EP0122872B1 - MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung - Google Patents

MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung Download PDF

Info

Publication number
EP0122872B1
EP0122872B1 EP84730019A EP84730019A EP0122872B1 EP 0122872 B1 EP0122872 B1 EP 0122872B1 EP 84730019 A EP84730019 A EP 84730019A EP 84730019 A EP84730019 A EP 84730019A EP 0122872 B1 EP0122872 B1 EP 0122872B1
Authority
EP
European Patent Office
Prior art keywords
rotor
cooling
steam turbine
steam
medium pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84730019A
Other languages
English (en)
French (fr)
Other versions
EP0122872A1 (de
Inventor
Klaus Dr.-Ing. Raschke
Gerhard Exner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kraftwerk Union AG
Original Assignee
Kraftwerk Union AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftwerk Union AG filed Critical Kraftwerk Union AG
Publication of EP0122872A1 publication Critical patent/EP0122872A1/de
Application granted granted Critical
Publication of EP0122872B1 publication Critical patent/EP0122872B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means

Definitions

  • the invention relates to an MD steam turbine in a single-flow design for a high-temperature steam turbine system with reheating, which is fed through bores in the housing of the inflow part cooling steam to an annular space above the rotor surface, which is delimited on the outside by a guide plate on one Side in front of the stuffing box and on the other side ends at an extension of the first guide vanes that forms the shaft seal, the rotor blades, at least of the first rows, being provided with axial channels lying above the rotor surface, which channels the further annular spaces between the shaft seal of the adjacent guide vanes and the Connect the rotor surface together.
  • Such an MD steam turbine which is supplied with cooling steam for rotor cooling and which is removed from the reheater before reheating, is known from W. Traupel "Thermal Turbomachinery", Volume 11, 2nd Edition, 1968, pages 341/342.
  • the cooling steam is introduced into an annular space adjacent to the stuffing box, formed by cutouts in the housing of the inflow part and of the rotor, and is also partly used as sealing steam.
  • the guide plate which runs closely along the rotor surface, separates an area from the free inflow space for the working steam in the inflow part and conducts part of the cooling steam along the rotor surface to below the approach of the first guide vanes forming the shaft seal, at which the guide plate ends.
  • the cooling steam thus reaches the area of the first rows of blades.
  • the incoming steam which is hotter than the cooling steam at 583 ° C, already releases heat to the cooling steam so that it heats up before it reaches the blades.
  • the blade roots of the first two rotor blade rows are provided with axial channels lying above the rotor surface, so that the cooling steam forms a somewhat cooler underflow up to the region of the third guide blade and the temperatures of the rotor surface are reduced at these highly stressed points.
  • a ferritic material can also be used for the rotor in high-temperature steam turbines instead of the austenitic steel, which is unfavorable for thermal expansion and production.
  • the cooling steam in this area is strongly heated, especially since the heat transfer takes place in metal alone.
  • the cooling steam is therefore already preheated before it hits the first row of blades. Since the cooling channels provided only under the first row of blades are milled under the root of the blade and are not drilled, it is difficult for the cooling steam to enter this column and only a small proportion of the preheated cooling steam is passed on to the second row of guide blades. In this steam turbine, too, the cooling steam is not optimally used.
  • CH-A-311370 describes a gas turbine, the rotor body of which is composed of paddle wheels and washers. These each contain axial cooling bores, which run in the blade wheels under the blade roots and which connect adjacent rows of blades in the intermediate disks. Between the cooling holes are on the end faces of the show. rock wheels each ring spaces. From an end face of the rotor body, cooling gases are fed from a further annular space to the axial cooling bores, which are then guided in the axial cooling bores approximately parallel to the rotor surface, and are also distributed between the cooling bores in the annular spaces. The cooling gases then emerge from the other end of the rotor body and mix with the propellant gas. By means of this cooling arrangement, the temperature of the rotor body in the region of the blade roots is kept considerably lower than the high operating temperature of the propellant gas.
  • the object of the invention is to increase the effect of the additional cooling steam in an MD steam turbine of the type described in the introduction and to further reduce the thermal stress on the rotor on the first rows of blades, so that the advantage of using ferritic or martensitic materials even with higher ones Maintain live steam temperatures.
  • the MD steam turbine is designed according to the invention so that a wall of the inflow part is guided up to the shaft seal of the first guide vane and carries the guide plate on its surface facing the rotor that the rotor body contains axial cooling bores which, at least for the first rows, a connection produce between the annular space and the blade roots of adjacent rows of blades, and that connecting blades are provided on each blade of these rows in the blade feet, which connect the cooling bores to the axial channels.
