EP0906493B1 - Turbomaschine sowie verfahren zur kühlung einer turbomaschine - Google Patents

Turbomaschine sowie verfahren zur kühlung einer turbomaschine Download PDF

Info

Publication number
EP0906493B1
EP0906493B1 EP97928113A EP97928113A EP0906493B1 EP 0906493 B1 EP0906493 B1 EP 0906493B1 EP 97928113 A EP97928113 A EP 97928113A EP 97928113 A EP97928113 A EP 97928113A EP 0906493 B1 EP0906493 B1 EP 0906493B1
Authority
EP
European Patent Office
Prior art keywords
cooling
turbomachine
rotor
fluid
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97928113A
Other languages
English (en)
French (fr)
Other versions
EP0906493A1 (de
Inventor
Heinrich Oeynhausen
Edwin Gobrecht
Helmut Pollak
Andreas FELDMÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP0906493A1 publication Critical patent/EP0906493A1/de
Application granted granted Critical
Publication of EP0906493B1 publication Critical patent/EP0906493B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means

Definitions

  • the invention relates to a turbomachine, in particular one Steam turbine, with a housing and at least partially inflow area for action fluid formed by the housing and a method for cooling at least one Inflow area of a component assigned to a turbomachine.
  • the object of the invention is to provide a turbomachine, which in a thermally highly stressed area, in particular an inflow area for action fluid, is coolable.
  • Another object of the invention is a method for cooling at least one adjacent to the inflow area Specify component of the turbomachine.
  • a turbomachine in particular a steam turbine
  • task accomplished by such a which is a housing with an at least partially the housing has an inflow area for action fluid
  • a supply for a cooling fluid in the housing is provided, by cooling the housing, in particular the housing walls adjacent to the inflow area, is feasible.
  • the cooling fluid can process steam from a steam turbine plant with several partial turbines, act separate cooling steam or cooling air.
  • the turbomachine preferably has a shielding element adjacent to the inflow area which is along a major axis in the housing extending blade carrier opposite the action fluid shielded and attached to the housing by a bracket is, the feed through the holder into the shielding element is introduced.
  • the shielding element can be on multiple positions via a bracket or several Brackets to be connected to the housing. It will achieved several cooling effects at the same time, namely one Cooling the housing to those adjacent to the inflow area Walls, cooling the bracket, cooling the Shielding element and thus also cooling of the rotor blade carrier.
  • the holder is preferably in at least one direction seen the first guide vane row integrated into the action fluid.
  • a branch line preferably a plurality of branch lines are provided, which is (are) connected to the feed and into the inflow area and / or one facing away from the inflow area Side. This will provide additional film cooling of the first row of guide vanes.
  • the shielding element preferably also has at least one a branch line, which is connected to the feeder and flows into the inflow area. This leads to film cooling of the shielding element and thus indirectly to one further reduction of the thermal load on the blade carrier.
  • the shielding element can also have a Have connected cavity connected, creating an increased Heat transfer in the shielding element towards the Blade carrier is avoided.
  • a gap is towards the blade carrier formed, into which the feed opens.
  • the gap can thus be filled with cooling fluid, so that heat transfer of the one heated by the action fluid Shielding element is reduced in the blade carrier. Since the shielding element over the bracket with the housing connected, it is spaced from the blade carrier, so that an outflow of the cooling fluid with the between the housing and blade carriers guaranteeing flowing action fluid is. From the gap preferably leads a cooling fluid line, in particular in the form of a radial bore, into the blade carrier. This leads to especially with a blade carrier, made up of two or several rotor disks arranged centrally to each other, by means of a tie rod that runs through appropriate openings are connected to further cooling.
  • cooling fluid into one between the Tie rod and the rotor disk formed annulus.
  • Turbine shaft possible, in particular in that at least one axial running parallel to the main axis Bore is provided, into which the cooling fluid line opens.
  • the turbo machine enables a feed of Cooling fluid through the housing also reduces a leakage flow of action fluid between a gap rotating component (blade, blade carrier) and a fixed component (guide vane, housing) the steam turbine.
  • This can cause these so-called gap losses be reduced by appropriate branch lines in the housing or the blade carrier cooling fluid from the supply, the space or the cooling fluid line can be branched off and guided into this gap.
