.
  • the compressor bleed air Bcom is mutually connected in the axial direction Da of the compressor rotor shaft 21a.
  • the compressor bleed air Bcom is distributed to different positions, and the compressor bleed air Bcom is introduced into the compressor rotor shaft 21a from other places in the axial direction Da of the compressor rotor shaft 21a. You may distribute to a mutually different position in the direction Da.
  • the compressed air Acom in the air compression flow path 15 is guided into the compressor rotor shaft 21 as the compressor bleed air Bcom, and then the compressor bleed air Bcom is connected to the axial upstream Dau and the shaft. It distributes to the direction downstream side Dad. That is, the ventilation flow path 22 of the above-described embodiment extends the distribution part 26 to the axial upstream side Dau and the axial downstream side Dad with the inflow part 24 as a reference, and the axial upstream side Dau distribution part. 26, and a plurality of branch portions 27 are connected to each of the distribution portions 26 on the downstream side Dad in the axial direction.
  • this compressor extraction Bcom May be distributed only to a plurality of locations on the axial upstream side Dau. That is, the ventilation flow path 22b of the present modification extends the distribution part 26b only on the upstream side Dau in the axial direction with the inflow part 24b as a reference, and a plurality of branch parts 27 are connected to the distribution part 26b. Yes.
  • the compressor bleed air Bcom may be distributed only to a plurality of locations on the axially downstream side Dad.
  • the compressor bleed air Bcom is positioned at different positions in the axial direction Da. Is distributed. That is, the ventilation flow path 22 of the said embodiment has the several branch part 27 in the mutually different position in the axial direction Da.
  • this compressor extraction Bcom May be allowed to flow into the mixing space 177 without being distributed to a plurality of different locations in the axial direction Da. That is, although the ventilation flow path 22c of this modification has the inflow part 24, there is no part equivalent to the distribution part 26 and the branch part 27 of the said embodiment with respect to this inflow part 24.
  • a plurality of inflow portions 24 are formed at positions different from each other in the axial direction Da, and the compressor bleed air Bcom that has flowed into the inflow portions 24 is not distributed to a plurality of different locations in the axial direction Da without being mixed. You may let it flow out.
  • the cooling air Ac from the cooling system 200 is guided only to the first rotor blade row 151a.
  • this cooling air Ac is not only supplied to the first moving blade row 151a but also the second moving blade row on the downstream side Dad from the first moving blade row 151a. You may guide to 151b and the 3rd moving blade row 151c.
  • the first rotor disk 141a on the most upstream side Dau and the second rotor adjacent to the axially downstream side Dad of the first rotor disk 141a is formed in the disk 141b.
  • the third cooling air flow path 123 formed in the first rotor disk 141a is a portion radially outside Dro from the upstream second arm portion 144u of the first rotor disk 141a and faces the air introduction space 184.
  • the outer cavity 133 o between the first rotor disk 141 a and the second rotor disk 141 b and the air introduction space 184 are communicated with each other by the third cooling air flow path 123.
  • the third cooling air flow path 123 formed in the second rotor disk 141b extends from the bottom surface of the first recess 143u on the upstream side of the second rotor disk 141b to the downstream Dad in the axial direction. It opens at the bottom of the first recess 143d on the downstream side of 141b.
  • the outer cavity 133o between the first rotor disk 141a and the second rotor disk 141b and the outer cavity 133o between the second rotor disk 141b and the third rotor disk 141c are the third cooling air flow path. 123 is communicated.
  • the mixed air Am in the inner cavity 133i between the first rotor disk 141a and the second rotor disk 141b is mixed in the outer cavity 133o between the first rotor disk 141a and the second rotor disk 141b. It flows in through the second mixed air channel 135. Further, the cooling air Ac in the air introduction space 184 flows into the outer cavity 133o through the third cooling air flow path 123 of the first rotor disk 141a. Accordingly, in the outer cavity 133o between the first rotor disk 141a and the second rotor disk 141b, for example, the cooling air Ac at 200 ° C. and the mixed air Am at 300 ° C. are mixed.
  • the mixed air Am1 having a temperature lower than that of the mixed air Am generated in the mixing space 177 is generated.
  • a part of the mixed air Am1 passes through the third mixed air flow path 136 formed in the second rotor disk 141b, and then the moving blades 152 of the second moving blade row 151b attached to the second rotor disk 141b.
  • the air flow path 156 Into the air flow path 156.
  • the other part of the mixed air Am1 in the outer cavity 133o between the first rotor disk 141a and the second rotor disk 141b passes through the third cooling air flow path 123 of the second rotor disk 141b and passes through the second rotor disk 141b. It flows into the outer cavity 133o between 141b and the third rotor disk 141c.
  • the mixed air Am in the inner cavity 133i between the second rotor disk 141b and the third rotor disk 141c flows into the outer cavity 133o through the second mixed air flow path 135. Therefore, in the outer cavity 133o between the second rotor disk 141b and the third rotor disk 141c, the mixed air Am at 300 ° C.
  • air having a lower temperature can be supplied to the plurality of blades 152 attached to the second rotor disk and the third rotor disk than in the above embodiment.
  • the turbine rotor can be further cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

ガスタービンロータ(2)には、ベンチレーション流路(22)と、冷却空気流路(178)と、混合空間(177)と、混合空気流路(137)とが形成されている。ベンチレーション流路(22)は、圧縮機10の空気吐出口よりも軸方向上流側の圧縮空気(Acom)を圧縮機抽気(Bcom)として圧縮機ロータ(20)の内部に導く。冷却空気流路(178)は、空気吐出口よりも軸方向下流側の部分に冷却空気(Ac)を導く。混合空間(177)では、圧縮機抽気(Bcom)と冷却空気(Ac)とが混合する。混合空気流路(137)は、圧縮機抽気(Bcom)と冷却空気(Ac)との混合空気(Am)をタービンロータ(120)内に導く。

Description

ガスタービンロータ、ガスタービン、及びガスタービン設備
 本発明は、ガスタービンロータ、ガスタービン、及びガスタービン設備に関する。
 本願は、2015年10月23日に、日本国に出願された特願2015-208944号に基づき優先権を主張し、この内容をここに援用する。
 ガスタービンは、空気を圧縮して圧縮空気を生成する圧縮機と、圧縮空気中で燃焼を燃焼させて燃焼ガスを生成する燃焼器と、燃焼ガスにより駆動するタービンと、を備える。圧縮機は、軸線を中心として回転する圧縮機ロータと、この圧縮機ロータを覆う圧縮機車室と、を有する。タービンは、軸線を中心として回転するタービンロータと、このタービンロータを覆うタービン車室と、を有する。圧縮機ロータ及びタービンロータは、いずれもロータ軸と、ロータ軸に外周に取り付けられている複数の動翼列と、を有する。圧縮機ロータとタービンロータとは、同一軸線上に位置にして互いに接続されてガスタービンロータを成す。また、圧縮機車室とタービン車室とは、互いに接続されてガスタービン車室を成す。
 ガスタービンロータのうち、タービンロータは、高温の燃焼ガスに曝されるため、空気等で冷却する必要がある。
 以下の特許文献1には、圧縮機からの圧縮空気でタービンロータを冷却する技術が開示されている。この技術では、圧縮機の中段から抽気した圧縮空気をガスタービンロータのうちで圧縮機ロータ内に導き、この圧縮空気を圧縮機ロータからタービンロータに導いて、タービンロータを冷却する。
特開2004-218480号公報
 近年、ガスタービンの効率化に伴い、タービンに供給される燃焼ガスの温度が向上している。このため、上記特許文献1に記載の技術のように、圧縮機の中段から抽気した圧縮空気をそのままタービンロータに導いて、このタービンロータを冷却しても、このタービンロータを十分に冷却することができない可能性が高まってきている。
 そこで、本発明は、ガスタービンロータのうちで、タービンロータをより冷却することができる技術を提供することを目的とする。
 上記目的を達成するための発明に係る第一態様のガスタービンロータは、
 ガスタービン車室内で軸線を中心として回転するガスタービンロータにおいて、前記軸線を中心として回転する圧縮機の圧縮機ロータと、前記軸線上に位置して前記圧縮機ロータに接続され、前記軸線を中心として前記圧縮機ロータと一体回転するタービンのタービンロータと、を備え、前記圧縮機の空気吐出口よりも軸方向上流側であって、前記ガスタービン車室の内側を流れる圧縮空気を前記圧縮機ロータの内部に導くベンチレーション流路と、前記空気吐出口よりも軸方向下流側の部分に、前記ベンチレーション流路を流れる圧縮空気よりも低温の冷却空気を導く冷却空気流路と、前記ベンチレーション流路及び前記冷却空気流路につながり、前記ベンチレーション流路を流れてきた圧縮空気と前記冷却空気流路を流れてきた冷却空気とが混合する混合空間と、前記混合空間につながり、前記圧縮空気と前記冷却空気との混合で生成された混合空気を前記タービンロータ内に導く混合空気流路と、が形成されている。
 当該ガスタービンロータでは、圧縮機ロータにベンチレーション流路が形成されているので、このベンチレーション流路を流れる圧縮空気により、圧縮機ロータ内が換気される。このため、当該ガスタービンロータでは、圧縮機で空気が圧縮される空気圧縮流路内の温度変化に対する圧縮機ロータの熱応答性を高めることができる。また、当該ガスタービンロータでは、圧縮機ロータのベンチレーション流路を流れてきた圧縮空気と冷却空気とが混合空間内で混合し、この混合で生成された混合空気がタービンロータ内に導かれる。
  よって、当該ガスタービンロータでは、圧縮機ロータ軸から流出した圧縮空気をそのままタービンロータ軸に供給する場合よりも、温度の低い空気でタービンロータを冷却することができる。さらに、当該ガスタービンロータでは、圧縮機ロータのベンチレーション流路から流出した圧縮空気をタービンロータの冷却に有効利用することができる。
 上記目的を達成するための発明に係る第二態様のガスタービンロータは、
 前記第一態様の前記ガスタービンロータにおいて、前記軸線上であって、前記圧縮機ロータと前記タービンロータとの間に位置し、前記圧縮機ロータと前記タービンロータとに接続されている中間ロータ軸を備え、前記中間ロータ軸には、前記冷却空気流路と前記混合空間とが形成されている。
 上記目的を達成するための発明に係る第三態様のガスタービンロータは、
 前記第一又は前記第二態様の前記ガスタービンロータにおいて、前記タービンロータは、前記軸線を中心として回転するタービンロータ軸と、前記タービンロータ軸の外周に取り付けられ、軸方向に並ぶ複数の動翼列と、を有し、前記混合空気流路は、前記タービンロータ軸内を経て、複数の動翼列のうち、最も軸方向上流側の第一動翼列よりも軸方向下流側の動翼列につながる。
 上記目的を達成するための発明に係る第四態様のガスタービンロータは、
 前記第三態様の前記ガスタービンロータにおいて、前記混合空間とつながる前記冷却空気流路である第一冷却空気流路の他に、前記冷却空気を前記第一動翼列に導く第二冷却空気流路が形成されている。
 当該ガスタービンロータでは、タービンロータの複数の動翼列のうち、最も高温の燃焼ガスに晒される第一動翼列を低温の冷却空気で冷却することができる。
 上記目的を達成するための発明に係る第五態様のガスタービンロータは、
 前記第四態様の前記ガスタービンロータにおいて、前記タービンロータには、前記第二冷却空気流路と前記混合空気流路とを連通させる第三冷却空気流路が形成されている。
 当該ガスタービンロータでは、第一動翼列よりも軸方向下流側の動翼列に、混合空気流路を流れる混合空気と冷却空気とが混ざった空気を供給することができる。このため、当該ガスタービンロータでは、第一動翼列よりも軸方向下流側の動翼列をより冷却することができる。
 上記目的を達成するための発明に係る第六態様のガスタービンロータは、
 前記第一から前記第五態様のいずれかの前記ガスタービンロータにおいて、前記圧縮機ロータは、前記軸線を中心として回転する圧縮機ロータ軸と、前記圧縮機ロータ軸の外周に取り付けられ、軸方向に並ぶ複数の動翼列と、を有し、前記ベンチレーション流路は、前記圧縮機ロータの前記複数の動翼列のうち、軸方向で隣り合う二つの動翼列の間を流れる圧縮空気を前記圧縮機ロータの内部に導く導入部と、前記導入部から分岐して、軸方向で互いに異なる位置に形成され、前記導入部からの圧縮空気が流入する複数の分岐部と、前記複数の分岐部のそれぞれと接続され、前記複数の分岐部を通った圧縮空気が流れ込み、流れ込んだ圧縮空気を前記混合空間に流出させる集合部と、を有する。
 当該ガスタービンロータでは、圧縮機ロータに複数の分岐部が形成されているので、圧縮機ロータ中の広い範囲にわたって、圧縮機ロータ内を換気することができる。
 上記目的を達成するための発明に係る第七態様のガスタービンは、
 前記第一から前記第六態様のいずれかの前記ガスタービンロータと、前記ガスタービン車室と、を備える。
 上記目的を達成するための発明に係る第八態様のガスタービン設備は、
 
