EP2818724B1 - Strömungsmaschine und Verfahren - Google Patents

Strömungsmaschine und Verfahren Download PDF

Info

Publication number
EP2818724B1
EP2818724B1 EP13174062.3A EP13174062A EP2818724B1 EP 2818724 B1 EP2818724 B1 EP 2818724B1 EP 13174062 A EP13174062 A EP 13174062A EP 2818724 B1 EP2818724 B1 EP 2818724B1
Authority
EP
European Patent Office
Prior art keywords
housing
region
turbomachine
circulation structure
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13174062.3A
Other languages
English (en)
French (fr)
Other versions
EP2818724A1 (de
Inventor
Georg Zotz
Giovanni Dr. Brignole
Harsimar Dr. Sahota
Vitalis Mairhanser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP13174062.3A priority Critical patent/EP2818724B1/de
Priority to US14/315,066 priority patent/US10151206B2/en
Publication of EP2818724A1 publication Critical patent/EP2818724A1/de
Application granted granted Critical
Publication of EP2818724B1 publication Critical patent/EP2818724B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making

Definitions

  • the invention relates to a turbomachine with at least one circulation structure according to the preamble of patent claim 1, as well as a method for introducing a circulation structure into a housing of a turbomachine.
  • the pamphlets JP 63 183204 and EP 2 434 165 A1 disclose a circulation structure for a turbomachine, with a structural housing that is divided in a parting plane into a front structural area and a rear structural area.
  • Circulation structures or recirculation structures for fluid flow machines such as gas turbines and in particular their compressors are known as so-called “casing treatments” and "hub treatments".
  • the primary task of the circulation structures is to increase an aerodynamically stable operating range of the compressor by optimizing the surge limit.
  • An optimized surge limit distance enables higher compressor pressures and thus a higher compressor load.
  • the disturbances responsible for a local flow stall and ultimately for the pumping of the compressor occur at the housing-side ends of the rotor blades of one or more compressor stages or at the hub-side, radially inner ends of the guide vanes, since the aerodynamic load in the compressor is highest in these areas .
  • the flow in the area of the blade ends is stabilized by the circulation structures.
  • a fluid machine with such a circulation structure is in the DE102008010283A1 shown.
  • the circulation structure is arranged in the compressor of the turbomachine, in particular a gas turbine, and has an annular space which is oriented coaxially to the axis of rotation of a rotor of the turbomachine and is open to the main flow path. Seen in the main flow direction of the main flow path, a plurality of chambers through which a flow can flow in the axial direction are positioned upstream of the annular space.
  • a turbo machine with an alternative circulation structure is in the EP1478828B1 shown.
  • This circulation structure also has an annular space which is oriented coaxially to the axis of rotation of a rotor of the turbomachine and is open to the main flow path, in which, however, a multiplicity of flow guide elements are arranged.
  • a circulation structure according to the invention of the claimed turbomachine has a two-part structural housing which is divided in a radial parting plane into a front structural area and a rear structural area.
  • the at least two-part design of the circulation structure simplifies its manufacture and, in particular, its integration into a turbo-machine housing.
  • the effect of the circulation structure can be improved if it has flow guide elements in the front structural area.
  • the flow guide elements can have different lateral spacings from one another, different geometries and / or different positions to one another.
  • the flow guide elements can thus have variable circumferential positions and geometries or courses, whereby the circulation structure can be set specifically to the respective application.
  • the turbomachine has at least one circulation structure which has an annular space with flow guide elements which surrounds a main flow path and is open to it.
  • a two-part housing of the turbomachine for receiving the circulation structure is divided in a radial parting plane into a front housing area and a rear housing area.
  • the front structural area and the rear structural area can be formed by individual insert or insert elements, cladding segments or liners and the like, which are separated in the circumferential direction and can be assembled to form a ring, or by ring segments closed in the circumferential direction.
  • the axial division of the turbomachine housing and the circulation structure also enables the front structural area of the circulation structure, for example, to be brought directly into the front housing area of the turbomachine, since alternative milling paths and tools can be used through the lateral access provided by the axial division. In this way, the circulation structure can also be enlarged or made more compact.
  • the terms "front” and “rear” each relate in the flow direction of a main flow through which the main flow path flows.
  • the introduction of the circulation structure can also be simplified if the same radial parting plane of the housing in the assembled state is the same as the radial parting plane of the circulation structure.
  • the rear structural area can be set back somewhat in relation to the parting planes in the assembled state, so that a minimal annular gap is formed between the structural areas in the assembled state.
  • the flow guide elements are formed in the front structural area which is inserted into the front housing area.
  • the front structural area is composed of a multiplicity of insert or slide-in segments which are divided from one another in the circumferential direction and which are manufactured separately from the front housing area.
  • the front structural area is a single circumferentially closed ring element which is manufactured separately from the front housing area. The separate manufacture of the front housing area and the front structural area enables the manufacture of the flow guide elements to be simplified.
  • the flow guide elements are introduced directly into the front housing area.
  • separate insert or slide-in segments or a separate ring element for forming the front structural area are dispensed with, which means that fewer parts have to be assembled.
  • the integral design of the front structural area in the front housing area reduces the weight of the turbomachine or its housing.
  • the rear structural area is preferably an integral front body section of a cladding element inserted into the rear housing area.
  • the cladding element can consist of a multiplicity of individual cladding segments divided in the circumferential direction, which together form a closed ring, or it can be a single cladding ring.
  • the body section can be a holding section of the cladding element for fastening the cladding element on or in the rear housing area, so that no additional sections have to be attached to the cladding element or its segments.
  • the production of the flow guide elements can be simplified by the separate production of the rear housing area and the rear structural area.
  • the cladding element carries a rubbing or running-in coating extending over the cladding element in the circumferential direction and forming a closed ring, so that a blade tip side flow around a row of blades opposite the cladding element is prevented.
  • a housing of the turbomachine which is divided in a radial parting plane into a front housing area and a rear housing area.
  • a front structural area of the circulation structure is then introduced into the front housing area and a rear structural area of the circulation structure is introduced into the rear housing area. Then the housing areas are joined in the parting line.
  • the method enables a simple one Introducing and especially an optimal alignment of the circulation structure.
  • Introducing in this case means both the insertion of structural areas of the circulation structure produced separately from the turbo-engine housing and an integral formation of the structural areas in the turbo-engine housing, for example by means of a milling process.
  • air ducts are worked out between flow guide elements in a single processing step. This measure shortens the production time of the circulation structure compared to known production times.
  • An exemplary tool is an end mill.
  • the tool agitation is preferably selected in such a way that flow properties of the flow guide elements remain unaffected or almost unaffected by this.
  • the rear structural area can be turned out, for example.