  • the stiffness of the rotor also improves due to the low temperature which is present over a relatively wide area of the rotor (from the third row of rotor blades to the exit of the stuffing box). This results in a more favorable location of the critical bending speed with a thicker rotor body than would be possible using austenitic steel. Due to the improved rotor stability (gap excitation and oil film excitation), the blading structure can also be made more efficient in terms of efficiency even with a chamber turbine.
  • This special cooling of the MD steam turbine part can be used both in stationary systems and in ship turbines in order to improve the process efficiency with the help of higher live steam temperatures.
  • ship turbines as high-speed and small machines with relatively high load change speeds and speed changes, it is particularly advantageous because of the higher safety. to cool the rotor and thus to design it in ferritic or martensitic steel instead of austenitic steel in order to remain within the range of the permissible thermal stresses.
  • the axial channels and the connecting channels in the blade roots of the rotor blades can each be designed as bores. However, it is expedient to design these as lateral, open cutouts because they can then be produced in a simple manner by milling. It is also recommended; arrange the bores for the introduction of the cooling steam in the lower joint flanges of the housing and the inflow part, since the lines do not have to be opened when the upper part of the housing is uncovered.
  • FIGS. 1 to 4 each show parts of a longitudinal section of an MD steam turbine designed according to the invention.
  • Fig. 3 is a view of the first blade row of this MD steam turbine is partially shown.
  • 4 shows a part of a radial section through the flanges of the housing and the inflow part.
  • the MD steam turbine of a high-temperature steam turbine system with reheating which is used as a marine turbine, is designed in a single-flow chamber design.
  • the housing 1 with the inflow part 2 surrounds the rotor 3 designed as a drum rotor.
  • the rotor carries six rows of rotor blades 4, in front of which there is a guide vane base 5 fastened in the housing 1.
  • Each guide vane base 5 is provided on the side facing the rotor surface 6 with a shaft seal 7 which extends to the adjacent rotor blade 4 and thus delimits an annular space 8 above the rotor surface 6.
  • the blades 4 are inserted with their blade feet 9 in grooves 10 of the rotor 3.
  • the wall 11 of the inflow part 2 is guided up to the shaft seal 7 of the guide vane base 5 of the first row.
  • the stuffing box 12 lies on the other side of the inflow part 2.
  • the working steam supplied to the MD steam turbine from the reheater has a very high temperature, e.g. B. 600 ° C.
  • a very high temperature e.g. B. 600 ° C.
  • the part that first comes into contact with the hot steam such as the wall 11 of the inflow part 2, the first guide vane bottoms 5 and the first rows of the rotor blades 4 and the rotor region there, are subjected to very great stress. So that the heating occurring there can still be absorbed in a permissible manner with ferritic or martensitic materials, separate cooling with cooling steam is provided there, which is removed after exiting the high-pressure turbine in front of the reheater.
  • This cooling steam is introduced via a controllable reducing valve (not shown) via bores 13 which are introduced into the lower part-joint flanges 14 of the housing 15 of the lower inflow part 2 in an annular channel 16 which is open to the rotor 3.
  • the lower housing 15 and the wall of the inflow part 2 there support on their surface 17 facing the rotor 3 a guide plate 18 which has openings 19 in the area of the annular channel 16 for the passage of the cooling steam.
  • This guide plate 18 extends on one side to the stuffing box 12 and ends on the other side at the shaft seal 7 of the first guide vane base 5. It delimits an annular space 20 above the rotor surface 6.
  • the cooling steam flowing into the annular space 20 via the ring channel 16 is divided there into the actual cooling steam flow for cooling the active rotor section and into the sealing steam for the stuffing box 12.
  • the cooling steam is distributed over the entire circumference of the housing or rotor through the ring channel 16 . It forms in the annulus. 20 a cold vapor curtain that flows over the rotor surface 6. Since the guide plate 18 is brought close to the rotor surface 6, the cooling steam in the annular space 20 is accelerated in the circumferential direction and set in rotation.
  • the rotor 3 of the MD steam turbine contains, evenly distributed over the circumference, axial cooling bores 21, which lie at the height of the blade feet 9 of the rotor blades 4 and connect the two first rows to one another.
  • the blade feet 9 of each blade 4 are provided with laterally lying, radially directed cutouts 22 which open into axial channels 23 which lie above the rotor surface 6 and which connect the annular spaces 8 between the shaft seal 7 of the adjacent guide blade bases 5 and the rotor surface 6 .
  • These axial channels 23 also take on the task of the compensation bores customary in a chamber turbine. Therefore, the other rows also have corresponding axial channels 24 in the rotor blades 4.
  • cooling steam located in the annular space 20 in front of the first guide vane base 5 enters the annular spaces 8 below the shaft seal 7 of the guide vane bases 5 and flows along the rotor surface 6.