 前記第七態様の前記ガスタービンと、前記ガスタービンの前記圧縮機で圧縮された空気である圧縮空気を冷却して前記冷却空気を生成する冷却系統と、を備え、前記ガスタービンは、前記冷却系統で生成された前記冷却空気を前記ガスタービンロータの前記冷却空気流路に導く冷却空気導入部材を有する。
 本発明に係る一態様によれば、タービンロータをより冷却することができる。
本発明に係る一実施形態におけるガスタービン設備の模式的断面図である。 本発明に係る一実施形態における圧縮機の要部断面図である。 本発明に係る一実施形態における圧縮機のロータディスクを示し、同図の(A)はロータディスクの断面図であり、同図の(B)は同図の(A)におけるB矢視図である。 本発明に係る一実施形態における圧縮機の動翼及び静翼周りの要部断面図である。 本発明に係る一実施形態におけるガスタービンの燃焼器回りの断面図である。 本発明に係る一実施形態におけるタービンの要部断面図である。 本発明に係る一実施形態におけるタービンの動翼及び静翼周りの要部断面図である。 本発明に係る一実施形態の第一変形例における圧縮機の要部断面図である。 本発明に係る一実施形態の第二変形例における圧縮機の要部断面図である。 本発明に係る一実施形態の第三変形例における圧縮機の要部断面図である。 本発明に係る一実施形態の変形例におけるタービンの要部断面図である。
 以下、本発明に係るガスタービン設備の一実施形態及び各種変形例について、図面を参照して詳細に説明する。
 「実施形態」
 本発明に係るガスタービン設備の一実施形態について、図1~図7を参照して説明する。
 本実施形態のガスタービン設備は、図1に示すように、ガスタービン1と、冷却空気を生成する冷却系統200と、を備える。
 ガスタービン1は、外気Aを圧縮して圧縮空気Acomを生成する圧縮機10と、燃料供給源からの燃料Fを圧縮空気Acom中で燃焼させて燃焼ガスを生成する燃焼器80と、燃焼ガスにより駆動するタービン110と、を備える。
 圧縮機10は、軸線Arを中心として回転する圧縮機ロータ20と、この圧縮機ロータ20を覆う筒状の圧縮機車室11とを有する。なお、以下では、軸線Arが延びている方向を軸方向Daとする。また、軸方向Daの一方側を軸方向上流側Dau、この軸方向Daの他方側を軸方向下流側Dadとする。軸線Arを基準にした径方向を単に径方向Drとする。また、この径方向Drで軸線Arから遠ざかる側を径方向外側Droとし、この径方向Drで軸線Arに近づく側を径方向内側Driとする。
 圧縮機10は、軸流圧縮機である。このため、圧縮機ロータ20は、軸線Arを中心として軸方向Daに延びている圧縮機ロータ軸21と、この圧縮機ロータ軸21の外周に固定され軸方向Daに並んでいる複数の動翼列51と、を有する。圧縮機車室11の軸方向上流側Dauの端は、開口しており、この開口が空気取入口12を成す。圧縮機車室11の内周側には、各動翼列51の軸方向下流側Dadの位置に静翼列61が固定されている。一つの静翼列61は、複数の静翼62を有する。これら複数の静翼62は、軸線Arを中心として周方向Dcに並んで、一つの静翼列61を構成する。また、一つの動翼列51は、複数の動翼52を有する。これら複数の動翼52は、軸線Arを中心として周方向Dcに並んで、一つの動翼列51を構成する。
 タービン110は、圧縮機10の軸方向下流側Dadに配置されている。このタービン110は、軸線Arを中心として回転するタービンロータ120と、このタービンロータ120を覆う筒状のタービン車室111とを有する。タービンロータ120は、軸線Arを中心として軸方向Daに延びているタービンロータ軸121と、このタービンロータ軸121の外周に固定され軸方向Daに並んでいる複数の動翼列151と、を有する。タービン車室111の内周側には、各動翼列151の上流側の位置に静翼列161が固定されている。一つの静翼列161は、複数の静翼162を有する。これら複数の静翼162は、軸線Arを中心として周方向Dcに並んで、一つの静翼列161を構成する。また、一つの動翼列151は、複数の動翼152を有する。これら複数の動翼152は、軸線Arを中心として周方向Dcに並んで、一つの動翼列151を構成する。
 本実施形態のガスタービン1は、さらに、中間ロータ軸171と、中間ロータ軸カバー181と、冷却空気管189と、中間車室191と、を備える。中間ロータ軸171は、圧縮機ロータ20とタービンロータ120とを接続する。よって、中間ロータ軸171は、軸方向Daで、圧縮機ロータ20とタービンロータ120との間に位置する。圧縮機ロータ20、中間ロータ軸171、及びタービンロータ120は、同一軸線Ar上に位置して、軸線Arを中心として一体回転する。これらは、ガスタービンロータ2を構成する。このガスタービンロータ2には、例えば、発電機9のロータが接続される。中間車室191は、中間ロータ軸171の外周側を覆う。よって、この中間車室191は、軸方向Daで、圧縮機車室11とタービン車室111との間に位置する。圧縮機車室11、中間車室191、及びタービン車室111は、相互に接続されて、ガスタービン車室3を構成する。燃焼器80は、この中間車室191に取り付けられている。中間車室191には、圧縮機10からの圧縮空気Acomが流入する。この圧縮空気Acomは、中間車室191から燃焼器80内に流入する。中間ロータ軸カバー181は、ガスタービン車室3の径方向内側Driに配置され、中間ロータ軸171の径方向外側Droを覆う。この中間ロータ軸カバー181は、ガスタービン車室3に固定されている。冷却空気管189の第一端は、中間車室191に固定され、この冷却空気管189の第二端は、中間ロータ軸カバー181に固定されている。
 冷却系統200は、冷却空気ライン201と、冷却器205と、を備える。冷却空気ライン201は、ガスタービン車室3の外部に配置されている。この冷却空気ライン201の第一端は、中間車室191に接続され、冷却空気ライン201の第二端は、ガスタービン1の冷却空気管189に接続されている。中間車室191内の圧縮空気Acomは、冷却空気ライン201の第一端から冷却空気ライン201中に流入する。冷却器205は、冷却空気ライン201に設けられている。冷却器205は、冷却空気ライン201中に流入した圧縮空気Acomを冷却して、この圧縮空気Acomを冷却空気Acにする。冷却器205は、例えば、冷却空気ライン201中の圧縮空気Acomと冷却媒体とを熱交換させて、この圧縮空気Acomを冷却する熱交換器である。なお、冷却器205は、内部を圧縮空気Acomが流れるラジエターと、このラジエターの外部に空気を吹き付けるファンと、を有して構成してもよい。冷却器205で生成された冷却空気Acは、冷却空気ライン201を経て、冷却空気管189内に流入する。
 圧縮機車室11は、図2に示すように、圧縮機車室本体13と、この圧縮機車室本体13内に配置されている静翼保持環14と、を有する。静翼保持環14は、軸線Arを中心として環状を成している。この静翼保持環14は、圧縮機車室本体13に固定されている。この静翼保持環14には、複数の静翼62が固定されている。
 静翼62は、図4に示すように、径方向Drに延びる翼体63と、翼体63の径方向外側Droに設けられている外側シュラウド64と、翼体63の径方向内側Driに設けられている内側シュラウド65と、を有する。外側シュラウド64は、静翼保持環14の径方向内側Driに取り付けられている。内側シュラウド65には、その径方向内側Driにシールリング66が設けられている。動翼52は、径方向Drに延びる翼体53と、翼体53の径方向内側Driに設けられているプラットフォーム54と、プラットフォーム54の径方向内側Driに設けられている翼根55と、を有する。翼根55は、圧縮機ロータ軸21に埋め込まれている。
 図2に示すように、この圧縮機10で圧縮過程の空気が通る空気圧縮流路15は、軸線Arを中心として環状を成している。この空気圧縮流路15の外周側は、圧縮機車室11及び静翼62の外側シュラウド64により画定されている。また、この空気圧縮流路15の内周側は、動翼52のプラットフォーム54及び静翼62の内側シュラウド65により画定されている。
 複数の静翼列61のうち、最も軸方向下流側Dadの静翼列61の軸方向下流側Dadには、ディフューザ16が設けられている。ディフューザ16は、環状の外側ディフューザ16oと、この外側ディフューザ16oの径方向内側Driに配置されている環状の内側ディフューザ16iと、を有する。外側ディフューザ16oは、最も軸方向下流側Dadの静翼列61を構成する複数の静翼62の外側シュラウド64からの軸方向下流側Dadに延び、内径が次第に大きくなる。一方、内側ディフューザ16iは、最も軸方向下流側Dadの静翼列61を構成する複数の静翼62の内側シュラウド65からの軸方向下流側Dadに延び、外径が次第に小さくなる。環状の外側ディフューザ16oと環状の内側ディフューザ16iと間の環状の空間は、環状の空気圧縮流路15と連通する空気吐出流路17を形成する。この空気吐出流路17の軸方向下流側Dadの端は、中間車室191内で開口している。この開口は、圧縮機10の空気吐出口18を成す。
 外気Aは、圧縮機ロータ20の回転により、空気取入口12(図1参照)から空気圧縮流路15内に流入し、この空気圧縮流路15内で圧縮されつつ軸方向上流側Dauから軸方向下流側Dadに流れていく。空気圧縮流路15内で圧縮された空気である圧縮空気Acomは、空気吐出流路17内に流入する。この圧縮空気Acomは、空気吐出口18から中間車室191内に流入する。
 圧縮機ロータ軸21には、複数の動翼列51の相互間の軸方向Daにおける各位置に、言い換えると、複数の静翼列61の軸方向Daにおける各位置に、軸線Arを中心として環状を成し、径方向Drで互いに離間している複数のキャビティ33が形成されている。軸方向Daで隣接する二つの動翼列51の相互間の軸方向Daにおける位置に形成されている複数のキャビティ33は、一つのキャビティ群32を構成する。よって、圧縮機ロータ軸21には、複数のキャビティ群32が軸方向Daに並んで形成されている。
 一つのキャビティ群32は、圧縮機ロータ軸21内で最も径方向外側Droに形成されている外側キャビティ33oと、この外側キャビティ33oよりも径方向内側Driに形成されている中間キャビティ33mと、圧縮機ロータ軸21内で最も径方向内側Driに形成されている内側キャビティ33iとの三つのキャビティ33で構成されている。
 圧縮機ロータ軸21には、さらに、外側キャビティ33oと空気圧縮流路15とを連通させる径方向外側流路31が形成されている。
 圧縮機ロータ軸21は、軸方向Daに積層される複数のロータディスク41と、複数のロータディスク41及び複数の中間キャビティ33mを軸方向Daに貫通するスピンドルボルト29と、隣り合うロータディスク41相互の相対回転を規制する円柱状のトルクピン39と、を有する。
 一つのロータディスク41には、一つの動翼列51が取り付けられる。よって、ロータディスク41は、複数の動翼列51毎に存在する。
 図3に示すように、一つのキャビティ群32を構成する複数のキャビティ33、及び、径方向外側流路31は、いずれも、軸方向Daで隣接する二つのロータディスク41間に形成されている。なお、同図の(A)は、ロータディスク41の断面図であり、同図の(B)は、同図の(A)におけるB矢視図である。
 各ロータディスク41の径方向外側Droには、一の動翼列51を構成する複数の動翼52の翼根55が取り付けられる翼取付部49が形成されている。
