EP0897941A1 - Vernetzter fester polyelektrolyt und seine verwendung - Google Patents

Vernetzter fester polyelektrolyt und seine verwendung Download PDF

Info

Publication number
EP0897941A1
EP0897941A1 EP97918369A EP97918369A EP0897941A1 EP 0897941 A1 EP0897941 A1 EP 0897941A1 EP 97918369 A EP97918369 A EP 97918369A EP 97918369 A EP97918369 A EP 97918369A EP 0897941 A1 EP0897941 A1 EP 0897941A1
Authority
EP
European Patent Office
Prior art keywords
group
repeating unit
ion
epoxy
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97918369A
Other languages
English (en)
French (fr)
Other versions
EP0897941A4 (de
EP0897941B1 (de
Inventor
Katsuhito Miura
Shigeru Shoji
Takahiro Sakashita
Yasuo Matoba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Publication of EP0897941A1 publication Critical patent/EP0897941A1/de
Publication of EP0897941A4 publication Critical patent/EP0897941A4/de
Application granted granted Critical
Publication of EP0897941B1 publication Critical patent/EP0897941B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/14Unsaturated oxiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • C08G65/24Epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a crosslinkable polyether copolymer, a crosslinked material of the copolymer, and a crosslinked solid polyelectrolyte. More particularly, the present invention relates to a solid polyelectrolyte which is suitable as a material for an electrochemical device such as a battery, a capacitor and a sensor.
  • an electrolyte constituting an electrochemical device such as a battery, a capacitor and a sensor
  • those in the form of a solution or a paste have hitherto been used in view of the ionic conductivity.
  • the following problems are pointed out.
  • a solid electrolyte such as an inorganic crystalline substance, inorganic glass, and an organic polymer substance is suggested.
  • the organic polymer substance is generally superior in processability and moldability and the resulting solid electrolyte has good flexibility and bending processability and, furthermore, the design freedom of the device to be applied is high and, therefore, the development thereof is expected.
  • the organic polymer substance is inferior in ionic conductivity to other materials at present.
  • a polymer solid electrolyte prepared by crosslinking a polymer compound having average molecular weight of from 1,000 to 20,000 shows a comparatively good ionic conductivity within the practical temperature range, but those having more excellent mechanical characteristics and ionic conductivity are required.
  • a polyether copolymer having an oligooxyethylene side chain described in Japanese patent Application No. 109616/1995 of the present applicant shows excellent ionic conductivity at room temperature (e.g. 30°C).
  • room temperature e.g. 30°C
  • temperature e.g. 60°C
  • plastic deformation e.g., when using in a thin type battery, there is a fear of a short circuit between a positive electrode and a negative electrode.
  • An object of the present invention is to provide a solid electrolyte, which is superior in ionic conductivity, and which causes no plastic deformation or has no fluidity even under high temperature.
  • Another object of the present invention is to provide a polymer, which gives the above solid electrolyte.
  • the present invention provides a polyether copolymer having a number-average molecular weight of 50,000 to 2,000,000, a glass transition temperature measured by a differential scanning calorimeter (DSC) of not more than -60°C and a fusion heat of not more than 70 J/g, comprising:
  • the present invention also provides a crosslinked material obtained by crosslinking the above copolymer.
  • the present invention provides a solid polyelectrolyte comprising the above crosslinked material and an electrolyte salt compound.
  • the present invention provides a battery comprising said solid polyelectrolyte.
  • the repeating unit (C) may be derived from a monomer of the formula (III-1) or (III-2): wherein R 2 and R 3 represent a reactive functional group-containing group.
  • the polymer of the present invention comprises (A) a repeating unit derived from a monomer of the formula (I): wherein R 1 is a group selected from an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms, an aralkyl group having 7 to 12 carbon atoms and a tetrahydropyranyl group,
  • the repeating unit (C) derived from a monomer of the formula (III-1) or (III-2) is represented by the formula (III'-1) or (III'-2): wherein R 2 and R 3 represent a reactive functional group-containing group.
  • the reactive functional group in the repeating unit (C) is preferably (a) a reactive silicon group, (b) an epoxy group, (c) an ethylenically unsaturated group, or (d) a halogen atom.
  • the polymerization method of the polyether copolymer having a crosslinkable side chain of the present invention is conducted in the same manner as in Japanese Patent Kokai Publication Nos. 154736/1988 and 169823/1987 of the present applicant.