  • Another part of the cooling steam enters the axial cooling bores 21 and is fed to the blade roots 9 of the first two rows of the blades 4.
  • the cooling steam is distributed along the rotor grooves 10 around the entire circumference of the rotor 3 and passes into the radially directed connection channels 22 present in each rotor blade 4, from which the cooling steam flows into the axial channels 23 flows and combines there again with the other cooling steam.
  • cooling of the blade roots 9 of the rotor blades 4 and the adjacent rotor part is also achieved in this way.
  • the distribution of the cooling steam flows depends on the dimensioning of the cross sections of the axial cooling bores 21 and the shaft seal 7 and on their manufacturing accuracy.
  • the cross sections and pressure ratios are chosen so that the cooling effect after the second row of blades 4 is only slight and mixing with the active working steam has taken place without the transition of the cooling taking place in the annular spaces 8.
  • steam in the working steam produces a secondary flow which adversely affects the efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung bezieht sich auf eine MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüberhitzung, der über Bohrungen im Gehäuse des Einströmteiles Kühldampf zu einem oberhalb der Läuferoberfläche' liegenden Ringraum zugeleitet wird, der nach außen von einem Führungsblech begrenzt ist, das auf der einen Seite vor der Stopfbuchse und auf der anderen Seite an einem die Wellendichtung bildenden Ansatz der ersten Leitschaufeln endet, wobei die Laufschaufeln, zumindest der ersten Reihen, mit über der Läuferoberfläche liegenden Axialkanälen versehen sind, welche die weiteren Ringräume zwischen der Wellendichtung der benachbarten Leitschaufein und der Läuferoberfläche miteinander verbinden.
  • Eine derartige MD-Dampfturbine, der zur Läuferkühlung Kühldampf zugeführt wird, der dem Zwischenüberhitzer vor der Wiedererhitzung abgenommen wird, ist aus W. Traupel « Thermische Turbomaschinen », Band 11., 2. Auflage, 1968, Seiten 341/342 bekannt. Der Kühldampf wird bei der bekannten MD-Dampfturbine in einen benachbart zur Stopfbuchse liegenden Ringraum, gebildet durch Aussparungen im Gehäuse des Einströmteiles und des Läufers, eingeleitet und auch zum Teil als Sperrdampf ausgenutzt. Das eng an der Läuferoberfläche entlanggeführte Führungsblech trennt vom freien Einströmraum für den Arbeitsdampf im Einströmteil einen Bereich ab und leitet darin einen Teil des Kühldampfes an der Läuferoberfläche entlang bis unter dem die Wellendichtung bildenden Ansatz der ersten Leitschaufeln, an dem das Führungsblech endet. Somit gelangt der Kühldampf in den Bereich der ersten Schaufelreihen. Allerdings findet durch die dünne Wand des Führungsbleches hindurch bereits vom einströmenden Dampf, der mit 583 °C heißer ist als der Kühldampf, eine.Wärmeabgabe an den Kühldampf statt, so daß sich dieser bereits erwärmt, bevor er die Schaufeln erreicht. Die Schaufelfüße der ersten beiden Laufschaufelreihen sind mit oberhalb der Läuferoberfläche liegenden Axialkanälen versehen, so daß der Kühldampf bis in den Bereich der dritten Leitschaufel eine etwas kühlere Unterströmung bildet und an diesen hochbeanspruchten Stellen die Temperaturen der Läuferoberfläche herabgesetzt werden. Dadurch kann auch bei Hochtemperaturdampfturbinen für den Läufer ein ferritischer Werkstoff verwendet werden anstelle des für die Wärmedehnungen und die Fertigung ungünstigen austenischen Stahls.
  • Weiterhin ist aus der Zeitschrift « Power », Band 117, Nr. 8, August 1970, Seite 33 eine Dampfturbine in Trommelbauart bekannt, bei der die Wand des Einströmteiles dickwandig ausgebildet und bis in den Bereich der Stopfbuchse an der ersten Leitschaufel heruntergezogen ist. Dort weist die Wand allerdings einen dünneren Querschnitt auf. Der zwischen dieser Wand und der Läuferoberfläche gebildete Ringspalt ist mit Kühldampf beaufschlagt. Außerdem findet, noch während der Kühldampf der Läuferoberfläche folgt, im Bereich der Stopfbuchsen der ersten Leitschaufelreihe eine starke Temperaturerhöhung statt. Da dort die zwischen der Stopfbuchse und dem Kühldampf liegende Wand dünn ist und die Temperatur des zuströmenden Arbeitsdampfes durch den Drosselvorgang in den Stopfbuchsen angenähert erhalten bleibt, wird der Kühldampf in diesem Bereich stark erwärmt, zumal der Wärmeübergang allein in Metall verläuft. Der Kühldampf ist also bereits stark vorgewärmt, ehe er auf die erste Laufschaufelreihe trifft. Da weiterhin die nur unter der ersten Laufschaufelreihe vorgesehenen Kühlkanäle unter der Schaufelwurzel eingefräst sind und nicht gebohrt, ist das Eintreten des Kühldampfes in diese Spalte erschwert, und es wird nur ein geringer Anteil des bereits vorgewärmten Kühldampfes bis zur zweiten Leitschaufelreihe weitergeleitet. Auch bei dieser Dampfturbine wird also der Kühldampf nicht optimal ausgenutzt.
  • Ferner beschreibt die CH-A-311370 eine Gasturbine, deren Läuferkörper sich aus Schaufelrädern und Zwischenscheiben zusammensetzt. Diese enthalten jeweils axiale Kühlbohrungen, die in den Schaufelrädern unter den Schaufelfüßen verlaufen und in den Zwischenscheiben eine Verbindung benachbarter Reihen von Laufschaufeln herstellen. Zwischen den Kühlbohrungen liegen an den Stirnflächen der Schau-. felräder jeweils Ringräume. Von einer Stirnseite des Läuferkörpers werden aus einem weiteren Ringraum den axialen Kühlbohrungen Kühlgase zugeführt, die dann in den axialen Kühlbohrungen angenähert parallel zur Läuferoberfläche geführt sind, wobei sie sich zwischen den Kühlbohrungen auch in den Ringräumen verteilen. An der anderen Stirnseite des Läuferkörpers treten die Kühlgase dann aus und vermischen sich mit dem Treibgas. Durch diese Kühlanordnung wird die Temperatur des Läuferkörpers im Bereich der Schaufelfüße wesentlich tiefer gehalten als die hohe Betriebstemperatur des Treibgases.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einer MD-Dampfturbine der eingangs beschriebenen Art die Wirkung des zusätzlichen Kühldampfes zu steigern und die Wärmebeanspruchung des Läufers an den ersten Schaufelreihen noch zu verringern, um den Vorteil einer Verwendung von ferritischen oder martensitischen Werkstoffen auch noch bei höheren Frischdampftemperaturen beizubehalten.
