KR20180053382A - 가스 터빈 로터, 가스 터빈 및 가스 터빈 설비 - Google Patents

가스 터빈 로터, 가스 터빈 및 가스 터빈 설비 Download PDF

Info

Publication number
KR20180053382A
KR20180053382A KR1020187010705A KR20187010705A KR20180053382A KR 20180053382 A KR20180053382 A KR 20180053382A KR 1020187010705 A KR1020187010705 A KR 1020187010705A KR 20187010705 A KR20187010705 A KR 20187010705A KR 20180053382 A KR20180053382 A KR 20180053382A
Authority
KR
South Korea
Prior art keywords
rotor
compressor
gas turbine
cooling air
air
Prior art date
Application number
KR1020187010705A
Other languages
English (en)
Other versions
KR102055117B1 (ko
Inventor
신야 하시모토
게이타 다카무라
Original Assignee
미츠비시 히타치 파워 시스템즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 히타치 파워 시스템즈 가부시키가이샤 filed Critical 미츠비시 히타치 파워 시스템즈 가부시키가이샤
Publication of KR20180053382A publication Critical patent/KR20180053382A/ko
Application granted granted Critical
Publication of KR102055117B1 publication Critical patent/KR102055117B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/073Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages the compressor and turbine stages being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/97Reducing windage losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

가스 터빈 로터(2)에는, 벤틸레이션 유로(22)와, 냉각 공기 유로(178)와, 혼합 공간(177)과, 혼합 공기 유로(137)가 형성되어 있다. 벤틸레이션 유로(22)는 압축기(10)의 공기 토출구보다도 축 방향 상류 측의 압축 공기(Acom)를 압축기 추기(Bcom)로 하여 압축기 로터(20)의 내부에 안내한다. 냉각 공기 유로(178)는 공기 토출구보다도 축 방향 하류 측 부분에 냉각 공기(Ac)를 안내한다. 혼합 공간(177)에서는, 압축기 추기(Bcom)와 냉각 공기(Ac)가 혼합한다. 혼합 공기 유로 (137)는 압축기 추기(Bcom)와 냉각 공기(Ac)와의 혼합 공기(Am)를 터빈 로터(120) 안에 안내한다.

