WO1997049900A1 - Turbomaschine sowie verfahren zur kühlung einer turbomaschine - Google Patents

Turbomaschine sowie verfahren zur kühlung einer turbomaschine Download PDF

Info

Publication number
WO1997049900A1
WO1997049900A1 PCT/DE1997/001162 DE9701162W WO9749900A1 WO 1997049900 A1 WO1997049900 A1 WO 1997049900A1 DE 9701162 W DE9701162 W DE 9701162W WO 9749900 A1 WO9749900 A1 WO 9749900A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
cooling
fluid
turbomachine
feed
Prior art date
Application number
PCT/DE1997/001162
Other languages
English (en)
French (fr)
Inventor
Heinrich Oeynhausen
Edwin Gobrecht
Helmut Pollak
Andreas FELDMÜLLER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP50206598A priority Critical patent/JP3939762B2/ja
Priority to DE59710625T priority patent/DE59710625D1/de
Priority to PL97330425A priority patent/PL330425A1/xx
Priority to AT97928113T priority patent/ATE247766T1/de
Priority to EP97928113A priority patent/EP0906493B1/de
Publication of WO1997049900A1 publication Critical patent/WO1997049900A1/de
Priority to US09/217,855 priority patent/US6102654A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means

Definitions

  • the invention relates to a turbomachine, in particular a steam turbine, with a housing and an inflow region for action fluid formed at least partially by the housing, and a method for cooling at least one component assigned to an inflow region of a turbomachine.
  • the object directed to a turbomachine is achieved by one which has a housing with an inflow area for action fluid which is at least partially formed by the housing, a supply for a cooling fluid being provided in the housing, through which cooling of the housing, in particular the housing cheeks adjacent to the inflow region, can be carried out.
  • a housing with such a supply for cooling fluid the temperature of the housing can be significantly reduced even when action fluid flows into the inflow region at temperatures above 550 ° C., which means that the use of known materials, in particular martensitic chromium steels, is possible or the use of new materials at a reduced temperature level is made possible.
  • the cooling fluid can be process steam from a steam turbine system with several partial turbines, separate cooling steam or cooling air.
  • the turbomachine preferably has a shielding element which adjoins the inflow region and which shields a rotor blade carrier which extends along a main axis in the housing from the action fluid and is fastened to the housing by a holder, the Feed through the holder is introduced into the shielding element.
  • the shielding element can be on several points can be connected to the housing via a holder or several holders.
  • Several cooling effects are achieved at the same time, namely cooling the housing on the walls adjoining the inflow region, cooling the holder, cooling the shielding element and thus also cooling the moving blade carrier.
  • the holder is preferably integrated in at least one first guide vane row as seen in the direction of the action fluid.
  • a branch line preferably a plurality of branch lines, which is (or are) connected to the feed and open into the inflow region and / or a side facing away from the inflow region.
  • the shielding element preferably also has at least one branch line, which is connected to the feed and opens into the inflow region. This leads to film cooling of the shielding element and thus indirectly to a further reduction in the thermal load on the moving wheel carrier.
  • the shielding element can additionally have a cavity connected to the feed, whereby an increased heat transfer in the shielding element in the direction of the
  • the shielding element which is in particular ring-shaped, forms an intermediate space toward the blade carrier, into which the feeder opens.
  • the interspace can thus be filled with cooling fluid, so that heat transfer from the one heated by the action fluid Shielding element is reduced in the blade carrier. Since the shielding element is connected to the housing via the holder, it is spaced from the blade carrier, so that an outflow of the cooling fluid with the action fluid flowing between the housing and the blade carrier is ensured.
  • a cooling fluid line in particular in the form of a radial bore, preferably leads from the intermediate space into the rotor blade carrier.
  • cooling fluid is introduced into an annular space formed between the tie rod and the rotor disk.
  • cooling of an essentially single-storey turbine shaft is also possible, in particular by providing at least one axial bore running parallel to the main axis, into which the cooling fluid line opens.
  • cooling fluid In addition to cooling the components of the turbomachine subject to high temperatures, supplying cooling fluid through the housing also enables a leakage flow of action fluid between a gap of a rotating component (rotor blade, rotor blade carrier) and a stationary component (guide blade, housing) to be reduced Steam turbine.
  • gap losses can be reduced in that cooling fluid can be branched off from the feed line, the intermediate space or the cooling fluid line by means of corresponding branch lines in the housing or the blade carrier and can be guided into this gap.
  • Such a branch line is thus preferably guided by the supply for cooling fluid in such a way that it opens into a gap between the housing and the rotor blade or the guide blade and the rotor blade carrier.
  • a guide of cooling fluid is preferably particularly suitable for a turbomachine in which the shielding element is designed to divide the current and / or to deflect the action fluid in the direction of the main axis.
  • the inflow area is preferably designed for guiding the action fluid in a direction substantially perpendicular to the main axis of the blade carrier.