  • Zur Lösung dieser Aufgabe ist gemäß der Erfindung die MD-Dampfturbine so ausgebildet, daß eine Wand des Einströmteiles bis zur Wellendichtung der ersten Leitschaufel geführt ist und auf ihrer dem Läufer zugewandten Oberfläche das Führungsblech trägt, daß der Läuferkörper axiale Kühlbohrungen enthält, die, zumindest bei den ersten Reihen, eine Verbindung zwischen dem Ringraum und den Schaufelfüßen benachbarter Reihen von Laufschaufeln herstellen, und daß an jeder Laufschaufel dieser Reihen in den Schaufelfüßen Verbindungskanäle vorgesehen sind, die die Kühlbohrungen mit den Axialkanälen verbinden.
  • Durch die Dicke der Wand des Einströmteiles, die zwischen der Läuferoberfläche und dem Einströmkanal des zwischenüberhitzten Arbeitsdampfes liegt, und durch die zwischen dem Führungsblech und der Wand verbleibenden, von Luft bzw. Dampf gefüllten Zwischenräume wird ein Wärmeübergang zum Kühldampf erschwert, der in den Ringraum zwischen dem Führungsblech und der Läuferoberfläche eingeleitet wird. Der in dem eng gehaltenen Ringraum unter dem Führungsblech mit relativ großer Geschwindigkeit strömende kalte Dampf beaufschlagt die gesamte Läuferoberfläche zwischen der Stopfbuchse und der Wellendichtung der ersten Leitschaufelreihe wie mit einem Schleier. Dieser wird durch den engen Abstand des Führungsbleches zur Läuferoberfläche in Rotation versetzt, so daß der Kühldampf durch den erhaltenen Drall leicht in die axialen Kühlbohrungen im Läuferkörper eintritt, welche die Schaufelfüße der ersten laufschaufelreihen untereinander verbinden. Im Bereich der Schaufelfüße verteilt sich der Kühldampf wieder ringförmig entlang der Laufschaufelnut um den gesamten Umfang. Durch die radial gerichteten Verbindungskanäle in jeder Laufschaufel wird jede einzelne Laufschaufel dieser Reihen und der benachbarte Läuferbereich wirkungsvoll gekühlt, wobei der Kühldampf in die Axialkanäle übergeleitet wird und sich dort mit dem von der ersten Wellendichtung herkommenden Kühldampfanteil vermischt. Man erhält auf diese Weise sowohl eine gute Kühlung der Läuferoberfläche, als auch eine gute Kühlung der Schaufelfüße der ersten Laufschaufelreihen und des dortigen Läuferbereiches, und der Kühldampf wird über die Axialkanäle unter den Wellendichtungen allmählich mit dem aktiven Dampfstrom vermischt, ohne daß sich eine störende und den Wirkungsgrad beeinträchtigende Sekundärströmung ausbilden kann.
  • Auf diese Weise werden trotz der hohen Temperatur des Arbeitsdampfes im Einströmteil die sich auf der Läuferoberfläche und an den Laufschaufelfüße der hochbeanspruchten ersten Reihen einstellenden Temperaturen soweit herabgesetzt, daß sich die Verwendung von hochwärmebeständigem austenitischem Stahl für den Läufer erübrigt.
  • Schwierigkeiten hinsichtlich der bei unterschiedlichen Werkstoffen im Gehäuse gegebenen unterschiedlichen Dehnungen infolge der Wärmespiele werden somit vermieden. Auch die Steifigkeit des Läufers verbessert sich durch die über einen relativ weiten Bereich des Läufers (von der dritten Reihe der Laufschaufeln bis zum Austritt der Stopfbuchse) gegebene niedrige Temperatur. Daraus resultiert eine günstigere Lage der biegekritischen Drehzahl bei einem dickeren Läuferkörper, als er bei Verwendung von austenitischem Stahl möglich wäre. Durch die verbesserte läuferstabilität (Spaltanregung und Ölfilmanregung) läßt sich der Beschaufelungsaufbau auch bei einer Kammerturbine wirkungsgradmäßig günstiger gestalten.
  • Diese besondere Kühlung des MD-Dampfturbinenteiles kann sowohl bei stationären Anlagen als auch bei Schiffsturbinen eingesetzt werden, um den Prozeßwirkungsgrad mit Hilfe höherer Frischdampftemperaturen zu verbessern. Gerade bei Schiffsturbinen als hochtourige und kleine Maschinen mit relativ hohen Laständerungsgeschwindigkeiten und Drehzahländerungen ist es wegen der höheren Sicherheit besonders vorteilhaft. den Läufer zu kühlen und damit in ferritischen oder martensitischen Stahl statt in austenitischen auszuführen, um im Bereich der zulässigen Wärmebeanspruchungen zu bleiben.
  • Die Axialkanäle und die Verbindungskanäle in den Schaufelfüßen der Laufschaufeln können jeweils als Bohrungen ausgeführt werden. Es ist aber zweckmäßig, diese als seitliche, offene Aussparungen auszubilden, weil sie dann in einfacher Weise durch Ausfräsen hergestellt werden können. Weiterhin empfiehlt es sich; die Bohrungen für die Einleitung des Kühldampfes in den unteren Teilfugenflanschen von Gehäuse und Einströmteil anzuordnen, da die Leitungen beim Aufdecken des Gehäuseoberteiles nicht aufgetrennt werden müssen.
  • Im folgenden sei die Erfindung noch anhand des in den Fig. 1 bis 4 in unterschiedlichen Maßstäben dargestellten Ausführungsbeispiels näher erläutert. Die Fig. 1 und 2 zeigen jeweils Teile eines Längsschnittes einer gemäß der Erfindung ausgebildeten MD-Dampfturbine. In Fig. 3 ist eine Ansicht auf die erste Laufschaufelreihe dieser MD-Dampfturbine teilweise dargestellt. Weiterhin zeigt die Fig. 4 einen Teil eines Radialschnittes durch die Flansche des Gehäuses und des Einströmteiles.