  • Such a branch line is therefore preferably from the feeder for Cooling fluid guided so that it is in a gap between the housing and blade or vane and blade carrier empties. The sealability of a non-contact seal between a rotating and a fixed component the turbomachine is thus significantly increased.
  • a guidance of cooling fluid is preferably particularly suitable for a turbo machine in which the shielding element for power division and / or for redirecting the action fluid in the direction the main axis is formed.
  • the inflow area is preferred for guiding the action fluid in one direction essentially perpendicular to the main axis of the blade carrier educated.
  • the turbo machine is preferred a double-flow steam turbine, in particular a medium-pressure steam turbine, in which both a current division and a Redirection of the action fluid takes place. Of course is such cooling even with a single-flow steam turbine possible in their inflow area.
  • Process steam from a steam turbine plant as cooling fluid is used over the various branches the entire steam process fed back, the as Cooling fluid used steam when flowing through the feed is heated. Compared to cooling in which the process steam is lost, can also be used Efficiency increase of the steam turbine can be achieved.
  • the on a method of cooling one to the inflow area a turbomachine, in particular a steam turbine, adjacent component directed task is solved by that cooling fluid through at least partially the inflow area forming housing, especially in the area of the inflow area and from there a shielding element to reduce the temperature load one in the Housing arranged blade carrier is supplied.
  • turbo machine shows schematically and not to scale the only figure through a section of a longitudinal section a double-flow medium pressure steam turbine.
  • the section of a turbomachine shown in the figure 1 shows a longitudinal section through a double-flow medium-pressure steam turbine a steam turbine plant.
  • 15 of the turbomachine is one along one Main axis 2 extending blade carrier 11 shown. This is made from a plurality of rotor disks 29, only one of them is shown for the sake of clarity is.
  • a tie rod 28 Through the rotor disk 29 is along the center the main axis 2, a tie rod 28, which the rotor disks assembles to the blade carrier 11.
  • the blade carrier 11 can also be made as one be made in one piece existing turbine shaft.
  • the housing 15 is an inflow region 3 for action fluid 4 formed, which is essentially along an inflow axis 17 extends perpendicular to the main axis 2.
  • a cooling fluid supply 8 provided.
  • This feed 8 goes into one respective guide blade 6 of the first guide blade row 16 about.
  • the first row of guide vanes 16 also serves as a holder 22 for an annular shielding element 19.
  • This Shielding element 19 is arched into the inflow region 3 and thus causes a redirection of the action fluid 4 as well as a shield of the blade carrier 11 (Turbine rotor) compared to this action fluid 4. From the Guide vane 6 guides the feed 8 into the shielding element 19 in.
  • a barrier fluid line 14 provided by the Annular gap 27 open into a blade carrier area 26, which is directly opposite a moving blade 6a. hereby there is a flow of the cooling fluid 5 in the between the blade carrier region 26 and the guide blade 6a Gap in it.
  • the cooling fluid 5 has additional there the effect of a barrier fluid through which a flow of the action fluid 4 prevented through this gap, at least significantly reduced. Let her through the gap losses in a non-contact Seal and thus increase the efficiency of the steam turbine.
  • cooling fluid lines through which cooling fluid 5 can flow 14 are provided in the housing 15 and connect the Feed 8 in the area of the first row of guide vanes 16 a housing area 25, which is directly a blade 7 is opposite. This is in addition to a cooling also a seal of this gap by the now additionally given cooling fluid 5 acting as a barrier fluid.
  • the invention is characterized by a cooling of preferably several components of a turbomachine, the on an inflow area for a hot action fluid, in particular Limit steam above 550 ° C.
  • the cooling takes place by introducing a cooling fluid, in particular process steam a steam turbine system or cooling air, through a supply, which in a near-surface area, the inflow area facing part of the housing is arranged. From there the cooling air through the first row of guide vanes into a shielding element led, which attached to the guide vane row is.
  • Both in the housing, the guide vane, and the Shielding element can be provided branch lines flow into the inflow area and thus film cooling the enable each component.
  • Barrier fluid lines branching off from the supply additionally as a barrier fluid in a gap between a rotating one Component (blade, blade carrier) and one fixed components (guide vane, housing) are guided, creating the seal of a non-contact seal is significantly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft eine Turbomaschine, insbesondere eine Dampfturbine, mit einem Gehäuse und einem zumindest teilweise durch das Gehäuse gebildeten Einströmbereich für Aktionsfluid sowie ein Verfahren zur Kühlung,von zumindest einer einem Einströmbereich einer Turbomaschine zugeordneten Komponente.