Description

가스 터빈 로터, 가스 터빈 및 가스 터빈 설비
본 발명은 가스 터빈 로터, 가스 터빈 및 가스 터빈 설비에 관한 것이다.
본원은 2015년10월23일에 일본에 출원된 특허출원 제2015-208944호에 기초하여 우선권을 주장하고, 이 내용을 여기에 원용한다.
가스 터빈은, 공기를 압축하여 압축 공기를 생성하는 압축기와, 압축 공기 속에서 연소시켜 연소 가스를 생성하는 연소기와, 연소 가스에 의해 구동하는 터빈을 구비한다. 압축기는, 축선을 중심으로 하여 회전하는 압축기 로터와, 이 압축기 로터를 덮는 압축기 차실(車室)을 가진다. 터빈은, 축선을 중심으로 하여 회전하는 터빈 로터와, 이 터빈 로터를 덮는 터빈 차실을 가진다. 압축기 로터 및 터빈 로터는, 모두 로터 축과, 로터 축의 외주에 부착되어 있는 복수의 동익 열(動翼列)을 가진다. 압축기 로터와 터빈 로터는 동일 축선 위에 위치하여 서로 접속되어 가스 터빈 로터를 이룬다. 또한, 압축기 차실과 터빈 차실은 서로 접속되어 가스 터빈 차실을 이룬다.
가스 터빈 로터 중, 터빈 로터는 고온의 연소 가스에 노출되기 때문에 공기 등으로 냉각할 필요가 있다.
이하의 특허문헌 1에는, 압축기로부터의 압축 공기로 터빈 로터를 냉각하는 기술이 개시되어 있다. 이 기술에서는, 압축기의 중단(中段)에서 추기(抽氣)한 압축 공기를 가스 터빈 로터 속에서 압축기 로터 안에 안내하고, 이 압축 공기를 압축기 로터로부터 터빈 로터에 안내하여 터빈 로터를 냉각한다.
일본 공개특허공보 제2004-218480호
최근, 가스 터빈의 효율화에 수반하여, 터빈에 공급되는 연소 가스의 온도가 향상하고 있다. 이 때문에, 상기 특허문헌 1에 기재된 기술처럼 압축기의 중단에서 추기한 압축 공기를 그대로 터빈 로터에 안내하고, 이 터빈 로터를 냉각해도 이 터빈 로터를 충분히 냉각할 수 없을 가능성이 높아지고 있다.
그래서 본 발명은 가스 터빈 로터 속에서 터빈 로터를 더욱더 냉각할 수 있는 기술을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 발명에 관한 제1 양태의 가스 터빈 로터는,
가스 터빈 차실 안에서 축선을 중심으로 하여 회전하는 가스 터빈 로터에 있어서, 상기 축선을 중심으로 하여 회전하는 압축기의 압축기 로터와, 상기 축선 위에 위치하여 상기 압축기 로터에 접속되며, 상기 축선을 중심으로 하여 상기 압축기 로터와 일체 회전하는 터빈의 터빈 로터를 구비하고, 상기 압축기의 공기 토출구보다도 축 방향 상류 측으로, 상기 가스 터빈 차실의 내측을 흐르는 압축 공기를 상기 압축기 로터의 내부에 안내하는 벤틸레이션 유로(ventilation flow path)와, 상기 공기 토출구보다도 축 방향 하류 측 부분에 상기 벤틸레이션 유로를 흐르는 압축 공기보다도 저온의 냉각 공기를 안내하는 냉각 공기 유로와, 상기 벤틸레이션 유로 및 상기 냉각 공기 유로에 연결되고, 상기 벤틸레이션 유로를 흘러온 압축 공기와 상기 냉각 공기 유로를 흘러온 냉각 공기가 혼합하는 혼합 공간과, 상기 혼합 공간에 연결되고, 상기 압축 공기와 상기 냉각 공기와의 혼합에서 생성된 혼합 공기를 상기 터빈 로터 안에 안내하는 혼합 공기 유로가 형성되어 있다.
당해 가스 터빈 로터에서는, 압축기 로터에 벤틸레이션 유로가 형성되어 있으므로, 이 벤틸레이션 유로를 흐르는 압축 공기에 의해 압축기 로터 안이 환기된다. 이 때문에, 당해 가스 터빈 로터에서는, 압축기에서 공기가 압축되는 공기 압축 유로 속의 온도 변화에 대한 압축기 로터의 열 응답성을 높일 수 있다. 또한, 당해 가스 터빈 로터에서는, 압축기 로터의 벤틸레이션 유로를 흘러온 압축 공기와 냉각 공기가 혼합 공간 안에서 혼합하고, 이 혼합에서 생성된 혼합 공기가 터빈 로터 안에 안내된다.
따라서 당해 가스 터빈 로터에서는, 압축기 로터 축으로부터 유출한 압축 공기를 그대로 터빈 로터 축에 공급하는 경우보다도 온도가 낮은 공기로 터빈 로터를 냉각할 수 있다. 게다가, 당해 가스 터빈 로터에서는 압축기 로터의 벤틸레이션 유로로부터 유출한 압축 공기를 터빈 로터의 냉각에 유효하게 이용할 수 있다.
상기 목적을 달성하기 위한 발명에 관한 제2 양태의 가스 터빈 로터는,
상기 제1 양태의 상기 가스 터빈 로터에 있어서, 상기 축선 상으로, 상기 압축기 로터와 상기 터빈 로터 사이에 위치하고, 상기 압축기 로터와 상기 터빈 로터에 접속되어 있는 중간 로터 축을 구비하고, 상기 중간 로터 축에는, 상기 냉각 공기 유로와 상기 혼합 공간이 형성되어 있다.
상기 목적을 달성하기 위한 발명에 관한 제3 양태의 가스 터빈 로터는,
상기 제1 또는 상기 제2 양태의 상기 가스 터빈 로터에 있어서, 상기 터빈 로터는, 상기 축선을 중심으로 하여 회전하는 터빈 로터 축과, 상기 터빈 로터 축의 외주에 부착되며, 축 방향으로 늘어서는 복수의 동익 열을 가지고, 상기 혼합 공기 유로는, 상기 터빈 로터 축 안을 거쳐서 복수의 동익 열 중 가장 축 방향 상류 측의 제1 동익 열보다도 축 방향 하류 측의 동익 열에 연결된다.
상기 목적을 달성하기 위한 발명에 관한 제4 양태의 가스 터빈 로터는,
상기 제3 양태의 상기 가스 터빈 로터에 있어서, 상기 혼합 공간과 연결되는 상기 냉각 공기 유로인 제1 냉각 공기 유로 이외에, 상기 냉각 공기를 상기 제1 동익 열에 안내하는 제2 냉각 공기 유로가 형성되어 있다.
당해 가스 터빈 로터에서는, 터빈 로터의 복수의 동익 열 중 가장 고온의 연소 가스에 노출되는 제1 동익 열을 저온의 냉각 공기로 냉각할 수 있다.
상기 목적을 달성하기 위한 발명에 관한 제5 양태의 가스 터빈 로터는,
상기 제4 양태의 상기 가스 터빈 로터에 있어서, 상기 터빈 로터에는, 상기 제2 냉각 공기 유로와 상기 혼합 공기 유로를 연통시키는 제3 냉각 공기 유로가 형성되어 있다.
당해 가스 터빈 로터에서는, 제1 동익 열보다도 축 방향 하류 측의 동익 열에 혼합 공기 유로를 흐르는 혼합 공기와 냉각 공기가 혼합된 공기를 공급할 수 있다. 이 때문에, 당해 가스 터빈 로터에서는, 제1 동익 열보다도 축 방향 하류 측의 동익 열을 더욱더 냉각할 수 있다.
상기 목적을 달성하기 위한 발명에 관한 제6 양태의 가스 터빈 로터는,
상기 제1부터 상기 제5 양태 중 어느 하나의 상기 가스 터빈 로터에 있어서, 상기 압축기 로터는, 상기 축선을 중심으로 하여 회전하는 압축기 로터 축과, 상기 압축기 로터 축의 외주에 부착되며, 축 방향으로 늘어서는 복수의 동익 열을 가지고, 상기 벤틸레이션 유로는, 상기 압축기 로터의 상기 복수의 동익 열 중 축 방향에서 인접하는 두 개의 동익 열 사이를 흐르는 압축 공기를 상기 압축기 로터의 내부에 안내하는 도입부와, 상기 도입부로부터 분기되고, 축 방향에서 서로 상이한 위치에 형성되어, 상기 도입부로부터의 압축 공기가 유입하는 복수의 분기부와, 상기 복수의 분기부의 각각과 접속되며, 상기 복수의 분기부를 통과한 압축 공기가 흘러들고, 흘러든 압축 공기를 상기 혼합 공간에 유출시키는 집합부를 가진다.
당해 가스 터빈 로터에서는, 압축기 로터에 복수의 분기부가 형성되어 있으므로, 압축기 로터 속의 넓은 범위에 걸쳐서 압축기 로터 속을 환기할 수 있다.
상기 목적을 달성하기 위한 발명에 관한 제7 양태의 가스 터빈은,
상기 제1부터 상기 제6 양태 중 어느 하나의 상기 가스 터빈 로터와, 상기 가스 터빈 차실을 구비한다.
상기 목적을 달성하기 위한 발명에 관한 제8 양태의 가스 터빈 설비는,
상기 제7 양태의 상기 가스 터빈과, 상기 가스 터빈의 상기 압축기에서 압축된 공기인 압축 공기를 냉각하여 상기 냉각 공기를 생성하는 냉각 계통을 구비하고, 상기 가스 터빈은, 상기 냉각 계통에서 생성된 상기 냉각 공기를 상기 가스 터빈 로터의 상기 냉각 공기 유로에 안내하는 냉각 공기 도입 부재를 가진다.
본 발명에 관한 일 양태에 의하면, 터빈 로터를 더욱더 냉각할 수 있다.
도 1은 본 발명에 관한 일 실시형태에 있어서의 가스 터빈 설비의 모식적 단면도이다.
도 2는 본 발명에 관한 일 실시형태에 있어서의 압축기의 요부 단면도이다.
도 3은 본 발명에 관한 일 실시형태에 있어서의 압축기의 로터 디스크를 나타내고, 동도(同圖)의 (A)는 로터 디스크의 단면도이며, 동도의 (B)는 동도의 (A)에 있어서의 화살표(B)에서 본 도면이다.
도 4는 본 발명에 관한 일 실시형태에 있어서의 압축기의 동익 및 정익(靜翼) 주변의 요부 단면도이다.
도 5는 본 발명에 관한 일 실시형태에 있어서의 가스 터빈의 연소기 주변의 단면도이다.
도 6은 본 발명에 관한 일 실시형태에 있어서의 터빈의 요부 단면도이다.
도 7은 본 발명에 관한 일 실시형태에 있어서의 터빈의 동익 및 정익 주변의 요부 단면도이다.
도 8은 본 발명에 관한 일 실시형태의 제1 변형예에 있어서의 압축기의 요부 단면도이다.
도 9는 본 발명에 관한 일 실시형태의 제2 변형예에 있어서의 압축기의 요부 단면도이다.
도 10은 본 발명에 관한 일 실시형태의 제3 변형예에 있어서의 압축기의 요부 단면도이다.
도 11은 본 발명에 관한 일 실시형태의 변형예에 있어서의 터빈의 요부 단면도이다.
이하, 본 발명에 관한 가스 터빈 설비의 일 실시형태 및 각종 변형예에 대하여, 도면을 참조하여 상세하게 설명한다.
[실시형태]
본 발명에 관한 가스 터빈 설비의 일 실시형태에 대하여, 도 1∼도 7을 참조하여 설명한다.
본 실시형태의 가스 터빈 설비는, 도 1에 나타내는 바와 같이, 가스 터빈(1)과, 냉각 공기를 생성하는 냉각 계통(200)을 구비한다.
가스 터빈(1)은, 외기(A)를 압축하여 압축 공기(Acom)를 생성하는 압축기(10)와, 연료 공급원으로부터의 연료(F)를 압축 공기(Acom) 속에서 연소시켜 연소 가스를 생성하는 연소기(80)와, 연소 가스에 의해 구동하는 터빈(110)을 구비한다.
압축기(10)는, 축선(Ar)을 중심으로 하여 회전하는 압축기 로터(20)와, 이 압축기 로터(20)를 덮는 통상(筒狀)의 압축기 차실(11)을 가진다. 또한, 이하에서는, 축선(Ar)이 연장되어 있는 방향을 축 방향(Da)으로 한다. 또한, 축 방향(Da)의 한 방향 측을 축 방향 상류 측(Dau), 이 축 방향(Da)의 다른 방향 측을 축 방향 하류 측(Dad)으로 한다. 축선(Ar)을 기준으로 한 지름 방향을 단지 지름 방향(Dr)으로 한다. 또한, 이 지름 방향(Dr)에서 축선(Ar)으로부터 멀어지는 측을 지름 방향 외측(Dro)으로 하고, 이 지름 방향(Dr)에서 축선(Ar)에 근접하는 측을 지름 방향 내측(Dri)으로 한다.
압축기(10)는 축류 압축기(軸流壓縮機)이다. 이 때문에, 압축기 로터(20)는, 축선(Ar)을 중심으로 하여 축 방향(Da)으로 연장되어 있는 압축기 로터 축(21)과, 이 압축기 로터 축(21)의 외주에 고정되어 축 방향(Da)에 나란히 있는 복수의 동익 열(51)을 가진다. 압축기 차실(11)의 축 방향 상류 측(Dau)의 끝은 개구(開口)하고 있고, 이 개구가 공기 취입구(12)를 이룬다. 압축기 차실(11)의 내주 측에는, 각 동익 열(51)의 축 방향 하류 측(Dad)의 위치에 정익 열(靜翼列)(61)이 고정되어 있다. 하나의 정익 열(61)은 복수의 정익(62)을 가진다. 이들 복수의 정익(62)은 축선(Ar)을 중심으로 하여 원주 방향(Dc)으로 나란히 하나의 정익 열(61)을 구성한다. 또한, 하나의 동익 열(51)은 복수의 동익(52)을 가진다. 이들 복수의 동익(52)은 축선(Ar)을 중심으로 하여 원주 방향(Dc)으로 나란히 하나의 동익 열(51)을 구성한다.
터빈(110)은 압축기(10)의 축 방향 하류 측(Dad)에 배치되어 있다. 이 터빈(110)은, 축선(Ar)을 중심으로 하여 회전하는 터빈 로터(120)와, 이 터빈 로터(120)를 덮는 통상의 터빈 차실(111)을 가진다. 터빈 로터(120)는, 축선(Ar)을 중심으로 하여 축 방향(Da)으로 연장되어 있는 터빈 로터 축(121)과, 이 터빈 로터 축(121)의 외주에 고정되어 축 방향(Da)에 나란히 있는 복수의 동익 열(151)을 가진다. 터빈 차실(111)의 내주 측에는, 각 동익 열(151)의 상류 측 위치에 정익 열(161)이 고정되어 있다. 하나의 정익 열(161)은 복수의 정익(162)을 가진다. 이들 복수의 정익(162)은 축선(Ar)을 중심으로 하여 원주 방향(Dc)으로 나란히 하나의 정익 열(161)을 구성한다. 또한, 하나의 동익 열(151)은 복수의 동익(152)을 가진다. 이들 복수의 동익(152)은 축선(Ar)을 중심으로 하여 원주 방향(Dc)으로 나란히 하나의 동익 열(151)을 구성한다.
본 실시형태의 가스 터빈(1)은, 추가로 중간 로터 축(171)과, 중간 로터 축 커버(181)와, 냉각 공기관(189)과, 중간 차실(191)을 구비한다. 중간 로터 축(171)은 압축기 로터(20)와 터빈 로터(120)를 접속한다. 따라서 중간 로터 축(171)은 축 방향(Da)에서 압축기 로터(20)와 터빈 로터(120) 사이에 위치한다. 압축기 로터(20), 중간 로터 축(171) 및 터빈 로터(120)는 동일 축선(Ar) 위에 위치하여 축선(Ar)을 중심으로 하여 일체 회전한다. 이들은 가스 터빈 로터(2)를 구성한다. 이 가스 터빈 로터(2)에는, 예를 들면, 발전기(9)의 로터가 접속된다. 중간 차실(191)은 중간 로터 축(171)의 외주 측을 덮는다. 따라서 이 중간 차실(191)은 축 방향(Da)에서 압축기 차실(11)과 터빈 차실(111) 사이에 위치한다. 압축기 차실(11), 중간 차실(191) 및 터빈 차실(111)은 서로 접속되어 가스 터빈 차실(3)을 구성한다. 연소기(80)는 이 중간 차실(191)에 부착되어 있다. 중간 차실(191)에는, 압축기(10)로부터의 압축 공기(Acom)가 유입한다. 이 압축 공기(Acom)는 중간 차실(191)로부터 연소기(80) 안에 유입한다. 중간 로터 축 커버(181)는 가스 터빈 차실(3)의 지름 방향 내측(Dri)에 배치되어 중간 로터 축(171)의 지름 방향 외측(Dro)을 덮는다. 이 중간 로터 축 커버(181)는 가스 터빈 차실(3)에 고정되어 있다. 냉각 공기관(189)의 제1 단(端)은 중간 차실(191)에 고정되며, 이 냉각 공기관(189)의 제2 단은 중간 로터 축 커버(181)에 고정되어 있다.
냉각 계통(200)은, 냉각 공기 라인(201)과, 냉각기(205)를 구비한다. 냉각 공기 라인(201)은 가스 터빈 차실(3)의 외부에 배치되어 있다. 이 냉각 공기 라인(201)의 제1 단은 중간 차실(191)에 접속되고, 냉각 공기 라인(201)의 제2 단은 가스 터빈(1)의 냉각 공기관(189)에 접속되어 있다. 중간 차실(191) 안의 압축 공기(Acom)는 냉각 공기 라인(201)의 제1 단으로부터 냉각 공기 라인(201) 안에 유입한다. 냉각기(205)는 냉각 공기 라인(201)에 설치되어 있다. 냉각기(205)는 냉각 공기 라인(201) 안에 유입한 압축 공기(Acom)를 냉각하고, 이 압축 공기(Acom)를 냉각 공기(Ac)로 한다. 냉각기(205)는, 예를 들면, 냉각 공기 라인(201) 속의 압축 공기(Acom)와 냉각 매체를 열교환시키고, 이 압축 공기(Acom)를 냉각하는 열교환기이다. 또한, 냉각기(205)는, 내부를 압축 공기(Acom)가 흐르는 라디에이터(radiator)와, 이 라디에이터의 외부에 공기를 내뿜는 팬(fan)을 가져서 구성해도 좋다. 냉각기(205)에서 생성된 냉각 공기(Ac)는 냉각 공기 라인(201)을 거쳐서 냉각 공기관(189) 안에 유입한다.
압축기 차실(11)은, 도 2에 나타내는 바와 같이, 압축기 차실 본체(13)와, 이 압축기 차실 본체(13) 안에 배치되어 있는 정익 유지 환(14)을 가진다. 정익 유지 환(14)은 축선(Ar)을 중심으로 하여 환상을 이루고 있다. 이 정익 유지 환(14)은 압축기 차실 본체(13)에 고정되어 있다. 이 정익 유지 환(14)에는, 복수의 정익(62)이 고정되어 있다.