  • the rear structural area is formed integrally or directly in the rear housing section, as a result of which fewer parts have to be assembled. If, in addition, the front structural area is worked out directly in the front housing area, for example by means of milling processes, only the housing areas need to be assembled.
  • transition radii of the flow guide elements from the base of the air ducts can be processed separately after the air ducts have been milled. This can be done, for example, by means of an alternative end mill with a milling radius that is reduced compared to the end mill used to form the air ducts.
  • FIG 1 a longitudinal section through a main flow path or flow channel 1 of a turbomachine in the area of its stator housing 2 is shown.
  • a section through a circulation structure 4 introduced into the stator housing 2 is shown.
  • the flow channel 1 is carried by a main flow as shown in FIG Figure 1 flows through from left to right.
  • the turbomachine is, for example, a gas turbine and in particular an aircraft engine.
  • the stator housing 2 forms a part of the housing of the turbomachine and is preferably a compressor of the turbomachine.
  • a guide vane ring 6, which is adjustably mounted in the stator housing 2, and a rotor blade row 8 assigned to a rotor are arranged in the flow channel 1.
  • the guide vane ring 6 is arranged in front of the rotor blade row 8 or the rotor blade row 8 behind the guide vane ring 6.
  • the stator housing 2 is divided into a front housing area 10 and a rear housing area 12 in a radial parting plane Ts.
  • the housing areas 10, 12 each have one to the flow channel 1 and one to the radial one Parting plane Ts open front annular recess 14 and rear annular recess 16 are provided.
  • the annular expansions 14, 16 are arranged opposite one another in the axial direction or flow direction and together form an approximately U-shaped annular recess.
  • the circulation structure 4 is divided into a front structural area 18 and a rear structural area 20 in a radial parting plane Tz.
  • the radial parting plane Tz is positioned such that it lies on the radial parting plane Ts of the stator housing 2 in the assembled state shown. In the assembled state, the parting planes Ts, Tz are thus identical or congruent.
  • the rear structure area 20 is set back somewhat in the assembled state with respect to the parting planes Ts, Tz, so that as in FIG Figure 1 shown, in the assembled state a minimal annular gap 21 is formed between the structural areas.
  • the rear structural area 20 can also be guided as far as the parting planes Ts, Tz and the front structural area 18 can be set back with respect to the parting planes Ts, Tz in order to form the annular gap 21.
  • the circulation structure 4 defines an annular space 22 which surrounds the flow channel 1 in the radial direction and is open to it.
  • the circulation structure 4 is preferably oriented coaxially to the axis of rotation of the rotor.
  • the front structural region 18 is designed as an insert element 24 inserted into the front annular recess 14, in which a plurality of flow guide elements 26 spaced from one another in the circumferential direction are positioned.
  • the insert element 24 is a ring segment that is closed in the circumferential direction.
  • the flow guide elements 26 have a blade-like profile and are in the circumferential direction via individual air ducts 28 extending approximately in the axial direction (see FIG. Figures 3 to 7 ) spaced from each other.
  • the rear structural region 20 is configured with circumferential symmetry and, in the exemplary embodiment shown, has a circumferential groove facing upstream of the flow guide elements 26.
  • the structural area 20 is integrated in a cladding element 30 which, in the exemplary embodiment shown, is composed of a plurality of cladding segments that are separated from one another in the circumferential direction and, in the assembled state, form a closed ring.
  • the cladding element 30 is a single ring element closed in the circumferential direction.
  • the cladding element 30 is provided with a circumferential abradable coating 32 on its side facing the rotor blade row 8.
  • the rear structural region 20 is formed by an integral front body section 34 of the cladding element 30, which is inserted into the stator-side rear annular extension 16.
  • the body section 34 is a holding section for fastening the cladding element 30 to or in the rear housing area 12.
  • the body section or holding section 34 has a downstream holding ring 36, which is used for fastening the cladding element 30 in an upstream and in the rear housing area 12 introduced annular retaining groove 38 engages positively.
  • FIG. 2 a tool guide for forming a circulation structure 4 is shown, which is introduced integrally into a two-part stator housing 2.
  • the stator housing 2 is as described in FIG Figure 1 divided in two into a front housing area 10 and a rear housing area 12.
  • a front structural area 18 of the circulation structure 4 is arranged in the front housing area 10 and a rear structural area 20 of the circulation structure 4 is arranged in the rear housing area 12.
  • the flow guide elements 26 are introduced into the front housing area 10 by means of a milling tool 40, for example an end mill.
  • the tool guidance is such that air channels 28 formed between the flow guide elements 26 (see Fig. Figures 3 to 5 ) can be produced in a single processing step.
  • the end mill 40 has a milling width which corresponds to a circumferential spacing of the flow guide elements 26 from one another.
  • the rear, circumferentially symmetrical structural area 20 is also formed by means of the end mill 40 in the stator housing 2, and in particular in the rear housing area 12.
  • the rear structural area 20 in the rear housing area 12 can be pre-turned or only rotated prior to milling with the end mill 40. Figure 9 ).
  • the flow guide elements 26 or the air ducts 28 formed between the flow guide elements 26 can have a uniform circumferential positioning.
  • the air channels 28 then have a uniform concave basic contour 42, a uniform angle of incidence a in the circumferential direction, a uniform radial height h and a uniform circumferential width b L.
  • the flow guide elements 26 With uniform circumferential positioning, have a constant circumferential width b S.
  • the width bs corresponds to the width of the end mill 40.
  • the flow guide elements 26 can also have a varying width b S1 , b S2 , whereas the air guide channels have a uniform width b L , so that both the flow guide elements 26 and the air channels 28 have a variable circumferential positioning.
  • angles of attack ⁇ 1 , ⁇ 2 of the air ducts 28 and / or the radial height h 1 , h 2 of the air ducts 28 can vary.
  • the reduced transition radii r r are preferably formed by means of alternative end mills 44 which, compared to the original end mill 40, have a reduced milling radius and a reduced milling width.
  • the reduced milling cutter 44 can be in overlapping paths or, as in FIG Figure 7 shown, be guided in adjacent tracks.
  • the reduced milling cutter 44 are driven into different depths between the flow guide elements 26, so that in addition to a reduction in the transition radii r r , the basic contour 42 itself is also changed.
  • a quasi-flat basic contour 42 can thus be created, which extends almost tangentially to the circumferential direction.
  • a quasi-flat basic contour 42 can thus also be created, which extends obliquely to the circumferential direction.
  • FIG 8 a tool guide for introducing a circulation structure 4 into a one-piece stator housing 2 of a turbomachine is shown.
  • the circulation structure 4 has a front asymmetrical structural area 18 with a multiplicity of flow guide elements 26 and a rear, circumferentially symmetrical structural area 20.
  • the circulation structure 4 is introduced directly into the stator housing 2 by means of mechanical processing.
  • the rear structural area 20 can be machined out of the stator housing 2 using a corresponding milling guide.
  • the rear structural area 20 can be pre-machined in a turning operation as indicated by the gap 46.
  • the rear structural area 20 can also be rotated completely.
  • a turbomachine with at least one circulation structure which has an annular space with flow guide elements, which surrounds a main flow path and is open to the latter, a housing of the turbomachine being divided into a front housing area and a rear housing area for receiving the circulation structure in a radial dividing plane, and that the circulation structure is divided in a radial parting plane into a front structure area and a rear structure area, a circulation structure divided into two in the axial direction and a method.