  • the polymerization reaction can be conducted as follows. That is, the polyether copolymer can be obtained by reacting the respective monomers at the reaction temperature of 10 to 80°C under stirring, using a catalyst mainly composed of an organoaluminum, a catalyst mainly composed of an organozinc, an organotin-phosphate ester condensate catalyst and the like as a ring opening polymerization catalyst in the presence or absence of a solvent.
  • the organotin-phosphate ester condensate catalyst is particularly preferable in view of the polymerization degree or properties of the resulting copolymer.
  • the reaction functional group does not react and a copolymer having the reaction functional group is obtained.
  • the content of the repeating unit (A) is from 1 to 98% by mol, preferably from 3 to 98% by mol, e.g. from 5 to 90% by mol; the content of the repeating unit (B) is from 95 to 1% by mol, preferably from 95 to 1% by mol, e.g. from 90 to 5% by mol; and the content of the repeating unit (C) is from 0.005 to 10% by mol, preferably from 0.01 to 5% by mol, e.g. from 0.05 to 5% by mol.
  • the content of the repeating unit (B) exceeds 95% by mol, an increase in glass transition temperature and crystallization of the oxyethylene chain arise, which results in drastic deterioration of the ionic conductivity of the solid electrolyte. It is generally known that the ionic conductivity is improved by the decrease of the crystallizability of polyethylene oxide. It has been found that, in case of the polyether copolymer of the present invention, the effect for improvement of the ionic conductivity is remarkably large.
  • the molar ratio of the repeating unit (C) is smaller than 0.005% by mol, the copolymer can not be sufficiently crosslinked and, therefore, it is difficult to obtain a solid electrolyte at high temperature range (e.g. 60°C).
  • the molar ratio of the repeating unit (C) is larger than 15% by mol, it becomes impossible to form a film.
  • the glass transition temperature and fusion heat of the polyether copolymer are measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the glass transition temperature of the polyether copolymer is not more than -60°C, preferably not more than -63°C, e.g. not more than -65°C.
  • the fusion heat of the polyether copolymer is not more than 70 J/g, e.g. not more than 60 J/g, particularly not more than 50 J/g.
  • the polyether copolymer of the present invention may be any copolymer type such as a block copolymer and a random copolymer, but the random copolymer is preferable because the effect for reduction of the crystallizability of polyethylene oxide is large.
  • the polyether copolymer of the present invention is a polyether copolymer having an oligooxyethylene side chain and a side chain containing a crosslinkable reactive functional group.
  • the polyether copolymer of the present invention is normally a terpolymer formed from three monomers, but it may be a copolymer formed from at least four monomers.
  • the monomer having a reactive silicon group, which constitutes the repeating unit (C), is preferably represented by the formula (III-a-1): wherein R 2 is a reactive silicon group-containing group, or the formula (III-a-2): wherein R 3 is a reactive silicon-containing group.
  • the reactive silicon group-containing monomer represented by the formula (III-a-1) is preferably a compound represented by the formula (III-a-1-1) or (III-a-1-2).
  • the reactive silicon group-containing monomer represented by the formula (III-a-2) is preferably a compound represented by the formula (III-a-2-1).
  • R 4 , R 5 and R 6 may be the same or different, but at least one of them represents an alkoxy group and the remainder represents an alkyl group; and m represents 1 to 6.
  • Examples of the monomer represented by the formula (III-a-1-1) include 1-glycidoxymethyltrimethoxysilane, 1-glycidoxymethylmethyldimethoxysilane, 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 4-glycidoxybutylmethyldimethoxysilane, 4-glycidoxybutylmethyltrimethoxysilane, 6-glycidoxyhexylmethyldimethoxysilane and 6-glycidoxyhexylmethyltrimethoxysilane.
  • Examples of the monomer represented by the formula (III-a-1-2) include 3-(1,2-epoxy)propyltrimethoxysilane, 3-(1,2-epoxy)propylmethyldimethoxysilane, 3-(1,2-epoxy)propyldimethylmethoxysilane, 4-(1,2-epoxy)butyltrimethoxysilane, 4-(1,2-epoxy)butylmethylditrimethoxysilane, 5-(1,2-epoxy)pentyltrimethoxysilane, 5-(1,2-epoxy)pentylmethyldimethoxysilane, 6-(1,2-epoxy)hexyltrimethoxysilane and 6-(1,2-epoxy)hexylmethyldimethoxysilane.