정익(62)은, 도 4에 나타내는 바와 같이, 지름 방향(Dr)으로 연장되는 날개 본체(翼體)(63)와, 날개 본체(63)의 지름 방향 외측(Dro)에 설치되어 있는 외측 슈라우드(shroud)(64)와, 날개 본체(63)의 지름 방향 내측(Dri)에 설치되어 있는 내측 슈라우드(65)를 가진다. 외측 슈라우드(64)는 정익 유지 환(14)의 지름 방향 내측(Dri)에 부착되어 있다. 내측 슈라우드(65)에는, 그 지름 방향 내측(Dri)에 시일 링(seal ring)(66)이 설치되어 있다. 동익(52)은, 지름 방향(Dr)으로 연장되는 날개 본체(53)와, 날개 본체(53)의 지름 방향 내측(Dri)에 설치되어 있는 플랫폼(54)과, 플랫폼(54)의 지름 방향 내측(Dri)에 설치되어 있는 날개 뿌리(翼根)(55)를 가진다. 날개 뿌리(55)는 압축기 로터 축(21)에 매립되어 있다.
도 2에 나타내는 바와 같이, 이 압축기(10)에서 압축 과정의 공기가 통과하는 공기 압축 유로(15)는 축선(Ar)을 중심으로 하여 환상을 이루고 있다. 이 공기 압축 유로(15)의 외주 측은 압축기 차실(11) 및 정익(62)의 외측 슈라우드(64)에 의해 획정(劃定)되어 있다. 또한, 이 공기 압축 유로(15)의 내주 측은 동익(52)의 플랫폼(54) 및 정익(62)의 내측 슈라우드(65)에 의해 획정되어 있다.
복수의 정익 열(61) 중 가장 축 방향 하류 측(Dad)의 정익 열(61)의 축 방향 하류 측(Dad)에는, 디퓨저(diffuser)(16)가 설치되어 있다. 디퓨저(16)는, 환상(環狀)의 외측 디퓨저(16o)와, 이 외측 디퓨저(16o)의 지름 방향 내측(Dri)에 배치되어 있는 환상의 내측 디퓨저(16i)를 가진다. 외측 디퓨저(16o)는, 가장 축 방향 하류 측(Dad)의 정익 열(61)을 구성하는 복수의 정익(62)의 외측 슈라우드(64)로부터의 축 방향 하류 측(Dad)으로 연장되고, 내경이 점차로 커진다. 한편, 내측 디퓨저(16i)는, 가장 축 방향 하류 측(Dad)의 정익 열(61)을 구성하는 복수의 정익(62)의 내측 슈라우드(65)로부터의 축 방향 하류 측(Dad)으로 연장되고, 외경이 점차로 작아진다. 환상의 외측 디퓨저(16o)와 환상의 내측 디퓨저(16i) 사이의 환상 공간은 환상의 공기 압축 유로(15)와 연통하는 공기 토출 유로(17)를 형성한다. 이 공기 토출 유로(17)의 축 방향 하류 측(Dad)의 끝은 중간 차실(191) 안에서 개구하고 있다. 이 개구는 압축기(10)의 공기 토출구(18)를 이룬다.
외기(A)는 압축기 로터(20)의 회전에 의해 공기 취입구(12)(도 1 참조)로부터 공기 압축 유로(15) 안에 유입하고, 이 공기 압축 유로(15) 안에서 압축되면서 축 방향 상류 측(Dau)으로부터 축 방향 하류 측(Dad)으로 흘러간다. 공기 압축 유로(15) 안에서 압축된 공기인 압축 공기(Acom)는 공기 토출 유로(17) 안에 유입한다. 이 압축 공기(Acom)는 공기 토출구(18)로부터 중간 차실(191) 안에 유입한다.
압축기 로터 축(21)에는, 복수의 동익 열(51)의 상호 간의 축 방향(Da)에 있어서의 각 위치에, 환언하면, 복수의 정익 열(61)의 축 방향(Da)에 있어서의 각 위치에 축선(Ar)을 중심으로 하여 환상을 이루고, 지름 방향(Dr)에서 서로 이간(離間)하고 있는 복수의 캐비티(cavity)(33)가 형성되어 있다. 축 방향(Da)에서 인접하는 두 개의 동익 열(51)의 상호 간의 축 방향(Da)에 있어서의 위치에 형성되어 있는 복수의 캐비티(33)는 하나의 캐비티 군(32)을 구성한다. 따라서 압축기 로터 축(21)에는, 복수의 캐비티 군(32)이 축 방향(Da)에 나란히 형성되어 있다.
하나의 캐비티 군(32)은, 압축기 로터 축(21) 안에서 가장 지름 방향 외측(Dro)에 형성되어 있는 외측 캐비티(33o)와, 이 외측 캐비티(33o)보다도 지름 방향 내측(Dri)에 형성되어 있는 중간 캐비티(33m)와, 압축기 로터 축(21) 안에서 가장 지름 방향 내측(Dri)에 형성되어 있는 내측 캐비티(33i)의 세 개의 캐비티(33)로 구성되어 있다.
압축기 로터 축(21)에는, 추가로 외측 캐비티(33o)와 공기 압축 유로(15)fmf 연통시키는 지름 방향 외측 유로(31)가 형성되어 있다.
압축기 로터 축(21)은, 축 방향(Da)에 적층되는 복수의 로터 디스크(41)와, 복수의 로터 디스크(41) 및 복수의 중간 캐비티(33m)를 축 방향(Da)으로 관통하는 스핀들 볼트(29)와, 인접하는 로터 디스크(41) 상호의 상대 회전을 규제하는 원주상 토크 핀(torque pin)(39)을 가진다.
하나의 로터 디스크(41)에는, 하나의 동익 열(51)이 부착된다. 따라서 로터 디스크(41)는 복수의 동익 열(51)마다 존재한다.
도 3에 나타내는 바와 같이, 하나의 캐비티 군(32)을 구성하는 복수의 캐비티(33), 및 지름 방향 외측 유로(31)는 모두 축 방향(Da)에서 인접하는 두 개의 로터 디스크(41) 사이에 형성되어 있다. 또한, 동도의 (A)는 로터 디스크(41)의 단면도이며, 동도의 (B)는 동도의 (A)에 있어서의 화살표(B)에서 본 도면이다.
각 로터 디스크(41)의 지름 방향 외측(Dro)에는, 하나의 동익 열(51)을 구성하는 복수의 동익(52)의 날개 뿌리(55)가 부착되는 날개 부착부(49)가 형성되어 있다.
각 로터 디스크(41)에는, 상류 측 제1 오목부(43u)와, 상류 측 제2 오목부(45u)와, 상류 측 제3 오목부(47u)가 형성되어 있다. 상류 측 제1 오목부(43u)는, 이 로터 디스크(41)의 축 방향 상류 측(Dau)에 외측 캐비티(33o)를 형성하기 위해, 로터 디스크(41) 안의 축 방향 상류 측(Dau)의 부분으로부터 축 방향 하류 측(Dad)을 향해서 우묵하게 들어간다. 상류 측 제2 오목부(45u)는, 이 로터 디스크(41)의 축 방향 상류 측(Dau)에 중간 캐비티(33m)를 형성하기 위해, 상류 측 제1 오목부(43u)보다 지름 방향 내측(Dri)의 위치에서 이 로터 디스크(41) 안의 축 방향 상류 측(Dau)의 부분으로부터 축 방향 하류 측(Dad)을 향해서 우묵하게 들어간다. 상류 측 제3 오목부(47u)는, 이 로터 디스크(41)의 축 방향 상류 측(Dau)에 내측 캐비티(33i)를 형성하기 위해, 상류 측 제2 오목부(45u)보다 지름 방향 내측(Dri)의 위치에서 이 로터 디스크(41) 안의 축 방향 상류 측(Dau)의 부분으로부터 축 방향 하류 측(Dad)을 향해서 우묵하게 들어간다. 따라서 상류 측 제1 오목부(43u)의 지름 방향 외측(Dro)에는, 상류 측 제1 오목부(43u)의 저면(底面)에 대하여 상대적으로 축 방향 상류 측(Dau)을 향해서 돌출하는 환상의 상류 측 제1 아암부(42u)가 형성되어 있다. 또한, 상류 측 제1 오목부(43u)와 상류 측 제2 오목부(45u) 사이에는, 상류 측 제1 오목부(43u)의 저면 및 상류 측 제2 오목부(45u)의 저면에 대하여 상대적으로 축 방향 상류 측(Dau)을 향해서 돌출하는 환상의 상류 측 제2 아암부(44u)가 형성되어 있다. 또한, 상류 측 제2 오목부(45u)와 상류 측 제3 오목부(47u) 사이에는, 상류 측 제2 오목부(45u)의 저면 및 상류 측 제3오목부(47u)의 저면에 대하여 상대적으로 축 방향 상류 측(Dau)을 향해서 돌출하는 환상의 상류 측 제3 아암부(46u)가 형성되어 있다. 또한, 상류 측 제3 오목부(47u)의 지름 방향 내측(Dri)에는, 상류 측 제3 오목부(47u)의 저면에 대하여 상대적으로 축 방향 상류 측(Dau)을 향해서 돌출하는 환상의 상류 측 돌출부(48u)가 형성되어 있다.
환상의 상류 측 제2 아암부(44u)에는, 축 방향 하류 측(Dad)을 향해서 우묵하게 들어가고, 상류 측 제1 오목부(43u)와 상류 측 제2 오목부(45u)를 연통시키는 복수의 상류 측 핀 홈(44up)이 형성되어 있다. 복수의 상류 측 핀 홈(44up)은 원주 방향(Dc)으로 나란히 있다.
게다가, 각 로터 디스크(41)에는, 하류 측 제1 오목부(43d)와, 하류 측 제2 오목부(45d)와, 하류 측 제3 오목부(47d)가 형성되어 있다. 하류 측 제1 오목부(43d)는, 이 로터 디스크(41)의 축 방향 하류 측(Dad)에 외측 캐비티(33o)를 형성하기 위해, 로터 디스크(41) 안의 축 방향 하류 측(Dad)의 부분으로부터 축 방향 상류 측(Dau)을 향해서 우묵하게 들어간다. 하류 측 제2 오목부(45d)는, 이 로터 디스크(41)의 축 방향 하류 측(Dad)에 중간 캐비티(33m)를 형성하기 위해, 하류 측 제1 오목부(43d)보다 지름 방향 내측(Dri)의 위치에서 로터 디스크(41) 안의 축 방향 하류 측(Dad)의 부분으로부터 축 방향 상류 측(Dau)을 향해서 우묵하게 들어간다. 하류 측 제3 오목부(47d)는, 이 로터 디스크(41)의 축 방향 하류 측(Dad)에 내측 캐비티(33i)를 형성하기 위해, 하류 측 제2 오목부(45d)보다 지름 방향 내측(Dri)의 위치에서 로터 디스크(41) 안의 축 방향 하류 측(Dad)의 부분으로부터 축 방향 상류 측(Dau)을 향해서 우묵하게 들어간다. 따라서 하류 측 제1 오목부(43d)의 지름 방향 외측(Dro)에는, 하류 측 제1 오목부(43d)의 저면에 대하여 상대적으로 축 방향 하류 측(Dad)을 향해서 돌출하는 환상의 하류 측 제1 아암부(42d)가 형성되어 있다. 또한, 하류 측 제1 오목부(43d)와 하류 측 제2 오목부(45d) 사이에는, 하류 측 제1 오목부(43d)의 저면 및 하류 측 제2 오목부(45d)의 저면에 대하여 상대적으로 축 방향 하류 측(Dad)을 향해서 돌출하는 환상의 하류 측 제2 아암부(44d)가 형성되어 있다. 또한, 하류 측 제2 오목부(45d)와 하류 측 제3 오목부(47d) 사이에는, 하류 측 제2 오목부(45d)의 저면 및 하류 측 제3오목부(47d)의 저면에 대하여 상대적으로 축 방향 하류 측(Dad)을 향해서 돌출하는 환상의 하류 측 제3 아암부(46d)가 형성되어 있다. 또한, 하류 측 제3 오목부(47d)의 지름 방향 내측(Dri)에는, 하류 측 제3 오목부(47d)의 저면에 대하여 상대적으로 축 방향 하류(Dad)를 향해서 돌출하는 환상의 하류 측 돌출부(48d)가 형성되어 있다.
환상의 하류 측 제2 아암부(44d)에는, 축 방향 상류 측(Dau)을 향해서 우묵하게 들어가고, 하류 측 제1 오목부(43d)와 하류 측 제2 오목부(45d)를 연통시키는 복수의 하류 측 핀 홈(44dp)이 형성되어 있다. 복수의 하류 측 핀 홈(44dp)은 원주 방향(Dc)으로 나란히 있다.
외측 캐비티(33o)는 축 방향(Da)에서 인접하는 두 개의 로터 디스크(41) 중의 축 방향 상류 측(Dau)의 로터 디스크(41)에 있어서의 하류 측 제1 오목부(43d)와 축 방향 하류 측(Dad)의 로터 디스크(41)에 있어서의 상류 측 제1 오목부(43u)에 의해 획정된다. 중간 캐비티(33m)는 축 방향(Da)에서 인접하는 두 개의 로터 디스크(41) 중의 축 방향 상류 측(Dau)의 로터 디스크(41)에 있어서의 하류 측 제2 오목부(45d)와 축 방향 하류 측(Dad)의 로터 디스크(41)에 있어서의 상류 측 제2 오목부(45u)에 의해 획정된다. 내측 캐비티(33i)는 축 방향(Da)에서 인접하는 두 개의 로터 디스크(41) 중의 축 방향 상류 측(Dau)의 로터 디스크(41)에 있어서의 하류 측 제3오목부(47d)와 축 방향 하류 측(Dad)의 로터 디스크(41)에 있어서의 상류 측 제3오목부(47u)에 의해 획정된다.
축 방향(Da)에서 인접하는 두 개의 로터 디스크(41) 중의 축 방향 상류 측(Dau)의 로터 디스크(41)에 있어서의 하류 측 제1 아암부(42d)와 축 방향 하류 측(Dad)의 로터 디스크(41)에 있어서의 상류 측 제1 아암부(42u)는 서로 축 방향(Da)에서 대향하고 동시에 이간하고 있다. 지름 방향 외측 유로(31)는 축 방향(Da)에서 인접하는 두 개의 로터 디스크(41) 중의 축 방향 상류 측(Dau)의 로터 디스크(41)에 있어서의 하류 측 제1 아암부(42d)와 축 방향 하류 측(Dad)의 로터 디스크(41)에 있어서의 상류 측 제1 아암부(42u)에 의해 획정된다.
축 방향(Da)에서 인접하는 두 개의 로터 디스크(41) 중의 축 방향 상류 측(Dau)의 로터 디스크(41)에 있어서의 복수의 하류 측 핀 홈(44dp)과 축 방향 하류 측(Dad)의 로터 디스크(41)에 있어서의 복수의 상류 측 핀 홈(44up)은 축 방향(Da)에서 서로 대향하고 있다. 토크 핀(39)이 장착되는 핀 구멍은 하류 측 핀 홈(44dp)과 상류 측 핀 홈(44up)에 의해 획정된다. 토크 핀(39)이 장착되는 핀 구멍은 원주상 토크 핀(39)의 형상에 대응하여 원주상을 이룬다.
로터 디스크(41)에는, 상류 측 제2 오목부(45u)의 저면으로부터 하류 측 제2 오목부(45d)의 저면을 관통하여, 스핀들 볼트(29)가 삽통(揷通)되는 볼트 관통 구멍(38)이 형성되어 있다.
압축기 로터 축(21)에는, 추가로 도 1 및 도 2에 나타내는 바와 같이, 복수의 동익 열(51) 중 축 방향(Da)에서 인접하는 두 개의 동익 열(51) 사이를 흐르는 공기를 자신의 내부에 안내하는 벤틸레이션 유로(22)가 형성되어 있다. 여기서, 축 방향(Da)에서 인접하는 두 개의 동익 열(51)은 복수의 동익 열(51) 중 가장 축 방향 하류 측(Dad)의 동익 열(51)과 가장 축 방향 상류 측(Dau)의 동익 열(51) 사이에 있는 두 개의 동익 열(51)이다. 그래서 이하에서는 이들 두 개의 동익 열(51)을 중간 동익 열(51a)이라고 부른다. 또한, 중간 동익 열(51a)이 부착되어 있는 로터 디스크(41)를 중간 로터 디스크(41a)라고 부른다. 한편, 도 3의 (A)에 도시되어 있는 축 방향 상류 측(Dau)(도 중 좌측)의 로터 디스크(41)는 두 개의 중간 로터 디스크(41a) 중의 축 방향 하류 측(Dad)의 중간 로터 디스크(41a)이다. 또한, 도 3의 (A)에 도시되어 있는 축 방향 하류 측(Dad)(도 중 오른쪽)의 로터 디스크(41)는 축 방향 하류 측(Dad)의 중간 로터 디스크(41a)의 축 방향 하류 측(Dad)에 인접하는 로터 디스크(41)이다.
벤틸레이션 유로(22)는, 도입부(23)와, 복수의 분기부(27)와, 집합부(28)를 가진다. 도입부(23)는, 유입부(24)와, 분배부(26)를 가진다. 유입부(24)에는, 두 개의 중간 동익 열(51a) 사이를 흐르는 압축 공기(Acom)가 압축기 추기(compressor bleed air)(Bcom)로서 유입하는 유입구(25)가 형성되어 있다. 이 유입부(24)는 유입구(25)로부터 지름 방향 내측(Dri)으로 연장된다. 분배부(26)는 유입부(24)로부터 축 방향 상류 측(Dau) 및 축 방향 하류 측(Dad)으로 연장된다. 복수의 분기부(27)는 도입부(23)의 분배부(26)로부터 분기되고, 축 방향(Da)에서 서로 상이한 위치에 형성되어 있다. 복수의 분기부(27)의 유로는 지름 방향(Dr)으로 연장되어 있다. 집합부(28)는 복수의 분기부(27)의 지름 방향 내측(Dri)에 있어서의 끝의 각각과 접속되어 있다. 이 집합부(28)는 축 방향(Da)으로 연장된다. 집합부(28)에는, 복수의 분기부(27)를 통과한 공기가 흘러들고, 흘러든 공기를 외부에 유출시킨다.
유입부(24)의 유입구(25)는, 도 2 및 도 3에 나타내는 바와 같이, 두 개의 중간 로터 디스크(41a) 사이에 형성되어 있는 지름 방향 외측 유로(31)에 있어서의 지름 방향 외측(Dro)의 개구에서 형성된다. 두 개의 중간 로터 디스크(41a)에는, 축 방향(Da)으로 관통하는 관통 구멍(37)이 형성되어 있다. 두 개의 중간 로터 디스크(41a) 중 축 방향 상류 측(Dau)의 중간 로터 디스크(41a)보다도 축 방향 상류 측(Dau)의 하나 또는 복수의 로터 디스크(41)에도 중간 로터 디스크(41a)의 관통 구멍(37)에 연통하는 관통 구멍(37)이 형성되어 있다. 또한, 두 개의 중간 로터 디스크(41a) 중 축 방향 하류 측(Dad)의 중간 로터 디스크(41a)보다도 축 방향 하류 측(Dad)의 하나 또는 복수의 로터 디스크(41)에도 중간 로터 디스크(41a)의 관통 구멍(37)에 연통하는 관통 구멍(37)이 형성되어 있다. 이들 관통 구멍(37)은 모두 로터 디스크의 상류 측 핀 홈(44up)의 홈 바닥으로부터 하류 측 핀 홈(44dp)의 홈 바닥을 관통하고 있다.