  • Die MD-Dampfturbine einer Hochtemperaturdampfturbinenanlage mit Zwischenüberhitzung, die als Schiffsturbine eingesetzt wird, ist in einflutiger Kammerbauweise ausgebildet. Das Gehäuse 1 mit dem Einströmteil 2 umgibt den als Trommelläufer ausgebildeten Läufer 3. Dieser trägt sechs Reihen von Laufschaufeln 4, vor denen jeweils ein im Gehäuse 1 befestigter Leitschaufelboden 5 liegt. Jeder Leitschaufelboden 5 ist auf der der Läuferoberfläche 6 zugewandten Seite mit einer Wellendichtung 7 versehen, die sich bis zur benachbarten Laufschaufel 4 erstreckt und somit jeweils einen Ringraum 8 oberhalb der Läuferoberfläche 6 begrenzt. Die Laufschaufeln 4 sind mit ihren Schaufelfüßen 9 in Nuten 10 des Läufers 3 eingesetzt.
  • Die Wand 11 des Einströmteiles 2 ist bis zur Wellendichtung 7 des Leitschaufelbodens 5 der ersten Reihe geführt. Auf der anderen Seite des Einströmteiles 2 liegt die Stopfbuchse 12.
  • Bei einer Hochtemperaturdampfturbinenanlage hat der der MD-Dampfturbine vom Zwischenüberhitzer zugeführte Arbeitsdampf eine sehr hohe Temperatur, z. B. 600 °C. Dadurch werden die mit dem heißen Dampf zuerst in Berührung gelangenden Teil, wie die Wand 11 des Einströmteiles 2, die ersten Leitschaufelböden 5 und die ersten Reihen der Laufschaufeln 4 und der dortige Läuferbereich sehr stark beansprucht. Damit die dort auftretenden Erwärmungen in zulässiger Weise noch mit ferritischen oder martensitischen Werkstoffen aufgenommen werden können, ist dort eine gesonderte Kühlung mit Kühldampf vorgesehen, der nach Austritt aus der Hochdruckturbine vor dem Zwischenüberhitzer entnommen wird. Dieser Kühldampf wird über ein nicht dargestelltes regelbares Reduzierventil über Bohrungen 13, die in den unteren Teilfugenflanschen 14 des Gehäuses 15 des unteren Einströmteiles 2 in einem Ringkanal 16 eingeleitet, der zum Läufer 3 hin offen ist. Das untere Gehäuse 15 und die Wand des Einströmteiles 2 tragen dort auf ihrer dem Läufer 3 zugewandten Oberfläche 17 ein Führungsblech 18, das im Bereich des Ringkanals 16 Öffnungen 19 für den Durchtritt des Kühldampfes aufweist. Dieses Führungsblech 18 erstreckt sich auf der einen Seite bis vor die Stopfbuchse 12 und endet auf der anderen Seite an der Wellendichtung 7 des ersten Leitschaufelbodens 5. Es begrenzt einen oberhalb der Läuferoberfläche 6 liegenden Ringraum 20.
  • Der über den Ringkanal 16 in den Ringraum 20 einströmende Kühldampf teilt sich dort auf in den eigentlichen Kühldampfstrom zur Kühlung der aktiven Läuferpartie und in den Sperrdampf für die Stopfbuchse 12. Durch den Ringkanal 16 ist der Kühldampf über den gesamten Gehäuse- bzw. Läuferumfang verteilt worden. Er bildet in dem Ringraum. 20 einen kalten Dampfschleier, der über der Läuferoberfläche 6 strömt. Da das Führungsblech 18 bis dicht an die Läuferoberfläche 6 herangeführt ist, wird der Kühldampf im Ringraum 20 in Umfangsrichtung beschleunigt und in Rotation versetzt.
  • Der Läufer 3 der MD-Dampfturbine enthält, gleichmäßig über den Umfang verteilt, axiale Kühlbohrungen 21, welche in der Höhe der Schaufelfüße 9 der Laufschaufeln 4 liegen und deren beide erste Reihen miteinander verbinden. In diesen beiden Reihen sind die Schaufelfüße 9 jeder Laufschaufel 4 mit seitlich liegenden, radial gerichteten Aussparungen 22 versehen, die in oberhalb der Läuferoberfläche 6 liegende Axialkanäle 23 münden, welche die Ringräume 8 zwischen der Wellendichtung 7 der benachbarten Leitschaufelböden 5 und der Läuferoberfläche 6 miteinander verbinden. Diese Axialkanäle 23 übernehmen außerdem noch die Aufgabe der bei einer Kammerturbine üblichen Ausgleichsbohrungen. Deshalb haben auch die anderen Reihen entsprechende Axialkanäle 24 in den Laufschaufeln 4.
  • Von dem im Ringraum 20 vor dem ersten Leitschaufelboden 5 befindlichen Kühldampf tritt ein Teil in die Ringräume 8 unterhalb der Wellendichtung 7 der Leitschaufelböden 5 ein und strömt an der Läuferoberfläche 6 entlang. Ein anderer Teil des Kühldampfes tritt, begünstigt durch den in ihm vorhandenen Drall, in die axialen Kühlbohrungen 21 ein und wird den Schaufelfüßen 9 der beiden ersten Reihen der Laufschaufeln 4 zugeführt. In jeder dieser beiden ersten Reihen der Laufschaufeln 4 verteilt sich der Kühldampf entlang der Läufernuten 10 jeweils um den gesamten Umfang des Läufers 3 und tritt in die in jeder Laufschaufel 4 vorhandenen, radial gerichteten Verbindungskanäle 22 über, von denen aus der Kühldampf in die Axialkanäle 23 strömt und sich dort wieder mit dem anderen Kühldampfanteil vereint. Neben der Kühlung der Läuferoberfläche 6 erzielt man so auch noch zusätzlich eine Kühlung der Schaufelfüße 9 der Laufschaufeln 4 und des benachbarten Läuferteils.
  • Die Aufteilung der Kühldampfströme hängt von der Dimensionierung der Querschnitte der axialen Kühlbohrungen 21 und der Wellendichtung 7 sowie von deren Fertigungsgenauigkeit ab. Die Querschnitte und Druckverhältnisse sind so gewählt, daß die Kühlwirkung nach der zweiten Reihe der Laufschaufeln 4 nur noch gering ist und eine Durchmischung mit dem aktiven Arbeitsdampf stattgefunden hat, ohne daß der in den Ringräumen 8 erfolgende Übergang des Kühl. dampfes in den Arbeitsdampf eine den Wirkungsgrad benachteiligende Sekundärströmung erzeugt. Mit einer derartig aufgebauten Kühlung der hochbeanspruchten aktiven Teile des Läufers 3 der MD-Dampfturbine erreicht man einen ausreichend hohen Kühleffekt bei geringen Kühldampfmengen an den am stärksten beanspruchten Stellen, so daß die Grenze der Warmfestigkeit des für den Läufer 3 verwendeten ferritischen oder martensitischen Stahls nicht erreicht wird.