  • the turbomachine is preferably a double-flow steam turbine, in particular a medium-pressure steam turbine, in which both a flow division and a deflection of the action fluid take place.
  • Such cooling is of course also possible with a single-flow steam turbine in its inflow region.
  • process steam from a steam turbine plant is used as the cooling fluid, it is fed back to the entire steam process via the various branches, the steam used as cooling fluid being heated as the feed flows through it. Compared to cooling in which the process steam is lost, an increase in the efficiency of the steam turbine can also be achieved.
  • the object directed to a method for cooling a component adjacent to the inflow region of a turbomachine, in particular a steam turbine, is achieved in that cooling fluid is passed through a housing which at least partially forms the inflow region, in particular in the vicinity of the inflow region and from there a shielding element for reducing the temperature load of a rotor blade carrier arranged in the housing is fed.
  • the turbomachine and the method for cooling are explained in more detail using the exemplary embodiment shown in the drawing. It shows schematically and not to scale the only figure a section of a longitudinal section through a double-flow medium-pressure steam turbine.
  • the section of a turbomachine 1 shown in the figure shows a longitudinal section through a double-flow medium-pressure steam turbine of a steam turbine system.
  • a blade carrier 11, which extends along a main axis 2, is shown in a housing 15 of the turbomachine. This is made from a plurality of rotor disks 29, only one of which is shown for the sake of clarity.
  • a tie rod 28, which joins the rotor disks to the rotor blade carrier 11, is guided through the rotor disk 29 centrally along the main axis 2.
  • the blade carrier 11 can also be produced as a one-piece turbine shaft.
  • An inflow region 3 for action fluid 4 is formed by the housing 15 and extends essentially along an inflow axis 17 perpendicular to the main axis 2.
  • a cooling fluid feed 8 is provided through the housing 15 in the vicinity of the inflow region 3, also essentially parallel to the inflow axis 17. This feed 8 merges into a respective guide blade 6 of the first guide blade row 16.
  • the first row of guide blades 16 also serves as a holder 22 for an annular shielding element 19.
  • This shielding element 19 is arched into the inflow area 3 and thus causes both a deflection of the action fluid 4 and a shielding of the moving blade carrier 11 (turbine rotor) with respect to this action fluid 4.
  • the feed 8 leads into the shielding element 19 from the guide vane 6.
  • This has a cavity 18 which is connected to the feed 8 and extends essentially parallel to the main axis 2 and is partly widened in the direction of the inflow region 3. From the cavity 18, two branch lines 24 branch off, which open into the inflow region 3. In this way, as with the branch lines 23 of the guide vanes 6, a corresponding film cooling of the shielding element 19 is achieved. From the shielding element 19, the feed 8 opens into one between the shielding element 19 and the Blade carrier 11 formed intermediate space 9.
  • the cooling fluid 5 entering therein flows at least partially in the axial direction from the intermediate space 9 into the flow of the action fluid 4 and thus passes through the turbine stages formed from the moving blades 7 and the downstream guide blades 6a.
  • a cooling fluid line 13 designed as an axial bore leads into the blade carrier 11 and opens there into an annular gap 27 formed between the tie rod 28 and the rotor disk 29.
  • the cooling fluid 5 flowing therein removes heat from the blade carrier 11.
  • a blocking fluid line 14 is provided in the rotor disk 29 or one or more downstream rotor disks, which leads from the annular gap 27 into a rotor blade carrier region 26 which is directly opposite a rotor blade 6a.
  • the cooling fluid 5 flows into the gap formed between the blade carrier region 26 and the guide blade 6a.
  • the cooling fluid 5 additionally has the effect of a barrier fluid through which the flow of the action fluid 4 is prevented through this gap, but at least is significantly reduced. As a result, the gap losses with a non-contact seal and thus the efficiency of the steam turbine can also be increased.
  • cooling fluid lines 14 through which cooling fluid 5 can flow are provided in the housing 15 and connect the feed 8 in the region of the first guide vane row 16 to a housing region 25 which is directly opposite a moving blade 7.
  • this gap is also sealed by the cooling fluid 5 which now additionally acts as a barrier fluid.
  • the invention is characterized by a cooling of preferably several components of a turbomachine, which adjoin an inflow region for a hot action fluid, in particular steam of over 550 ° C.
  • the cooling takes place by introducing a cooling fluid, in particular process steam a steam turbine system or cooling air, by means of a supply which is arranged in a part of the housing near the surface and facing the inflow region. From there, the cooling air is guided through the first row of guide vanes into a shielding element which is attached to the row of guide vanes.
  • Branch lines can be provided both in the housing, the guide vane and the shielding element, which open into the inflow region and thus enable film cooling of the respective component.
  • cooling fluid can additionally be conducted as barrier fluid into a gap between a rotating component (rotor blade, rotor blade carrier) and a stationary component (guide blade, housing), whereby the sealing of a non-contact seal is significantly improved .