 各ロータディスク41には、上流側第一凹部43uと、上流側第二凹部45uと、上流側第三凹部47uと、が形成されている。上流側第一凹部43uは、このロータディスク41の軸方向上流側Dauに外側キャビティ33oを形成するために、ロータディスク41中の軸方向上流側Dauの部分から軸方向下流側Dadに向かって凹む。上流側第二凹部45uは、このロータディスク41の軸方向上流側Dauに中間キャビティ33mを形成するために、上流側第一凹部43uより径方向内側Driの位置で、このロータディスク41中の軸方向上流側Dauの部分から軸方向下流側Dadに向かって凹む。上流側第三凹部47uは、このロータディスク41の軸方向上流側Dauに内側キャビティ33iを形成するために、上流側第二凹部45uより径方向内側Driの位置で、このロータディスク41中の軸方向上流側Dauの部分から軸方向下流側Dadに向かって凹む。よって、上流側第一凹部43uの径方向外側Droには、上流側第一凹部43uの底面に対して、相対的に軸方向上流側Dauに向かって突出する環状の上流側第一アーム部42uが形成されている。また、上流側第一凹部43uと上流側第二凹部45uとの間には、上流側第一凹部43uの底面及び上流側第二凹部45uの底面に対して、相対的に軸方向上流側Dauに向かって突出する環状の上流側第二アーム部44uが形成されている。また、上流側第二凹部45uと上流側第三凹部47uとの間には、上流側第二凹部45uの底面及び上流側第三凹部47uの底面に対して、相対的に軸方向上流側Dauに向かって突出する環状の上流側第三アーム部46uが形成されている。また、上流側第三凹部47uの径方向内側Driには、上流側第三凹部47uの底面に対して、相対的に軸方向上流側Dauに向かって突出する環状の上流側突出部48uが形成されている。
 環状の上流側第二アーム部44uには、軸方向下流側Dadに向かって凹んで、上流側第一凹部43uと上流側第二凹部45uとを連通させる複数の上流側ピン溝44upが形成されている。複数の上流側ピン溝44upは、周方向Dcに並んでいる。
 さらに、各ロータディスク41には、下流側第一凹部43dと、下流側第二凹部45dと、下流側第三凹部47dと、が形成されている。下流側第一凹部43dは、このロータディスク41の軸方向下流側Dadに外側キャビティ33oを形成するために、ロータディスク41中の軸方向下流側Dadの部分から軸方向上流側Dauに向かって凹む。下流側第二凹部45dは、このロータディスク41の軸方向下流側Dadに中間キャビティ33mを形成するために、下流側第一凹部43dより径方向内側Driの位置で、ロータディスク41中の軸方向下流側Dadの部分から軸方向上流側Dauに向かって凹む。下流側第三凹部47dは、このロータディスク41の軸方向下流側Dadに内側キャビティ33iを形成するために、下流側第二凹部45dより径方向内側Driの位置で、ロータディスク41中の軸方向下流側Dadの部分から軸方向上流側Dauに向かって凹む。よって、下流側第一凹部43dの径方向外側Droには、下流側第一凹部43dの底面に対して、相対的に軸方向下流側Dadに向かって突出する環状の下流側第一アーム部42dが形成されている。また、下流側第一凹部43dと下流側第二凹部45dとの間には、下流側第一凹部43dの底面及び下流側第二凹部45dの底面に対して、相対的に軸方向下流側Dadに向かって突出する環状の下流側第二アーム部44dが形成されている。また、下流側第二凹部45dと下流側第三凹部47dとの間には、下流側第二凹部45dの底面及び下流側第三凹部47dの底面に対して、相対的に軸方向下流側Dadに向かって突出する環状の下流側第三アーム部46dが形成されている。また、下流側第三凹部47dの径方向内側Driには、下流側第三凹部47dの底面に対して、相対的に軸方向下流Dadに向かって突出する環状の下流側突出部48dが形成されている。
 環状の下流側第二アーム部44dには、軸方向上流側Dauに向かって凹んで、下流側第一凹部43dと下流側第二凹部45dとを連通させる複数の下流側ピン溝44dpが形成されている。複数の下流側ピン溝44dpは、周方向Dcに並んでいる。
 外側キャビティ33oは、軸方向Daで隣接する二つのロータディスク41のうちの軸方向上流側Dauのロータディスク41における下流側第一凹部43dと、軸方向下流側Dadのロータディスク41における上流側第一凹部43uとにより画定される。中間キャビティ33mは、軸方向Daで隣接する二つのロータディスク41のうちの軸方向上流側Dauのロータディスク41における下流側第二凹部45dと、軸方向下流側Dadのロータディスク41における上流側第二凹部45uとにより画定される。内側キャビティ33iは、軸方向Daで隣接する二つのロータディスク41のうちの軸方向上流側Dauのロータディスク41における下流側第三凹部47dと、軸方向下流側Dadのロータディスク41における上流側第三凹部47uとにより画定される。
 軸方向Daで隣接する二つのロータディスク41のうちの軸方向上流側Dauのロータディスク41における下流側第一アーム部42dと、軸方向下流側Dadのロータディスク41における上流側第一アーム部42uとは、互いに軸方向Daで対向し且つ離間している。径方向外側流路31は、軸方向Daで隣接する二つのロータディスク41のうちの軸方向上流側Dauのロータディスク41における下流側第一アーム部42dと、軸方向下流側Dadのロータディスク41における上流側第一アーム部42uとにより画定される。
 軸方向Daで隣接する二つのロータディスク41のうちの軸方向上流側Dauのロータディスク41における複数の下流側ピン溝44dpと、軸方向下流側Dadのロータディスク41における複数の上流側ピン溝44upとは、軸方向Daで互いに対向している。トルクピン39が装着されるピン孔は、下流側ピン溝44dpと上流側ピン溝44upとにより画定される。トルクピン39が装着されるピン孔は、円柱状のトルクピン39の形状に対応して円柱状を成す。
 ロータディスク41には、上流側第二凹部45uの底面から下流側第二凹部45dの底面に貫通して、スピンドルボルト29が挿通されるボルト貫通孔38が形成されている。
 圧縮機ロータ軸21には、さらに、図1及び図2に示すように、複数の動翼列51のうち、軸方向Daで隣り合う二つの動翼列51の間を流れる空気を自身の内部に導くベンチレーション流路22が形成されている。ここで、軸方向Daで隣り合う二つの動翼列51は、複数の動翼列51のうち、最も軸方向下流側Dadの動翼列51と最も軸方向上流側Dauの動翼列51との間にある二つの動翼列51である。そこで、以下では、これら二つの動翼列51を中間動翼列51aと呼ぶ。また、中間動翼列51aが取り付けられているロータディスク41を中間ロータディスク41aと呼ぶ。なお、図3の(A)に描かれている軸方向上流側Dau(図中左側)のロータディスク41は、二つの中間ロータディスク41aのうちの軸方向下流側Dadの中間ロータディスク41aである。また、図3の(A)に描かれている軸方向下流側Dad(図中右側)のロータディスク41は、軸方向下流側Dadの中間ロータディスク41aの軸方向下流側Dadに隣接するロータディスク41である。
 ベンチレーション流路22は、導入部23と、複数の分岐部27と、集合部28と、を有する。導入部23は、流入部24と、分配部26とを有する。流入部24には、二つの中間動翼列51aの間を流れる圧縮空気Acomが圧縮機抽気Bcomとして流入する流入口25が形成されている。この流入部24は、流入口25から径方向内側Driに延びる。分配部26は、流入部24から軸方向上流側Dau及び軸方向下流側Dadに延びる。複数の分岐部27は、導入部23の分配部26から分岐して、軸方向Daで互いに異なる位置に形成されている。複数の分岐部27の流路は、径方向Drに延びている。集合部28は、複数の分岐部27の径方向内側Driにおける端のそれぞれと接続されている。この集合部28は、軸方向Daに延びる。集合部28には、複数の分岐部27を通った空気が流れ込み、流れ込んだ空気を外部に流出させる。
 流入部24の流入口25は、図2及び図3に示すように、二つの中間ロータディスク41a間に形成されている径方向外側流路31における径方向外側Droの開口で形成される。二つの中間ロータディスク41aには、軸方向Daに貫通する貫通孔37が形成されている。二つの中間ロータディスク41aのうち、軸方向上流側Dauの中間ロータディスク41aよりも軸方向上流側Dauの一又は複数のロータディスク41にも、中間ロータディスク41aの貫通孔37に連通する貫通孔37が形成さている。また、二つの中間ロータディスク41aのうち、軸方向下流側Dadの中間ロータディスク41aよりも軸方向下流側Dadの一又は複数のロータディスク41にも、中間ロータディスク41aの貫通孔37に連通する貫通孔37が形成さている。これら貫通孔37は、いずれも、ロータディスクの上流側ピン溝44upの溝底から下流側ピン溝44dpの溝底に貫通している。
 二つの中間ロータディスク41aのうちの軸方向上流側Dauの中間ロータディスク41aにおける複数の下流側ピン溝44dpと、軸方向下流側Dadの中間ロータディスク41aにおける複数の上流側ピン溝44upとで形成される複数のピン孔のうち、いずれか1以上のピン孔には、トルクピン39が設けられていない。このため、このピン孔は、二つの中間ロータディスク41aの間に形成されている外側キャビティ33oと中間キャビティ33mとを連通させる第一中間流路34を形成する。二つの中間ロータディスク41aに形成されている貫通孔37は、この第一中間流路34に連通している。なお、ここでは、ピン孔を第一中間流路34として利用しているが、ピン孔の他に別途孔を形成し、これを第一中間流路34としてもよい。
 軸方向上流側Dauの中間ロータディスク41a、及びこの中間ロータディスク41aよりも軸方向上流側Dauの一又は複数のロータディスク41の相互間に形成されている複数のピン孔のうち、いずれか一以上のピン孔には、このピン孔の径方向Drにおける中間位置から径方向外側Droに延びるトルクピン39aが設けられている。よって、このピン孔の径方向外側Droの開口は、このトルクピン39aにより塞がれている一方で、このピン孔の径方向内側Driの開口は、このトルクピン39aによって塞がれていない。このピン孔中で径方向外側Droの部分は、中間キャビティ33mに連通する第二中間流路34aを成す。
 また、軸方向下流側Dadの中間ロータディスク41a、及びこの中間ロータディスク41aよりも軸方向下流側Dadの一又は複数のロータディスク41の相互間に形成されている複数のピン孔のうち、いずれか一以上のピン孔には、このピン孔の径方向Drにおける中間位置から径方向外側Droに延びるトルクピン39aが設けられている。よって、このピン孔の径方向外側Droの開口は、このトルクピン39aにより塞がれている一方で、このピン孔の径方向内側Driの開口は、このトルクピン39aによって塞がれていない。このピン孔中で径方向外側Droの部分も、中間キャビティ33mに連通する第二中間流路34aを成す。なお、ここでは、ピン孔の一部を第二中間流路34aとして利用しているが、ピン孔の他に別途孔を形成し、これを第二中間流路34aとしてもよい。
 中間ロータディスク41aを含む各ロータディスク41に形成されている貫通孔37は、第二中間流路34aに連通している。
 ベンチレーション流路22の流入部24は、二つの中間ロータディスク41a間に形成されている径方向外側流路31、外側キャビティ33o、及び、第一中間流路34の径方向外側Droの部分で形成される。ベンチレーション流路22の分配部26は、中間ロータディスク41aを含む各ロータディスク41に形成されている貫通孔37で形成される。
 貫通孔37が形成されている複数のロータディスク41のうち、最も軸方向上流側Dauのロータディスク41、及びこのロータディスク41よりも軸方向下流側Dadの全てのロータディスク41には、内側キャビティ33iよりも径方向内側Driの位置で、軸方向Daの貫通する孔が形成されている。ベンチレーション流路22の集合部28は、この孔で形成される。
 中間ロータディスク41aを含む各ロータディスク41の相互間には、中間キャビティ33mと内側キャビティ33iを連通させる第一内側流路35と、内側キャビティ33iと集合部28とを連通させる第二内側流路36と、が形成されている。ベンチレーション流路22における複数の分岐部27のうち、一つの分岐部27は、第一中間流路34の径方向内側Driの部分と、この第一中間流路34に連通する中間キャビティ33mと、この中間キャビティ33mに連通する第一内側流路35と、この第一内側流路35に連通する内側キャビティ33iと、この内側キャビティ33iに連通する第二内側流路36とにより形成される。また、ベンチレーション流路22における複数の分岐部27のうち、他の分岐部27は、第二中間流路34aと、この第二中間流路34aに連通する中間キャビティ33mと、この中間キャビティ33mに連通する第一内側流路35と、この第一内側流路35に連通する内側キャビティ33iと、この内側キャビティ33iに連通する第二内側流路36とにより形成される。