Description

  • Die Erfindung betrifft eine Strömungsmaschine mit zumindest einer Zirkulationsstruktur nach dem Oberbegriff des Patentanspruchs 1, sowie ein Verfahren zum Einbringen einer Zirkulationsstruktur in ein Gehäuse einer Strömungsmaschine.
  • Die Druckschriften JP 63 183204 und EP 2 434 165 A1 offenbaren eine Zirkulationsstruktur für eine Strömungsmaschine, mit einem Strukturgehäuse, das in einer Trennebene in einen vorderen Strukturbereich und in einen hinteren Strukturbereich geteilt ist.
  • Zirkulationsstrukturen bzw. Rezirkulationsstrukturen für Strömungsmaschinen wie Gasturbinen und insbesondere deren Verdichter sind als sogenannte "Casing Treatments" und "Hub Treatments" bekannt. Die Zirkulationsstrukturen haben primär die Aufgabe, einen aerodynamisch stabilen Betriebsbereich des Verdichters durch eine Optimierung eines Pumpgrenzenabstandes zu erhöhen. Ein optimierter Pumpgrenzenabstand ermöglicht höhere Verdichterdrücke und somit eine höhere Verdichterbelastung. Die für einen örtlichen Strömungsabriss und letztendlich für das Pumpen des Verdichters verantwortlichen Störungen treten an gehäuseseitigen Enden der Laufschaufeln einer bzw. mehrerer Verdichterstufen bzw. an den nabenseitigen, radial innenliegenden Enden der Leitschaufeln auf, da in diesen Bereichen die aerodynamische Belastung im Verdichter am höchsten ist. Durch die Zirkulationsstrukturen wird die Strömung im Bereich der Schaufelenden stabilisiert.
  • Eine Strömungsmaschine mit einer derartigen Zirkulationsstruktur ist in der DE102008010283A1 gezeigt. Die Zirkulationsstruktur ist im Verdichter der Strömungsmaschine insbesondere einer Gasturbine angeordnet und weist einen Ringraum auf, die sich koaxial zur Rotationsachse eines Rotors der Strömungsmaschine orientiert und zum Hauptstrompfad geöffnet ist. In Hauptströmungsrichtung des Hauptstromspfad gesehen, sind stromaufwärts des Ringraums mehrere in Axialrichtung durchströmbare Kammern positioniert. Eine Strömungsmaschine mit einer alternativen Zirkulationsstruktur ist in der EP1478828B1 gezeigt.
  • Diese Zirkulationsstruktur weist ebenfalls einen koaxial zur Rotationsachse eines Rotors der Strömungsmaschine orientierten und zum Hauptstrompfad geöffneten Ringraum auf, in dem jedoch eine Vielzahl von Strömungsleitelementen angeordnet sind.
  • Aufgabe der Erfindung ist es eine Strömungsmaschine mit zumindest einer Zirkulationsstruktur zu schaffen, die eine einfache Einbringung der Zirkulationsstruktur in einem Gehäuse der Strömungsmaschine ermöglicht. Des Weiteren ist es Aufgabe der Erfindung, eine Zirkulationsstruktur zu schaffen, die sich einfach in ein Gehäuse einer Strömungsmaschine einbringen lässt. Ferner ist es Aufgabe der Erfindung ein Verfahren zur einfachen Einbringung einer Zirkulationsstruktur in ein Gehäuse einer Strömungsmaschine zu schaffen.
  • Diese Aufgabe wird gelöst durch eine Strömungsmaschine mit zumindest einer Zirkulationsstruktur mit den Merkmalen des Patentanspruchs 1 und durch ein Verfahren mit den Merkmalen des Patentanspruchs 7.
  • Eine erfindungsgemäße Zirkulationsstruktur der beanspruchten Strömungsmaschine hat ein zweiteiliges Strukturgehäuse, das in einer radialen Trennebene in einen vorderen Strukturbereich und in einen hinteren Strukturbereich geteilt ist. Die zumindest zweiteilige Ausführung der Zirkulationsstruktur vereinfacht deren Fertigung und insbesondere deren Integration in ein Strömungsmaschinengehäuse.
  • Die Wirkung der Zirkulationsstruktur lässt sich verbessern, wenn diese im vorderen Strukturbereich Strömungsleitelemente aufweist. Die Strömungsleitelemente können dabei unterschiedliche seitliche Beabstandungen voneinander, unterschiedliche Geometrien und/ oder unterschiedliche Anstellungen zueinander haben. Die Strömungsleitelemente können somit variable Umfangspositionierungen und Geometrien bzw. Verläufe aufweisen, wodurch die Zirkulationsstruktur gezielt auf den jeweiligen Anwendungsfall eingestellt werden kann.
  • Die Strömungsmaschine hat zumindest eine Zirkulationsstruktur, die einen Ringraum mit Strömungsleitelementen aufweist, der einen Hauptstrompfad umgreift und zu diesem geöffnet ist. Erfindungsgemäß ist ein zweiteiliges Gehäuse der Strömungsmaschine zur Aufnahme der Zirkulationsstruktur in einer radialen Trennebene in einen vorderen Gehäusebereich und einen hinteren Gehäusebereich geteilt.
  • Die Teilung des Strömungsmaschinengehäuses zur Aufnahme der Zirkulationsstruktur in zumindest zwei Gehäusebereiche in Kombination mit der Teilung der Zirkulationsstruktur in zumindest zwei Strukturbereiche vereinfacht die Fertigung und Einbringung der Zirkulationsstruktur. Der vordere Strukturbereich und der hintere Strukturbereich können dabei von einzelnen in Umfangsrichtung getrennten und zu einem Ring zusammensetzbaren Einsatz- bzw. Einschubelementen, Verkleidungssegmenten bzw. Linern und dergleichen oder von in Umfangsrichtung geschlossenen Ringsegmenten gebildet werden. Ebenso ermöglicht die axiale Teilung des Strömungsmaschinengehäuses und der Zirkulationsstruktur, dass beispielsweise der vorderer Strukturbereich der Zirkulationsstruktur unmittelbar in den vorderen Gehäusebereich der Strömungsmaschine eingebracht wird, da durch den durch die axiale Teilung vorhandenen seitlichen Zugang alternative Fräsbahnen und Werkzeuge eingesetzt werden können. Hierdurch kann zudem die Zirkulationsstruktur vergrößert oder kompakter ausgeführt werden. Die Begriffe "vorderer" und "hinterer" beziehen sich jeweils in Strömungsrichtung eines den Hauptstrompfad durchströmten Hauptstroms.
  • Die Einbringung der Zirkulationsstruktur lässt sich zudem dadurch vereinfachen, wenn die gleiche radiale Trennebene des Gehäuses im montierten Zustand gleich der radialen Trennebene der Zirkulationsstruktur ist. Um eine Verklemmung der Zirkulationsstruktur bei der Montage zu vermeiden, kann der hintere Strukturbereich im montierten Zustand etwas gegenüber den Trennebenen zurückgesetzt sein, so dass im montierten Zustand ein minimaler Ringspalt zwischen den Strukturbereichen gebildet ist.