Claims (4)

1. MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüberhitzung, der über Bohrungen (13) im Gehäuse (1) des Einströmteiles (2) Kühldampf zu einem oberhalb der Läuferoberfläche (6) liegenden Ringraum (20) zugeleitet wird, der nach außen von einem Führungsblech (18) begrenzt ist, das auf der einen Seite vor der Stopfbuchse (12) und auf der anderen Seite an einem die Wellendichtung (7) bildenden Ansatz der ersten Leitschaufeln (5) endet, wobei die Laufschaufeln (4), zumindest der ersten Reihen, mit über der Läuferoberfläche (6) liegenden Axialkanälen (23) versehen sind, welche die weiteren Ringräume (8) zwischen der Wellendichtung (7) der benachbarten Leitschaufeln (5) und der läuferoberfläche (6) miteinander verbinden, dadurch gekennzeichnet, daß eine Wand (11) des Einströmteiles (2) bis zur Wellendichtung (7) der ersten Leitschaufeln (5) geführt ist und auf ihrer dem läufer (3) zugewandten Oberfläche (17) das Führungsblech (18) trägt, daß der Läuferkörper (3) axiale Kühlbohrungen (21) enthält, die, zumindest bei den ersten Reihen, eine Verbindung zwischen dem Ringraum (20) und den Schaufeifüßen (9) benachbarter Reihen von Laufschaufein (4) herstellen, und daß an jeder Laufschaufel (4) dieser Reihen in den Schaufelfüßen (9) radial gerichtete Verbindungskanäle (22) vorgesehen sind, die die Kühlbohrungen (21) mit den Axialkanälen (23) verbinden.
2. MD-Dampfturbine nach Anspruch 1, dadurch gekennzeichnet, daß die Bohrungen (13) für die Einleitung des Kühldampfes in den unteren Teilfugenflanschen (14) des Gehäuses (15) des Einströmteiles (2) angeordnet sind.
3. MD-Dampfturbine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Axialkanäle (23) und die Verbindungskanäle (22) in den Schaufelfüßen (9) als seitliche, offene Aussparungen ausgebildet sind.
4. MD-Dampfturbine nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die MD-Dampfturbine als Kammerturbine ausgebildet ist.
EP84730019A 1983-03-18 1984-03-08 MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung Expired EP0122872B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3310396A DE3310396A1 (de) 1983-03-18 1983-03-18 Md-dampfturbine in einflutiger bauweise fuer eine hochtemperaturdampfturbinenanlage mit zwischenueberhitzung
DE3310396 1983-03-18