Zur Steigerung des Wirkungsgrades einer Dampfturbine trägt die Verwendung von Dampf mit höheren Drücken und Temperaturen bei, insbesondere sogenannte überkritische Dampfzustände, mit einer Temperatur von beispielsweise über 550 °C. Die Verwendung von Dampf mit einem solchen Dampfzustand stellt erhöhte Anforderungen an eine entsprechend beaufschlagte Dampfturbine, insbesondere an die an den Einströmbereich des Aktionsfluides grenzenden Komponenten der Dampfturbine, wie Gehäusewandung und Turbinenwelle.
In dem Artikel "Dampfturbinen für fortgeschrittene Kraftwerkskonzepte mit hohen Dampfzuständen von D. Bergmann, A. Drosdziok und H. Oeynhausen, Siemens Power Journal 1/93, S. 5-10 ist eine Läuferabschirmung mit Drallkühlung beschrieben. Bei der Drallkühlung strömt Dampf durch vier tangentiale Bohrungen in der Läuferabschirmung in Drehrichtung der Turbinenwelle in den Bereich zwischen der Läuferabschirmung und em Läufer, ein. Dabei expandiert der Dampf, die Temperatur sinkt und kühlt dadurch den Läufer. Die Läuferabschirmung ist dampfdicht mit einer Leitschaufelreihe verbunden. Durch die Drallkühlung läßt sich eine Temperaturabsenkung des Läufers in der Umgebung der Läuferabschirmung von etwa 15 K erreichen. Eine nähere Erläuterung dieser Läuferabschirmung, welche die Turbinenwelle mit Abstand umschließt und mit den radial inneren Enden der Leitschaufeln des ersten Leitschaufelkranzes verbunden ist, ist in der EP 0 088 944 B1 beschrieben. In der Läuferabschirmung sind Düsen eingebracht, welche in Drehrichtung der Welle gesehen tangential in den zwischen Welle und Wellenabschirmung gebildeten Ringkanal einmünden. Ein weiteres Beispiel für eine Läuferabschirmung ist der DE 32 09 506 A1 entnehmbar.
In der schweizer Patentschrift 430 757 ist ein Abschirmelement in einem Einströmbereich einer Dampfturbine beschrieben. Dieses Abschirmelement ist mit einer mittig im Einströmbereich, d.h. in dem Strom des heißen Aktionsdampfes, angeordneten Zuführung verbunden. Diese Zuführung dient der Halterung des Abschirmelementes.
In der DE 34 06 071 A1 ist eine zweiflutige Dampfturbine beschrieben, welche in einem Einströmbereich für Heißdampf ein Abschirmelement für eine Turbinenwelle aufweist. Dieses Abschirmelement ist über die ersten Leitschaufelreihen mit dem Gehäuse verbunden. Zwischen dem Abschirmelement und der Turbinenwelle ist ein Spalt gebildet. Das Abschirmelement weist in seiner Mitte einen Einlaß für den Heißdampf auf, wobei der in den Spalt einströmende Heißdampf vor der ersten Laufschaufelreihe in die Hauptströmung des Heißdampfes zurückströmt.
Aufgabe der Erfindung ist,es, eine Turbcmaschine anzugeben, welche in einem thermisch hochbelasteten Bereich, insbesondere einem Einströmbereich für Aktionsfluid, kühlbar ist. Eine weitere Aufgabe der Erfindung liegt darin, ein Verfahren zur Kühlung zumindest einer an den Einströmbereich angrenzenden Komponente der Turbomaschine anzugeben.
Erfindungsgemäß wird die auf eine Turbomaschine, insbesondere eine Dampfturbine, gerichtete Aufgabe durch eine solche gelöst, welche ein Gehäuse mit einem zumindest teilweise durch das Gehäuse gebildeten Einströmbereich für Aktionsfluid aufweist, wobei eine Zuführung für ein Kühlfluid in dem Gehäuse vorgesehen ist, durch die eine Kühlung des Gehäuses, insbesondere der an den Einströmbereich angrenzenden Gehäusewandungen, durchführbar ist. Durch Ausführung eines Gehäuses mit einer solchen Zuführung für Kühlfluid kann auch bei Einströmung von Aktionsfluid in den Einströmbereich mit Temperaturen von oberhalb 550 °C die Temperatur des Gehäuses deutlich erniedrigt werden, wodurch die Verwendung bekannter Werkstoffe, insbesondere martensitischer Chromstähle, möglich ist oder der Einsatz neuer Werkstoffe auf reduziertem Temperaturniveau ermöglicht wird. Bei dem Kühlfluid kann es sich um Prozeßdampf einer Dampfturbinenanlage mit mehreren Teilturbinen, gesondertem Kühldampf oder Kühlluft handeln.
Alternativ oder zusätzlich weist die Turbomaschine vorzugsweise ein an den Einströmbereich angrenzendes Abschirmelement auf, welches einen sich entlang einer Hauptachse in dem Gehäuse erstreckenden Laufschaufelträger gegenüber dem Aktionsfluid abschirmt und durch eine Halterung an dem Gehäuse befestigt ist, wobei die Zuführung durch die Halterung in das Abschirmelement hineingeführt ist. Das Abschirmelement kann an mehreren Stellen über jeweils eine Halterung oder mehrere Halterungen mit dem Gehäuse verbunden sein. Es werden gleichzeitig mehrere Kühlungseffekte erzielt, nämlich eine Kühlung des Gehäuses an den dem Einströmungsbereich angrenzenden Wänden, eine Kühlung der Halterung, eine Kühlung des Abschirmelementes und damit auch eine Kühlung des Laufschaufelträgers. Durch eine sich aus mehreren Teilstrecken zusammensetzende, durch den Strömungsweg des Aktionsfluides hindurchgeführte Zuführung wird mit einer einzigen Kühlfluidströmung eine effektive Kühlung einer Mehrzahl von Komponenten der Turbomaschine erreicht.