  • Bei einem Ausführungsbeispiel sind die Strömungsleitelemente im vorderen Strukturbereich ausgebildet, der in den vorderen Gehäusebereich eingesetzt ist. Bei diesem Ausführungsbeispiel setzt sich der vordere Strukturbereich aus einer Vielzahl von Einsatz- bzw. Einschubsegmenten zusammen, die in Umfangsrichtung voneinander geteilt sind und getrennt von dem vorderen Gehäusebereich hergestellt werden. Alternativ ist der vordere Strukturbereich ein einzelnes in Umfangsrichtung geschlossenes Ringelement, das getrennt von dem vorderen Gehäusebereich hergestellt wird. Durch die getrennte Herstellung des vorderen Gehäusebereichs und des vorderen Strukturbereichs kann die Fertigung der Strömungsleitelemente vereinfacht werden.
  • Bei einem alternativen Ausführungsbeispiel sind die Strömungsleitelemente unmittelbar in den vorderen Gehäusebereich eingebracht. Hierdurch wird auf separate Einsatz- bzw. Einschubsegmente bzw. auf ein separates Ringelement zur Ausbildung des vorderen Strukturbereiches verzichtet, wodurch grundsätzlich weniger Teile montiert werden müssen. Zudem wird durch die integrale Ausbildung des vorderen Strukturbereichs in dem vorderen Gehäusebereich das Gewicht der Strömungsmaschine bzw. deren Gehäuses reduziert.
  • Bevorzugterweise ist der hintere Strukturbereich ein integraler vorderer Körperabschnitt eines in den hinteren Gehäusebereich eingesetzten Verkleidungselementes. Das Verkleidungselement kann dabei aus einer Vielzahl von einzelnen in Umfangsrichtung geteilten Verkleidungssegmenten bestehen, die zusammen einen geschlossenen Ring bilden, oder ein einzelner Verkleidungsring sein. Der Körperabschnitt kann ein Halteabschnitt des Verkleidungselements zum Befestigen des Verkleidungselements am bzw. im hinteren Gehäusebereich sein, sodass an dem Verkleidungselement bzw. deren Segmenten keine zusätzlichen Abschnitte angebracht werden müssen. Durch die getrennte Herstellung des hinteren Gehäusebereichs und des hinteren Strukturbereichs kann die Fertigung der Strömungsleitelemente vereinfacht werden. Bevorzugterweise trägt das Verkleidungselement einen sich über das Verkleidungselement in Umfangsrichtung erstreckenden und einen geschlossenen Ring bildenden Anstreif- bzw. Einlaufbelag, sodass eine blattspitzenseitige Umströmung einer dem Verkleidungselement gegenüberliegenden Laufschaufelreihe verhindert wird.
  • Bei einem erfindungsgemäßen Verfahren zum Einbringen einer Zirkulationsstruktur in ein Gehäuse einer Strömungsmaschine wird ein Gehäuse der Strömungsmaschine bereitgestellt, das in einer radialen Trennebene in einen vorderen Gehäusebereich und in einen hinteren Gehäusebereich unterteilt ist. Dann wird in den vorderen Gehäusebereich ein vorderer Strukturbereich der Zirkulationsstruktur und in den hinteren Gehäusebereich ein hinterer Strukturbereich der Zirkulationsstruktur eingebracht. Anschließend werden die Gehäusebereiche in der Trennebene gefügt.
  • Das Verfahren ermöglicht durch die axiale Trennung des Strömungsmaschinengehäuses im Bereich der Zirkulationsstruktur und der radialen Trennung der Zirkulationsstruktur ein einfaches Einbringen und insbesondere eine optimale Ausrichtung der Zirkulationsstruktur. Einbringen bedeutet dabei, sowohl ein Einsetzen von von dem Strömungsmaschinengehäuse getrennt hergestellten Strukturbereichen der Zirkulationsstruktur sowie eine integrale Ausbildung der Strukturbereiche in dem Strömungsmaschinengehäuse, beispielsweise mittels eines Fräsvorganges.
  • Bevorzugterweise werden im vorderen Strukturbereich Luftkanäle zwischen Strömungsleitelementen in jeweils einem einzigen Bearbeitungsgang ausgearbeitet. Durch diese Maßnahme wird die Fertigungsdauer der Zirkulationsstruktur gegenüber bekannten Fertigungsdauern verkürzt. Ein beispielhaftes Werkzeug ist ein Fingerfräser. Die Werkzeugrührung bevorzugterweise dabei derart gewählt, dass Strömungseigenschaften der Strömungsleitelemente hiervon unberührt bzw. nahezu unberührt bleiben.
  • Der hintere Strukturbereich kann beispielsweise ausgedreht werden. Dabei wird der hintere Strukturbereich integral bzw. unmittelbar in dem hinteren Gehäuseabschnitt gebildet, wodurch weniger Teile montiert werden müssen. Wenn zudem der vordere Strukturbereich unmittelbar in dem vorderen Gehäusebereich ausgearbeitet wird, beispielsweise mittels Fräsvorgängen, sind quasi nur die Gehäusebereiche zu montieren.
  • Zur Einstellung von beispielsweise unterschiedlichen bzw. reduzierten Übergangsradien der Strömungsleitelemente vom Grund der Luftkanäle können diese nach dem Fräßen der Luftkanäle gesondert bearbeitet werden. Dies kann beispielsweise mittels eines alternativen Fingerfräsers mit einem gegenüber dem zur Ausbildung der Luftkanäle verwendeten Fingerfräsers reduzierten Fräsradius erfolgen.
  • Sonstige vorteilhafte Ausführungsbeispiele der Erfindung sind Gegenstand weiterer Unteransprüche.
  • Im Folgenden werden bevorzugte Ausführungsbeispiele der Erfindung anhand schematischer Darstellungen näher erläutert. Es zeigen:
  • Figur 1
    einen Längsschnitt durch eine Strömungsmaschine im Bereich einer Zirkulationsstruktur,
    Figur 2
    eine Werkzeugführung zur Ausbildung einer alternativen Zirkulationsstruktur,
    Figuren 3, 4 und 5
    verschiedene Ausbildungen von Strömungsleitelementen im vorderen Strukturbereich der Zirkulationsstruktur,
    Figuren 6 und 7
    beispielhafte Werkzeugführungen zur Ausbildung der Strömungsleitelemente mit kleinen Übergangsradien, und
    Figuren 8 und 9
    Werkzeugführungen bei einem einteiligen Strömungsmaschinengehäuse im Bereich der Zirkulationsstruktur.
  • In Figur 1 ist ein Längsschnitt durch einen Hauptstrompfad bzw. Strömungskanals 1 einer Strömungsmaschine im Bereich ihres Statorgehäuses 2 gezeigt. Insbesondere ist in Figur 1 ein Schnitt durch eine in das Statorgehäuse 2 eingebrachte Zirkulationsstruktur 4 gezeigt.