 中間ロータ軸171は、図5に示すように、軸線を中心として円筒状の円筒部172と、この円筒部172の軸方向上流側Dauの部分から径方向内側Driに突出する上流側フランジ部173と、この円筒部172の軸方向下流側Dadの部分から径方向内側Driに突出する下流側フランジ部175と、を有する。円筒部172、上流側フランジ部173、及び下流側フランジ部175の径方向内側Driは、中空になっている。この中空部分は、混合空間177を形成する。上流側フランジ部173には、圧縮機10のスピンドルボルト29が挿通されるボルト貫通孔174が形成されている。中間ロータ軸171と圧縮機ロータ軸21とは、このスピンドルボルト29により連結されている。下流側フランジ部175には、後述するタービン110のスピンドルボルト129が挿通されるボルト貫通孔176が形成されている。中間ロータ軸171とタービンロータ軸121とは、このスピンドルボルト129により連結されている。
 この中間ロータ軸171には、中間ロータ軸171の径方向外側Droから下流側フランジ部175を経て混合空間177に貫通する第一冷却空気流路178が形成されている。
 中間ロータ軸カバー181は、中間車室191内に配置されている。この中間ロータ軸カバー181は、中間ロータ軸171の径方向外側Droを覆う筒状の内側カバー183と、この内側カバー183の径方向外側Droを覆う筒状の外側カバー182とを有する。外側カバー182の軸方向上流側Dauの端は、圧縮機10のディフューザ16を介してガスタービン車室3に固定されている。また、外側カバー182の軸方向下流側Dadの端は、タービン110の複数の静翼列161のうちで最も軸方向上流側の第一静翼列161aを介してガスタービン車室3に固定されている。内側カバー183は、中間ロータ軸171の径方向外側Droであって、中間ロータ軸171の外周面における第一冷却空気流路178の開口を含む領域を覆う。内側カバー183の軸方向上流側Dauの端は、外側カバー182の内周面に接続されている。内側カバー183の軸方向上流Dauの端よりも軸方向下流側Dadの部分の全ては、外側カバー182の内周面から径方向内側Driに離間している。この外側カバーの内周面と内側カバーの外周面との間の空間は、空気導入空間184を成す。外側カバー182には、冷却空気管189が接続されている。内側カバー183には、軸方向Daで中間ロータ軸171の第一冷却空気流路178の開口と実質的に同じ位置に、径方向外側Droから径方向内側Driに貫通する貫通孔185が形成されている。また、内側カバー183の内周面には、中間ロータ軸171との間をシールする上流側シール186と下流側シール187とが設けられている。上流側シール186は、内側カバー183の貫通孔185よりも軸方向上流側Dauに設けられている。下流側シール187は、内側カバー183の貫通孔185よりも軸方向下流側Dadに設けられている。
 冷却系統200からの冷却空気Acをガスタービンロータ2に導く冷却空気導入部材188は、冷却空気管189と中間ロータ軸カバー181とを有して構成される。
 圧縮機ロータ軸21に形成されているベンチレーション流路22の集合部28は、混合空間177に連通している。よって、圧縮機ロータ軸21のベンチレーション流路22を経た圧縮機抽気Bcomは、混合空間177内に流入する。また、中間ロータ軸カバー181の空気導入空間184には、冷却空気管189からの冷却空気Acが流入する。空気導入空間184内の冷却空気Acは、内側カバー183の貫通孔185、中間ロータ軸171の第一冷却空気流路178を経て、中間ロータ軸171の混合空間177内に流入する。このため、冷却系統200からの冷却空気Acと圧縮機ロータ軸21からの圧縮機抽気Bcomとは、この混合空間177内で混合する。
 タービン車室111は、図6に示すように、タービン車室本体112と、このタービン車室本体112内に配置されている翼環113と、翼環113の径方向内側Driに配置されている分割環114と、を有する。翼環113は、タービン車室本体112の径方向内側Driに固定されている。分割環114は、タービン110の各動翼列151の径方向外側Droに位置に配置されている。翼環113の径方向内側Driには、複数の静翼162と複数の分割環114が固定されている。
 タービン110の静翼162は、図7に示すように、径方向Drに延びる翼体163と、翼体163の径方向外側Droに設けられている外側シュラウド164と、翼体163の径方向内側Driに設けられている内側シュラウド165と、を有する。外側シュラウド164は、翼環113の径方向内側Driに取り付けられている。内側シュラウド165には、その径方向内側Driにシールリング166が設けられている。タービン110の動翼152は、径方向Drに延びる翼体153と、翼体153の径方向内側Driに設けられているプラットフォーム154と、プラットフォーム154の径方向内側Driに設けられている翼根155と、を有する。翼根155はタービンロータ軸121に埋め込まれている。動翼152には、空気流路156が形成されている。この空気流路156は、翼根155の外面で開口し、翼根155及びプラットフォーム154を経て、翼体153まで延びている。
 このタービン110で燃焼器80からの燃焼ガスGが通る燃焼ガス流路115は、軸線Arを中心として環状を成している。この燃焼ガス流路115の外周側は、分割環114及び静翼162の外側シュラウド164により画定されている。また、この燃焼ガス流路115の内周側は、動翼152のプラットフォーム154及び静翼162の内側シュラウド165により画定されている。
 タービンロータ軸121には、複数の動翼列151の相互間の軸方向Daにおける各位置に、言い換えると、複数の静翼列161の軸方向Daにおける各位置に、軸線Arを中心として環状を成し、径方向Drで互いに離間している複数のキャビティ133が形成されている。軸方向Daで隣接する二つの動翼列151の相互間の軸方向Daにおける位置に形成されている複数のキャビティ133は、一つのキャビティ群132を構成する。よって、タービンロータ軸121には、複数のキャビティ群132が軸方向Daに並んで形成されている。
 一つのキャビティ群132は、タービンロータ軸121内で最も径方向外側Droに形成されている外側キャビティ133oと、この外側キャビティ133oよりも径方向内側Driに形成されている内側キャビティ133iとの二つのキャビティ133で構成されている。
 タービンロータ軸121は、軸方向Daに積層される複数のロータディスク141と、複数のロータディスク141及び複数の内側キャビティ133iを軸方向Daに貫通するスピンドルボルト129と、を有する。複数のロータディスク141のそれぞれは、軸方向Daで隣り合うロータディスク141相互の相対回転を規制するためのギヤカップリング(不図示)が形成されている。
 一つのロータディスク141には、一つの動翼列151が取り付けられる。よって、ロータディスク141は、複数の動翼列151毎に存在する。
 一つのキャビティ群132を構成する複数のキャビティ133は、圧縮機ロータ軸21のキャビティ33と同様、軸方向Daで隣接する二つのロータディスク141間に形成されている。
 各ロータディスク141の径方向外側Droには、一の動翼列151を構成する複数の動翼152の翼根155が取り付けられる翼取付部149が形成されている。
 各ロータディスク141には、上流側第一凹部143uと、上流側第二凹部145uと、が形成されている。上流側第一凹部143uは、このロータディスク141の軸方向上流側Dauに外側キャビティ133oを形成するために、ロータディスク141中の軸方向上流側Dauの部分から軸方向下流側Dadに向かって凹む。上流側第二凹部145uは、このロータディスク141の軸方向上流側Dauに内側キャビティ133iを形成するために、上流側第一凹部143uより径方向内側Driの位置で、このロータディスク141中の軸方向上流側Dauの部分から軸方向下流側Dadに向かって凹む。よって、上流側第一凹部143uの径方向外側Droには、上流側第一凹部143uの底面に対して、相対的に軸方向上流側Dauに向かって突出する環状の上流側第一アーム部142uが形成されている。また、上流側第一凹部143uと上流側第二凹部145uとの間には、上流側第一凹部143uの底面及び上流側第二凹部145uの底面に対して、相対的に軸方向上流側Dauに向かって突出する環状の上流側第二アーム部144uが形成されている。
 環状の上流側第二アーム部144uには、軸方向下流側Dadに向かって凹んで、上流側第一凹部143uと上流側第二凹部145uとを連通させる複数の上流側連通溝144upが形成されている。複数の上流側連通溝144upは、周方向Dcに並んでいる。この上流側連通溝144upは、例えば、ロータディスク141における前述のギヤカップリングの歯の先端部を切り欠いたものである。
 さらに、各ロータディスク141には、下流側第一凹部143dと、下流側第二凹部145dと、が形成されている。下流側第一凹部143dは、このロータディスク141の軸方向下流側Dadに外側キャビティ133oを形成するために、ロータディスク141中の軸方向下流側Dadの部分から軸方向上流側Dauに向かって凹む。下流側第二凹部145dは、このロータディスク141の軸方向下流側Dadに内側キャビティ133iを形成するために、下流側第一凹部143dより径方向内側Driの位置で、ロータディスク141中の軸方向下流側Dadの部分から軸方向上流側Dauに向かって凹む。よって、下流側第一凹部143dの径方向外側Droには、下流側第一凹部143dの底面に対して、相対的に軸方向下流側Dadに向かって突出する環状の下流側第一アーム部142dが形成されている。また、下流側第一凹部143dと下流側第二凹部145dとの間には、下流側第一凹部143dの底面及び下流側第二凹部145dの底面に対して、相対的に軸方向下流側Dadに向かって突出する環状の下流側第二アーム部144dが形成されている。
 環状の下流側第二アーム部144dには、軸方向上流側Dauに向かって凹んで、下流側第一凹部143dと下流側第二凹部145dとを連通させる複数の下流側連通溝144dpが形成されている。複数の下流側連通溝144dpは、周方向Dcに並んでいる。この下流側連通溝144dpは、例えば、ロータディスク141における前述のギヤカップリングの歯の先端部を切り欠いたものである。
 外側キャビティ133oは、軸方向Daで隣接する二つのロータディスク141のうちの軸方向上流側Dauのロータディスク141における下流側第一凹部143dと、軸方向下流側Dadのロータディスク141における上流側第一凹部143uとにより画定される。内側キャビティ133iは、軸方向Daで隣接する二つのロータディスク141のうちの軸方向上流側Dauのロータディスク141における下流側第二凹部145dと、軸方向下流側Dadのロータディスク141における上流側第二凹部145uとにより画定される。
 軸方向Daで隣接する二つのロータディスク141のうちの軸方向上流側Dauのロータディスク141における下流側第一アーム部142dと、軸方向下流側Dadのロータディスク141における上流側第一アーム部142uとは、互いに軸方向Daで対向し且つ離間している。
 軸方向Daで隣接する二つのロータディスク141のうちの軸方向上流側Dauのロータディスク141における複数の下流側連通溝144dpと、軸方向下流側Dadのロータディスク141における複数の上流側連通溝144upとは、軸方向Daで互いに対向している。連通孔は、下流側連通溝144dpと上流側連通溝144upとにより画定される。トルクピンが装着されるピン孔は、円柱状のトルクピンの形状に対応して円柱状を成す。
 ロータディスク141には、上流側第二凹部145uの底面から下流側第二凹部145dの底面に貫通して、スピンドルボルト129が挿通されるボルト貫通孔138が形成されている。スピンドルボルト129は、軸方向Daに垂直な断面形状が円形である。一方、ボルト貫通孔138は、軸方向Daの断面形状が卵形等である。このため、スピンドルボルト129をボルト貫通孔138に挿通させた際、スピンドルボルト129の外周面の一部とボルト貫通孔138の内周面の一部との間に隙間138sが形成される。この隙間138sは、上流側第二凹部145uの底面から下流側第二凹部145dの底面に貫通する第一混合空気流路134を形成する。なお、ボルト貫通孔の断面形状は、スピンドルボルト129の外周面の一部とボルト貫通孔138の内周面の一部との間に隙間138sが形成されれば、いかなる形状でもよく、例えば、互いの中心位置が異なり且つ互いに部分的に重なっている二つの円を合せた形状等であってもよい。