Vorzugsweise ist die Halterung in zumindest eine in Richtung des Aktionsfluides gesehen erste Leitschaufelreihe integriert. Zur Erhöhung der Kühlung dieser ersten Leitschaufelreihe, d. h. der Halterung, ist eine Abzweigleitung, vorzugsweise eine Mehrzahl von Abzweigleitungen vorgesehen, welche mit der Zuführung verbunden ist (bzw. sind) und in den Einströmbereich und/oder einer dem Einströmbereich abgewandten Seite münden. Hierdurch wird eine zusätzliche Filmkühlung der ersten Leitschaufelreihe erreicht.
Das Abschirmelement weist vorzugsweise ebenfalls zumindest eine Abzweigleitung auf, die mit der Zuführung verbunden ist und in den Einströmbereich mündet. Dies führt zu einer Filmkühlung des Abschirmelementes und damit mittelbar zu einer weiteren Reduktion der Temperaturbelastung des Laufschaufelträgers. Das Abschirmelement kann zusätzlich einen mit der Zuführung verbundenen Hohlraum aufweisen, wodurch ein erhöhter Wärmeübertrag in dem Abschirmelement in Richtung zu dem Laufschaufelträger hin vermieden wird.
Durch das Abschirmelement, welches insbesondere ringförmig ausgeführt ist, wird hin zu dem Laufschaufelträger ein Zwischenraum gebildet, in den die Zuführung mündet. Der Zwischenraum ist somit mit Kühlfluid füllbar, so daß ein Wärmeübertrag von dem durch das Aktionsfluid aufgeheizten Abschirmelement in den Laufschaufelträger vermindert wird. Da das Abschirmelement über die Halterung mit dem Gehäuse verbunden ist, ist es von dem Laufschaufelträger beabstandet, so daß eine Abströmung des Kühlfluides mit dem zwischen Gehäuse und Laufschaufelträger strömenden Aktionsfluides gewährleistet ist. Von dem Zwischenraum führt vorzugsweise eine Kühlfluidleitung, insbesondere als radiale Bohrung ausgebildet, in den Laufschaufelträger hinein. Dies führt vorallem bei einem Laufschaufelträger, gebildet aus zwei oder mehreren zentrisch zueinander angeordneten Läuferscheiben, die mittels eines durch entsprechende Öffnungen geführten Zugankers verbunden sind, zu einer weiteren Kühlung. Hierbei erfolgt eine Einführung von Kühlfluid in einen zwischen dem Zuganker und der Läuferscheibe gebildeten Ringraum. Selbstverständlich ist auch eine Kühlung einer im wesentlichen einstöckigen Turbinenwelle möglich, insbesondere dadurch, daß zumindest eine parallel zur Hauptachse verlaufende axiale Bohrung vorgesehen ist, in die die Kühlfluidleitung mündet.
Zusätzlich tu einer Kühlung der hochtemperaturbelasteten Komponenten der Turbomaschine ermöglicht eine Zuführung von Kühlfluid durch das Gehäuse hindurch auch eine Verminderung einer Leckströmung von Aktionsfluid zwischen einem Spalt einer rotierenden Komponente (Laufschaufel, Laufschaufelträger) und einer feststehenden Komponente (Leitschaufel, Gehäuse) der Dampfturbine. Diese sogenannten Spaltverluste können dadurch reduziert werden, daß durch entsprechende Abzweigleitungen in dem Gehäuse bzw. dem Laufschaufelträger Kühlfluid aus der Zuführung, dem Zwischenraum oder der Kühlfluidleitung abzweigbar und in diesen Spalt führbar ist. Eine solche Abzweigleitung ist somit vorzugsweise von der Zuführung für Kühlfluid so geführt, daß sie in einem Spalt zwischen Gehäuse und Laufschaufel oder Leitschaufel und Laufschaufelträger mündet. Die Dichtfähigkeit einer berührungslosen Dichtung zwischen einer rotierenden und einer feststehenden Komponente der Turbomaschine wird somit deutlich erhöht.
Vorzugsweise eignet sich eine Führung von Kühlfluid besonders für eine Turbomaschine bei der das Abschirmelement zur Stromteilung und/oder zur Umlenkung des Aktionsfluides in Richtung der Hauptachse ausgebildet ist. Der Einströmbereich ist vorzugsweise für eine Führung des Aktionsfluides in einer Richtung im wesentlichen senkrecht zur Hauptachse des Laufschaufelträgers ausgebildet. Die Turbomaschine ist vorzugsweise eine zweiflutige Dampfturbine, insbesondere eine Mitteldruck-Dampfturbine, in der sowohl eine Stromteilung als auch eine Umlenkung des Aktionsfluides stattfindet. Selbstverständlich ist eine solche Kühlung auch bei einer einflutigen Dampfturbine in deren Einströmbereich möglich.
Wird als Kühlfluid Prozeßdampf aus einer Dampfturbinenanlage verwendet, so wird dieser über die verschiedenen Abzweigungen dem gesamten Dampfprozeß wieder zugeführt, wobei der als Kühlfluid verwendete Dampf bei Durchströmen der Zuführung aufgeheizt wird. Gegenüber einer Kühlung, bei der der Prozeßdampf verlorengeht, kann hiermit gegebenenfalls auch eine Wirkungsgraderhöhung der Dampfturbine erreicht werden.
Die auf ein Verfahren zur Kühlung einer an den Einströmbereich einer Turbomaschine, insbesondere einer Dampfturbine, angrenzenden Komponente gerichtete Aufgabe, wird dadurch gelöst, daß Kühlfluid durch ein zumindest teilweise den Einströmbereich bildendes Gehäuse, insbesondere in der Umgebung des Einströmbereiches geleitet und von dort einem Abschirmelement zur Reduktion der Temperaturbelastung eines in dem Gehäuse angeordneten Laufschaufelträgers zugeführt wird.
Anhand des in der Zeichnung dargestellten Ausführungsbeispieles werden die Turbomaschine sowie das Verfahren zur Kühlung näher erläutert. Es zeigt schematisch und nicht maßstäblich die einzige Figur einen Ausschnitt eines Längsschnittes durch eine zweiflutige Mitteldruck-Dampfturbine.