  • Der Strömungskanal 1 wird von einem Hauptstrom gemäß der Darstellung in Figur 1 von links nach rechts durchströmt. Die Strömungsmaschine ist beispielsweise eine Gasturbine und insbesondere ein Flugtriebwerk. Das Statorgehäuse 2 bildet ein Teilgehäuse der Strömungsmaschine und ist bevorzugterweise ein Verdichter der Strömungsmaschine.
  • In dem in Figur 1 gezeigten Bereich der Strömungsmaschine ist in dem Strömungskanal 1 ein in dem Statorgehäuse 2 verstellbar gelagerter Leitschaufelkranz 6 und eine einem Rotor zugeordnete Laufschaufelreihe 8 angeordnet. Bezogen auf die Hauptstromrichtung ist der Leitschaufelkranz 6 vor der Laufschaufelreihe 8 bzw. die Laufschaufelreihe 8 hinter dem Leitschaufelkranz 6 angeordnet.
  • Das Statorgehäuse 2 ist zur Aufnahme der Zirkulationsstruktur 4 in einer radialen Trennebene Ts in einen vorderen Gehäusebereich 10 und in einen hinteren Gehäusebereich 12 unterteilt. Die Gehäusebereiche 10, 12 sind jeweils mit einer zum Strömungskanal 1 und zur radialen Trennebene Ts geöffneten vorderen Ringausnehmung 14 und hinteren Ringausnehmung 16 versehen. Die Ringausdehnungen 14, 16 sind in Axialrichtung bzw. Strömungsrichtung gegenüberliegend zueinander angeordnet und bilden zusammen eine in etwa U-förmige Ringvertiefung.
  • Die Zirkulationsstruktur 4 ist in einer radialen Trennebene Tz in einen vorderen Strukturbereich 18 und in einen hinteren Strukturbereich 20 unterteilt. Die radiale Trennebene Tz ist dabei derart positioniert, dass diese im gezeigten montierten Zustand auf der radialen Trennebene Ts des Statorgehäuses 2 liegt. Im montierten Zustand sind die Trennebenen Ts, Tz somit identisch bzw. deckungsgleich. Um eine Verklemmung der Zirkulationsstruktur 4 bei der Montage und um einen thermischen Dehnungsausgleich zwischen der Zirkulationsstruktur 4 und dem Gehäuse 2 zu vermeiden, ist der hintere Strukturbereich 20 im montierten Zustand etwas gegenüber den Trennebenen Ts, Tz zurückgesetzt, so dass wie in Figur 1 gezeigt, im montierten Zustand ein minimaler Ringspalt 21 zwischen den Strukturbereichen gebildet ist. Selbstverständlich kann auch der hintere Strukturbereich 20 bis zu den Trennebenen Ts, Tz geführt sein und der vordere Strukturbereich 18 gegenüber den Trennebenen Ts, Tz zurückgesetzt sein, um den Ringspalt 21 zu bilden.
  • Die Zirkulationsstruktur 4 definiert einen Ringraum 22, der den Strömungskanal 1 in Radialrichtung umgreift und zu diesem geöffnet ist. Bevorzugterweise ist die Zirkulationsstruktur 4 koaxial zur Drehachse des Rotors orientiert.
  • In dem gezeigten Ausführungsbeispiel ist der vordere Strukturbereich 18 als ein in die vordere Ringausnehmung 14 eingesetztes Einsatz- bzw. Einschubelement 24 ausgebildet, in dem eine Vielzahl von in Umfangsrichtung voneinander beabstandeten Strömungsleitelementen 26 positioniert sind. Das Einsatzelement 24 ist in dem gezeigten Ausführungsbeispiel ein in Umfangsrichtung geschlossenes Ringsegment. Es kann jedoch auch aus einer Vielzahl von in Umfangsrichtung voneinander getrennten und im montierten Zustand einen geschlossenen Ring bildenden Segmenten bestehen. Die Strömungsleitelemente 26 haben ein schaufelblattartiges Profil und sind in Umfangsrichtung über einzelne sich etwa in Axialrichtung erstreckende Luftkanäle 28 (s. Figuren 3 bis 7) voneinander beabstandet.
  • Der hintere Strukturbereich 20 ist umfangssymmetrisch ausgebildet und hat in dem gezeigten Ausführungsbeispiel eine stromaufwärts den Strömungsleitelementen 26 zugewandte umlaufende Hohlkehle. Der Strukturbereich 20 ist in ein Verkleidungselement 30 integriert, das sich in dem gezeigten Ausführungsbeispiel aus einer Vielzahl von in Umfangsrichtung voneinander getrennten und im montierten Zustand einen geschlossen Ring bildenden Verkleidungssegmenten zusammensetzt. Alternativ ist das Verkleidungselement 30 ein einzelner in Umfangsrichtung geschlossenes Ringelement. Um eine blattspitzenseitige Umströmung der Laufschaufelreihe 8 zu verhindern, ist das Verkleidungselement 30 an seiner der Laufschaufelreihe 8 zugewandten Seite mit einem umlaufenden Anstreifbelag 32 versehen.
  • Insbesondere wird der hintere Strukturbereich 20 von einem integralen vorderen Körperabschnitt 34 des Verkleidungselementes 30 gebildet, der in die statorseitige hintere Ringausdehnung 16 eingesetzt ist. Insbesondere ist der Körperabschnitt 34 ein Halteabschnitt zur Befestigung des Verkleidungselements 30 an dem bzw. in dem hinteren Gehäusebereich 12. Der Körperabschnitt bzw. Halteabschnitt 34 hat einen stromabwärts gerichteten Haltering 36, der zur Befestigung des Verkleidungselements 30 in eine stromaufwärts gerichtete und in dem hinteren Gehäusebereich 12 eingebrachte ringförmige Haltenut 38 formschlüssig eingreift.
  • In Figur 2 ist eine Werkzeugführung zur Ausbildung einer Zirkulationsstruktur 4 gezeigt, die integral in ein zweigeteiltes Statorgehäuse 2 eingebracht wird. Das Statorgehäuse 2 ist wie vorbeschrieben in Figur 1 in einen vorderen Gehäusebereich 10 und in einen hinteren Gehäusebereich 12 zweigeteilt. Im vorderen Gehäusebereich 10 ist ein vorderer Strukturbereich 18 der Zirkulationsstruktur 4 und im hinteren Gehäusebereich 12 ein hinterer Strukturbereich 20 der Zirkulationsstruktur 4 angeordnet.
  • Wie in Figur 2 gezeigt, werden die Strömungsleitelemente 26 in den vorderen Gehäusebereich 10 mittels eines Fräswerkzeugs 40, beispielsweise ein Fingerfräser, eingebracht. Die Werkzeugführung ist dabei derart, dass zwischen den Strömungsleitelementen 26 gebildete Luftkanäle 28 (s. Figuren 3 bis 5) in jeweils einem einzigen Bearbeitungsgang hergestellt werden. Entsprechend hat der Fingerfräser 40 eine Fräsbreite, die einer umfangsseitigen Beabstandung der Strömungsleitelemente 26 voneinander entspricht.
  • Der hintere umgangssymmetrische Strukturbereich 20 wird bei diesem Ausführungsbeispiel ebenfalls mittels des Fingerfräsers 40 in dem Statorgehäuse 2, und insbesondere in dem hinteren Gehäusebereich 12, ausgebildet. Alternativ kann der hintere Strukturbereich 20 in dem hinteren Gehäusebereich 12 vor einer Fräsbearbeitung mit dem Fingerfräser 40 vorgedreht werden bzw. nur gedreht werden (s. Figur 9).