 図6に示すように、複数のロータディスク141のうち、最も軸方向上流側Dauの第一ロータディスク141aの上流側第二アーム部144uより径方向外側Droの部分は、空気導入空間184に面している。この第一ロータディスク141aには、第二冷却空気流路122が形成されている。第二冷却空気流路122は、第一ロータディスク141aで空気導入空間184に面している面から翼取付部149の外面に貫通している。このため、空気導入空間184内の冷却空気Acは、この第二冷却空気流路122及び翼取付部149を経て、この第一ロータディスク141aに取り付けられている第一動翼列151aの各動翼152に送られる。
 第一ロータディスク141aの上流側第二アーム部144uよりも径方向内側Driの部分、より具体的には、上流側第二凹部45uを形成する面は、混合空間177に面している。このため、第一ロータディスク141aに形成され、その上流側第二凹部45uの底面で開口している第一混合空気流路134内には、混合空気Amが流入する。この混合空気Amは、第一ロータディスク141aの第一混合空気流路134から、第一ロータディスク141aと第二ロータディスク141bの間に形成されている内側キャビティ133i内に流入する。この混合空気Amは、以降、各ロータディスク141に形成されている第一混合空気流路134を経て、各ロータディスク141の相互間に形成されている内側キャビティ133iに流入する。
 第一ロータディスク141a、及び第一ロータディスク141aよりも軸方向下流側Dadの複数のロータディスク141の各互間に形成されている前述の複数の連通孔は、軸方向Daで隣接する二つのロータディスク141の相互間に形成されている外側キャビティ133oと内側キャビティ133iとを連通させる第二混合空気流路135を形成する。よって、第一ロータディスク141a、及び第一ロータディスク141aよりも軸方向下流側Dadの複数のロータディスク141の各相互間に形成されている内側キャビティ133i内の混合空気Amは、第二混合空気流路135を経て、これらのロータディスク141の各相互間に形成されている外側キャビティ133o内に流入する。なお、ここでは、ロータディスク141における前述のギヤカップリングの歯の先端部を切り欠いたことで形成される連通孔を第二混合空気流路135として利用しているが、別途孔を形成し、これを第二混合空気流路135としてもよい。
 第一ロータディスク141aよりも軸方向下流側Dadの複数のロータディスク141には、上流側第一凹部143uを形成する面から翼取付部149の外面に貫通する第三混合空気流路136が形成されている。よって、第一ロータディスク141a、及び第一ロータディスク141aよりも軸方向下流側Dadの複数のロータディスク141の各相互間に形成されている内側キャビティ133i内の混合空気Amは、第三混合空気流路136を経て、第一ロータディスク141aよりも軸方向下流側Dadの複数のロータディスク141に取り付けられている動翼152の空気流路156に流入する。
 混合空気Amが流れるタービンロータ軸121の混合空気流路137は、第一混合空気流路134と、内側キャビティ133iと、第二混合空気流路135と、外側キャビティ133oと、第三混合空気流路136と、を有して構成される。
 次に、以上で説明したガスタービン設備の動作について説明する。
 図1及び図2に示すように、圧縮機ロータ20が回転すると、圧縮機10の空気取入口12から外気Aが空気圧縮流路15内に流入する。空気Aは、この空気圧縮流路15内を軸方向上流側Dauから軸方向下流側Dadに流れていく過程で次第に圧縮されて、圧縮空気Acomとなる。空気圧縮流路15からの圧縮空気Acomは、空気吐出流路17を経て、圧縮機10の空気吐出口18から中間車室191内に流入する。
 中間車室191内に流入した圧縮空気Acomの一部は、図1及び図5に示すように、燃焼器80内に流入する。この燃焼器80には、燃料供給源からの燃料Fも供給される。
  燃焼器80内では、この燃料Fが圧縮空気Acom中に燃焼し、高温高圧の燃焼ガスGが生成される。
 高温高圧の燃焼ガスGは、図1及び図6に示すように、燃焼器80からタービン110の燃焼ガス流路115内に流入する。この燃焼ガスGは、燃焼ガス流路115内を流れる過程で、タービンロータ120を回転させる。燃焼器80からタービン110の燃焼ガス流路115内に流入する際の燃焼ガスGの温度は、千数百℃にもなる。この燃焼ガスGの温度は、燃焼ガスGが燃焼ガス流路115内を流れる過程で、次第に低下する。
 中間車室191内に流入した圧縮空気Acomの他の一部は、図1及び図5に示すように、冷却系統200の冷却空気ライン201を経て、冷却器205内に流入する。この圧縮空気Acomは、冷却器205に流入すると冷却されて、冷却空気Acとなる。ここでは、中間車室191内に流入した圧縮空気Acomの温度を、例えば、500℃とする。また、冷却器205により冷却された圧縮空気Acom、つまり冷却空気Acの温度を、例えば、200℃とする。この冷却空気Acは、冷却空気ライン201、及び中間車室191内に設けられている冷却空気管189を経て、中間ロータ軸カバー181の空気導入空間184内に流入する。空気導入空間184内に流入した冷却空気Acの一部は、タービン110の第一ロータディスク141aに形成されている第二冷却空気流路122を経て、この第一ロータディスク141aに取り付けられている第一動翼列151aの各動翼152の空気流路156に流入する。冷却空気Acは、動翼152の空気流路156を流れる過程で、動翼152を冷却する。この冷却空気Acは、この空気流路156を経て、動翼152外、つまり燃焼ガス流路115内に流出する。よって、本実施形態では、第一ロータディスク141aに取り付けられている複数の動翼152、つまり複数の第一段動翼152は、例えば、200℃の冷却空気Acにより冷却される。
 圧縮機10の空気圧縮流路15内を流れている圧縮空気Acomの一部は、圧縮機抽気Bcomとして、図1及び図2に示すように、圧縮機ロータ軸21に形成されているベンチレーション流路22の流入口25からこのベンチレーション流路22内に流入する。言い換えると、圧縮機10の空気圧縮流路15内を流れている圧縮空気Acomの一部は、圧縮機抽気Bcomとして、軸方向Daで隣り合う中間ロータディスク41aの相互間に流入する。ベンチレーション流路22の流入口25からベンチレーション流路22内に流入した圧縮機抽気Bcomは、このベンチレーション流路22で径方向Drに延びる流入部24を経て、軸方向Daに延びる分配部26に流入する。分配部26に流入した圧縮機抽気Bcomは、軸方向Daで互いに異なる位置に形成されている複数の分岐部27に流入する。各分岐部27に流入した圧縮機抽気Bcomは、いずれも、軸方向Daに延びる集合部28に流入し、この集合部28を経て、中間ロータ軸171内の混合空間177に流出する。
 ところで、図4に示すように、圧縮機10の動翼52の径方向外側Dro端と、この径方向外側Dro端と径方向Drで対向する圧縮機車室11の内周面との間には、クリアランスがある。このクリアランスは、一般的にチップクリアランスCCと呼ばれ、圧縮機性能の観点から、できる限り小さいことが好ましい。
 圧縮機ロータ20、特に圧縮機ロータ軸21は、径方向Drの寸法が、圧縮機車室11の径方向Drの厚さ寸法に比べて大きい。このため、圧縮機ロータ20は、圧縮機車室11に対して熱容量が大きく、空気圧縮流路15を流れる圧縮空気Acomの温度変化に対する熱応答性が圧縮機車室11よりも低い。よって、空気圧縮流路15を流れる圧縮空気Acomが温度変化した場合に、圧縮機ロータ20と圧縮機車室11との熱応答性の差により、チップクリアランスCCに変化が生じる。
 チップクリアランスCCの変化が大きい場合、定常クリアランスを大きくする必要がある。なお、定常クリアランスとは、ガスタービン1の安定運転が継続し、且つ圧縮機ロータ20及び圧縮機車室11が共に継続して同じ温度になっているときのチップクリアランスCCである。この定常クリアランスが大きいと、ガスタービン1の定常運転時、動翼52の径方向外側Dro端と圧縮機車室11の内周面との間を通過する圧縮空気Acomの流量が多くなる。このため、定常クリアランスが大きいと、ガスタービン1の定常運転時における圧縮機性能が低くなるばかりか、ガスタービン性能も低くなる。
 そこで、本実施形態では、前述したように、圧縮機ロータ軸21中に空気圧縮流路15内から抽気した圧縮機抽気Bcomを流し、圧縮機ロータ軸21内を換気することで、空気圧縮流路15を流れる圧縮空気Acomの温度変化に対する圧縮機ロータ20の熱応答性を高め、チップクリアランスCCの変化を小さくしている。本実施形態では、このように、起動時のチップクリアランスCCの変化が小さくなるので、定常クリアランスを小さくすることができる。よって、本実施形態では、ガスタービン1の定常運転時時における圧縮機性能を高めることができ、結果としてガスタービン性能を高めることができる。
 軸流圧縮機では、軸方向上流側Dauから軸方向下流側Dadに流れる過程で、その圧力が高まると共にその温度も高まる。このため、停止時と運転時とにおける温度変化は、軸流圧縮機の軸方向上流側Dauの部分よりも軸方向下流側Dad部分の方が大きい。そこで、本実施形態では、図2に示すように、二つの中間動翼列51aの間を流れる圧縮空気Acomの一部を、最も軸方向下流側Dadのロータディスク41を含め、このロータディスク41から軸方向上流側Dauの複数のロータディスク41の相互間に圧縮機抽気Bcomとして流し、圧縮機ロータ20のうちで、軸方向下流側Dadの部分の熱応答性を高めている。
 中間ロータ軸171内の混合空間177には、図1及び図5に示すように、圧縮機ロータ軸21からの圧縮機抽気Bcomの他に、冷却系統200で生成された冷却空気Acも流入する。冷却系統200の冷却器205で生成された冷却空気Acは、冷却空気ライン201を経て、中間車室191内に設けられている冷却空気管189を経て、中間ロータ軸カバー181の空気導入空間184内に流入する。空気導入空間184内に流入した冷却空気Acの一部は、中間ロータ軸171に形成されている第一冷却空気流路178を経て、この中間ロータ軸171内の混合空間177内に流入する。この冷却空気Acの温度は、前述したように、例えば、200℃である。また、この混合空間177に流入する圧縮機ロータ軸21からの圧縮機抽気Bcomの温度は、例えば、400℃である。混合空間177内では、圧縮機ロータ軸21からの圧縮機抽気Bcomと冷却系統200からの冷却空気Acとが混ざり合って、例えば、300℃の混合空気Amになる。
 この混合空気Amは、図1及び図6に示すように、タービン110の第一ロータディスク141aに形成されている第一混合空気流路134を経て、第一ロータディスク141aと第二ロータディスク141bとの間の内側キャビティ133i内に流入する。この内側キャビティ133iに流入した混合空気Amの一部は、第二混合空気流路135を経て、第一ロータディスク141aと第二ロータディスク141bとの間の外側キャビティ133o内に流入する。この混合空気Amは、第二ロータディスク141bに形成されている第三混合空気流路136を経て、第二ロータディスク141bに取り付けられている複数の動翼152の空気流路156に流入する。混合空気Amは、動翼152の空気流路156を流れる過程で、動翼152を冷却する。この混合空気Amは、この空気流路156を経て、動翼152外、つまり燃焼ガス流路115内に流出する。