Publications (2)

Publication Number Publication Date
EP0122872A1 EP0122872A1 (de) 1984-10-24
EP0122872B1 true EP0122872B1 (de) 1987-03-04

Family

ID=6194310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84730019A Expired EP0122872B1 (de) 1983-03-18 1984-03-08 MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung

Country Status (3)

Country Link
US (1) US4551063A (de)
EP (1) EP0122872B1 (de)
DE (2) DE3310396A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593274A (en) * 1995-03-31 1997-01-14 General Electric Co. Closed or open circuit cooling of turbine rotor components
ATE228202T1 (de) * 1996-01-11 2002-12-15 Siemens Ag Turbinenwelle einer dampfturbine mit interner kühlung
DE59710425D1 (de) * 1997-12-24 2003-08-14 Alstom Switzerland Ltd Rotor einer Strömungsmaschine
EP1242729B1 (de) * 1999-12-21 2005-02-16 Siemens Aktiengesellschaft Verfahren zum betreiben einer dampfturbine sowie turbinenanlage mit einer danach arbeitenden dampfturbine
US6364613B1 (en) * 2000-08-15 2002-04-02 General Electric Company Hollow finger dovetail pin and method of bucket attachment using the same
EP1378630A1 (de) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Dampfturbine
US7488153B2 (en) * 2002-07-01 2009-02-10 Alstom Technology Ltd. Steam turbine
EP1452688A1 (de) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
US20070065273A1 (en) * 2005-09-22 2007-03-22 General Electric Company Methods and apparatus for double flow turbine first stage cooling
US8105032B2 (en) * 2008-02-04 2012-01-31 General Electric Company Systems and methods for internally cooling a wheel of a steam turbine
US8376687B2 (en) * 2009-10-13 2013-02-19 General Electric Company System and method for cooling steam turbine rotors
US8348608B2 (en) * 2009-10-14 2013-01-08 General Electric Company Turbomachine rotor cooling
US8662826B2 (en) * 2010-12-13 2014-03-04 General Electric Company Cooling circuit for a drum rotor
US8668439B2 (en) 2011-03-24 2014-03-11 General Electric Company Inserts for turbine cooling circuit
US8888436B2 (en) 2011-06-23 2014-11-18 General Electric Company Systems and methods for cooling high pressure and intermediate pressure sections of a steam turbine
US8899909B2 (en) 2011-06-27 2014-12-02 General Electric Company Systems and methods for steam turbine wheel space cooling
US20130280048A1 (en) * 2012-04-19 2013-10-24 General Electric Company Seal for a turbine system
US9702261B2 (en) * 2013-12-06 2017-07-11 General Electric Company Steam turbine and methods of assembling the same
CN108397247B (zh) * 2018-04-09 2024-04-12 金通灵科技集团股份有限公司 一种快装式高速同轴中间再热轴向排汽型汽轮机