Der in der Figur dargestellte Ausschnitt einer Turbomaschine 1 zeigt einen Längsschnitt durch eine zweiflutige Mitteldruck-Dampfturbine einer Dampfturbinenanlage. In einem Gehäuse 15 der Turbomaschine ist ein sich entlang einer Hauptachse 2 erstreckender Laufschaufelträger 11 dargestellt. Dieser ist aus einer Mehrzahl von Läuferscheiben 29 hergestellt, von denen der Übersichtlichkeit halber nur eine dargestellt ist. Durch die Läuferscheibe 29 ist zentral entlang der Hauptachse 2 ein Zuganker 28 geführt, der die Läuferscheiben zu dem Laufschaufelträger 11 zusammenfügt. Selbstverständlich kann der Laufschaufelträger 11 auch als eine aus einem Stück bestehende Turbinenwelle hergestellt sein. Durch das Gehäuse 15 ist ein Einströmbereich 3 für Aktionsfluid 4 gebildet, welcher sich im wesentlichen entlang einer Einströmachse 17 senkrecht zur Hauptachse 2 erstreckt. Durch das Gehäuse 15 ist in der Nähe des Einströmbereiches 3 im wesentlichen ebenfalls parallel zur Einströmachse 17 eine Kühlfluidzuführung 8 vorgesehen. Diese Zuführung 8 geht in eine jeweilige Leitschaufel 6 der ersten Leitschaufelreihe 16 über. In der Leitschaufel 6 oder in mehreren Leitschaufeln zweigen Abzweigleitungen 23 ab, die in den Einströmbereich 3 münden. Die erste Leitschaufelreihe 16 dient zudem als Halterung 22 für ein ringförmiges Abschirmelement 19. Dieses Abschirmelement 19 ist in den Einströmbereich 3 hineingewölbt und bewirkt somit sowohl eine Umlenkung des Aktionsfluides 4 als auch eine Abschirmung des Laufschaufelträgers 11 (Turbinenläufer) gegenüber diesem Aktionsfluid 4. Von der Leitschaufel 6 führt die Zuführung 8 in das Abschirmelement 19 hinein. Dieses weist einen mit der Zuführung 8 verbundenen Hohlraum 18 auf, der sich im wesentlichen parallel zur Hauptachse 2 erstreckt und teilweise in Richtung des Einströmbereiches 3 verbreitert ist. Von dem Hohlraum 18 zweigen Abzweigleitungen 24 ab, die in den Einströmbereich 3 münden. Hierdurch wird, wie durch die Abzweigleitungen 23 der Leitschaufeln 6, eine entsprechende Filmkühlung des Abschirmelementes 19 erreicht. Von dem Abschirmelement 19 mündet die Zuführung 8 in einen zwischen dem Abschirmelement 19 und dem Laufschaufelträger 11 gebildeten Zwischenraum 9. Das darin eintretende Kühlfluid 5 strömt zumindest teilweise in axialer Richtung aus dem Zwischenraum 9 in die Strömung des Aktionsfluides 4 hinein und durchläuft somit die aus den Laufschaufeln 7 und den nachgeordneten Leitschaufeln 6a gebildeten Turbinenstufen. Von dem Zwischenraum 9 führt eine als axiale Bohrung ausgebildete Kühlfluidleitung 13 in den Laufschaufelträger 11 hinein und mündet dort in einen zwischen dem Zuganker 28 und der Läuferscheibe 29 gebildeten Ringspalt 27.
Durch das darin einströmende Kühlfluid 5 wird wärme aus dem Laufschaufelträger 11 abgeführt. Zusätzlich ist in der Läuferscheibe 29 bzw. einer oder mehrerer nachgeordneter Läuferscheiben, eine Sperrfluidleitung 14 vorgesehen, die von dem Ringspalt 27 in einen Laufschaufelträgerbereich 26 münden, der unmittelbar einer Laufschaufel 6a gegenüberliegt. Hierdurch erfolgt eine Strömung des Kühlfluides 5 in den zwischen dem Laufschaufelträgerbereich 26 und der Leitschaufel 6a gebildeten Spalt hinein. Das Kühlfluid 5 hat dort zusätzlich die Wirkung eines Sperrfluides durch welches eine Strömung des Aktionsfluides 4 durch diesen Spalt hindurch verhindert, zumindest aber deutlich verringert wird. Hierdurch lassen sich zusätzlich die Spaltverluste bei einer berührungsfreien Dichtung und somit auch der Wirkungsgrad der Dampfturbine erhöhen. Weitere von Kühlfluid 5 durchströmbare Sperrfluidleitungen 14 sind in dem Gehäuse 15 vorgesehen und verbinden die Zuführung 8 im Bereich der ersten Leitschaufelreihe 16 mit einem Gehäusebereich 25, welcher unmittelbar einer Laufschaufel 7 gegenüberliegt. Hierdurch ist neben einer Kühlüng ebenfalls eine Abdichtung dieses Spaltes durch das nunmehr zusätzlich als Sperrfluid wirkende Kühlfluid 5 gegeben.
Die Erfindung zeichnet sich durch eine Kühlung von vorzugsweise mehreren Komponenten einer Turbomaschine aus, die an einen Einströmbereich für ein heißes Aktionsfluid, insbesondere Dampf von über 550 °C, angrenzen. Die Kühlung erfolgt durch Einleitung eines Kühlfluides, insbesondere Prozeßdampf einer Dampfturbinenanlage oder Kühlluft, durch eine Zuführung, welche in einem oberflächennahen, dem Einströmbereich zugewandten Teil des Gehäuses angeordnet ist. Von dort wird die Kühlluft durch die erste Leitschaufelreihe in ein Abschirmelement geführt, welches an der Leitschaufelreihe befestigt ist. Sowohl in dem Gehäuse, der Leitschaufel, und dem Abschirmelement können Abzweigleitungen vorgesehen sein, die in den Einströmbereich münden und somit eine Filmkühlung der jeweiligen Komponente ermöglichen. Darüber hinaus kann durch von der Zuführung abzweigende Sperrfluidleitungen Kühlfluid zusätzlich als Sperrfluid in einen Spalt zwischen eine rotierende Komponente (Laufschaufel, Laufschaufelträger) und eine feststehende Komponente (Leitschaufel, Gehäuse) geführt werden, wodurch die Abdichtung einer berührungsfreien Dichtung deutlich verbessert wird.