두 개의 중간 로터 디스크(41a) 중의 축 방향 상류 측(Dau)의 중간 로터 디스크(41a)에 있어서의 복수의 하류 측 핀 홈(44dp)과 축 방향 하류 측(Dad)의 중간 로터 디스크(41a)에 있어서의 복수의 상류 측 핀 홈(44up)으로 형성되는 복수의 핀 구멍 중 어느 하나 이상의 핀 구멍에는, 토크 핀(39)이 설치되어 있지 않다. 이 때문에, 이 핀 구멍은 두 개의 중간 로터 디스크(41a) 사이에 형성되어 있는 외측 캐비티(33o)와 중간 캐비티(33m)를 연통시키는 제1 중간 유로(34)를 형성한다. 두 개의 중간 로터 디스크(41a)에 형성되어 있는 관통 구멍(37)은 이 제1 중간 유로(34)에 연통하고 있다. 또한, 여기에서는 핀 구멍을 제1 중간 유로(34)로서 이용하고 있지만, 핀 구멍 이외에 별도 구멍을 형성하고, 이것을 제1 중간 유로(34)로 해도 좋다.
축 방향 상류 측(Dau)의 중간 로터 디스크(41a), 및 이 중간 로터 디스크(41a)보다도 축 방향 상류 측(Dau)의 하나 또는 복수의 로터 디스크(41)의 상호 간에 형성되어 있는 복수의 핀 구멍 중 어느 하나 이상의 핀 구멍에는, 이 핀 구멍의 지름 방향(Dr)에 있어서의 중간 위치로부터 지름 방향 외측(Dro)에 연장되는 토크 핀(39a)이 설치되어 있다. 따라서 이 핀 구멍의 지름 방향 외측(Dro)의 개구는 이 토크 핀(39a)에 의해 막혀 있는 반면에, 이 핀 구멍의 지름 방향 내측(Dri)의 개구는 이 토크 핀(39a)에 의해 막혀 있지 않다. 이 핀 구멍 중에서 지름 방향 외측(Dro)의 부분은 중간 캐비티(33m)에 연통하는 제2 중간 유로(34a)를 이룬다.
또한, 축 방향 하류 측(Dad)의 중간 로터 디스크(41a), 및 이 중간 로터 디스크(41a)보다도 축 방향 하류 측(Dad)의 하나 또는 복수의 로터 디스크(41)의 상호 간에 형성되어 있는 복수의 핀 구멍 중 어느 하나 이상의 핀 구멍에는, 이 핀 구멍의 지름 방향(Dr)에 있어서의 중간 위치로부터 지름 방향 외측(Dro)으로 연장되는 토크 핀(39a)이 설치되어 있다. 따라서 이 핀 구멍의 지름 방향 외측(Dro)의 개구는 이 토크 핀(39a)에 의해 막혀 있는 반면에, 이 핀 구멍의 지름 방향 내측(Dri)의 개구는 이 토크 핀(39a)에 의해 막혀 있지 않다. 이 핀 구멍 중에서 지름 방향 외측(Dro)의 부분도 중간 캐비티(33m)에 연통하는 제2 중간 유로(34a)를 이룬다. 또한, 여기에서는 핀 구멍의 일부를 제2 중간 유로(34a)로서 이용하고 있지만, 핀 구멍 이외에 별도 구멍을 형성하고, 이것을 제2 중간 유로(34a)로 해도 좋다.
중간 로터 디스크(41a)를 포함하는 각 로터 디스크(41)에 형성되어 있는 관통 구멍(37)은 제2 중간 유로(34a)에 연통하고 있다.
벤틸레이션 유로(22)의 유입부(24)는, 두 개의 중간 로터 디스크(41a) 사이에 형성되어 있는 지름 방향 외측 유로(31), 외측 캐비티(33o), 및 제1 중간 유로(34)의 지름 방향 외측(Dro)의 부분으로 형성된다. 벤틸레이션 유로(22)의 분배부(26)는 중간 로터 디스크(41a)를 포함하는 각 로터 디스크(41)에 형성되어 있는 관통 구멍(37)으로 형성된다.
관통 구멍(37)이 형성되어 있는 복수의 로터 디스크(41) 중 가장 축 방향 상류 측(Dau)의 로터 디스크(41), 및 이 로터 디스크(41)보다도 축 방향 하류 측(Dad)의 모든 로터 디스크(41)에는, 내측 캐비티(33i)보다도 지름 방향 내측(Dri)의 위치에서 축 방향(Da)의 관통하는 구멍이 형성되어 있다. 벤틸레이션 유로(22)의 집합부(28)는 이 구멍으로 형성된다.
중간 로터 디스크(41a)를 포함하는 각 로터 디스크(41)의 상호 간에는, 중간 캐비티(33m)와 내측 캐비티(33i)를 연통시키는 제1내측 유로(35)와, 내측 캐비티(33i)와 집합부(28)를 연통시키는 제2 내측 유로(36)가 형성되어 있다. 벤틸레이션 유로(22)에 있어서의 복수의 분기부(27) 중 하나의 분기부(27)는, 제1 중간 유로(34)의 지름 방향 내측(Dri)의 부분과, 이 제1 중간 유로(34)에 연통하는 중간 캐비티(33m)와, 이 중간 캐비티(33m)에 연통하는 제1 내측 유로(35)와, 이 제1 내측 유로(35)에 연통하는 내측 캐비티(33i)와, 이 내측 캐비티(33i)에 연통하는 제2 내측 유로(36)에 의해 형성된다. 또한, 벤틸레이션 유로(22)에 있어서의 복수의 분기부(27) 중 다른 분기부(27)는, 제2 중간 유로(34a)와, 이 제2 중간 유로(34a)에 연통하는 중간 캐비티(33m)와, 이 중간 캐비티(33m)에 연통하는 제1 내측 유로(35)와, 이 제1 내측 유로(35)에 연통하는 내측 캐비티(33i)와, 이 내측 캐비티(33i)에 연통하는 제2 내측 유로(36)에 의해 형성된다.
중간 로터 축(171)은, 도 5에 나타내는 바와 같이, 축선을 중심으로 하여 원통상 원통부(172)와, 이 원통부(172)의 축 방향 상류 측(Dau)의 부분으로부터 지름 방향 내측(Dri)에 돌출하는 상류 측 플랜지부(173)와, 이 원통부(172)의 축 방향 하류 측(Dad)의 부분으로부터 지름 방향 내측(Dri)에 돌출하는 하류 측 플랜지부(175)를 가진다. 원통부(172), 상류 측 플랜지부(173) 및 하류 측 플랜지부(175)의 지름 방향 내측(Dri)은 중공(中空)으로 되어 있다. 이 중공 부분은 혼합 공간(177)을 형성한다. 상류 측 플랜지부(173)에는, 압축기(10)의 스핀들 볼트(29)가 삽통되는 볼트 관통 구멍(174)이 형성되어 있다. 중간 로터 축(171)과 압축기 로터 축(21)은 이 스핀들 볼트(29)에 의해 연결되어 있다. 하류 측 플랜지부(175)에는, 후술하는 터빈(110)의 스핀들 볼트(129)가 삽통되는 볼트 관통 구멍(176)이 형성되어 있다. 중간 로터 축(171)과 터빈 로터 축(121)은 이 스핀들 볼트(129)에 의해 연결되어 있다.
이 중간 로터 축(171)에는, 중간 로터 축(171)의 지름 방향 외측(Dro)으로부터 하류 측 플랜지부(175)를 거쳐서, 혼합 공간(177)을 관통하는 제1 냉각 공기 유로(178)가 형성되어 있다.
중간 로터 축 커버(181)는 중간 차실(191) 안에 배치되어 있다. 이 중간 로터 축 커버(181)는, 중간 로터 축(171)의 지름 방향 외측(Dro)을 덮는 통상의 내측 커버(183)와, 이 내측 커버(183)의 지름 방향 외측(Dro)을 덮는 통상의 외측 커버(182)를 가진다. 외측 커버(182)의 축 방향 상류 측(Dau)의 끝은 압축기(10)의 디퓨저(16)를 개재시켜 가스 터빈 차실(3)에 고정되어 있다. 또한, 외측 커버(182)의 축 방향 하류 측(Dad)의 끝은 터빈(110)의 복수 정익 열(161) 중에서 가장 축 방향 상류 측의 제1 정익 열(161a)을 개재시켜 가스 터빈 차실(3)에 고정되어 있다. 내측 커버(183)는 중간 로터 축(171)의 지름 방향 외측(Dro)으로, 중간 로터 축(171)의 외주면에 있어서의 제1 냉각 공기 유로(178)의 개구를 포함하는 영역을 덮는다. 내측 커버(183)의 축 방향 상류 측(Dau)의 끝은 외측 커버(182)의 내주면에 접속되어 있다. 내측 커버(183)의 축 방향 상류(Dau)의 끝보다도 축 방향 하류 측(Dad)의 부분 전부는 외측 커버(182)의 내주면으로부터 지름 방향 내측(Dri)으로 이간하고 있다. 이 외측 커버의 내주면과 내측 커버의 외주면 사이의 공간은 공기 도입 공간(184)을 이룬다. 외측 커버(182)에는, 냉각 공기관(189)이 접속되어 있다. 내측 커버(183)에는, 축 방향(Da)에서 중간 로터 축(171)의 제1 냉각 공기 유로(178)의 개구와 실질적으로 동일한 위치에, 지름 방향 외측(Dro)으로부터 지름 방향 내측(Dri)을 관통하는 관통 구멍(185)이 형성되어 있다. 또한, 내측 커버(183)의 내주면에는, 중간 로터 축(171)과의 사이를 실링하는 상류 측 시일(186)과 하류 측 시일(187)이 설치되어 있다. 상류 측 시일(186)은 내측 커버(183)의 관통 구멍(185)보다도 축 방향 상류 측(Dau)에 설치되어 있다. 하류 측 시일(187)은 내측 커버(183)의 관통 구멍(185)보다도 축 방향 하류 측(Dad)에 설치되어 있다.
냉각 계통(200)으로부터의 냉각 공기(Ac)를 가스 터빈 로터(2)에 안내하는 냉각 공기 도입 부재(188)는 냉각 공기관(189)과 중간 로터 축 커버(181)를 가져서 구성된다.
압축기 로터 축(21)에 형성되어 있는 벤틸레이션 유로(22)의 집합부(28)는 혼합 공간(177)에 연통하고 있다. 따라서 압축기 로터 축(21)의 벤틸레이션 유로(22)를 거친 압축기 추기(Bcom)는 혼합 공간(177) 안에 유입한다. 또한, 중간 로터 축 커버(181)의 공기 도입 공간(184)에는, 냉각 공기관(189)으로부터의 냉각 공기(Ac)가 유입한다. 공기 도입 공간(184) 안의 냉각 공기(Ac)는 내측 커버(183)의 관통 구멍(185), 중간 로터 축(171)의 제1 냉각 공기 유로(178)를 거쳐서 중간 로터 축(171)의 혼합 공간(177) 안에 유입한다. 이 때문에, 냉각 계통(200)으로부터의 냉각 공기(Ac)와 압축기 로터 축(21)으로부터의 압축기 추기(Bcom)는 이 혼합 공간(177) 안에서 혼합한다.
터빈 차실(111)은, 도 6에 나타내는 바와 같이, 터빈 차실 본체(112)와, 이 터빈 차실 본체(112) 안에 배치되어 있는 날개 고리(翼環)(113)와, 날개 고리(113)의 지름 방향 내측(Dri)에 배치되어 있는 분할 환(分割環)(114)을 가진다. 날개 고리(113)는 터빈 차실 본체(112)의 지름 방향 내측(Dri)에 고정되어 있다. 분할 환(114)은 터빈(110)의 각 동익 열(151)의 지름 방향 외측(Dro)에 위치에 배치되어 있다. 날개 고리(113)의 지름 방향 내측(Dri)에는, 복수의 정익(162)과 복수의 분할 환(114)이 고정되어 있다.
터빈(110)의 정익(162)은, 도 7에 나타내는 바와 같이, 지름 방향(Dr)으로 연장되는 날개 본체(163)와, 날개 본체(163)의 지름 방향 외측(Dro)에 설치되어 있는 외측 슈라우드(164)와, 날개 본체(163)의 지름 방향 내측(Dri)에 설치되어 있는 내측 슈라우드(165)를 가진다. 외측 슈라우드(164)는 날개 고리(113)의 지름 방향 내측(Dri)에 부착되어 있다. 내측 슈라우드(165)에는, 그 지름 방향 내측(Dri)에 시일 링(166)이 설치되어 있다. 터빈(110)의 동익(152)은, 지름 방향(Dr)에 연장되는 날개 본체(153)와, 날개 본체(153)의 지름 방향 내측(Dri)에 설치되어 있는 플랫폼(154)과, 플랫폼(154)의 지름 방향 내측(Dri)에 설치되어 있는 날개 뿌리(155)를 가진다. 날개 뿌리(155)는 터빈 로터 축(121)에 매립되어 있다. 동익(152)에는, 공기 유로(156)가 형성되어 있다. 이 공기 유로(156)는 날개 뿌리(155)의 외면(外面)에서 개구하고, 날개 뿌리(155) 및 플랫폼(154)을 거쳐서 날개 본체(153)까지 연장되어 있다.
이 터빈(110)에서 연소기(80)로부터의 연소 가스(G)가 통과하는 연소 가스 유로(115)는 축선(Ar)을 중심으로 하여 환상을 이루고 있다. 이 연소 가스 유로(115)의 외주 측은 분할 환(114) 및 정익(162)의 외측 슈라우드(164)에 의해 획정되어 있다. 또한, 이 연소 가스 유로(115)의 내주 측은 동익(152)의 플랫폼(154) 및 정익(162)의 내측 슈라우드(165)에 의해 획정되어 있다.
터빈 로터 축(121)에는, 복수의 동익 열(151)의 상호 간의 축 방향(Da)에 있어서의 각 위치에, 환언하면, 복수의 정익 열(161)의 축 방향(Da)에 있어서의 각 위치에 축선(Ar)을 중심으로 하여 환상을 이루고, 지름 방향(Dr)에서 서로 이간하고 있는 복수의 캐비티(133)가 형성되어 있다. 축 방향(Da)에서 인접하는 두 개의 동익 열(151)의 상호 간의 축 방향(Da)에 있어서의 위치에 형성되어 있는 복수의 캐비티(133)는 하나의 캐비티 군(132)을 구성한다. 따라서 터빈 로터 축(121)에는, 복수의 캐비티 군(132)이 축 방향(Da)에 나란히 형성되어 있다.
하나의 캐비티 군(132)은, 터빈 로터 축(121) 안에서 가장 지름 방향 외측(Dro)에 형성되어 있는 외측 캐비티(133o)와, 이 외측 캐비티(133o)보다도 지름 방향 내측(Dri)에 형성되어 있는 내측 캐비티(133i)와의 두 개의 캐비티(133)로 구성되어 있다.
터빈 로터 축(121)은, 축 방향(Da)에 적층되는 복수의 로터 디스크(141)와, 복수의 로터 디스크(141) 및 복수의 내측 캐비티(133i)를 축 방향(Da)으로 관통하는 스핀들 볼트(129)를 가진다. 복수의 로터 디스크(141)의 각각은, 축 방향(Da)에서 인접하는 로터 디스크(141) 상호의 상대 회전을 규제하기 위한 기어 커플링(gear coupling)(미도시)이 형성되어 있다.
하나의 로터 디스크(141)에는, 하나의 동익 열(151)이 부착된다. 따라서 로터 디스크(141)는 복수의 동익 열(151)마다 존재한다.
하나의 캐비티 군(132)을 구성하는 복수의 캐비티(133)는 압축기 로터 축(21)의 캐비티(33)와 마찬가지로 축 방향(Da)에서 인접하는 두 개의 로터 디스크(141) 사이에 형성되어 있다.
각 로터 디스크(141)의 지름 방향 외측(Dro)에는, 하나의 동익 열(151)을 구성하는 복수의 동익(152)의 날개 뿌리(155)가 부착되는 날개 부착부(149)가 형성되어 있다.
각 로터 디스크(141)에는, 상류 측 제1 오목부(143u)와, 상류 측 제2 오목부(145u)가 형성되어 있다. 상류 측 제1 오목부(143u)는, 이 로터 디스크(141)의 축 방향 상류 측(Dau)에 외측 캐비티(133o)를 형성하기 위해, 로터 디스크(141) 안의 축 방향 상류 측(Dau)의 부분으로부터 축 방향 하류 측(Dad)을 향해서 우묵하게 들어간다. 상류 측 제2 오목부(145u)는, 이 로터 디스크(141)의 축 방향 상류 측(Dau)에 내측 캐비티(133i)를 형성하기 위해, 상류 측 제1 오목부(143u)보다 지름 방향 내측(Dri)의 위치에서 이 로터 디스크(141) 안의 축 방향 상류 측(Dau)의 부분으로부터 축 방향 하류 측(Dad)을 향해서 우묵하게 들어간다. 따라서 상류 측 제1 오목부(143u)의 지름 방향 외측(Dro)에는, 상류 측 제1 오목부(143u)의 저면에 대하여 상대적으로 축 방향 상류 측(Dau)을 향해서 돌출하는 환상의 상류 측 제1 아암부(142u)가 형성되어 있다. 또한, 상류 측 제1 오목부(143u)와 상류 측 제2 오목부(145u) 사이에는, 상류 측 제1 오목부(143u)의 저면 및 상류 측 제2 오목부(145u)의 저면에 대하여 상대적으로 축 방향 상류 측(Dau)을 향해서 돌출하는 환상의 상류 측 제2 아암부(144u)가 형성되어 있다.
환상의 상류 측 제2 아암부(144u)에는, 축 방향 하류 측(Dad)을 향해서 우묵하게 들어가서 상류 측 제1 오목부(143u)와 상류 측 제2 오목부(145u)를 연통시키는 복수의 상류 측 연통 홈(144up)이 형성되어 있다. 복수의 상류 측 연통 홈(144up)은 원주 방향(Dc)으로 나란히 있다. 이 상류 측 연통 홈(144up)은, 예를 들면, 로터 디스크(141)에 있어서의 전술의 기어 커플링의 이(齒)의 선단부를 절단한 것이다.