  • Wie in Figur 3 gezeigt, können die Strömungsleitelemente 26 bzw. die zwischen den Strömungsleitelementen 26 gebildeten Luftkanäle 28 eine gleichmäßige Umfangspositionierung aufweisen. Insbesondere haben die Luftkanäle 28 bei dann eine einheitliche konkave Grundkontur 42, einen einheitlichen Anstellwinkel a in Umfangsrichtung, eine einheitliche radiale Höhe h und eine einheitliche umfangsseitige Breite bL. Die Strömungsleitelemente 26 weisen bei einer gleichmäßigen Umfangspositionierung eine konstante umfangsseitige Breite bS auf. Die Breite bs entspricht dabei der Breite des Fingerfräsers 40.
  • Wie in Figur 4 gezeigt, können die Strömungsleitelemente 26 jedoch auch eine variierende Breite bS1, bS2 haben, die Luftleitkanäle hingegen eine einheitliche Breite bL aufweisen, sodass sowohl die Strömungsleitelemente 26 als auch die Luftkanäle 28 eine variable Umfangspositionierung aufweisen.
  • Gemäß der Darstellung in Figur 5 können zudem die Anstellwinkel α1, α2 der Luftkanäle 28 und/ oder die radiale Höhe h1, h2 der Luftkanäle 28 variieren.
  • Bei sämtlichen vorgeschriebenen Ausführungsbeispielen nach den Figuren 2 bis 5 ist gleich, das zum Einbringen der Zirkulationsstruktur 4 in das Statorgehäuse 2 zuerst das Statorgehäuse 2 in einer radialen Trennebene Ts in einen vorderen Gehäusebereich 10 und in einen hinteren Gehäusebereich 12 unterteilt wird. Danach wird der vordere Strukturbereich 18 der Zirkulationsstruktur 4 in den vorderen Gehäusebereich 10 und der hintere Strukturbereich 20 der Zirkulationsstruktur 4 in den hinteren Gehäusebereich 12 eingebracht. Anschließend werden der vordere Gehäusebereich 10 und der hintere Gehäusebereich 12 gefügt. Die Ausbildung der Luftkanäle 28 und somit die der Strömungsleitelemente 26 erfolgt bevorzugterweise in jeweils einem einzigen Bearbeitungsgang.
  • In den Figuren 6 und 7 ist die Ausbildung von Stromleitelementen 26 gezeigt, deren Übergangsradius rr zur Grundkontur 42 der Luftleitkanäle 28 nachbearbeitet wurde. In den Ausführungsbeispielen nach den Figuren 6 und 7 sind die Übergangsradien rr im Vergleich zum ursprünglichen Übergangsradius ru verkleinert.
  • Die Ausbildung der reduzierten Übergangsradien rr erfolgt bevorzugterweise mittels alternativen Fingerfräsern 44, die gegenüber dem ursprünglichen Fingerfräser 40 einen reduzierten Fräsradius und eine reduzierte Fräsbreite aufweisen. Wie in Figur 6 gezeigt, kann der reduzierte Fräser 44 in überlappenden Bahnen oder, wie in Figur 7 gezeigt, in aneinander angrenzenden Bahnen geführt werden. Zudem kann, wie in Figur 6 gezeigt, der reduzierte Fräser 44 unterschiedlich tief zwischen die Strömungsleitelemente 26 hineingetrieben werden, sodass neben einer Reduzierung der Übergangsradien rr ebenfalls die Grundkontur 42 ans sich geändert wird. Wie in Figur 6 beispielhaft gezeigt kann somit eine quasi ebene Grundkontur 42 geschaffen werden, die sich nahezu tangential zur Umfangsrichtung erstreckt. Wie in Figur 7 beispielhaft gezeigt, kann somit auch eine quasi ebene Grundkontur 42 geschaffen werden, die sich schräg zur Umfangsrichtung erstreckt.
  • In Figur 8 ist eine Werkzeugführung zur Einbringung einer Zirkulationsstruktur 4 in ein einteiliges Statorgehäuse 2 einer Strömungsmaschine gezeigt. Die Zirkulationsstruktur 4 hat einen vorderen asymmetrischen Strukturbereich 18 mit einer Vielzahl von Strömungsleitelementen 26 und einen hinteren umfangssymmetrischen Strukturbereich 20. Die Zirkulationsstruktur 4 wird unmittelbar mittels einer mechanischen Bearbeitung in das Statorgehäuse 2 eingebracht. Bevorzugterweise werden die Luftkanäle 28 zwischen den Strömungsleitelementen 26, wie in den Figuren 2 bis 5 beschrieben, in jeweils einem einzigen Bearbeitungsgang herausgearbeitet. Zudem kann der hintere Strukturbereich 20 durch eine entsprechende Fräsführung aus dem Statorgehäuse 2 herausgearbeitet werden.
  • Gemäß der Darstellung in Figur 9 kann der hintere Strukturbereich 20 wie durch Spalt 46 angedeutet in einer Drehbearbeitung vorbearbeitet werden. Selbstverständlich kann der hintere Strukturbereich 20 auch vollständig gedreht werden.
  • Offenbart ist eine Strömungsmaschine mit zumindest einer Zirkulationsstruktur, die einen Ringraum mit Strömungsleitelementen aufweist, der einen Hauptstrompfad umgreift und zu diesem geöffnet ist, wobei ein Gehäuse der Strömungsmaschine zur Aufnahme der Zirkulationsstruktur in einer radialen Trennebene in einen vorderen Gehäusebereich und einen hinteren Gehäusebereich geteilt ist, und dass die Zirkulationsstruktur in einer radialen Trennebene in einen vorderen Strukturbereich und in einen hinteren Strukturbereich geteilt ist, eine in Axialrichtung zweigeteilte Zirkulationsstruktur und ein Verfahren.
  • Bezugszeichenliste
  • 1
    Strömungskanal / Hauptstrompfad
    2
    Statorgehäuse / Gehäuse
    4
    Zirkulationsstruktur
    6
    Leitschaufelkranz
    8
    Laufschaufelreihe
    10
    vorderer Gehäusebereich
    12
    hinterer Gehäusebereich
    14
    vordere Ringausnehmung
    16
    hintere Ringausnehmung
    18
    vorderer Strukturbereich
    20
    hinterer Strukturbereich
    21
    Ringspalt
    22
    Ringraum
    24
    Einsatzelement
    26
    Strömungsleitelement
    28
    Luftkanal
    30
    Verkleidungselement
    32
    Anstreifbelag
    34
    Körperabschnitt / Halteabschnitt
    36
    Haltering
    38
    Haltenut
    40
    Fräswerkzeug
    42
    Grundkontur
    44
    Fräser
    46
    Spalt
    Ts
    radiale Trennebene Statorgehäuse
    Tz
    radiale Trennebene Zirkulationsstruktur
    α, α1, α2
    Anstellwinkel
    h, h1, h2
    Höhe
    bL
    Breite Luftkanal
    bS, bS1, bS2
    Breite Strömungsleitelement
    ru
    ursprünglicher Übergangsradius
    rr
    reduzierter Übergangsradius