Abstract

Die Erfindung betrifft eine Turbomaschine (1), insbesondere Dampfturbine, mit einem Gehäuse (15) und einem zumindest teilweise durch das Gehäuse (15) gebildeten Einströmbereich (3) für Aktionsfluid (4), mit einer Zuführung (8) für ein Kühlfluid (5), mit einem in dem Gehäuse (15) angeordneten sich entlang einer Hauptachse (2) erstreckenden Laufschaufelträger (11), und mit einem in dem Einströmbereich (3) angeordneten Abschirmelement (19), welches der Abschirmung des Laufschaufelträgers (11) gegenüber dem Aktionsfluid (4) dient und durch eine Halterung (22) an dem Gehäuse (15) befestigt ist, wobei die Zuführung (8) durch die Halterung (22) geführt ist. Weiterhin betrifft die Erfindung ein Verfahren zur Kühlung einer oder mehrerer Komponenten einer Turbomaschine (1), die an einen Einströmbereich (3) eines heißen Aktionsgases (4) angrenzen.

Description

Beschreibung
Turbomaschine sowie Verfahren zur Kühlung einer Turbomaschine
Die Erfindung betrifft eine Turbomaschine, insbesondere eine Dampfturbine, mit einem Gehäuse und einem zumindest teilweise durch das Gehäuse gebildeten Einströmbereich für Aktionsfluid sowie ein Verfahren zur Kühlung,von zumindest einer einem Einströmbereich einer Turbomaschine zugeordneten Komponente.
Zur Steigerung des Wirkungsgrades einer Dampfturbine trägt die Verwendung von Dampf mit höheren Drücken und Temperaturen bei, insbesondere sogenannte überkritische Dampfzustände, mit einer Temperatur von beispielsweise über 550 °C. Die Verwen- düng von Dampf mit einem solchen Dampfzustand stellt erhöhte Anforderungen an eine entsprechend beaufschlagte Dampftur¬ bine, insbesondere an die an den Einströmbereich des Aktions- fluides grenzenden Komponenten der Dampfturbine, wie Gehäuse¬ wandung und Turbinenwelle.
In dem Artikel "Dampfturbinen für fortgeschrittene Kraft- werkskonzepte mit hohen Dampfzuständen von D. Bergmann, A. Drosdziok und H. Oeynhausen, Siemens Power Journal 1/93, S. 5-10 ist eine Läuferabschirmung mit Drallkühlung beschrieben. Bei der Drallkühlung strömt Dampf durch vier tangentiale Boh¬ rungen in der Läuferabschirmung in Drehrichtung der Turbinen¬ welle in den Bereich zwischen der Läuferabschirmung und em Läufer, ein. Dabei expandiert der Dampf, die Temperatur sinkt und kühlt dadurch den Läufer. Die Läuferabschirmung ist dampfdicht mit einer Leitschaufelreihe verbunden. Durch die Drallkühlung läßt sich eine Temperaturabsenkung des Läu¬ fers in der Umgebung der Läuferabschirmung von etwa 15 K er¬ reichen. Eine nähere Erläuterung dieser Läuferabschirmung, welche die Turbinenwelle mit Abstand umschließt und mit den radial inneren Enden der Leitschaufeln des ersten Leitschau¬ felkranzes verbunden ist, ist in der EP 0 088 944 Bl be¬ schrieben. In der Lauferabschirmung sind Düsen eingebracht, welche in Drehrichtung der Welle gesehen tangential in den zwischen Welle und Wellenabschirmung gebildeten Ringkanal einmünden. Ein weiteres Beispiel für eine Läuferabschirmung ist der DE 32 09 506 AI entnehmbar.
Aufgabe der Erfindung ist,es, eine Turbomaschine anzugeben, welche in einem thermisch hochbelasteten Bereich, insbeson¬ dere einem Einströmbereich für Aktionsfluid, kühlbar ist. Eine weitere Aufgabe der Erfindung liegt darin, ein Verfahren zur Kühlung zumindest einer an den Einströmbereich angrenzen¬ den Komponente der Turbomaschine anzugeben.
Erfindungsgemäß wird die auf eine Turbomaschine, insbesondere eine Dampfturbine, gerichtete Aufgabe durch eine solche ge- löst, welche ein Gehäuse mit einem zumindest teilweise durch das Gehäuse gebildeten Einströmbereich für Aktionsfluid auf¬ weist, wobei eine Zuführung für ein Kühlfluid in dem Gehäuse vorgesehen ist, durch die eine Kühlung des Gehäuses, insbe¬ sondere der an den Einströmbereich angrenzenden Gehäusewan- düngen, durchführbar ist. Durch Ausführung eines Gehäuses mit einer solchen Zuführung für Kühlfluid kann auch bei Ein¬ strömung von Aktionsfluid in den Einströmbereich mit Tempera¬ turen von oberhalb 550 °C die Temperatur des Gehäuses deut¬ lich erniedrigt werden, wodurch die Verwendung bekannter Werkstoffe, insbesondere martensitischer Chromstähle, möglich ist oder der Einsatz neuer Werkstoffe auf reduziertem Tempe¬ raturniveau ermöglicht wird. Bei dem Kühlfluid kann es sich um Prozeßdampf einer Dampfturbinenanlage mit mehreren Teil- turbinen, gesondertem Kühldampf oder Kühlluft handeln.
Alternativ oder zusätzlich weist die Turbomaschine vorzugs¬ weise ein an den Einströmbereich angrenzendes Abschirmelement auf, welches einen sich entlang einer Hauptachse in dem Ge¬ häuse erstreckenden Laufschaufelträger gegenüber dem Aktions- fluid abschirmt und durch eine Halterung an dem Gehäuse befe¬ stigt ist, wobei die Zuführung durch die Halterung in das Ab¬ schirmelement hineingeführt ist. Das Abschirmelement kann an mehreren Stellen über jeweils eine Halterung oder mehrere Halterungen mit dem Gehäuse verbunden sein. Es werden gleichzeitig mehrere Kühlungseffekte erzielt, nämlich eine Kühlung des Gehäuses an den dem Einströmungsbereich angren- zenden Wänden, eine Kühlung der Halterung, eine Kühlung des Abschirmelementes und damit auch eine Kühlung des Laufschau- felträgers. Durch eine sich aus mehreren Teilstrecken zusam¬ mensetzende, durch den Strömungsweg des Aktionsfluides hin¬ durchgeführte Zuführung wird mit einer einzigen Kühl- fluidströmung eine effektive Kühlung einer Mehrzahl von Kom¬ ponenten der Turbomaschine erreicht.