게다가, 각 로터 디스크(141)에는, 하류 측 제1 오목부(143d)와, 하류 측 제2 오목부(145d)가 형성되어 있다. 하류 측 제1 오목부(143d)는, 이 로터 디스크(141)의 축 방향 하류 측(Dad)에 외측 캐비티(133o)를 형성하기 위해, 로터 디스크(141) 안의 축 방향 하류 측(Dad)의 부분으로부터 축 방향 상류 측(Dau)을 향해서 우묵하게 들어간다. 하류 측 제2 오목부(145d)는, 이 로터 디스크(141)의 축 방향 하류 측(Dad)에 내측 캐비티(133i)를 형성하기 위해, 하류 측 제1 오목부(143d)보다 지름 방향 내측(Dri)의 위치에서 로터 디스크(141) 안의 축 방향 하류 측(Dad)의 부분으로부터 축 방향 상류 측(Dau)을 향해서 우묵하게 들어간다. 따라서 하류 측 제1 오목부(143d)의 지름 방향 외측(Dro)에는, 하류 측 제1 오목부(143d)의 저면에 대하여 상대적으로 축 방향 하류 측(Dad)을 향해서 돌출하는 환상의 하류 측 제1 아암부(142d)가 형성되어 있다. 또한, 하류 측 제1 오목부(143d)와 하류 측 제2 오목부(145d) 사이에는, 하류 측 제1 오목부(143d)의 저면 및 하류 측 제2 오목부(145d)의 저면에 대하여 상대적으로 축 방향 하류 측(Dad)을 향해서 돌출하는 환상의 하류 측 제2 아암부(144d)가 형성되어 있다.
환상의 하류 측 제2 아암부(144d)에는, 축 방향 상류 측(Dau)을 향해서 우묵하게 들어가서 하류 측 제1 오목부(143d)와 하류 측 제2 오목부(145d)를 연통시키는 복수의 하류 측 연통 홈(144dp)이 형성되어 있다. 복수의 하류 측 연통 홈(144dp)은 원주 방향(Dc)으로 나란히 있다. 이 하류 측 연통 홈(144dp)은, 예를 들면, 로터 디스크(141)에 있어서의 전술의 기어 커플링의 이의 선단부를 절단한 것이다.
외측 캐비티(133o)는 축 방향(Da)에서 인접하는 두 개의 로터 디스크(141) 중의 축 방향 상류 측(Dau)의 로터 디스크(141)에 있어서의 하류 측 제1 오목부(143d)와 축 방향 하류 측(Dad)의 로터 디스크(141)에 있어서의 상류 측 제1 오목부(143u)에 의해 획정된다. 내측 캐비티(133i)는 축 방향(Da)에서 인접하는 두 개의 로터 디스크(141) 중의 축 방향 상류 측(Dau)의 로터 디스크(141)에 있어서의 하류 측 제2 오목부(145d)와 축 방향 하류 측(Dad)의 로터 디스크(141)에 있어서의 상류 측 제2 오목부(145u)에 의해 획정된다.
축 방향(Da)에서 인접하는 두 개의 로터 디스크(141) 중의 축 방향 상류 측(Dau)의 로터 디스크(141)에 있어서의 하류 측 제1 아암부(142d)와 축 방향 하류 측(Dad)의 로터 디스크(141)에 있어서의 상류 측 제1 아암부(142u)는 서로 축 방향(Da)에서 대향하고 동시에 이간하고 있다.
축 방향(Da)에서 인접하는 두 개의 로터 디스크(141) 중의 축 방향 상류 측(Dau)의 로터 디스크(141)에 있어서의 복수의 하류 측 연통 홈(144dp)과 축 방향 하류 측(Dad)의 로터 디스크(141)에 있어서의 복수의 상류 측 연통 홈(144up)은 축 방향(Da)에서 서로 대향하고 있다. 연통 구멍은 하류 측 연통 홈(144dp)과 상류 측 연통 홈(144up)에 의해 획정된다. 토크 핀이 장착되는 핀 구멍은 원주상 토크 핀의 형상에 대응하여 원주상을 이룬다.
로터 디스크(141)에는, 상류 측 제2 오목부(145u)의 저면으로부터 하류 측 제2 오목부(145d)의 저면을 관통하여, 스핀들 볼트(129)가 삽통되는 볼트 관통 구멍(138)이 형성되어 있다. 스핀들 볼트(129)는, 축 방향(Da)에 수직한 단면 형상이 원형이다. 한편, 볼트 관통 구멍(138)은, 축 방향(Da)의 단면 형상이 계란형 등이다. 이 때문에, 스핀들 볼트(129)를 볼트 관통 구멍(138)에 삽통시켰을 때, 스핀들 볼트(129)의 외주면 일부와 볼트 관통 구멍(138)의 내주면의 일부 사이에 틈(138s)이 형성된다. 이 틈(138s)은 상류 측 제2 오목부(145u)의 저면으로부터 하류 측 제2 오목부(145d)의 저면을 관통하는 제1혼합 공기 유로(134)를 형성한다. 또한, 볼트 관통 구멍의 단면 형상은, 스핀들 볼트(129)의 외주면의 일부와 볼트 관통 구멍(138)의 내주면의 일부 사이에 틈(138s)이 형성되면, 어떠한 형상이라도 좋고, 예를 들면, 서로의 중심 위치가 상이하고, 또한 서로 부분적으로 겹쳐 있는 두 개의 원을 합친 형상 등이라도 좋다.
도 6에 나타내는 바와 같이, 복수의 로터 디스크(141) 중 가장 축 방향 상류 측(Dau)의 제1 로터 디스크(141a)의 상류 측 제2 아암부(144u)보다 지름 방향 외측(Dro)의 부분은 공기 도입 공간(184)에 면(面)하고 있다. 이 제1 로터 디스크(141a)에는, 제2 냉각 공기 유로(122)가 형성되어 있다. 제2 냉각 공기 유로(122)는 제1 로터 디스크(141a)에서 공기 도입 공간(184)에 면하고 있는 면으로부터 날개 부착부(149)의 외면을 관통하고 있다. 이 때문에, 공기 도입 공간(184) 안의 냉각 공기(Ac)는 이 제2 냉각 공기 유로(122) 및 날개 부착부(149)를 거쳐서, 이 제1 로터 디스크(141a)에 부착되어 있는 제1 동익 열(151a)의 각 동익(152)에 보내진다.
제1 로터 디스크(141a)의 상류 측 제2 아암부(144u)보다도 지름 방향 내측(Dri)의 부분, 보다 구체적으로는 상류 측 제2 오목부(45u)를 형성하는 면은 혼합 공간(177)에 면하고 있다. 이 때문에, 제1 로터 디스크(141a)에 형성되며, 그 상류 측 제2 오목부(45u)의 저면에서 개구하고 있는 제1 혼합 공기 유로(134) 안에는, 혼합 공기(Am)가 유입한다. 이 혼합 공기(Am)는, 제1 로터 디스크(141a)의 제1혼합 공기 유로(134)로부터, 제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이에 형성되어 있는 내측 캐비티(133i) 안에 유입한다. 이 혼합 공기(Am)는 이후 각 로터 디스크(141)에 형성되어 있는 제1혼합 공기 유로(134)를 거쳐서 각 로터 디스크(141)의 상호 간에 형성되어 있는 내측 캐비티(133i)에 유입한다.
제1 로터 디스크(141a), 및 제1 로터 디스크(141a)보다도 축 방향 하류 측(Dad)의 복수의 로터 디스크(141)의 각 상호 간에 형성되어 있는 전술의 복수의 연통 구멍은 축 방향(Da)에서 인접하는 두 개의 로터 디스크(141)의 상호 간에 형성되어 있는 외측 캐비티(133o)와 내측 캐비티(133i)를 연통시키는 제2 혼합 공기 유로(135)를 형성한다. 따라서 제1 로터 디스크(141a), 및 제1 로터 디스크(141a)보다도 축 방향 하류 측(Dad)의 복수의 로터 디스크(141)의 각 상호 간에 형성되어 있는 내측 캐비티(133i) 속의 혼합 공기(Am)는 제2 혼합 공기 유로(135)를 거쳐서 이들 로터 디스크(141)의 각 상호 간에 형성되어 있는 외측 캐비티(133o) 안에 유입한다. 또한, 여기에서는 로터 디스크(141)에 있어서의 전술의 기어 커플링의 이의 선단부를 절단한 것으로 형성되는 연통 구멍을 제2 혼합 공기 유로(135)로서 이용하고 있지만, 별도 구멍을 형성하고, 이것을 제2 혼합 공기 유로(135)로 해도 좋다.
제1 로터 디스크(141a)보다도 축 방향 하류 측(Dad)의 복수의 로터 디스크(141)에는, 상류 측 제1 오목부(143u)를 형성하는 면으로부터 날개 부착부(149)의 외면을 관통하는 제3혼합 공기 유로(136)가 형성되어 있다. 따라서 제1 로터 디스크(141a), 및 제1 로터 디스크(141a)보다도 축 방향 하류 측(Dad)의 복수의 로터 디스크(141)의 각 상호 간에 형성되어 있는 내측 캐비티(133i) 속의 혼합 공기(Am)는 제3혼합 공기 유로(136)를 거쳐서 제1 로터 디스크(141a)보다도 축 방향 하류 측(Dad)의 복수의 로터 디스크(141)에 부착되어 있는 동익(152)의 공기 유로(156)에 유입한다.
혼합 공기(Am)가 흐르는 터빈 로터 축(121)의 혼합 공기 유로(137)는, 제1 혼합 공기 유로(134)와, 내측 캐비티(133i)와, 제2 혼합 공기 유로(135)와, 외측 캐비티(133o)와, 제3 혼합 공기 유로(136)를 가져서 구성된다.
다음에, 이상에서 설명한 가스 터빈 설비의 동작에 대하여 설명한다.
도 1 및 도 2에 나타내는 바와 같이, 압축기 로터(20)가 회전하면, 압축기(10)의 공기 취입구(12)로부터 외기(A)가 공기 압축 유로(15) 안에 유입한다. 공기(A)는, 이 공기 압축 유로(15) 안을 축 방향 상류 측(Dau)으로부터 축 방향 하류 측(Dad)으로 흘러가는 과정에서 점차로 압축되어, 압축 공기(Acom)가 된다. 공기 압축 유로(15)로부터의 압축 공기(Acom)는 공기 토출 유로(17)를 거쳐서 압축기(10)의 공기 토출구(18)로부터 중간 차실(191) 안에 유입한다.
중간 차실(191) 안에 유입한 압축 공기(Acom)의 일부는, 도 1 및 도 5에 나타내는 바와 같이, 연소기(80) 안에 유입한다. 이 연소기(80)에는 연료 공급원으로부터의 연료(F)도 공급된다.
연소기(80) 안에서는, 이 연료(F)가 압축 공기(Acom) 속에 연소하여, 고온 고압의 연소 가스(G)가 생성된다.
고온 고압의 연소 가스(G)는, 도 1 및 도 6에 나타내는 바와 같이, 연소기(80)로부터 터빈(110)의 연소 가스 유로(115) 안에 유입한다. 이 연소 가스(G)는 연소 가스 유로(115) 안을 흐르는 과정에서 터빈 로터(120)를 회전시킨다. 연소기(80)로부터 터빈(110)의 연소 가스 유로(115) 안에 유입할 때의 연소 가스(G)의 온도는 천수백 ℃도 된다. 이 연소 가스(G)의 온도는, 연소 가스(G)가 연소 가스 유로(115) 안을 흐르는 과정에서 점차로 저하된다.
중간 차실(191) 안에 유입한 압축 공기(Acom)의 다른 일부는, 도 1 및 도 5에 나타내는 바와 같이, 냉각 계통(200)의 냉각 공기 라인(201)을 거쳐서 냉각기(205) 안에 유입한다. 이 압축 공기(Acom)는, 냉각기(205)에 유입하면 냉각되어, 냉각 공기(Ac)가 된다. 여기에서는 중간 차실(191) 안에 유입한 압축 공기(Acom)의 온도를, 예를 들면, 500℃로 한다. 또한, 냉각기(205)에 의해 냉각된 압축 공기(Acom), 즉 냉각 공기(Ac)의 온도를, 예를 들면, 200℃로 한다. 이 냉각 공기(Ac)는 냉각 공기 라인(201), 및 중간 차실(191) 안에 설치되어 있는 냉각 공기관(189)을 거쳐서 중간 로터 축 커버(181)의 공기 도입 공간(184) 안에 유입한다. 공기 도입 공간(184) 안에 유입한 냉각 공기(Ac)의 일부는 터빈(110)의 제1 로터 디스크(141a)에 형성되어 있는 제2 냉각 공기 유로(122)를 거쳐서, 이 제1 로터 디스크(141a)에 부착되어 있는 제1 동익 열(151a)의 각 동익(152)의 공기 유로(156)에 유입한다. 냉각 공기(Ac)는 동익(152)의 공기 유로(156)를 흐르는 과정에서 동익(152)을 냉각한다. 이 냉각 공기(Ac)는 이 공기 유로(156)를 거쳐서 동익(152) 밖, 즉 연소 가스 유로(115) 안에 유출한다. 따라서 본 실시형태에서는, 제1 로터 디스크(141a)에 부착되어 있는 복수의 동익(152), 즉 복수의 제1 단 동익(152)은, 예를 들면, 200℃의 냉각 공기(Ac)에 의해 냉각된다.
압축기(10)의 공기 압축 유로(15) 안을 흐르고 있는 압축 공기(Acom)의 일부는 압축기 추기(Bcom)로서, 도 1 및 도 2에 나타내는 바와 같이, 압축기 로터 축(21)에 형성되어 있는 벤틸레이션 유로(22)의 유입구(25)로부터 이 벤틸레이션 유로(22) 안에 유입한다. 환언하면, 압축기(10)의 공기 압축 유로(15) 안을 흐르고 있는 압축 공기(Acom)의 일부는 압축기 추기(Bcom)로서, 축 방향(Da)에서 인접하는 중간 로터 디스크(41a)의 상호 간에 유입한다. 벤틸레이션 유로(22)의 유입구(25)로부터 벤틸레이션 유로(22) 안에 유입한 압축기 추기(Bcom)는 이 벤틸레이션 유로(22)에서 지름 방향(Dr)으로 연장되는 유입부(24)를 거쳐서 축 방향(Da)으로 연장되는 분배부(26)에 유입한다. 분배부(26)에 유입한 압축기 추기(Bcom)는 축 방향(Da)에서 서로 상이한 위치에 형성되어 있는 복수의 분기부(27)에 유입한다. 각 분기부(27)에 유입한 압축기 추기(Bcom)는 모두 축 방향(Da)으로 연장되는 집합부(28)에 유입하고, 이 집합부(28)를 거쳐서 중간 로터 축(171) 안의 혼합 공간(177)에 유출한다.
그런데, 도 4에 나타내는 바와 같이, 압축기(10)의 동익(52)의 지름 방향 외측(Dro) 끝과, 지름 방향(Dr)에서 대향하는 압축기 차실(11)의 내주면 사이에는, 클리어런스(clearance)가 있다. 이 클리어런스는 일반적으로 팁 클리어런스(CC)라고 불리며, 압축기 성능의 관점에서 가능한 한 작은 것이 바람직하다.
압축기 로터(20), 특히 압축기 로터 축(21)은, 지름 방향(Dr)의 치수가 압축기 차실(11)의 지름 방향(Dr)의 두께 치수에 비하여 크다. 이 때문에, 압축기 로터(20)는, 압축기 차실(11)에 대하여 열용량이 크고, 공기 압축 유로(15)를 흐르는 압축 공기(Acom)의 온도 변화에 대한 열 응답성이 압축기 차실(11)보다도 낮다. 따라서 공기 압축 유로(15)를 흐르는 압축 공기(Acom)가 온도 변화했을 경우에, 압축기 로터(20)와 압축기 차실(11)과의 열 응답성의 차이에 의해 팁 클리어런스(CC)에 변화가 생긴다.
팁 클리어런스(CC)의 변화가 큰 경우, 정상 클리어런스를 크게 할 필요가 있다. 또한, 정상 클리어런스란, 가스 터빈(1)의 안정 운전이 계속하고, 또한 압축기 로터(20) 및 압축기 차실(11)이 함께 계속하여 동일 온도가 되어 있을 때의 팁 클리어런스(CC)이다. 이 정상 클리어런스가 크면, 가스 터빈(1)의 정상 운전 시, 동익(52)의 지름 방향 외측(Dro) 끝과 압축기 차실(11)의 내주면 사이를 통과하는 압축 공기(Acom)의 유량이 많아진다. 이 때문에, 정상 클리어런스가 크면, 가스 터빈(1)의 정상 운전 시에 있어서의 압축기 성능이 낮아질뿐더러 가스 터빈 성능도 낮아진다.
그래서 본 실시형태에서는, 전술한 바와 같이, 압축기 로터 축(21) 속에 공기 압축 유로(15) 안으로부터 추기한 압축기 추기(Bcom)를 흘리고, 압축기 로터 축(21) 안을 환기함으로써, 공기 압축 유로(15)를 흐르는 압축 공기(Acom)의 온도 변화에 대한 압축기 로터(20)의 열 응답성을 높여서 팁 클리어런스(CC)의 변화를 작게 하고 있다. 본 실시형태에서는, 이와 같이 기동 시의 팁 클리어런스(CC)의 변화가 작아지므로, 정상 클리어런스를 작게 할 수 있다. 따라서 본 실시형태에서는, 가스 터빈(1)의 정상 운전 시에 있어서의 압축기 성능을 향상시킬 수 있고, 결과로서 가스 터빈 성능을 높일 수 있다.
축류 압축기에서는, 축 방향 상류 측(Dau)으로부터 축 방향 하류 측(Dad)에 흐르는 과정에서, 그 압력이 높아지는 동시에 그 온도도 높아진다. 이 때문에, 정지 시와 운전 시에 있어서의 온도 변화는 축류 압축기의 축 방향 상류 측(Dau) 부분보다도 축 방향 하류 측(Dad) 부분 쪽이 크다. 그래서 본 실시형태에서는, 도 2에 나타내는 바와 같이, 두 개의 중간 동익 열(51a) 사이를 흐르는 압축 공기(Acom)의 일부를, 가장 축 방향 하류 측(Dad)의 로터 디스크(41)를 포함시키고, 이 로터 디스크(41)로부터 축 방향 상류 측(Dau)의 복수의 로터 디스크(41)의 상호 간에 압축기 추기(Bcom)로서 흘리고, 압축기 로터(20) 속에서 축 방향 하류 측(Dad) 부분의 열 응답성을 높이고 있다.
중간 로터 축(171) 안의 혼합 공간(177)에는, 도 1 및 도 5에 나타내는 바와 같이, 압축기 로터 축(21)으로부터의 압축기 추기(Bcom) 이외에, 냉각 계통(200)에서 생성된 냉각 공기(Ac)도 유입한다. 냉각 계통(200)의 냉각기(205)에서 생성된 냉각 공기(Ac)는 냉각 공기 라인(201)을 거치고, 중간 차실(191) 안에 설치되어 있는 냉각 공기관(189)을 거쳐서 중간 로터 축 커버(181)의 공기 도입 공간(184) 안에 유입한다. 공기 도입 공간(184) 안에 유입한 냉각 공기(Ac)의 일부는 중간 로터 축(171)에 형성되어 있는 제1 냉각 공기 유로(178)를 거쳐서, 이 중간 로터 축(171) 안의 혼합 공간(177) 안에 유입한다. 이 냉각 공기(Ac)의 온도는, 전술한 바와 같이, 예를 들면, 200℃이다. 또한, 이 혼합 공간(177)에 유입하는 압축기 로터 축(21)으로부터의 압축기 추기(Bcom)의 온도는, 예를 들면, 400℃이다. 혼합 공간(177) 안에서는, 압축기 로터 축(21)으로부터의 압축기 추기(Bcom)와 냉각 계통(200)으로부터의 냉각 공기(Ac)가 서로 섞여서, 예를 들면, 300℃의 혼합 공기(Am)가 된다.