Claims (10)

  1. Strömungsmaschine mit zumindest einer Zirkulationsstruktur (4), wobei die Zirkulationsstruktur (4) einen Ringraum (22) mit Strömungsleitelementen (26) aufweist, der einen Hauptstrompfad (1) umgreift und zu diesem geöffnet ist, wobei ein zweiteiliges Gehäuse (2) der Strömungsmaschine zur Aufnahme der Zirkulationsstruktur (4) in einer radialen Trennebene (Ts) in einen vorderen Gehäusebereich (10) und einen hinteren Gehäusebereich (12) geteilt ist,
    dadurch gekennzeichnet,
    dass die Zirkulationsstruktur ein zweiteiliges Strukturgehäuse aufweist, das in einer radialen Trennebene (Tz) in einen vorderen Strukturbereich (18) und in einen hinteren Strukturbereich (20) geteilt ist.
  2. Strömungsmaschine nach Anspruch 1, wobei Strömungsleitelemente (26) im vorderen Strukturbereich (18) unterschiedliche seitliche Beabstandungen voneinander und/oder Anstellungen zueinander haben.
  3. Strömungsmaschine nach Anspruch 1 oder 2, wobei die radiale Trennebene (Ts) des Gehäuses (2) im montierten Zustand gleich der radialen Trennebene (Tz) der Zirkulationsstruktur (4) ist.
  4. Strömungsmaschine nach einem der Ansprüche 1 bis 3, wobei die Strömungsleitelemente (26) im vorderen Strukturbereich (18) ausgebildet sind und dieser in den vorderen Gehäusebereich (10) eingesetzt ist.
  5. Strömungsmaschine nach einem der Ansprüche 1bis 4, wobei die Strömungsleitelemente (26) unmittelbar in den vorderen Gehäusebereich (10) eingebracht sind.
  6. Strömungsmaschine nach einem der vorhergehenden Ansprüche 1 bis 5, wobei der hintere Strukturbereich (20) ein integraler vorderer Körperabschnitt (34) eines in den hinteren Gehäusebereich (12) eingesetzten Verkleidungselementes (30) ist.
  7. Verfahren zum Einbringen einer Zirkulationsstruktur (4) in ein Gehäuse (2) einer Strömungsmaschine, mit den Schritten:
    Bereitstellen eines zweiteiligen Gehäuses (2) der Strömungsmaschine, das in einer radialen Trennebene (Ts) in einen vorderen Gehäusebereich (10) und in einen hinteren Gehäusebereich (12) geteilt ist,
    Einbringen eines vorderen Strukturbereichs (18) in den vorderen Gehäusebereich (10) und Einbringen eines hinteren Strukturbereichs (20) in den hinteren Gehäusebereich (12), und
    Fügen der Gehäusebereiche (10, 12) in der Trennebene (Ts).
  8. Verfahren nach Anspruch 7, wobei im vorderen Strukturbereich (18) Luftkanäle (28) zwischen Strömungsleitelementen (26) in jeweils einem einzigen Bearbeitungsgang ausgearbeitet werden.
  9. Verfahren nach Anspruch 7 oder 8, wobei der hintere Strukturbereich (20) ausgedreht wird.
  10. Verfahren nach einem der Ansprüche 7 bis 9, wobei nach dem Ausbilden der Strömungsleitelemente (26) Übergangsradien (ru, rr) bearbeitet werden.
EP13174062.3A 2013-06-27 2013-06-27 Strömungsmaschine und Verfahren Active EP2818724B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13174062.3A EP2818724B1 (de) 2013-06-27 2013-06-27 Strömungsmaschine und Verfahren
US14/315,066 US10151206B2 (en) 2013-06-27 2014-06-25 Turbomachine, circulation structure and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13174062.3A EP2818724B1 (de) 2013-06-27 2013-06-27 Strömungsmaschine und Verfahren