 第一ロータディスク141aと第二ロータディスク141bとの間の内側キャビティ133iに流入した混合空気Amの他の一部は、第二ロータディスク141bに形成されている第一混合空気流路134を経て、第二ロータディスク141bと第三ロータディスク141cとの間の内側キャビティ133i内に流入する。この内側キャビティ133iに流入した混合空気Amの一部は、第二混合空気流路135を経て、第二ロータディスク141bと第三ロータディスク141cとの間の外側キャビティ133o内に流入する。この混合空気Amは、第三ロータディスク141cに形成されている第三混合空気流路136を経て、第三ロータディスク141cに取り付けられている複数の動翼152の空気流路156に流入する。混合空気Amは、動翼152の空気流路156を流れる過程で、動翼152を冷却する。この混合空気Amは、この空気流路156を経て、動翼152外、つまり燃焼ガス流路115内に流出する。
 よって、本実施形態では、タービンロータ軸121が、例えば、300℃の混合空気Amにより冷却される。さらに、本実施形態では、第二ロータディスク141b及び第三ロータディスク141cに取り付けられている複数の動翼152も、この300℃の混合空気Amにより冷却される。
 仮に、圧縮機ロータ軸21から流出した圧縮機抽気Bcomをそのままタービンロータ軸121に導くとする。この場合、例えば、400℃の空気でタービンロータ軸121に取り付けられている複数の動翼152が冷却されることになる。これに対して、本実施形態では、タービン110の第一動翼列151aの各動翼152を、冷却系統200からの冷却空気Ac(例えば、200℃)で冷却する。また、本実施形態では、タービン110の第一動翼列151aより軸方向下流側Dadの動翼列151の各動翼152を、冷却系統からの冷却空気Acと圧縮機ロータ軸21からの圧縮機抽気Bcomとの混合空気Am(例えば、300℃)で冷却する。
 このため、本実施形態では、圧縮機ロータ軸21から流出した圧縮機抽気Bcomでタービン110の動翼152を冷却する場合よりも、温度の低い空気でタービン110の動翼152を冷却することができる。しかも、本実施形態では、タービン110の動翼152のうちで、最も高温の燃焼ガスGに晒される第一動翼列151aの各動翼152を200℃の冷却空気Acで冷却する。よって、本実施形態では、燃焼器80で生成される燃焼ガスGの温度をより高くすることができ、結果として、ガスタービン1の出力を向上させることができる。
 「圧縮機ロータの第一変形例」
 以上で説明した実施形態における圧縮機ロータの第一変形例について、図8を用いて説明する。
 上記実施形態の圧縮機ロータ20では、空気圧縮流路15内の圧縮空気Acomを圧縮機抽気Bcomとして圧縮機ロータ軸21の軸方向Daの一箇所から圧縮機ロータ軸21内に導いている。すなわち、上記実施形態のベンチレーション流路22は、軸方向Daの一箇所を流入口25としている。
 しかしながら、図8に示す本変形例の圧縮機ロータ20aのように、空気圧縮流路15内の圧縮空気Acomを圧縮機抽気Bcomとして圧縮機ロータ軸21aの軸方向Daの複数箇所から圧縮機ロータ軸21a内に導いてもよい。すなわち、本変形例のベンチレーション流路22aは、軸方向Daの複数箇所を流入口25とする。この場合、圧縮機ロータ軸21aの軸方向Daの一の箇所から圧縮機ロータ軸21a内に圧縮機抽気Bcomを導いた後、この圧縮機抽気Bcomを圧縮機ロータ軸21aの軸方向Daで互いに異なる位置に分配すると共に、圧縮機ロータ軸21aの軸方向Daの他の箇所から圧縮機ロータ軸21a内に圧縮機抽気Bcomを導いた後、この圧縮機抽気Bcomを圧縮機ロータ軸21aの軸方向Daで互いに異なる位置に分配してもよい。
 「圧縮機ロータの第二変形例」
 以上で説明した実施形態における圧縮機ロータの第二変形例について、図9を用いて説明する。
 上記実施形態の圧縮機ロータ20では、空気圧縮流路15内の圧縮空気Acomを圧縮機抽気Bcomとして圧縮機ロータ軸21内に導いた後、この圧縮機抽気Bcomを軸方向上流側Dauと軸方向下流側Dadとに分配している。すなわち、上記実施形態のベンチレーション流路22は、流入部24を基準にして、分配部26を軸方向上流側Dauに延ばすと共に軸方向下流側Dadにも延ばし、軸方向上流側Dauの分配部26、さらに、軸方向下流側Dadの分配部26のそれぞれに対して複数の分岐部27を接続している。
 しかしながら、図9に示す本変形例の圧縮機ロータ20bのように、空気圧縮流路15内の圧縮空気Acomを圧縮機抽気Bcomとして圧縮機ロータ軸21b内に導いた後、この圧縮機抽気Bcomを軸方向上流側Dauの複数箇所にのみ分配してもよい。すなわち、本変形例のベンチレーション流路22bは、流入部24bを基準にして、分配部26bを軸方向上流側Dauにのみ延ばし、この分配部26bに対して複数の分岐部27を接続している。
 なお、空気圧縮流路15内の圧縮空気Acomを圧縮機抽気Bcomとして圧縮機ロータ軸21bに導いた後、この圧縮機抽気Bcomを軸方向下流側Dadの複数箇所にのみ分配してもよい。
 「圧縮機ロータの第三変形例」
 以上で説明した実施形態における圧縮機ロータの第三変形例について、図10を用いて説明する。
 上記実施形態の圧縮機ロータ20では、空気圧縮流路15内の圧縮空気Acomを圧縮機抽気Bcomとして圧縮機ロータ軸21内に導いた後、この圧縮機抽気Bcomを軸方向Daで互いに異なる位置に分配している。すなわち、上記実施形態のベンチレーション流路22は、軸方向Daで互いに異なる位置に複数の分岐部27が存在する。
 しかしながら、図10に示す本変形例の圧縮機ロータ20cのように、空気圧縮流路15内の圧縮空気Acomを圧縮機抽気Bcomとして圧縮機ロータ軸21c内に導いた後、この圧縮機抽気Bcomを軸方向Daで互いに異なる複数箇所に分配せずに、そのまま混合空間177に流出させてもよい。すなわち、本変形例のベンチレーション流路22cは、流入部24を有するものの、この流入部24に対する上記実施形態の分配部26及び分岐部27に相当する部分がない。この場合、軸方向Daで互いに異なる位置に複数の流入部24を形成し、各流入部24に流入した圧縮機抽気Bcomを軸方向Daで互いに異なる複数箇所に分配せずに、そのまま混合空間177に流出させてもよい。
 「タービンロータの変形例」
 以上で説明した実施形態におけるタービンロータの変形例について、図11を用いて説明する。
 上記実施形態のタービンロータ120では、冷却系統200からの冷却空気Acを第一動翼列151aにのみ導いている。しかしながら、図11に示す本変形例のタービンロータ120aのように、この冷却空気Acを第一動翼列151aのみならず、第一動翼列151aより軸方向下流側Dadの第二動翼列151bや第三動翼列151cにも導いてもよい。
 本変形例のタービンロータ軸121aを構成する複数のロータディスク141のうち、最も軸方向上流側Dauの第一ロータディスク141a、この第一ロータディスク141aの軸方向下流側Dadに隣接する第二ロータディスク141bには、軸方向Daに貫通する第三冷却空気流路123が形成されている。第一ロータディスク141aに形成されている第三冷却空気流路123は、第一ロータディスク141aの上流側第二アーム部144uより径方向外側Droの部分であって、空気導入空間184に面した位置から、軸方向下流側Dadに延びて、第一ロータディスク141aの下流側第一凹部143dの底面で開口している。このため、第一ロータディスク141aと第二ロータディスク141bとの間の外側キャビティ133oと空気導入空間184とは、この第三冷却空気流路123により連通している。また、第二ロータディスク141bに形成されている第三冷却空気流路123は、第二ロータディスク141bの上流側第一凹部143uの底面から軸方向下流側Dadに延びて、この第二ロータディスク141bの下流側第一凹部143dの底面で開口している。このため、第一ロータディスク141aと第二ロータディスク141bとの間の外側キャビティ133oと第二ロータディスク141bと第三ロータディスク141cとの間の外側キャビティ133oとは、この第三冷却空気流路123により連通している。
 本変形例では、第一ロータディスク141aと第二ロータディスク141bとの間の外側キャビティ133oには、第一ロータディスク141aと第二ロータディスク141bとの間の内側キャビティ133i内の混合空気Amが第二混合空気流路135を経て流入する。さらに、この外側キャビティ133oには、空気導入空間184の冷却空気Acが第一ロータディスク141aの第三冷却空気流路123を経て流入する。よって、第一ロータディスク141aと第二ロータディスク141bとの間の外側キャビティ133o内では、例えば、200℃の冷却空気Acと、300℃の混合空気Amとが混合する。この結果、この外側キャビティ133o内では、混合空間177内で生成される混合空気Amよりも温度の低い混合空気Am1が生成される。この混合空気Am1の一部は、第二ロータディスク141bに形成されている第三混合空気流路136を経て、第二ロータディスク141bに取り付けられている第二動翼列151bの各動翼152の空気流路156に流入する。
 第一ロータディスク141aと第二ロータディスク141bとの間の外側キャビティ133o内の混合空気Am1の他の一部は、第二ロータディスク141bの第三冷却空気流路123を経て、第二ロータディスク141bと第三ロータディスク141cとの間の外側キャビティ133o内に流入する。この外側キャビティ133oには、第二ロータディスク141bと第三ロータディスク141cとの間の内側キャビティ133i内の混合空気Amが第二混合空気流路135を経て流入する。よって、第二ロータディスク141bと第三ロータディスク141cとの間の外側キャビティ133o内では、300℃の混合空気Amと、温度が300℃より低い混合空気Am1とが混合する。この結果、この外側キャビティ133o内では、混合空間177内で生成される混合空気Amよりも温度の低い混合空気Am2が生成される。この混合空気Am2の一部は、第三ロータディスク141cに形成されている第三混合空気流路136を経て、第三ロータディスク141cに取り付けられている第三動翼列151cの各動翼152の空気流路156に流入する。
 よって、本変形例では、上記実施形態よりも、第二ロータディスク及び第三ロータディスクに取り付けられている複数の動翼152に温度の低い空気を供給することができる。
 本発明の一態様によれば、タービンロータをより冷却することができる。
1:ガスタービン
2:ガスタービンロータ
3:ガスタービン車室
9:発電機
10:圧縮機
11:圧縮機車室
12:空気取入口
13:圧縮機車室本体
14:静翼保持環
15:空気圧縮流路
16:ディフューザ
17:空気吐出流路
18:空気吐出口
20,20a,20b,20c:圧縮機ロータ
21,21a,21b,21c:圧縮機ロータ軸
22,22a,22b,22c:ベンチレーション流路
23:導入部
24,24b:流入部
25:流入口
26:分配部
27:分岐部
28:集合部
29:スピンドルボルト
32:キャビティ群
33:キャビティ
33o:外側キャビティ
33m:中間キャビティ
33i:内側キャビティ
38:ボルト貫通孔
39,39a:トルクピン
41:ロータディスク
41a:中間ロータディスク
49:翼取付部
51:動翼列
51a:中間動翼列
52:動翼
61:静翼列
62:静翼
80:燃焼器
110:タービン
111:タービン車室
115:燃焼ガス流路
120,120a:タービンロータ
121,121a:タービンロータ軸
122:第二冷却空気流路
123:第三冷却空気流路
129:スピンドルボルト
132:キャビティ群
133:キャビティ
133o:外側キャビティ
133i:内側キャビティ
134:第一混合空気流路
135:第二混合空気流路
136:第三混合空気流路
137:混合空気流路
138:ボルト貫通孔
138s:隙間
141:ロータディスク
141a:第一ロータディスク
141b:第二ロータディスク
141c:第三ロータディスク
149:翼取付部
151:動翼列
151a:第一動翼列
151b:第二動翼列
151c:第三動翼列
152:動翼
156:空気流路
161:静翼列
161a:第一静翼列
162:静翼
171:中間ロータ軸
177:混合空間
178:第一冷却空気流路(又は、単に冷却空気流路)
181:中間ロータ軸カバー
184:空気導入空間
188:冷却空気導入部材
189:冷却空気管
191:中間車室
200:冷却系統
201:冷却空気ライン
205:冷却器