이 혼합 공기(Am)는, 도 1 및 도 6에 나타내는 바와 같이, 터빈(110)의 제1 로터 디스크(141a)에 형성되어 있는 제1혼합 공기 유로(134)를 거쳐서 제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 내측 캐비티(133i) 안에 유입한다. 이 내측 캐비티(133i)에 유입한 혼합 공기(Am)의 일부는 제2 혼합 공기 유로(135)를 거쳐서 제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 외측 캐비티(133o) 안에 유입한다. 이 혼합 공기(Am)는 제2 로터 디스크(14lb)에 형성되어 있는 제3 혼합 공기 유로(136)를 거쳐서 제2 로터 디스크(14lb)에 부착되어 있는 복수의 동익(152)의 공기 유로(156)에 유입한다. 혼합 공기(Am)는 동익(152)의 공기 유로(156)를 흐르는 과정에서 동익(152)을 냉각한다. 이 혼합 공기(Am)는 이 공기 유로(156)를 거쳐서 동익(152) 밖, 즉 연소 가스 유로(115) 안에 유출한다.
제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 내측 캐비티(133i)에 유입한 혼합 공기(Am)의 다른 일부는 제2 로터 디스크(14lb)에 형성되어 있는 제1혼합 공기 유로(134)를 거쳐서 제2 로터 디스크(14lb)와 제3 로터 디스크(14lc) 사이의 내측 캐비티(133i) 안에 유입한다. 이 내측 캐비티(133i)에 유입한 혼합 공기(Am)의 일부는 제2 혼합 공기 유로(135)를 거쳐서 제2 로터 디스크(14lb)와 제3 로터 디스크(14lc) 사이의 외측 캐비티(133o) 안에 유입한다. 이 혼합 공기(Am)는 제3 로터 디스크(14lc)에 형성되어 있는 제3혼합 공기 유로(136)를 거쳐서 제3 로터 디스크(14lc)에 부착되어 있는 복수의 동익(152)의 공기 유로(156)에 유입한다. 혼합 공기(Am)는 동익(152)의 공기 유로(156)를 흐르는 과정에서 동익(152)을 냉각한다. 이 혼합 공기(Am)는 이 공기 유로(156)를 거쳐서 동익(152) 밖, 즉 연소 가스 유로(115) 안에 유출한다.
따라서 본 실시형태에서는, 터빈 로터 축(121)이, 예를 들면, 300℃의 혼합 공기(Am)에 의해 냉각된다. 게다가, 본 실시형태에서는, 제2 로터 디스크(14lb) 및 제3 로터 디스크(14lc)에 부착되어 있는 복수의 동익(152)도 이 300℃의 혼합 공기(Am)에 의해 냉각된다.
임시로, 압축기 로터 축(21)으로부터 유출한 압축기 추기(Bcom)를 그대로 터빈 로터 축(121)에 안내하는 것으로 한다. 이 경우, 예를 들면, 400℃의 공기로 터빈 로터 축(121)에 부착되어 있는 복수의 동익(152)이 냉각되게 된다. 이에 대하여, 본 실시형태에서는, 터빈(110)의 제1 동익 열(151a)의 각 동익(152)을 냉각 계통(200)으로부터의 냉각 공기(Ac)(예를 들면, 200℃)로 냉각한다. 또한, 본 실시형태에서는, 터빈(110)의 제1 동익 열(151a)보다 축 방향 하류 측(Dad)의 동익 열(151)의 각 동익(152)을 냉각 계통으로부터의 냉각 공기(Ac)와 압축기 로터 축(21)으로부터의 압축기 추기(Bcom)와의 혼합 공기(Am)(예를 들면, 300℃)로 냉각한다.
이 때문에, 본 실시형태에서는, 압축기 로터 축(21)으로부터 유출한 압축기 추기(Bcom)로 터빈(110)의 동익(152)을 냉각하는 경우보다도 온도가 낮은 공기로 터빈(110)의 동익(152)을 냉각할 수 있다. 게다가, 본 실시형태에서는, 터빈(110)의 동익(152) 중에서 가장 고온의 연소 가스(G)에 노출되는 제1 동익 열(151a)의 각 동익(152)을 200℃의 냉각 공기(Ac)로 냉각한다. 따라서 본 실시형태에서는, 연소기(80)에서 생성되는 연소 가스(G)의 온도를 보다 높게 할 수 있고, 결과로서, 가스 터빈(1)의 출력을 향상시킬 수 있다.
[압축기 로터의 제1 변형예]
이상에서 설명한 실시형태에 있어서의 압축기 로터의 제1 변형예에 대하여, 도 8을 이용하여 설명한다.
상기 실시형태의 압축기 로터(20)에서는 공기 압축 유로(15) 안의 압축 공기(Acom)를 압축기 추기(Bcom)로 하여 압축기 로터 축(21)의 축 방향(Da)의 한 개소(箇所)에서 압축기 로터 축(21) 안에 안내하고 있다. 즉, 상기 실시형태의 벤틸레이션 유로(22)는 축 방향(Da)의 한 개소를 유입구(25)로 하고 있다.
그러나 도 8에 나타내는 본 변형예의 압축기 로터(20a)처럼 공기 압축 유로(15) 안의 압축 공기(Acom)를 압축기 추기(Bcom)로 하여 압축기 로터 축(21a)의 축 방향(Da)의 복수 개소로부터 압축기 로터 축(21a) 안에 안내해도 좋다. 즉, 본 변형예의 벤틸레이션 유로(22a)는 축 방향(Da)의 복수 개소를 유입구(25)로 한다. 이 경우, 압축기 로터 축(21a)의 축 방향(Da)의 하나의 개소로부터 압축기 로터 축(21a) 안에 압축기 추기(Bcom)를 안내한 후, 이 압축기 추기(Bcom)를 압축기 로터 축(21a)의 축 방향(Da)에서 서로 상이한 위치에 분배하는 동시에 압축기 로터 축(21a)의 축 방향(Da)의 다른 개소로부터 압축기 로터 축(21a) 안에 압축기 추기(Bcom)를 안내한 후, 이 압축기 추기(Bcom)를 압축기 로터 축(21a)의 축 방향(Da)에서 서로 상이한 위치에 분배해도 좋다.
[압축기 로터의 제2 변형예]
이상에서 설명한 실시형태에 있어서의 압축기 로터의 제2 변형예에 대하여, 도 9를 이용하여 설명한다.
상기 실시형태의 압축기 로터(20)에서는, 공기 압축 유로(15) 안의 압축 공기(Acom)를 압축기 추기(Bcom)로 하여 압축기 로터 축(21) 안에 안내한 후, 이 압축기 추기(Bcom)를 축 방향 상류 측(Dau)과 축 방향 하류 측(Dad)에 분배하고 있다. 즉, 상기 실시형태의 벤틸레이션 유로(22)는, 유입부(24)를 기준으로 하여, 분배부(26)를 축 방향 상류 측(Dau)에 연장시키는 동시에 축 방향 하류 측(Dad)에도 연장시키고, 축 방향 상류 측(Dau)의 분배부(26), 게다가 축 방향 하류 측(Dad)의 분배부(26)의 각각에 대하여 복수의 분기부(27)를 접속하고 있다.
그러나 도 9에 나타내는 본 변형예의 압축기 로터(20b)처럼 공기 압축 유로(15) 안의 압축 공기(Acom)를 압축기 추기(Bcom)로 하여 압축기 로터 축(21b) 안에 안내한 후, 이 압축기 추기(Bcom)를 축 방향 상류 측(Dau)의 복수 개소에만 분배해도 좋다. 즉, 본 변형예의 벤틸레이션 유로(22b)는, 유입부(24b)를 기준으로 하여, 분배부(26b)를 축 방향 상류 측(Dau)에만 연장시키고, 이 분배부(26b)에 대하여 복수의 분기부(27)를 접속하고 있다.
또한, 공기 압축 유로(15) 안의 압축 공기(Acom)를 압축기 추기(Bcom)로 하여 압축기 로터 축(2lb)에 안내한 후, 이 압축기 추기(Bcom)를 축 방향 하류 측(Dad)의 복수 개소에만 분배해도 좋다.
[압축기 로터의 제3 변형예]
이상에서 설명한 실시형태에 있어서의 압축기 로터의 제3 변형예에 대하여, 도 10을 이용하여 설명한다.
상기 실시형태의 압축기 로터(20)에서는, 공기 압축 유로(15) 안의 압축 공기(Acom)를 압축기 추기(Bcom)로 하여 압축기 로터 축(21) 안에 안내한 후, 이 압축기 추기(Bcom)를 축 방향(Da)에서 서로 상이한 위치에 분배하고 있다. 즉, 상기 실시형태의 벤틸레이션 유로(22)는, 축 방향(Da)에서 서로 상이한 위치에 복수의 분기부(27)가 존재한다.
그러나 도 10에 나타내는 본 변형예의 압축기 로터(20c)처럼 공기 압축 유로(15) 안의 압축 공기(Acom)를 압축기 추기(Bcom)로 하여 압축기 로터 축(21c) 안에 안내한 후, 이 압축기 추기(Bcom)를 축 방향(Da)에서 서로 상이한 복수 개소에 분배하지 않고, 그대로 혼합 공간(177)에 유출시켜도 좋다. 즉, 본 변형예의 벤틸레이션 유로(22c)는 유입부(24)를 가지지만, 이 유입부(24)에 대한 상기 실시형태의 분배부(26) 및 분기부(27)에 상당하는 부분이 없다. 이 경우, 축 방향(Da)에서 서로 상이한 위치에 복수의 유입부(24)를 형성하고, 각 유입부(24)에 유입한 압축기 추기(Bcom)를 축 방향(Da)에서 서로 상이한 복수 개소에 분배하지 않고, 그대로 혼합 공간(177)에 유출시켜도 좋다.
[터빈 로터의 변형예]
이상에서 설명한 실시형태에 있어서의 터빈 로터의 변형예에 대하여, 도 11을 사용하여 설명한다.
상기 실시형태의 터빈 로터(120)에서는, 냉각 계통(200)으로부터의 냉각 공기(Ac)를 제1 동익 열(151a)에만 안내하고 있다. 그러나 도 11에 나타내는 본 변형예의 터빈 로터(120a)처럼 이 냉각 공기(Ac)를 제1 동익 열(151a)뿐만 아니라, 제1 동익 열(151a)보다 축 방향 하류 측(Dad)의 제2 동익 열(15lb)이나 제3 동익 열(151c)에도 안내해도 좋다.
본 변형예의 터빈 로터 축(121a)을 구성하는 복수의 로터 디스크(141) 중 가장 축 방향 상류 측(Dau)의 제1 로터 디스크(141a), 이 제1 로터 디스크(141a)의 축 방향 하류 측(Dad)에 인접하는 제2 로터 디스크(14lb)에는, 축 방향(Da)으로 관통하는 제3 냉각 공기 유로(123)가 형성되어 있다. 제1 로터 디스크(141a)에 형성되어 있는 제3 냉각 공기 유로(123)는 제1 로터 디스크(141a)의 상류 측 제2 아암부(144u)보다 지름 방향 외측(Dro)의 부분으로, 공기 도입 공간(184)에 면한 위치로부터 축 방향 하류 측(Dad)으로 연장되고, 제1 로터 디스크(141a)의 하류 측 제1 오목부(143d)의 저면에서 개구하고 있다. 이 때문에, 제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 외측 캐비티(133o)와 공기 도입 공간(184)은 이 제3 냉각 공기 유로(123)에 의해 연통하고 있다. 또한, 제2 로터 디스크(14lb)에 형성되어 있는 제3 냉각 공기 유로(123)는 제2 로터 디스크(14lb)의 상류 측 제1 오목부(143u)의 저면에서 축 방향 하류 측(Dad)으로 연장되고, 이 제2 로터 디스크(14lb)의 하류 측 제1 오목부(143d)의 저면에서 개구하고 있다. 이 때문에, 제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 외측 캐비티(133o)와 제2 로터 디스크(14lb)와 제3 로터 디스크(14lc) 사이의 외측 캐비티(133o)는 이 제3 냉각 공기 유로(123)에 의해 연통하고 있다.
본 변형예에서는, 제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 외측 캐비티(133o)에는, 제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 내측 캐비티(133i) 안의 혼합 공기(Am)가 제2 혼합 공기 유로(135)를 거쳐서 유입한다. 게다가, 이 외측 캐비티(133o)에는, 공기 도입 공간(184)의 냉각 공기(Ac)가 제1 로터 디스크(141a)의 제3 냉각 공기 유로(123)를 거쳐서 유입한다. 따라서 제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 외측 캐비티(133o) 속에서는, 예를 들면, 200℃의 냉각 공기(Ac)와 300℃의 혼합 공기(Am)가 혼합한다. 이 결과, 이 외측 캐비티(133o) 속에서는, 혼합 공간(177) 안에서 생성되는 혼합 공기(Am)보다도 온도가 낮은 혼합 공기(Am1)가 생성된다. 이 혼합 공기(Am1)의 일부는 제2 로터 디스크(14lb)에 형성되어 있는 제3혼합 공기 유로(136)를 거쳐서 제2 로터 디스크(14lb)에 부착되어 있는 제2동익 열(15lb)의 각 동익(152)의 공기 유로(156)에 유입한다.
제1 로터 디스크(141a)와 제2 로터 디스크(14lb) 사이의 외측 캐비티(133o) 속의 혼합 공기(Am1)의 다른 일부는 제2 로터 디스크(14lb)의 제3 냉각 공기 유로(123)를 거쳐서 제2 로터 디스크(14lb)와 제3 로터 디스크(14lc) 사이의 외측 캐비티(133o) 안에 유입한다. 이 외측 캐비티(133o)에는, 제2 로터 디스크(14lb)와 제3 로터 디스크(14lc) 사이의 내측 캐비티(133i) 속의 혼합 공기(Am)가 제2 혼합 공기 유로(135)를 거쳐서 유입한다. 따라서 제2 로터 디스크(14lb)와 제3 로터 디스크(14lc) 사이의 외측 캐비티(133o) 속에서는, 300℃의 혼합 공기(Am)와 온도가 300℃보다 낮은 혼합 공기(Am1)가 혼합한다. 이 결과, 이 외측 캐비티(133o) 속에서는, 혼합 공간(177) 안에서 생성되는 혼합 공기(Am)보다도 온도가 낮은 혼합 공기(Am2)가 생성된다. 이 혼합 공기(Am2)의 일부는 제3 로터 디스크(14lc)에 형성되어 있는 제3 혼합 공기 유로(136)를 거쳐서 제3 로터 디스크(14lc)에 부착되어 있는 제3동익 열(151c)의 각 동익(152)의 공기 유로(156)에 유입한다.
따라서 본 변형예에서는 상기 실시형태보다도 제2 로터 디스크 및 제3 로터 디스크에 부착되어 있는 복수의 동익(152)에 온도가 낮은 공기를 공급할 수 있다.
산업상 이용 가능성
본 발명의 일 양태에 의하면, 터빈 로터를 더욱더 냉각할 수 있다.
1: 가스 터빈
2: 가스 터빈 로터
3: 가스 터빈 차실
9: 발전기
10: 압축기
11: 압축기 차실
12: 공기 취입구
13: 압축기 차실 본체
14: 정익 유지 환
15: 공기 압축 유로
16: 디퓨저
17: 공기 토출 유로
18: 공기 토출구
20, 20a, 20b, 20c: 압축기 로터
21, 21a, 2lb, 21c: 압축기 로터 축
22, 22a, 22b, 22c: 벤틸레이션 유로
23: 도입부
24, 24b: 유입부
25: 유입구
26: 분배부
27: 분기부
28: 집합부
29: 스핀들 볼트
32: 캐비티 군
33: 캐비티
33o: 외측 캐비티
33m: 중간 캐비티
33i: 내측 캐비티
38: 볼트 관통 구멍
39, 39a: 토크 핀
41: 로터 디스크
41a: 중간 로터 디스크
49: 날개 부착부
51: 동익 열
51a: 중간 동익 열
52: 동익
61: 정익 열
62: 정익
80: 연소기
110: 터빈
111: 터빈 차실
115: 연소 가스 유로
120, 120a: 터빈 로터
121, 121a: 터빈 로터 축
122: 제2 냉각 공기 유로
123: 제3 냉각 공기 유로
129: 스핀들 볼트
132: 캐비티 군
133: 캐비티
133o: 외측 캐비티
133i: 내측 캐비티
134: 제1 혼합 공기 유로
135: 제2 혼합 공기 유로
136: 제3 혼합 공기 유로
137: 혼합 공기 유로
138: 볼트
138s: 틈
141: 로터 디스크
141a: 제1 로터 디스크
14lb: 제2 로터 디스크
141c: 제3 로터 디스크
149: 날개 부착부
151: 동익 열
151a: 제1 동익 열
15lb: 제2동익 열
151c: 제3동익 열
152: 동익
156: 공기 유로
161: 정익 열
161a: 제1 정익 열
162: 정익
171: 중간 로터 축
177: 혼합 공간
178: 제1 냉각 공기 유로(또는, 단지 냉각 공기 유로)
181: 중간 로터 축 커버
184: 공기 도입 공간
188: 냉각 공기 도입 부재
189: 냉각 공기관
191: 중간 차실
200: 냉각 계통
201: 냉각 공기 라인
205: 냉각기