Claims (9)

  1. Turbomaschine (1), insbesondere Dampfturbine, mit einem Gehäuse (15) und einem zumindest teilweise durch das Gehäuse (15) gebildeten Einströmbereich (3) für Aktionsfluid (4), mit einer Zuführung (8) für ein Kühlfluid (5), mit einem in dem Gehäuse (15) angeordneten, sich entlang einer Hauptachse (2) erstreckenden Laufschaufelträger (11), und mit einem in dem Einströmbereich (3) angeordneten Abschirmelement (19), welches der Abschirmung des Laufschaufelträgers (11) gegenüber dem Aktionsfluid (4) dient und durch eine Halterung (22) an dem Gehäuse (15) befestigt ist, wobei die Zuführung (8) durch die Halterung (22) geführt ist, wobei zwischen dem Abschirmelement (19) und dem Laufschaufelträger (11) ein Zwischenraum (9) gebildet ist, in den die Zuführung (8) mündet,
    dadurch gekennzeichnet,dass
    die Halterung (22) als eine erste Leitschaufel (6) ausgebildet ist.
  2. Turbomaschine (1) nach Anspruch 1, bei der die Zuführung in dem Gehäuse (15) zumindest teilweise in der Umgebung des Einströmbereichs (3) zu dessen Kühlung geführt ist.
  3. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der die Halterung (22) zumindest eine mit der Zuführung (8) verbundene Abzweigleitung (23) aufweist, welche in den Einströmbereich (3) mündet.
  4. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der in dem Abschirmelement (19) zumindest eine Abzweigleitung (24) vorgesehen ist, die mit der Zuführung (8) verbunden ist und in den Einströmbereich (3) mündet.
  5. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der eine Kühlfluidleitung (13) von dem Zwischenraum (9) in den Laufschaufelträger (11) geführt ist.
  6. Turbomaschine (1) nach Anspruch 5 , bei der der Laufschaufelträger (11) zumindest zwei Läuferscheiben (29) aufweist, die durch einen Zuganker (28) miteinander verbunden sind, wobei die Kühlfluidleitung (13) in einen Ringraum (27) zwischen einer Läuferscheibe (29) und einem Zuganker (28) mündet.
  7. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der das Abschirmelement (19) zur Fluidstromleitung und/oder zur Fluidumlenkung in Richtung der Hauptachse (2) ausgebildet ist.
  8. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der zumindest eine Sperrfluidleitung (14) vorgesehen ist, die mit der Zuführung (8) verbunden ist und in einem Gehäusebereich (25) gegenüberliegend einer Laufschaufel (7) oder in einem Laufschaufelträgerbereich (26) gegenüberliegend einer Leitschaufel (6a) mündet.
  9. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, die eine zweiflutigen Mitteldruck-Dampfturbine (15) ist.
EP97928113A 1996-06-21 1997-06-09 Turbomaschine sowie verfahren zur kühlung einer turbomaschine Expired - Lifetime EP0906493B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19624805 1996-06-21
DE19624805 1996-06-21
PCT/DE1997/001162 WO1997049900A1 (de) 1996-06-21 1997-06-09 Turbomaschine sowie verfahren zur kühlung einer turbomaschine