Claims (8)

  1.  ガスタービン車室内で軸線を中心として回転するガスタービンロータにおいて、
     前記軸線を中心として回転する圧縮機の圧縮機ロータと、
     前記軸線上に位置して前記圧縮機ロータに接続され、前記軸線を中心として前記圧縮機ロータと一体回転するタービンのタービンロータと、
     を備え、
     前記圧縮機の空気吐出口よりも軸方向上流側であって、前記ガスタービン車室の内側を流れる圧縮空気を前記圧縮機ロータの内部に導くベンチレーション流路と、
     前記空気吐出口よりも軸方向下流側の部分に、前記ベンチレーション流路を流れる圧縮空気よりも低温の冷却空気を導く冷却空気流路と、
     前記ベンチレーション流路及び前記冷却空気流路につながり、前記ベンチレーション流路を流れてきた圧縮空気と前記冷却空気流路を流れてきた冷却空気とが混合する混合空間と、
     前記混合空間につながり、前記圧縮空気と前記冷却空気との混合で生成された混合空気を前記タービンロータ内に導く混合空気流路と、
     が形成されているガスタービンロータ。
  2.  請求項1に記載のガスタービンロータにおいて、
     前記軸線上であって、前記圧縮機ロータと前記タービンロータとの間に位置し、前記圧縮機ロータと前記タービンロータとに接続されている中間ロータ軸を備え、
     前記中間ロータ軸には、前記冷却空気流路と前記混合空間とが形成されている、
     ガスタービンロータ。
  3.  請求項1又は2に記載のガスタービンロータにおいて、
     前記タービンロータは、前記軸線を中心として回転するタービンロータ軸と、前記タービンロータ軸の外周に取り付けられ、軸方向に並ぶ複数の動翼列と、を有し、
     前記混合空気流路は、前記タービンロータ軸内を経て、複数の動翼列のうち、最も軸方向上流側の第一動翼列よりも軸方向下流側の動翼列につながる、
     ガスタービンロータ。
  4.  請求項3に記載のガスタービンロータにおいて、
     前記混合空間とつながる前記冷却空気流路である第一冷却空気流路の他に、前記冷却空気を前記第一動翼列に導く第二冷却空気流路が形成されている、
     ガスタービンロータ。
  5.  請求項4に記載のガスタービンロータにおいて、
     前記タービンロータには、前記第二冷却空気流路と前記混合空気流路とを連通させる第三冷却空気流路が形成されている、
     ガスタービンロータ。
  6.  請求項1から5のいずれか一項に記載のガスタービンロータにおいて、
     前記圧縮機ロータは、前記軸線を中心として回転する圧縮機ロータ軸と、前記圧縮機ロータ軸の外周に取り付けられ、軸方向に並ぶ複数の動翼列と、を有し、
     前記ベンチレーション流路は、
     前記圧縮機ロータの前記複数の動翼列のうち、軸方向で隣り合う二つの動翼列の間を流れる圧縮空気を前記圧縮機ロータの内部に導く導入部と、
     前記導入部から分岐して、軸方向で互いに異なる位置に形成され、前記導入部からの圧縮空気が流入する複数の分岐部と、
     前記複数の分岐部のそれぞれと接続され、前記複数の分岐部を通った圧縮空気が流れ込み、流れ込んだ圧縮空気を前記混合空間に流出させる集合部と、
     を有する、
     ガスタービンロータ。
  7.  請求項1から6のいずれか一項に記載のガスタービンロータと、
     前記ガスタービン車室と、
     を備えるガスタービン。
  8.  請求項7に記載のガスタービンと、
     前記ガスタービンの前記圧縮機で圧縮された空気である圧縮空気を冷却して前記冷却空気を生成する冷却系統と、
     を備え、
     前記ガスタービンは、前記冷却系統で生成された前記冷却空気を前記ガスタービンロータの前記冷却空気流路に導く冷却空気導入部材を有する、
     ガスタービン設備。
PCT/JP2016/081299 2015-10-23 2016-10-21 ガスタービンロータ、ガスタービン、及びガスタービン設備 WO2017069249A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680059019.0A CN108138655B (zh) 2015-10-23 2016-10-21 燃气轮机转子、燃气轮机以及燃气轮机设备
DE112016004845.9T DE112016004845T5 (de) 2015-10-23 2016-10-21 Gasturbinenrotor, Gasturbine und Gasturbinenausstattung
US15/768,709 US10738618B2 (en) 2015-10-23 2016-10-21 Gas turbine rotor, gas turbine, and gas turbine equipment
KR1020187010705A KR102055117B1 (ko) 2015-10-23 2016-10-21 가스 터빈 로터, 가스 터빈 및 가스 터빈 설비