Claims (8)

  1. 가스 터빈 차실 안에서 축선을 중심으로 하여 회전하는 가스 터빈 로터에 있어서,
    상기 축선을 중심으로 하여 회전하는 압축기의 압축기 로터와,
    상기 축선 위에 위치하여 상기 압축기 로터에 접속되며, 상기 축선을 중심으로 하여 상기 압축기 로터와 일체 회전하는 터빈의 터빈 로터
    를 구비하고,
    상기 압축기의 공기 토출구보다도 축 방향 상류 측으로, 상기 가스 터빈 차실의 내측을 흐르는 압축 공기를 상기 압축기 로터의 내부에 안내하는 벤틸레이션 유로와,
    상기 공기 토출구보다도 축 방향 하류 측의 부분에 상기 벤틸레이션 유로를 흐르는 압축 공기보다도 저온의 냉각 공기를 안내하는 냉각 공기 유로와,
    상기 벤틸레이션 유로 및 상기 냉각 공기 유로에 연결되고, 상기 벤틸레이션 유로를 흘러온 압축 공기와 상기 냉각 공기 유로를 흘러온 냉각 공기가 혼합하는 혼합 공간과,
    상기 혼합 공간에 연결되고, 상기 압축 공기와 상기 냉각 공기와의 혼합에서 생성된 혼합 공기를 상기 터빈 로터 안에 안내하는 혼합 공기 유로
    가 형성되어 있는 가스 터빈 로터.
  2. 제1항에 있어서,
    상기 축선 상으로, 상기 압축기 로터와 상기 터빈 로터 사이에 위치하고, 상기 압축기 로터와 상기 터빈 로터에 접속되어 있는 중간 로터 축을 구비하고,
    상기 중간 로터 축에는, 상기 냉각 공기 유로와 상기 혼합 공간이 형성되어 있는,
    가스 터빈 로터.
  3. 제1항 또는 제2항에 있어서,
    상기 터빈 로터는, 상기 축선을 중심으로 하여 회전하는 터빈 로터 축과, 상기 터빈 로터 축의 외주에 부착되며, 축 방향으로 늘어서는 복수의 동익 열을 가지고,
    상기 혼합 공기 유로는 상기 터빈 로터 축 안을 거쳐서 복수의 동익 열 중 가장 축 방향 상류 측의 제1 동익 열보다도 축 방향 하류 측의 동익 열에 연결되는,
    가스 터빈 로터.
  4. 제3항에 있어서,
    상기 혼합 공간과 연결되는 상기 냉각 공기 유로인 제1 냉각 공기 유로 이외에, 상기 냉각 공기를 상기 제1 동익 열에 안내하는 제2 냉각 공기 유로가 형성되어 있는,
    가스 터빈 로터.
  5. 제4항에 있어서,
    상기 터빈 로터에는, 상기 제2 냉각 공기 유로와 상기 혼합 공기 유로를 연통시키는 제3 냉각 공기 유로가 형성되어 있는,
    가스 터빈 로터.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 압축기 로터는, 상기 축선을 중심으로 하여 회전하는 압축기 로터 축과, 상기 압축기 로터 축의 외주에 부착되며, 축 방향으로 늘어서는 복수의 동익 열을 가지고,
    상기 벤틸레이션 유로는,
    상기 압축기 로터의 상기 복수의 동익 열 중 축 방향에서 인접하는 두 개의 동익 열 사이를 흐르는 압축 공기를 상기 압축기 로터의 내부에 안내하는 도입부와,
    상기 도입부로부터 분기되고, 축 방향에서 서로 상이한 위치에 형성되어, 상기 도입부로부터의 압축 공기가 유입하는 복수의 분기부와,
    상기 복수의 분기부의 각각과 접속되고, 상기 복수의 분기부를 통과한 압축 공기가 흘러들고, 흘러든 압축 공기를 상기 혼합 공간에 유출시키는 집합부
    를 가지는,
    가스 터빈 로터.
  7. 제1항 내지 제6항 중 어느 한 항에 기재한 가스 터빈 로터와,
    상기 가스 터빈 차실
    을 구비하는 가스 터빈.
  8. 제7항에 기재한 가스 터빈과,
    상기 가스 터빈의 상기 압축기에서 압축된 공기인 압축 공기를 냉각하여 상기 냉각 공기를 생성하는 냉각 계통
    을 구비하고,
    상기 가스 터빈은 상기 냉각 계통에서 생성된 상기 냉각 공기를 상기 가스 터빈 로터의 상기 냉각 공기 유로에 안내하는 냉각 공기 도입 부재를 가지는,
    가스 터빈 설비.
KR1020187010705A 2015-10-23 2016-10-21 가스 터빈 로터, 가스 터빈 및 가스 터빈 설비 KR102055117B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015208944A JP6554736B2 (ja) 2015-10-23 2015-10-23 ガスタービンロータ、ガスタービン、及びガスタービン設備
JPJP-P-2015-208944 2015-10-23
PCT/JP2016/081299 WO2017069249A1 (ja) 2015-10-23 2016-10-21 ガスタービンロータ、ガスタービン、及びガスタービン設備