Vorzugsweise ist die Halterung in zumindest eine in Richtung des Aktionsfluides gesehen erste Leitschaufelreihe inte- griert. Zur Erhöhung der Kühlung dieser ersten Leitschaufel¬ reihe, d. h. der Halterung, ist eine Abzweigleitung, vorzugs¬ weise eine Mehrzahl von Abzweigleitungen vorgesehen, welche mit der Zuführung verbunden ist (bzw. sind) und in den Ein¬ strömbereich und/oder einer dem Einströmbereich abgewandten Seite münden. Hierdurch wird eine zusätzliche Filmkühlung der ersten Leitschaufelreihe erreicht.
Das Abschirmelement weist vorzugsweise ebenfalls zumindest eine Abzweigleitung auf, die mit der Zuführung verbunden ist und in den Einströmbereich mündet. Dies führt zu einer Film¬ kühlung des Abschirmelementes und damit mittelbar zu einer weiteren Reduktion der Temperaturbelastung des Laufschaufei- trägers. Das Abschirmelement kann zusätzlich einen mit der Zuführung verbundenen Hohlraum aufweisen, wodurch ein erhöh- ter Wärmeübertrag in dem Abschirmelement in Richtung zu dem
Laufschaufelträger hin vermieden wird.
Durch das Abschirmelement, welches insbesondere ringförmig ausgeführt ist, wird hin zu dem Laufschaufelträger ein Zwi- schenraum gebildet, in den die Zuführung mündet. Der Zwi¬ schenraum ist somit mit Kühlfluid füllbar, so daß ein Wärme¬ übertrag von dem durch das Aktionsfluid aufgeheizten Abschirmelement in den Laufschaufelträger vermindert wird. Da das Abschirmelement über die Halterung mit dem Gehäuse verbunden ist, ist es von dem Laufschaufelträger beabstandet, so daß eine Abströmung des Kühlfluides mit dem zwischen Ge- häuse und Laufschaufelträger strömenden Aktionsfluides ge¬ währleistet ist. Von dem Zwischenraum führt vorzugsweise eine Kühlfluidleitung, insbesondere als radiale Bohrung aus¬ gebildet, in den Laufschaufelträger hinein. Dies führt vorallem bei einem Laufschaufelträger, gebildet aus zwei oder mehreren zentrisch zueinander angeordneten Läuferscheiben, die mittels eines durch entsprechende Öffnungen geführten Zu¬ gankers verbunden sind, zu einer weiteren Kühlung. Hierbei erfolgt eine Einführung von Kühlfluid in einen zwischen dem Zuganker und der Läuferscheibe gebildeten Ringraum. Selbst- verständlich ist auch eine Kühlung einer im wesentlichen ein¬ stöckigen Turbinenwelle möglich, insbesondere dadurch, daß zumindest eine parallel zur Hauptachse verlaufende axiale Bohrung vorgesehen ist, in die die Kühlfluidleitung mündet.
Zusätzlich tu einer Kühlung der hochtemperaturbelasteten Kom¬ ponenten der Turbomaschine ermöglicht eine Zuführung von Kühlfluid durch das Gehäuse hindurch auch eine Verminderung einer Leckströmung von Aktionsfluid zwischen einem Spalt ei¬ ner rotierenden Komponente (Laufschaufei, Laufschaufelträger) und einer feststehenden Komponente (Leitschaufel, Gehäuse) der Dampfturbine. Diese sogenannten Spaltverluste können da¬ durch reduziert werden, daß durch entsprechende Abzweiglei¬ tungen in dem Gehäuse bzw. dem Laufschaufelträger Kühlfluid aus der Zuführung, dem Zwischenraum oder der Kühlfluidleitung abzweigbar und in diesen Spalt führbar ist. Eine solche Ab¬ zweigleitung ist somit vorzugsweise von der Zuführung für Kühlfluid so geführt, daß sie in einem Spalt zwischen Gehäuse und Laufschaufel oder Leitschaufel und Laufschaufelträger mündet. Die Dichtfähigkeit einer berührungslosen Dichtung zwischen einer rotierenden und einer feststehenden Komponente der Turbomaschine wird somit deutlich erhöht. Vorzugsweise eignet sich eine Führung von Kühlfluid besonders für eine Turbomaschine bei der das Abschirmelement zur Strom¬ teilung und/oder zur Umlenkung des Aktionsfluides in Richtung der Hauptachse ausgebildet ist. Der Einströmbereich ist vor- zugsweise für eine Führung des Aktionsfluides in einer Rich¬ tung im wesentlichen senkrecht zur Hauptachse des Laufschau- felträgers ausgebildet. Die Turbomaschine ist vorzugsweise eine zweiflutige Dampfturbine, insbesondere eine Mitteldruck- Dampfturbine, in der sowohl eine Stromteilung als auch eine Umlenkung des Aktionsfluides stattfindet. Selbstverständlich ist eine solche Kühlung auch bei einer einflutigen Dampftur¬ bine in deren Einströmbereich möglich.
Wird als Kühlfluid Prozeßdampf aus einer Dampfturbinenanlage verwendet, so wird dieser über die verschiedenen Abzweigungen dem gesamten Dampfprozeß wieder zugeführt, wobei der als Kühlfluid verwendete Dampf bei Durchströmen der Zuführung aufgeheizt wird. Gegenüber einer Kühlung, bei der der Proze߬ dampf verlorengeht, kann hiermit gegebenenfalls auch eine Wirkungsgraderhöhung der Dampfturbine erreicht werden.
Die auf ein Verfahren zur Kühlung einer an den Einströmbe¬ reich einer Turbomaschine, insbesondere einer Dampfturbine, angrenzenden Komponente gerichtete Aufgabe, wird dadurch ge- löst, daß Kühlfluid durch ein zumindest teilweise den Ein¬ strömbereich bildendes Gehäuse, insbesondere in der Umgebung des Einströmbereiches geleitet und von dort einem Abschirm¬ element zur Reduktion der Temperaturbelastung eines in dem Gehäuse angeordneten Laufschaufelträgers zugeführt wird.