Publications (2)

Publication Number Publication Date
EP2818724A1 EP2818724A1 (de) 2014-12-31
EP2818724B1 true EP2818724B1 (de) 2020-09-23

Family

ID=48745730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13174062.3A Active EP2818724B1 (de) 2013-06-27 2013-06-27 Strömungsmaschine und Verfahren

Country Status (2)

Country Link
US (1) US10151206B2 (de)
EP (1) EP2818724B1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066640B2 (en) * 2015-02-10 2018-09-04 United Technologies Corporation Optimized circumferential groove casing treatment for axial compressors
GB201600510D0 (en) * 2016-01-12 2016-02-24 Rolls Royce Plc And Rolls Royce Corp Casing arrangement
US10394454B2 (en) * 2017-01-13 2019-08-27 Arm Limited Partitioning of memory system resources or performance monitoring
EP3375984A1 (de) 2017-03-17 2018-09-19 MTU Aero Engines GmbH Zirkulationsvorrichtung für eine strömungsmaschine, verfahren zum herstellen einer zirkulationsvorrichtung und strömungsmaschine
CN106968988B (zh) * 2017-04-25 2019-02-26 西北工业大学 一种轴向前移、径向倾斜的反叶片角向缝处理机匣
US10465539B2 (en) * 2017-08-04 2019-11-05 Pratt & Whitney Canada Corp. Rotor casing
US10876423B2 (en) 2018-12-28 2020-12-29 Honeywell International Inc. Compressor section of gas turbine engine including hybrid shroud with casing treatment and abradable section

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318799Y2 (de) * 1980-12-02 1988-05-26
JPS63183204A (ja) * 1987-01-26 1988-07-28 Ishikawajima Harima Heavy Ind Co Ltd 軸流回転装置の失速防止構造
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
US5607284A (en) * 1994-12-29 1997-03-04 United Technologies Corporation Baffled passage casing treatment for compressor blades
US6234747B1 (en) * 1999-11-15 2001-05-22 General Electric Company Rub resistant compressor stage
US6585479B2 (en) * 2001-08-14 2003-07-01 United Technologies Corporation Casing treatment for compressors
US6935833B2 (en) * 2002-02-28 2005-08-30 Mtu Aero Engines Gmbh Recirculation structure for turbo chargers
DE102008010283A1 (de) 2008-02-21 2009-08-27 Mtu Aero Engines Gmbh Zirkulationsstruktur für einen Turboverdichter
DE102008017844A1 (de) * 2008-04-08 2009-10-15 Rolls-Royce Deutschland Ltd & Co Kg Strömungsmaschine mit Fluid-Injektorbaugruppe
JP5479021B2 (ja) * 2009-10-16 2014-04-23 三菱重工業株式会社 排気ターボ過給機のコンプレッサ
DE102013210168A1 (de) * 2013-05-31 2014-12-04 Rolls-Royce Deutschland Ltd & Co Kg Strukturbaugruppe für eine Strömungsmaschine
DE102013210169A1 (de) * 2013-05-31 2014-12-04 Rolls-Royce Deutschland Ltd & Co Kg Strukturbaugruppe für eine Strömungsmaschine
EP3081779A1 (de) * 2015-04-14 2016-10-19 MTU Aero Engines GmbH Gasturbinenverdichter-arbeitsströmungskanalelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20150003976A1 (en) 2015-01-01
US10151206B2 (en) 2018-12-11
EP2818724A1 (de) 2014-12-31

Similar Documents

Publication Publication Date Title
EP2818724B1 (de) Strömungsmaschine und Verfahren
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
EP3093447B1 (de) Rotor einer turbine einer gasturbine mit verbesserter kühlluftführung
EP2824282A1 (de) Gasturbine mit Hochdruckturbinenkühlsystem
EP2927594B1 (de) Brennkammer einer Gasturbine
EP3121373B1 (de) Gekühltes turbinenlaufrad, insbesondere für ein flugtriebwerk
EP2639411B1 (de) Gehäuse einer Stömungsmaschine mit einem Fluidleitsystem
EP3121371B1 (de) Turbine mit gekühlten turbinenleitschaufeln
EP3467261B1 (de) Verfahren zum herstellen eines tandem-leitschaufelsegments
EP3176370A1 (de) Leitschaufelcluster für eine strömungsmaschine
DE102008025249A1 (de) Sammelraum und Verfahren zur Fertigung
EP3404210A1 (de) Schaufelgittersegment für eine strömungsmaschine mit achsen-asymmetrischer plattformoberfläche, zugehörige schaufelgitter, schaufelkanal, plattform, und strömungsmaschine
EP3287611B1 (de) Gasturbine
EP3336313A1 (de) Turbinen-laufschaufelanordnung für eine gasturbine und verfahren zum bereitstellen von dichtluft in einer turbinen-laufschaufelanordnung
EP3290644A1 (de) Gasturbine
EP2647796A1 (de) Dichtungssystem für eine Strömungsmaschine
EP3236011A1 (de) Rotor mit überhang an laufschaufeln für ein sicherungselement
EP3159487B1 (de) Stator einer turbine einer gasturbine mit verbesserter kühlluftführung
EP3312388B1 (de) Rotorteil, zugehörigeverdichter, turbine und herstellungsverfahren
DE102009052314A1 (de) Dichtanordnung für eine Gasturbine und eine derartige Gasturbine
EP3056684B1 (de) Axial geteilter Innenring für eine Strömungsmaschine, Leitschaufelkranz und Flugtriebwerk
EP3327258A1 (de) Eintrittsleitrad für eine turbomaschine
EP3551850B1 (de) Verfahren zum modifizieren einer turbine
EP3536913A1 (de) Innenring für eine turbomaschine und entsprechendes herstellungsverfahren
EP2722485B1 (de) Innenring für einen Leitschaufelkranz mit verstellbaren Leitschaufeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150616

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181018

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/64 20060101ALI20200123BHEP

Ipc: F04D 27/02 20060101AFI20200123BHEP

Ipc: F04D 29/56 20060101ALI20200123BHEP

Ipc: F04D 29/52 20060101ALI20200123BHEP

Ipc: F04D 29/68 20060101ALI20200123BHEP

INTG Intention to grant announced

Effective date: 20200207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015144

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316644

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015144

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

26N No opposition filed

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1316644

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 11

Ref country code: DE

Payment date: 20230620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 11