Publications (2)

Publication Number Publication Date
KR20180053382A true KR20180053382A (ko) 2018-05-21
KR102055117B1 KR102055117B1 (ko) 2019-12-12

Family

ID=58557220

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187010705A KR102055117B1 (ko) 2015-10-23 2016-10-21 가스 터빈 로터, 가스 터빈 및 가스 터빈 설비

Country Status (6)

Country Link
US (1) US10738618B2 (ko)
JP (1) JP6554736B2 (ko)
KR (1) KR102055117B1 (ko)
CN (1) CN108138655B (ko)
DE (1) DE112016004845T5 (ko)
WO (1) WO2017069249A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554736B2 (ja) * 2015-10-23 2019-08-07 三菱日立パワーシステムズ株式会社 ガスタービンロータ、ガスタービン、及びガスタービン設備
JP6725273B2 (ja) * 2016-03-11 2020-07-15 三菱日立パワーシステムズ株式会社 翼、これを備えているガスタービン
US10954796B2 (en) * 2018-08-13 2021-03-23 Raytheon Technologies Corporation Rotor bore conditioning for a gas turbine engine
US11352903B2 (en) 2020-01-20 2022-06-07 Raytheon Technologies Corporation Rotor stack bushing with adaptive temperature metering for a gas turbine engine
CN116104651A (zh) * 2023-02-09 2023-05-12 浙江燃创透平机械有限公司 一种燃气轮机径向间隙设计方法及调整结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880913A (ko) * 1971-12-20 1973-10-30
JP2004218480A (ja) 2003-01-10 2004-08-05 Hitachi Ltd ガスタービン

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3428892A1 (de) * 1984-08-04 1986-02-13 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Schaufel- und dichtspaltoptimierungseinrichtung fuer verdichter von gasturbinentriebwerken, insbesondere gasturbinenstrahltriebwerken
JP3758835B2 (ja) * 1997-10-22 2006-03-22 三菱重工業株式会社 空気圧縮機ディスクの冷却によるクリアランス制御方法
JP3329754B2 (ja) * 1998-12-15 2002-09-30 株式会社日立製作所 冷媒回収型ガスタービン
EP1577493A1 (de) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Strömungsmaschine und Rotor für eine Strömungsmaschine
US20080041064A1 (en) * 2006-08-17 2008-02-21 United Technologies Corporation Preswirl pollution air handling with tangential on-board injector for turbine rotor cooling
FR2918414B1 (fr) 2007-07-06 2013-04-12 Snecma Dispositif d'alimentation en air de ventilation des aubes de turbine basse pression d'un moteur a turbine a gaz ; segment pour l'arret axial et la ventilation des aubes de turbine basse pression
FR2930588B1 (fr) * 2008-04-24 2010-06-04 Snecma Rotor de compresseur d'une turbomachine comportant des moyens de prelevement d'air centripete
US9085983B2 (en) 2012-03-29 2015-07-21 General Electric Company Apparatus and method for purging a gas turbine rotor
JP2015208944A (ja) 2014-04-28 2015-11-24 三菱樹脂株式会社 感熱孔版印刷原紙用フィルム
US10018360B2 (en) * 2014-06-06 2018-07-10 United Technologies Corporation Turbine stage cooling
JP6468532B2 (ja) * 2015-04-27 2019-02-13 三菱日立パワーシステムズ株式会社 圧縮機ロータ、圧縮機、及びガスタービン
JP6554736B2 (ja) * 2015-10-23 2019-08-07 三菱日立パワーシステムズ株式会社 ガスタービンロータ、ガスタービン、及びガスタービン設備

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880913A (ko) * 1971-12-20 1973-10-30
JP2004218480A (ja) 2003-01-10 2004-08-05 Hitachi Ltd ガスタービン

Also Published As

Publication number Publication date
JP6554736B2 (ja) 2019-08-07
US10738618B2 (en) 2020-08-11
DE112016004845T5 (de) 2018-07-05
CN108138655B (zh) 2020-05-19
KR102055117B1 (ko) 2019-12-12
CN108138655A (zh) 2018-06-08
WO2017069249A1 (ja) 2017-04-27
JP2017082605A (ja) 2017-05-18
US20190063224A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
KR20180053382A (ko) 가스 터빈 로터, 가스 터빈 및 가스 터빈 설비
US9976485B2 (en) Gas turbine engine buffer cooling system
CA2728958C (en) Cooled turbine rim seal
US8092152B2 (en) Device for cooling slots of a turbomachine rotor disk
AU2011250787B2 (en) Gas turbine of the axial flow type
US8157506B2 (en) Device for supplying ventilation air to the low pressure blades of a gas turbine engine
EP1512843B1 (en) Method of assembling a gas turbine engine and rotor assembly
US10161251B2 (en) Turbomachine rotors with thermal regulation
KR101245094B1 (ko) 터빈 디스크 및 가스 터빈
US20120027598A1 (en) Rotor cover plate retention method
US20170037730A1 (en) Gas turbine
EP2557272B1 (en) Rotor stage for a gas turbine engine and corresponding method of separating oil from an internal flow
US10539035B2 (en) Compliant rotatable inter-stage turbine seal
US20130219920A1 (en) Gas turbine engine cooling system
CN108138656B (zh) 压缩机转子、具备该压缩机转子的燃气轮机转子、以及燃气轮机
US20130283813A1 (en) Gas turbine compressor with bleed path
EP3196422B1 (en) Exhaust frame
US20180066523A1 (en) Two pressure cooling of turbine airfoils
KR20190029963A (ko) 터빈 블레이드의 냉각구조 및 이를 포함하는 터빈 및 가스터빈
CN107075951A (zh) 具有最后一个涡轮级的冷却的燃气轮机
WO2016163977A1 (en) Communication of cooling fluids between turbine airfoils

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right