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB287238A (en) * 1926-12-17 1928-03-19 Richard William Bailey Improvements in or relating to elastic fluid turbines
GB579316A (en) * 1941-05-07 1946-07-31 Hayne Constant Improvements in gas turbines, axial flow or turbine type gas compressors and the like machines
FR897716A (fr) * 1942-08-12 1945-03-29 Turbine à gaz refroidie
GB597165A (en) * 1945-01-23 1948-01-20 Power Jets Res & Dev Ltd Improvements relating to the construction of stator elements of turbines, compressors or like machines
GB612097A (en) * 1946-10-09 1948-11-08 English Electric Co Ltd Improvements in and relating to the cooling of gas turbine rotors
US2552239A (en) * 1946-10-29 1951-05-08 Gen Electric Turbine rotor cooling arrangement
US2807434A (en) * 1952-04-22 1957-09-24 Gen Motors Corp Turbine rotor assembly
US2873087A (en) * 1952-05-20 1959-02-10 Parsons & Marine Eng Turbine Means for cooling gas turbines
CH340669A (de) * 1956-04-06 1959-08-31 Sulzer Ag Gasturbine mit einem mehrstufigen, mindestens teilweise gekühlten Rotor
CH341030A (de) * 1956-06-18 1959-09-15 Sulzer Ag Mehrstufiger Turbinenrotor mit einer Kühleinrichtung
DE1185415B (de) * 1962-02-03 1965-01-14 Gasturbinenbau Und Energiemasc Einrichtung zum Kuehlen von Turbinenscheiben einer Gasturbine
GB988541A (en) * 1962-03-06 1965-04-07 Ruston & Hornsby Ltd Gas turbine rotor cooling
CH430757A (de) * 1963-01-18 1967-02-28 Siemens Ag Dampfturbine
US3443790A (en) * 1966-07-08 1969-05-13 Gen Electric Steam cooled gas turbine
GB1208455A (en) * 1967-08-03 1970-10-14 Ass Elect Ind Improvements relating to gas turbine plant and operation thereof
GB1184687A (en) * 1967-08-25 1970-03-18 Prvni Brnenska Strojirna Zd Y Improvements in or relating to Turbine Rotors.
US3551068A (en) * 1968-10-25 1970-12-29 Westinghouse Electric Corp Rotor structure for an axial flow machine
US3575528A (en) * 1968-10-28 1971-04-20 Gen Motors Corp Turbine rotor cooling
CH495496A (de) * 1969-02-26 1970-08-31 Bbc Sulzer Turbomaschinen Turbomaschine mit gekühltem Rotor
US3602605A (en) * 1969-09-29 1971-08-31 Westinghouse Electric Corp Cooling system for a gas turbine
US3826084A (en) * 1970-04-28 1974-07-30 United Aircraft Corp Turbine coolant flow system
US3609057A (en) * 1970-06-15 1971-09-28 United Aircraft Corp Turbine coolant flow system
CH594809A5 (de) * 1975-10-10 1978-01-31 Bbc Brown Boveri & Cie
CH626947A5 (de) * 1978-03-02 1981-12-15 Bbc Brown Boveri & Cie

Also Published As

Publication number Publication date
EP0122872A1 (de) 1984-10-24
US4551063A (en) 1985-11-05
DE3462536D1 (en) 1987-04-09
DE3310396A1 (de) 1984-09-20

Similar Documents

Publication Publication Date Title
EP0122872B1 (de) MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung
EP0906494B1 (de) Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
DE69219557T2 (de) Thermische Steuerung eines Gehäuses eines Gasturbinentriebwerks
EP1945911B1 (de) Dampfturbine
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
DE2913548C2 (de) Wellenkühlung für ein Gasturbinentriebwerk
DE60007985T2 (de) Gegossene einspritzdüse mit veränderbarem durchströmten querschnitt
DE19620828C1 (de) Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
EP1111189B1 (de) Kühlluftführung für den Turbinenrotor eines Gasturbinen-Triebwerkes
DE1950812C3 (de) Feststehende Dichtungsanordnung für Strömungsmaschinen mit heißem elastischem Treibmittel
DE3713923C2 (de) Kühlluft-Übertragungsvorrichtung
DE1601564A1 (de) Mantelring fuer Gasturbinenanlagen
DE3015653A1 (de) Luftgekuehltes schaufelversteifungsband eines turbinenrotors mit halterungsmitteln
DE2261443A1 (de) Turbinenanordnung mit zweistromkuehlung fuer gasturbinentriebwerke
DE69118098T2 (de) Abdeckring für Bolzenköpfe
DE2003947A1 (de) Gasturbine
DE3506733A1 (de) Turbinenleitradring
DE2844701A1 (de) Fluessigkeitsgekuehlter turbinenrotor
DE2654525C1 (de) Stroemungsmaschine mit einer Regeleinrichtung zur Konstanthaltung des Radialspielraums zwischen den Rotorschaufelspitzen und der Statorkonstruktion
EP1245806B1 (de) Gekühlte Gasturbinenschaufel
DE69400526T2 (de) Äussere luftabdichtung für ein gasturbinentriebwerk
DE1601557A1 (de) Stroemungsmittelgekuehlte Statoranordnung
EP0953099B1 (de) Dampfturbine
DE102005033362A1 (de) Axialdampfturbinenanordnung
CH663251A5 (de) Einrichtung zur kuehlung der rotoren von dampfturbinen.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE SE

17P Request for examination filed

Effective date: 19841128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE SE

REF Corresponds to:

Ref document number: 3462536

Country of ref document: DE

Date of ref document: 19870409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891201

EUG Se: european patent has lapsed

Ref document number: 84730019.1

Effective date: 19891016