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-208944 2015-10-23
JP2015208944A JP6554736B2 (ja) 2015-10-23 2015-10-23 ガスタービンロータ、ガスタービン、及びガスタービン設備

Publications (1)

Publication Number Publication Date
WO2017069249A1 true WO2017069249A1 (ja) 2017-04-27

Family

ID=58557220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081299 WO2017069249A1 (ja) 2015-10-23 2016-10-21 ガスタービンロータ、ガスタービン、及びガスタービン設備

Country Status (6)

Country Link
US (1) US10738618B2 (ja)
JP (1) JP6554736B2 (ja)
KR (1) KR102055117B1 (ja)
CN (1) CN108138655B (ja)
DE (1) DE112016004845T5 (ja)
WO (1) WO2017069249A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954796B2 (en) * 2018-08-13 2021-03-23 Raytheon Technologies Corporation Rotor bore conditioning for a gas turbine engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554736B2 (ja) * 2015-10-23 2019-08-07 三菱日立パワーシステムズ株式会社 ガスタービンロータ、ガスタービン、及びガスタービン設備
JP6725273B2 (ja) * 2016-03-11 2020-07-15 三菱日立パワーシステムズ株式会社 翼、これを備えているガスタービン
US11352903B2 (en) 2020-01-20 2022-06-07 Raytheon Technologies Corporation Rotor stack bushing with adaptive temperature metering for a gas turbine engine
CN116104651B (zh) * 2023-02-09 2024-08-30 浙江燃创透平机械有限公司 一种燃气轮机径向间隙设计方法及调整结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880913A (ja) * 1971-12-20 1973-10-30
JPS6143201A (ja) * 1984-08-04 1986-03-01 エムテイーユー・モトレン‐ウント・タービネン‐ユニオン・ミユンヘン・ジーエムビーエツチ ガスタービンエンジンの圧縮機用の羽根及びパツキングの隙間最適化装置
JPH11125199A (ja) * 1997-10-22 1999-05-11 Mitsubishi Heavy Ind Ltd 空気圧縮機ディスクの冷却によるクリアランス制御方法
JP2000179355A (ja) * 1998-12-15 2000-06-27 Hitachi Ltd 冷媒回収型ガスタービン
JP2011518983A (ja) * 2008-04-24 2011-06-30 スネクマ 向心流空気収集手段を含むターボ機械の圧縮機ロータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4088163B2 (ja) 2003-01-10 2008-05-21 株式会社日立製作所 ガスタービン
EP1577493A1 (de) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Strömungsmaschine und Rotor für eine Strömungsmaschine
US20080041064A1 (en) * 2006-08-17 2008-02-21 United Technologies Corporation Preswirl pollution air handling with tangential on-board injector for turbine rotor cooling
FR2918414B1 (fr) 2007-07-06 2013-04-12 Snecma Dispositif d'alimentation en air de ventilation des aubes de turbine basse pression d'un moteur a turbine a gaz ; segment pour l'arret axial et la ventilation des aubes de turbine basse pression
US9085983B2 (en) 2012-03-29 2015-07-21 General Electric Company Apparatus and method for purging a gas turbine rotor
JP2015208944A (ja) 2014-04-28 2015-11-24 三菱樹脂株式会社 感熱孔版印刷原紙用フィルム
US10018360B2 (en) * 2014-06-06 2018-07-10 United Technologies Corporation Turbine stage cooling
JP6468532B2 (ja) * 2015-04-27 2019-02-13 三菱日立パワーシステムズ株式会社 圧縮機ロータ、圧縮機、及びガスタービン
JP6554736B2 (ja) * 2015-10-23 2019-08-07 三菱日立パワーシステムズ株式会社 ガスタービンロータ、ガスタービン、及びガスタービン設備

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880913A (ja) * 1971-12-20 1973-10-30
JPS6143201A (ja) * 1984-08-04 1986-03-01 エムテイーユー・モトレン‐ウント・タービネン‐ユニオン・ミユンヘン・ジーエムビーエツチ ガスタービンエンジンの圧縮機用の羽根及びパツキングの隙間最適化装置
JPH11125199A (ja) * 1997-10-22 1999-05-11 Mitsubishi Heavy Ind Ltd 空気圧縮機ディスクの冷却によるクリアランス制御方法
JP2000179355A (ja) * 1998-12-15 2000-06-27 Hitachi Ltd 冷媒回収型ガスタービン
JP2011518983A (ja) * 2008-04-24 2011-06-30 スネクマ 向心流空気収集手段を含むターボ機械の圧縮機ロータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954796B2 (en) * 2018-08-13 2021-03-23 Raytheon Technologies Corporation Rotor bore conditioning for a gas turbine engine

Also Published As

Publication number Publication date
JP2017082605A (ja) 2017-05-18
DE112016004845T5 (de) 2018-07-05
KR20180053382A (ko) 2018-05-21
US20190063224A1 (en) 2019-02-28
KR102055117B1 (ko) 2019-12-12
JP6554736B2 (ja) 2019-08-07
CN108138655A (zh) 2018-06-08
CN108138655B (zh) 2020-05-19
US10738618B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2017069249A1 (ja) ガスタービンロータ、ガスタービン、及びガスタービン設備
AU2011250787B2 (en) Gas turbine of the axial flow type
US8157506B2 (en) Device for supplying ventilation air to the low pressure blades of a gas turbine engine
US9644485B2 (en) Gas turbine blade with cooling passages
KR101245094B1 (ko) 터빈 디스크 및 가스 터빈
EP2995770B1 (en) Turbomachine rotors with thermal regulation
JP2017082786A (ja) シュラウド内に出口経路を有するタービンバケット
KR20100116226A (ko) 냉각 통로용 커버 및 그 커버의 제조 방법 그리고 가스 터빈
JP2017082783A (ja) シュラウド内に出口経路を有するタービンバケット
CN108138656B (zh) 压缩机转子、具备该压缩机转子的燃气轮机转子、以及燃气轮机
JP6025941B1 (ja) タービン動翼、及び、ガスタービン
JP5507340B2 (ja) ターボ機械圧縮機ホイール部材
JP6489823B2 (ja) タービン・ノズルおよびガスタービン・エンジンのタービン・ノズルを冷却する方法
US10787908B2 (en) Disk assembly for gas turbine compressor
JP2018514685A (ja) タービン翼の二圧力冷却
EP3835545A1 (en) Turbine rotor
CN104929692A (zh) 带有冷却孔入口的转子轴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187010705

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016004845

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857562

Country of ref document: EP

Kind code of ref document: A1