Anhand des in der Zeichnung dargestellten AusführungsbeiSpie¬ les werden die Turbomaschine sowie das Verfahren zur Kühlung näher erläutert. Es zeigt schematisch und nicht maßstäblich die einzige Figur einen Ausschnitt eines Längsschnittes durch eine zweiflutige Mitteldruck-Dampfturbine. Der in der Figur dargestellte Ausschnitt einer Turbomaschine 1 zeigt einen Längsschnitt durch eine zweiflutige Mittel¬ druck-Dampfturbine einer Dampfturbinenanlage. In einem Ge¬ häuse 15 der Turbomaschine ist ein sich entlang einer Hauptachse 2 erstreckender Laufschaufelträger 11 dargestellt. Dieser ist aus einer Mehrzahl von Läuferscheiben 29 herge¬ stellt, von denen der Übersichtlichkeit halber nur eine dar¬ gestellt ist. Durch die Läuferscheibe 29 ist zentral entlang der Hauptachse 2 ein Zuganker 28 geführt, der die Läufer- Scheiben zu dem Laufschaufelträger 11 zusammenfügt. Selbst¬ verständlich kann der Laufschaufelträger 11 auch als eine aus einem Stück bestehende Turbinenwelle hergestellt sein. Durch das Gehäuse 15 ist ein Einströmbereich 3 für Aktionsfluid 4 gebildet, welcher sich im wesentlichen entlang einer Ein- strömachse 17 senkrecht zur Hauptachse 2 erstreckt. Durch das Gehäuse 15 ist in der Nähe des Einströmbereiches 3 im we¬ sentlichen ebenfalls parallel zur Einströmachse 17 eine Kühl- fluidzuführung 8 vorgesehen. Diese Zuführung 8 geht in eine jeweilige Leitschaufel 6 der ersten Leitschaufelreihe 16 über. In der Leitschaufel 6 oder in mehreren Leitschaufeln zweigen Abzweigleitungen 23 ab, die in den Einströmbereich 3 münden. Die erste Leitschaufelreihe 16 dient zudem als Hal¬ terung 22 für ein ringförmiges Abschirmelement 19. Dieses Abschirmelement 19 ist in den Einströmbereich 3 hineingewölbt und bewirkt somit sowohl eine Umlenkung des Aktionsfluides 4 als auch eine Abschirmung des Laufschaufelträgers 11 (Turbinenläufer) gegenüber diesem Aktionsfluid 4. Von der Leitschaufel 6 führt die Zuführung 8 in das Abschirmelement 19 hinein. Dieses weist einen mit der Zuführung 8 verbünde- nen Hohlraum 18 auf, der sich im wesentlichen parallel zur Hauptachse 2 erstreckt und teilweise in Richtung des Ein¬ strömbereiches 3 verbreitert ist. Von dem Hohlraum 18 zwei¬ gen Abzweigleitungen 24 ab, die in den Einströmbereich 3 mün¬ den. Hierdurch wird, wie durch die Abzweigleitungen 23 der Leitschaufeln 6, eine entsprechende Filmkühlung des Abschirm¬ elementes 19 erreicht. Von dem Abschirmelement 19 mündet die Zuführung 8 in einen zwischen dem Abschirmelement 19 und dem Laufschaufelträger 11 gebildeten Zwischenraum 9. Das darin eintretende Kühlfluid 5 strömt zumindest teilweise in axialer Richtung aus dem Zwischenraum 9 in die Strömung des Aktions¬ fluides 4 hinein und durchläuft somit die aus den Laufschau¬ feln 7 und den nachgeordneten Leitschaufeln 6a gebildeten Turbinenstufen. Von dem Zwischenraum 9 führt eine als axiale Bohrung ausgebildete Kühlfluidleitung 13 in den Laufschaufel¬ träger 11 hinein und mündet dort in einen zwischen dem Zugan¬ ker 28 und der Läuferscheibe 29 gebildeten Ringspalt 27.
Durch das darin einströmende Kühlfluid 5 wird wärme aus dem Laufschaufelträger 11 abgeführt. Zusätzlich ist in der Läu¬ ferscheibe 29 bzw. einer oder mehrerer nachgeordneter Läufer- Scheiben, eine Sperrfluidleitung 14 vorgesehen, die von dem Ringspalt 27 in einen Laufschaufelträgerbereich 26 münden, der unmittelbar einer Laufschaufel 6a gegenüberliegt. Hier¬ durch erfolgt eine Strömung des Kühlfluides 5 in den zwischen dem Laufschaufelträgerbereich 26 und der Leitschaufel 6a ge¬ bildeten Spalt hinein. Das Kühlfluid 5 hat dort zusätzlich die Wirkung eines Sperrfluides durch welches eine Strömung des Aktionsfluides 4 durch diesen Spalt hindurch verhindert, zumindest aber deutlich verringert wird. Hierdurch lassen sich zusätzlich die Spaltverluste bei einer berührungsfreien Dichtung und somit auch der Wirkungsgrad der Dampfturbine er- höhen. Weitere von Kühlfluid 5 durchströmbare Sperrfluidlei- tungen 14 sind in dem Gehäuse 15 vorgesehen und verbinden die Zuführung 8 im Bereich der ersten Leitschaufelreihe 16 mit einem Gehäusebereich 25, welcher unmittelbar einer Laufschau¬ fei 7 gegenüberliegt. Hierdurch ist neben einer Kühlung ebenfalls eine Abdichtung dieses Spaltes durch das nunmehr zusätzlich als Sperrfluid wirkende Kühlfluid 5 gegeben.
Die Erfindung zeichnet sich durch eine Kühlung von vorzugs¬ weise mehreren Komponenten einer Turbomaschine aus, die an einen Einströmbereich für ein heißes Aktionsfluid, insbeson¬ dere Dampf von über 550 °C, angrenzen. Die Kühlung erfolgt durch Einleitung eines Kühlfluides, insbesondere Prozeßdampf einer Dampfturbinenanlage oder Kühlluft, durch eine Zufüh¬ rung, welche in einem oberflächennahen, dem Einströmbereich zugewandten Teil des Gehäuses angeordnet ist. Von dort wird die Kühlluft durch die erste Leitschaufelreihe in ein Ab- schirmelement geführt, welches an der Leitschaufelreihe befe¬ stigt ist. Sowohl in dem Gehäuse, der Leitschaufel, und dem Abschirmelement können Abzweigleitungen vorgesehen sein, die in den Einströmbereich münden und somit eine Filmkühlung der jeweiligen Komponente ermöglichen. Darüber hinaus kann durch von der Zuführung abzweigende Sperrfluidleitungen Kühlfluid zusätzlich als Sperrfluid in einen Spalt zwischen eine rotie¬ rende Komponente (Laufschaufei, Laufschaufelträger) und eine feststehende Komponente (Leitschaufel, Gehäuse) geführt wer¬ den, wodurch die Abdichtung einer berührungsfreien Dichtung deutlich verbessert wird.