Publications (2)

Publication Number Publication Date
EP0906493A1 EP0906493A1 (de) 1999-04-07
EP0906493B1 true EP0906493B1 (de) 2003-08-20

Family

ID=7797593

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97923804A Expired - Lifetime EP0906494B1 (de) 1996-06-21 1997-05-12 Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
EP97928113A Expired - Lifetime EP0906493B1 (de) 1996-06-21 1997-06-09 Turbomaschine sowie verfahren zur kühlung einer turbomaschine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP97923804A Expired - Lifetime EP0906494B1 (de) 1996-06-21 1997-05-12 Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle

Country Status (12)

Country Link
US (2) US6048169A (de)
EP (2) EP0906494B1 (de)
JP (2) JP3943136B2 (de)
KR (2) KR20000022066A (de)
CN (2) CN1106496C (de)
AT (2) ATE230065T1 (de)
CZ (2) CZ423498A3 (de)
DE (2) DE59709016D1 (de)
ES (1) ES2206724T3 (de)
PL (2) PL330755A1 (de)
RU (2) RU2182976C2 (de)
WO (2) WO1997049901A1 (de)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443102B2 (ja) 2001-03-23 2003-09-02 山一電機株式会社 カードコネクタ
EP1445427A1 (de) * 2003-02-05 2004-08-11 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betreiben einer Dampfturbine
EP1452688A1 (de) 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
US6854954B2 (en) * 2003-03-03 2005-02-15 General Electric Company Methods and apparatus for assembling turbine engines
EP1473442B1 (de) * 2003-04-30 2014-04-23 Kabushiki Kaisha Toshiba Dampfturbine, Dampfkraftwerk und Methode zum Betreiben einer Dampfturbine in einem Dampfkraftwerk
US7056084B2 (en) * 2003-05-20 2006-06-06 Kabushiki Kaisha Toshiba Steam turbine
JP4509664B2 (ja) * 2003-07-30 2010-07-21 株式会社東芝 蒸気タービン発電設備
DE10355738A1 (de) * 2003-11-28 2005-06-16 Alstom Technology Ltd Rotor für eine Turbine
EP1624155A1 (de) 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betrieb einer Dampfturbine
US7357618B2 (en) * 2005-05-25 2008-04-15 General Electric Company Flow splitter for steam turbines
US20070065273A1 (en) 2005-09-22 2007-03-22 General Electric Company Methods and apparatus for double flow turbine first stage cooling
EP1785586B1 (de) * 2005-10-20 2014-05-07 Siemens Aktiengesellschaft Rotor einer Strömungsmaschine
EP1780376A1 (de) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Dampfturbine
US7322789B2 (en) * 2005-11-07 2008-01-29 General Electric Company Methods and apparatus for channeling steam flow to turbines
US7537430B2 (en) * 2005-11-11 2009-05-26 General Electric Company Stacked reaction steam turbine rotor assembly
US7874795B2 (en) * 2006-09-11 2011-01-25 General Electric Company Turbine nozzle assemblies
EP1911933A1 (de) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Rotor für eine Strömungsmaschine
US7670108B2 (en) * 2006-11-21 2010-03-02 Siemens Energy, Inc. Air seal unit adapted to be positioned adjacent blade structure in a gas turbine
US8257015B2 (en) * 2008-02-14 2012-09-04 General Electric Company Apparatus for cooling rotary components within a steam turbine
US8113764B2 (en) 2008-03-20 2012-02-14 General Electric Company Steam turbine and a method of determining leakage within a steam turbine
US8096748B2 (en) * 2008-05-15 2012-01-17 General Electric Company Apparatus and method for double flow turbine first stage cooling
US8087871B2 (en) * 2009-05-28 2012-01-03 General Electric Company Turbomachine compressor wheel member
US20110158819A1 (en) * 2009-12-30 2011-06-30 General Electric Company Internal reaction steam turbine cooling arrangement
US8657562B2 (en) * 2010-11-19 2014-02-25 General Electric Company Self-aligning flow splitter for steam turbine
RU2539404C2 (ru) * 2010-11-29 2015-01-20 Альстом Текнолоджи Лтд Осевая газовая турбина
EP2503101A2 (de) * 2011-03-22 2012-09-26 General Electric Company System zur Regulierung einer Kühlflüssigkeit in einer Turbomaschine
US8888436B2 (en) 2011-06-23 2014-11-18 General Electric Company Systems and methods for cooling high pressure and intermediate pressure sections of a steam turbine
US8899909B2 (en) 2011-06-27 2014-12-02 General Electric Company Systems and methods for steam turbine wheel space cooling
US8888437B2 (en) 2011-10-19 2014-11-18 General Electric Company Dual-flow steam turbine with steam cooling
US20130259662A1 (en) * 2012-03-29 2013-10-03 General Electric Company Rotor and wheel cooling assembly for a steam turbine system
US20130323009A1 (en) * 2012-05-31 2013-12-05 Mark Kevin Bowen Methods and apparatus for cooling rotary components within a steam turbine
CN103603694B (zh) * 2013-12-04 2015-07-29 上海金通灵动力科技有限公司 一种降低汽轮机主轴轴承处工作温度的结构
EP2918788A1 (de) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Verfahren zum Abkühlen einer Dampfturbine
US10208609B2 (en) 2014-06-09 2019-02-19 General Electric Company Turbine and methods of assembling the same
EP3009597A1 (de) * 2014-10-15 2016-04-20 Siemens Aktiengesellschaft Kontrollierte Kühlung von Turbinenwellen
EP3056663A1 (de) * 2015-02-10 2016-08-17 Siemens Aktiengesellschaft Axial beaufschlagte Dampfturbine, insbesondere in zweiflutiger Ausführung
RU2665797C1 (ru) * 2016-07-04 2018-09-04 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Способ и устройство охлаждения вала авиационного газотурбинного двигателя
CN109236378A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的单流高温转子
CN109236379A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的双流高温转子
JP7271408B2 (ja) * 2019-12-10 2023-05-11 東芝エネルギーシステムズ株式会社 タービンロータ
CN111520195B (zh) * 2020-04-03 2022-05-10 东方电气集团东方汽轮机有限公司 一种汽轮机低压进汽室导流结构及其参数设计方法
CN113914946A (zh) * 2021-10-29 2022-01-11 华能上海燃机发电有限责任公司 一种联合循环机组的透平端轴承热控线缆冷却装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2657901A (en) * 1945-06-08 1953-11-03 Power Jets Res & Dev Ltd Construction of turbine rotors
CH259566A (de) * 1947-08-09 1949-01-31 Sulzer Ag Läufer für Kreiselmaschinen, insbesondere Gasturbinen.
US2826895A (en) * 1953-09-03 1958-03-18 Fairchild Engine & Airplane Bearing cooling system
CH430757A (de) * 1963-01-18 1967-02-28 Siemens Ag Dampfturbine
DE1551210A1 (de) * 1966-06-18 1970-01-15 Siemens Ag Scheibenlaeufer fuer Turbinen,die zum Antrieb von Wechselstromgeneratoren dienen
JPS5650084B2 (de) * 1972-04-26 1981-11-26
US4242041A (en) * 1979-01-15 1980-12-30 Westinghouse Electric Corp. Rotor cooling for double axial flow turbines
EP0040267B1 (de) * 1980-05-19 1985-10-09 BBC Aktiengesellschaft Brown, Boveri & Cie. Gekühlter Leitschaufelträger
US4312624A (en) * 1980-11-10 1982-01-26 United Technologies Corporation Air cooled hollow vane construction
JPS57188702A (en) * 1981-05-15 1982-11-19 Toshiba Corp Steam turbine rotor cooling method
JPS5830405A (ja) * 1981-08-19 1983-02-22 Hitachi Ltd 軸流機械のロ−タ取付装置
JPS58155203A (ja) * 1982-03-12 1983-09-14 Toshiba Corp 蒸気タ−ビン
DE3209506A1 (de) * 1982-03-16 1983-09-22 Kraftwerk Union AG, 4330 Mülheim Axial beaufschlagte dampfturbine, insbesondere in zweiflutiger ausfuehrung
JPS59153901A (ja) * 1983-02-21 1984-09-01 Fuji Electric Co Ltd 蒸気タ−ビンロ−タの冷却装置
JPS59155503A (ja) * 1983-02-24 1984-09-04 Toshiba Corp 軸流タ−ビンのロ−タ冷却装置
DE3424139C2 (de) * 1984-06-30 1996-02-22 Bbc Brown Boveri & Cie Gasturbinenrotor
US5020318A (en) * 1987-11-05 1991-06-04 General Electric Company Aircraft engine frame construction
JP2756117B2 (ja) * 1987-11-25 1998-05-25 株式会社日立製作所 ガスタービンロータ
SU1537840A1 (ru) * 1988-04-11 1990-01-23 Научно-Производственное Объединение По Исследованию И Проектированию Энергетического Оборудования Им.И.И.Ползунова Устройство дл охлаждени ротора паровой турбины
SU1673734A1 (ru) * 1989-05-10 1991-08-30 Научно-Производственное Объединение По Исследованию И Проектированию Энергетического Оборудования Им.И.И.Ползунова Устройство дл охлаждени ротора паровой турбины
US5054996A (en) * 1990-07-27 1991-10-08 General Electric Company Thermal linear actuator for rotor air flow control in a gas turbine
US5224818A (en) * 1991-11-01 1993-07-06 General Electric Company Air transfer bushing
US5292227A (en) * 1992-12-10 1994-03-08 General Electric Company Turbine frame
JPH06330702A (ja) * 1993-05-26 1994-11-29 Ishikawajima Harima Heavy Ind Co Ltd タービンディスク
DE4324034A1 (de) * 1993-07-17 1995-01-19 Abb Management Ag Gasturbine mit gekühltem Rotor