Claims

Patentansprüche
1. Turbomaschine (1), insbesondere Dampfturbine, mit einem Gehäuse (15) und einem zumindest teilweise durch das Gehäuse (15) gebildeten Einströmbereich (3) für Aktionsfluid (4) , mit einer Zuführung (8) für ein Kühlfluid (5) , mit einem in dem Gehäuse (15) angeordneten, sich entlang einer Hauptachse (2) erstreckenden Laufschaufelträger (11) , und mit einem in dem Einströmbereich (3) angeordneten Abschirmelement (19) , wel- ches der Abschirmung des Laufschaufelträgers (11) gegenüber dem Aktionsfluid (4) dient und durch eine Halterung (22) an dem Gehäuse (15) befestigt ist, wobei die Zuführung (8) durch die Halterung (22) geführt ist.
2. Turbomaschine (1) nach Anspruch 1, bei der die Zuführung in dem Gehäuse (15) zumindest teilweise in der Umgebung des Einströmbereichs (3) zu dessen Kühlung geführt ist.
3. Turbomaschine (1) nach Anspruch 1 oder 2, bei der die Halterung (22) als eine erste Leitschaufel (6) ausgebildet ist.
4. Turbomaschine (1) nach einem der vohergehenden Ansprüche, bei der die Halterung (22) zumindest eine mit der Zuführung (8) verbundene Abzweigleitung (23) aufweist, welche in den Einströmbereich (3) mündet.
5. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der in dem Abschirmelement (19) zumindest eine Ab- Zweigleitung (24) vorgesehen ist, die mit der Zuführung (8) verbunden ist und in den Einströmbereich (3) mündet.
6. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der zwischen dem Abschirmelement (19) und dem Laufschau- feiträger (11) ein Zwischenraum (9) gebildet ist, in den die Zuführung (8) mündet.
7. Turbomaschine (1) nach Anspruch 6, bei der eine Kühlfluid¬ leitung (13) von dem Zwischenraum (9) in den Laufschaufelträ¬ ger (11) geführt ist.
8. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der der Laufschaufelträger (11) zumindest zwei Läufer¬ scheiben (29) aufweist, die durch einen Zuganker (28) mitein¬ ander verbunden sind, wobei die Kühlfluidleitung (13) in ei¬ nen Ringraum (27) zwischen einer Läuferscheibe (29) und einem Zuganker (28) mündet.
9. Turbomaschine (1) nach einem der vorhergehenden Ansprüche, bei der das Abschirmelement (19) zur Fluidstromteilung und/oder zur Fluidumlenkung in Richtung der Hauptachse (2) ausgebildet ist.
10. Turbomaschine (1), insbesondere Dampfturbine, mit einem Gehäuse (15) , mit einem zumindest teilweise durch das Gehäuse (15) gebildeten Einströmbereich (3) für Aktionsfluid (4) und mit einer Zuführung (8) für Kühlfluid (5) in dem Gehäuse (15) zur Kühlung des Gehäuses (15) in der Umgebung des Einströmbe¬ reichs (3) .
11. Turbomaschine (1) nach einem der vorhergehenden Ansprü- ehe, bei der zumindest eine Sperrfluidleitung(14) vorgesehen ist, die mit der Zuführung (8) verbunden ist und in einem Ge¬ häusebereich (25) gegenüberliegend einer Laufschaufel (7) oder in einem Laufschaufelträgerbereich (26) gegenüberliegend einer Leitschaufei (6a) mündet.
12. Turbomaschine (1) nach einem der vorhergehenden Ansprü¬ che, die eine zweiflutigen Mitteldruck-Dampfturbine (15) ist.
13. Verfahren zur Kühlung zumindest einer Komponente, welche an einen Einströmbereich (3) einer Turbomaschine (1), insbe¬ sondere einer Dampfturbine, angrenzt, welcher zumindest teil¬ weise von einem Gehäuse (15) gebildet ist, bei dem Kühlfluid (5), insbesondere Kühlluft oder Prozeßdampf, durch das Ge¬ häuse (15) , insbesondere in der Umgebung des Einströmbereichs (3) , einem Abschirmelement (19) zur Reduktion der Temperatur- belastung eines in dem Gehäuse (15) angeordneten Laufschau- felträgers (11) zugeführt wird.
PCT/DE1997/001162 1996-06-21 1997-06-09 Turbomaschine sowie verfahren zur kühlung einer turbomaschine WO1997049900A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP50206598A JP3939762B2 (ja) 1996-06-21 1997-06-09 タービン機械
DE59710625T DE59710625D1 (de) 1996-06-21 1997-06-09 Turbomaschine sowie verfahren zur kühlung einer turbomaschine
PL97330425A PL330425A1 (en) 1996-06-21 1997-06-09 Turbo-machine and method of cooling same
AT97928113T ATE247766T1 (de) 1996-06-21 1997-06-09 Turbomaschine sowie verfahren zur kühlung einer turbomaschine
EP97928113A EP0906493B1 (de) 1996-06-21 1997-06-09 Turbomaschine sowie verfahren zur kühlung einer turbomaschine
US09/217,855 US6102654A (en) 1996-06-21 1998-12-21 Turbomachine and method for cooling a turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19624805 1996-06-21
DE19624805.1 1996-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/217,855 Continuation US6102654A (en) 1996-06-21 1998-12-21 Turbomachine and method for cooling a turbomachine

Publications (1)

Publication Number Publication Date
WO1997049900A1 true WO1997049900A1 (de) 1997-12-31

Family

ID=7797593

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/DE1997/000953 WO1997049901A1 (de) 1996-06-21 1997-05-12 Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
PCT/DE1997/001162 WO1997049900A1 (de) 1996-06-21 1997-06-09 Turbomaschine sowie verfahren zur kühlung einer turbomaschine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000953 WO1997049901A1 (de) 1996-06-21 1997-05-12 Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle

Country Status (12)

Country Link
US (2) US6102654A (de)
EP (2) EP0906494B1 (de)
JP (2) JP3943136B2 (de)
KR (2) KR20000022066A (de)
CN (2) CN1106496C (de)
AT (2) ATE230065T1 (de)
CZ (2) CZ423498A3 (de)
DE (2) DE59709016D1 (de)
ES (1) ES2206724T3 (de)
PL (2) PL330755A1 (de)
RU (2) RU2182976C2 (de)
WO (2) WO1997049901A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845234A1 (de) 2005-09-22 2007-10-17 General Electric Company Verfahren und Vorrichtung zur Kühlung einer ersten Stufe einer Dampfturbine
US8202037B2 (en) 2004-08-02 2012-06-19 Siemens Aktiengesellschaft Steam turbine and method for operation of a steam turbine
EP3009597A1 (de) * 2014-10-15 2016-04-20 Siemens Aktiengesellschaft Kontrollierte Kühlung von Turbinenwellen
EP3056663A1 (de) * 2015-02-10 2016-08-17 Siemens Aktiengesellschaft Axial beaufschlagte Dampfturbine, insbesondere in zweiflutiger Ausführung

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445427A1 (de) 2003-02-05 2004-08-11 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betreiben einer Dampfturbine
EP1452688A1 (de) 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
US6854954B2 (en) * 2003-03-03 2005-02-15 General Electric Company Methods and apparatus for assembling turbine engines
US7003956B2 (en) * 2003-04-30 2006-02-28 Kabushiki Kaisha Toshiba Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
CN1573018B (zh) * 2003-05-20 2010-09-15 株式会社东芝 蒸汽涡轮机
JP4509664B2 (ja) * 2003-07-30 2010-07-21 株式会社東芝 蒸気タービン発電設備
DE10355738A1 (de) * 2003-11-28 2005-06-16 Alstom Technology Ltd Rotor für eine Turbine
US7357618B2 (en) * 2005-05-25 2008-04-15 General Electric Company Flow splitter for steam turbines
EP1785586B1 (de) * 2005-10-20 2014-05-07 Siemens Aktiengesellschaft Rotor einer Strömungsmaschine
EP1780376A1 (de) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Dampfturbine
US7322789B2 (en) * 2005-11-07 2008-01-29 General Electric Company Methods and apparatus for channeling steam flow to turbines
US7874795B2 (en) * 2006-09-11 2011-01-25 General Electric Company Turbine nozzle assemblies
EP1911933A1 (de) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Rotor für eine Strömungsmaschine
US7670108B2 (en) * 2006-11-21 2010-03-02 Siemens Energy, Inc. Air seal unit adapted to be positioned adjacent blade structure in a gas turbine
US8257015B2 (en) * 2008-02-14 2012-09-04 General Electric Company Apparatus for cooling rotary components within a steam turbine
US8113764B2 (en) 2008-03-20 2012-02-14 General Electric Company Steam turbine and a method of determining leakage within a steam turbine
US8096748B2 (en) * 2008-05-15 2012-01-17 General Electric Company Apparatus and method for double flow turbine first stage cooling
US8087871B2 (en) * 2009-05-28 2012-01-03 General Electric Company Turbomachine compressor wheel member
US20110158819A1 (en) * 2009-12-30 2011-06-30 General Electric Company Internal reaction steam turbine cooling arrangement
US8657562B2 (en) * 2010-11-19 2014-02-25 General Electric Company Self-aligning flow splitter for steam turbine
RU2539404C2 (ru) * 2010-11-29 2015-01-20 Альстом Текнолоджи Лтд Осевая газовая турбина
EP2503101A2 (de) * 2011-03-22 2012-09-26 General Electric Company System zur Regulierung einer Kühlflüssigkeit in einer Turbomaschine
US8888436B2 (en) 2011-06-23 2014-11-18 General Electric Company Systems and methods for cooling high pressure and intermediate pressure sections of a steam turbine
US8899909B2 (en) 2011-06-27 2014-12-02 General Electric Company Systems and methods for steam turbine wheel space cooling
US8888437B2 (en) 2011-10-19 2014-11-18 General Electric Company Dual-flow steam turbine with steam cooling
US20130259662A1 (en) * 2012-03-29 2013-10-03 General Electric Company Rotor and wheel cooling assembly for a steam turbine system
US20130323009A1 (en) * 2012-05-31 2013-12-05 Mark Kevin Bowen Methods and apparatus for cooling rotary components within a steam turbine
CN103603694B (zh) * 2013-12-04 2015-07-29 上海金通灵动力科技有限公司 一种降低汽轮机主轴轴承处工作温度的结构
EP2918788A1 (de) 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Verfahren zum Abkühlen einer Dampfturbine
US10208609B2 (en) 2014-06-09 2019-02-19 General Electric Company Turbine and methods of assembling the same
RU2665797C1 (ru) * 2016-07-04 2018-09-04 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Способ и устройство охлаждения вала авиационного газотурбинного двигателя
CN109236378A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的单流高温转子
CN109236379A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的双流高温转子
JP7271408B2 (ja) * 2019-12-10 2023-05-11 東芝エネルギーシステムズ株式会社 タービンロータ
CN111520195B (zh) * 2020-04-03 2022-05-10 东方电气集团东方汽轮机有限公司 一种汽轮机低压进汽室导流结构及其参数设计方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826895A (en) * 1953-09-03 1958-03-18 Fairchild Engine & Airplane Bearing cooling system
CH430757A (de) * 1963-01-18 1967-02-28 Siemens Ag Dampfturbine
JPS57188702A (en) * 1981-05-15 1982-11-19 Toshiba Corp Steam turbine rotor cooling method
JPS58155203A (ja) * 1982-03-12 1983-09-14 Toshiba Corp 蒸気タ−ビン
DE3406071A1 (de) * 1983-02-21 1984-08-23 Fuji Electric Co., Ltd., Kawasaki Einrichtung zur kuehlung der rotoren von dampfturbinen
JPS59155503A (ja) * 1983-02-24 1984-09-04 Toshiba Corp 軸流タ−ビンのロ−タ冷却装置
EP0315486A2 (de) * 1987-11-05 1989-05-10 General Electric Company Rahmenkonstruktion für ein Strahltriebwerk
EP0542403A1 (de) * 1991-11-01 1993-05-19 General Electric Company Luftzufuhrmuffe
US5292227A (en) * 1992-12-10 1994-03-08 General Electric Company Turbine frame

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2657901A (en) * 1945-06-08 1953-11-03 Power Jets Res & Dev Ltd Construction of turbine rotors
CH259566A (de) * 1947-08-09 1949-01-31 Sulzer Ag Läufer für Kreiselmaschinen, insbesondere Gasturbinen.
DE1551210A1 (de) * 1966-06-18 1970-01-15 Siemens Ag Scheibenlaeufer fuer Turbinen,die zum Antrieb von Wechselstromgeneratoren dienen
JPS5650084B2 (de) * 1972-04-26 1981-11-26
US4242041A (en) * 1979-01-15 1980-12-30 Westinghouse Electric Corp. Rotor cooling for double axial flow turbines
ATE16035T1 (de) * 1980-05-19 1985-10-15 Bbc Brown Boveri & Cie Gekuehlter leitschaufeltraeger.
US4312624A (en) * 1980-11-10 1982-01-26 United Technologies Corporation Air cooled hollow vane construction
JPS5830405A (ja) * 1981-08-19 1983-02-22 Hitachi Ltd 軸流機械のロ−タ取付装置
DE3209506A1 (de) * 1982-03-16 1983-09-22 Kraftwerk Union AG, 4330 Mülheim Axial beaufschlagte dampfturbine, insbesondere in zweiflutiger ausfuehrung
DE3424139C2 (de) * 1984-06-30 1996-02-22 Bbc Brown Boveri & Cie Gasturbinenrotor
JP2756117B2 (ja) * 1987-11-25 1998-05-25 株式会社日立製作所 ガスタービンロータ
US5054996A (en) * 1990-07-27 1991-10-08 General Electric Company Thermal linear actuator for rotor air flow control in a gas turbine
JPH06330702A (ja) * 1993-05-26 1994-11-29 Ishikawajima Harima Heavy Ind Co Ltd タービンディスク
DE4324034A1 (de) * 1993-07-17 1995-01-19 Abb Management Ag Gasturbine mit gekühltem Rotor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826895A (en) * 1953-09-03 1958-03-18 Fairchild Engine & Airplane Bearing cooling system
CH430757A (de) * 1963-01-18 1967-02-28 Siemens Ag Dampfturbine
JPS57188702A (en) * 1981-05-15 1982-11-19 Toshiba Corp Steam turbine rotor cooling method
JPS58155203A (ja) * 1982-03-12 1983-09-14 Toshiba Corp 蒸気タ−ビン
DE3406071A1 (de) * 1983-02-21 1984-08-23 Fuji Electric Co., Ltd., Kawasaki Einrichtung zur kuehlung der rotoren von dampfturbinen
JPS59155503A (ja) * 1983-02-24 1984-09-04 Toshiba Corp 軸流タ−ビンのロ−タ冷却装置
EP0315486A2 (de) * 1987-11-05 1989-05-10 General Electric Company Rahmenkonstruktion für ein Strahltriebwerk
EP0542403A1 (de) * 1991-11-01 1993-05-19 General Electric Company Luftzufuhrmuffe
US5292227A (en) * 1992-12-10 1994-03-08 General Electric Company Turbine frame