Also Published As

Publication number Publication date
US6102654A (en) 2000-08-15
WO1997049900A1 (de) 1997-12-31
ATE247766T1 (de) 2003-09-15
CN1106496C (zh) 2003-04-23
JP2000512708A (ja) 2000-09-26
ATE230065T1 (de) 2003-01-15
PL330755A1 (en) 1999-05-24
CN1227619A (zh) 1999-09-01
KR20000022066A (ko) 2000-04-25
EP0906494B1 (de) 2002-12-18
EP0906494A1 (de) 1999-04-07
EP0906493A1 (de) 1999-04-07
CN1100193C (zh) 2003-01-29
DE59710625D1 (de) 2003-09-25
CN1228134A (zh) 1999-09-08
CZ422798A3 (cs) 1999-04-14
RU2182975C2 (ru) 2002-05-27
JP2000512706A (ja) 2000-09-26
CZ423498A3 (cs) 1999-04-14
KR20000022065A (ko) 2000-04-25
DE59709016D1 (de) 2003-01-30
JP3939762B2 (ja) 2007-07-04
JP3943136B2 (ja) 2007-07-11
US6048169A (en) 2000-04-11
RU2182976C2 (ru) 2002-05-27
WO1997049901A1 (de) 1997-12-31
PL330425A1 (en) 1999-05-10
ES2206724T3 (es) 2004-05-16

Similar Documents

Publication Publication Date Title
EP0906493B1 (de) Turbomaschine sowie verfahren zur kühlung einer turbomaschine
DE19620828C1 (de) Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
EP1505254B1 (de) Gasturbine und zugehöriges Kühlverfahren
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
DE2261443A1 (de) Turbinenanordnung mit zweistromkuehlung fuer gasturbinentriebwerke
EP1111189B1 (de) Kühlluftführung für den Turbinenrotor eines Gasturbinen-Triebwerkes
EP0122872B1 (de) MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung
EP2818724B1 (de) Strömungsmaschine und Verfahren
EP0953099B1 (de) Dampfturbine
EP2092164B1 (de) Strömungsmaschine, insbesondere gasturbine
EP1245806A1 (de) Gekühlte Gasturbinenschaufel
EP3130748A1 (de) Rotorkühlung für eine dampfturbine
EP3095957B1 (de) Rotorscheibe zur verwendung in einem verdichter
DE10392802B4 (de) Dampfturbine
WO2001086121A1 (de) Verfahren zur kühlung einer welle in einem hochdruck-expansionsabschnitt einer dampfturbine
DE102010012583A1 (de) Verfahren zum Betrieb einer Dampfturbine mit einem Impulsrotor sowie Dampfturbine zur Durchführung des Verfahrens
EP3155226B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP1456507B1 (de) Dichtungsbaugruppe für komponenten einer strömungsmaschine
EP2324208B1 (de) Turbinenleitschaufelträger für eine gasturbine und verfahren zum betrieb einer gasturbine
DE3424139A1 (de) Rotor, im wesentlichen bestehend aus einer trommel und einer zu kuehlenden scheibe
EP1734292A1 (de) Dichtungsmittel für eine Strömungsmaschine
DE102012109719A1 (de) Zweiflutige Dampfturbine mit Dampfkühlung
EP1676977A1 (de) Gasturbine mit einem Vordrallerzeuger sowie Verfahren zum Betreiben einer Gasturbine
EP1788191B1 (de) Dampfturbine sowie Verfahren zur Kühlung einer Dampfturbine
DE3817986A1 (de) Gasturbinenanlage mit zwischenkuehlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20011205

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

REF Corresponds to:

Ref document number: 59710625

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031204

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2206724

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040609

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130610

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130909

Year of fee payment: 17

Ref country code: ES

Payment date: 20130711

Year of fee payment: 17

Ref country code: DE

Payment date: 20130819

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710625

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140609

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710625

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140609

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140610