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 037 (M - 193) 15 February 1983 (1983-02-15) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 279 (M - 262) 13 December 1983 (1983-12-13) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 003 (M - 349) 9 January 1985 (1985-01-09) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202037B2 (en) 2004-08-02 2012-06-19 Siemens Aktiengesellschaft Steam turbine and method for operation of a steam turbine
EP1845234A1 (de) 2005-09-22 2007-10-17 General Electric Company Verfahren und Vorrichtung zur Kühlung einer ersten Stufe einer Dampfturbine
EP3009597A1 (de) * 2014-10-15 2016-04-20 Siemens Aktiengesellschaft Kontrollierte Kühlung von Turbinenwellen
WO2016058855A1 (de) * 2014-10-15 2016-04-21 Siemens Aktiengesellschaft Kontrollierte kühlung von turbinenwellen
CN107002494A (zh) * 2014-10-15 2017-08-01 西门子公司 涡轮轴的可控冷却
US10392941B2 (en) 2014-10-15 2019-08-27 Siemens Aktiengesellschaft Controlled cooling of turbine shafts
EP3056663A1 (de) * 2015-02-10 2016-08-17 Siemens Aktiengesellschaft Axial beaufschlagte Dampfturbine, insbesondere in zweiflutiger Ausführung

Also Published As

Publication number Publication date
US6102654A (en) 2000-08-15
EP0906494A1 (de) 1999-04-07
JP3939762B2 (ja) 2007-07-04
CZ422798A3 (cs) 1999-04-14
JP2000512706A (ja) 2000-09-26
JP2000512708A (ja) 2000-09-26
CN1106496C (zh) 2003-04-23
ATE247766T1 (de) 2003-09-15
JP3943136B2 (ja) 2007-07-11
CN1227619A (zh) 1999-09-01
KR20000022066A (ko) 2000-04-25
CN1100193C (zh) 2003-01-29
PL330755A1 (en) 1999-05-24
US6048169A (en) 2000-04-11
DE59710625D1 (de) 2003-09-25
CN1228134A (zh) 1999-09-08
KR20000022065A (ko) 2000-04-25
EP0906494B1 (de) 2002-12-18
RU2182976C2 (ru) 2002-05-27
PL330425A1 (en) 1999-05-10
CZ423498A3 (cs) 1999-04-14
WO1997049901A1 (de) 1997-12-31
DE59709016D1 (de) 2003-01-30
EP0906493A1 (de) 1999-04-07
EP0906493B1 (de) 2003-08-20
ATE230065T1 (de) 2003-01-15
RU2182975C2 (ru) 2002-05-27
ES2206724T3 (es) 2004-05-16

Similar Documents

Publication Publication Date Title
WO1997049900A1 (de) Turbomaschine sowie verfahren zur kühlung einer turbomaschine
DE19620828C1 (de) Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
EP1004748B1 (de) Laufrad für eine Strömungsmaschine
EP1111189B1 (de) Kühlluftführung für den Turbinenrotor eines Gasturbinen-Triebwerkes
EP1180196A1 (de) Strömungsmaschine mit einem dichtsystem für einen rotor
DE3015653A1 (de) Luftgekuehltes schaufelversteifungsband eines turbinenrotors mit halterungsmitteln
EP1709298A1 (de) Gekühlte schaufel für eine gasturbine
EP2450531B1 (de) Axialverdichterkühlung
DE2844701A1 (de) Fluessigkeitsgekuehlter turbinenrotor
DE102009040758A1 (de) Umlenkvorrichtung für einen Leckagestrom in einer Gasturbine und Gasturbine
EP2818724B1 (de) Strömungsmaschine und Verfahren
EP0122872B1 (de) MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung
DE19914227A1 (de) Wärmeschutzvorrichtung in Gasturbinen
EP1245806A1 (de) Gekühlte Gasturbinenschaufel
EP3324002A1 (de) Dichtungssystem für eine axiale strömungsmaschine und axiale strömungsmaschine
EP2092164B1 (de) Strömungsmaschine, insbesondere gasturbine
EP3095957B1 (de) Rotorscheibe zur verwendung in einem verdichter
DE3428206A1 (de) Statoranordnung in einer gasturbine
EP2324208B1 (de) Turbinenleitschaufelträger für eine gasturbine und verfahren zum betrieb einer gasturbine
EP1456507B1 (de) Dichtungsbaugruppe für komponenten einer strömungsmaschine
EP1445427A1 (de) Dampfturbine und Verfahren zum Betreiben einer Dampfturbine
WO2006072528A1 (de) Gasturbine mit einem vordrallerzeuger sowie ein verfahren zum betreiben einer gasturbine
EP1788191B1 (de) Dampfturbine sowie Verfahren zur Kühlung einer Dampfturbine
DE3424139A1 (de) Rotor, im wesentlichen bestehend aus einer trommel und einer zu kuehlenden scheibe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197084.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ JP KR PL RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997928113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV1998-4227

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1019980710468

Country of ref document: KR

Ref document number: 09217855

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997928113

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1998-4227

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019980710468

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: PV1998-4227

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1997928113

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980710468

Country of ref document: KR