  • Examples of the monomer represented by the formula (III-a-2-1) include 1-(3,4-epoxycyclohexyl)methyltrimethoxysilane, 1-(3,4-epoxycyclohexyl) methylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 3-(3,4-epoxycyclohexyl) propyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propylmethyldimethoxysilane, 4-(3,4-epoxycyclohexyl)butyltrimethoxysilane and 4-(3,4-epoxycyclohexyl) butylmethyldimethoxysilane.
  • 3-glycidoxypropyltrimethoxysilane 3-glycidoxypropylmethyldimethoxysilane, 4-(1,2-epoxy)butyltrimethoxysilane, 5-(1,2-epoxy)pentyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane are particularly preferable.
  • the monomer having two epoxy groups, which constitutes the repeating unit (C), is preferably represented by the formula (III-b): wherein R 7 is a divalent organic group.
  • the monomer having two epoxy groups is preferably a compound represented by the following formula (III-b-1), (III-b-2) or (III-b-3):
  • a 1 and A 2 represent a hydrogen atom or a methyl group; and m represents a numeral of 0 to 12.
  • Examples of the monomer represented by the formula (III-b-1) include 2,3-epoxypropyl-2',3'-epoxy-2'-methyl propyl ether, ethylene glycol-2,3-epoxypropyl-2',3'-epoxy-2'-methyl propyl ether, and diethylene glycol-2,3-epoxypropyl-2',3'-epoxy-2'-methyl propyl ether.
  • Examples of the monomer represented by the formula (III-b-2) include 2-methyl-1,2,3,4-diepoxybutane, 2-methyl-1,2,4,5-diepoxypentane, and 2-methyl-1,2,5,6-diepoxyhexane.
  • Examples of the monomer represented by the formula (III-b-3) include hydroquinone-2,3-epoxypropyl-2',3'-epoxy-2'-methyl propyl ether and catechol-2,3-epoxypropyl-2',3'-epoxy-2'-methyl propyl ether.
  • 2,3-epoxypropyl-2',3'-epoxy-2'-methyl propyl ether and ethylene glycol-2,3-epoxypropyl-2',3'-epoxy-2'-methyl propyl ether are particularly preferable.
  • the monomer having the ethylenically unsaturated group, which constitutes the repeating unit (C), is preferably represented by the formula (III-c): wherein R 8 is a group having an ethylenically unsaturated group.
  • allyl glycidyl ether 4-vinylcyclohexyl glycidyl ether, ⁇ -terpinyl glycidyl ether, cyclohexenylmethyl glycidyl ether, p-vinylbenzyl glycidyl ether, allylphenyl glycidyl ether, vinyl glycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentane, 1,2-epoxy-5,9-cyclododecadiene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, glycidyl
  • Preferable examples thereof include ally glycidyl ether, glycidyl acrylate and glycidyl methacrylate.
  • the monomer (C) having a halogen atom is preferably represented by the formula (III-d): wherein R 9 is a group having at least one halogen atom.
  • Examples of the monomer having a halogen atom include: wherein X is a halogen atom, particularly a bromine atom (Br) or an iodine atom (I).
  • the polymerization degree n of the oxyethylene unit of the side chain portion in the monomer (I), which constitutes the repeating unit (A), is preferably from 1 to 12, e.g. 1 to 6. When the polymerization degree n exceeds 12, the ionic conductivity of the resulting polymer solid electrolyte is deteriorated, unfavorably.
  • R 1 may be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an ally group or a cyclohexyl group.
  • the number-average molecular weight of the polyether copolymer is suitable within the range from 50,000 to 2,000,000, preferably from 100,000 to 2,000,000, so as to obtain excellent processability, moldability, mechanical strength and flexibility.
  • the number-average molecular weight is smaller than 50,000, it is necessary to increase the crosslink density so as to maintain the mechanical strength or to prevent from flowing at high temperature, which results in deterioration of ionic conductivity of the resulting electrolyte.
  • it exceeds 2,000,000 the processability and moldability become insufficient.
  • the crosslinking can be conducted by the reaction between the reactive silicon group and water.
  • organometal compounds for example, tin compounds such as dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, tin octylate and dibutyltin acetylacetonate; titanium compounds such as tetrabutyl titanate and tetrapropyl titanate; aluminum compounds such as aluminum trisacetyl acetonate, aluminum trisethyl acetoacetate and diisopropoxyaluminum ethylacetoacetate; or amine compounds such as butylamine, octylamine, laurylamine, dibutylamine, monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triety
  • the reactive functional group is an epoxy group
  • polyamines and acid anhydrides can be used.
  • polyamines examples include aliphatic polyamines such as diethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepentamine, dimethylaminopropylamine, diethylaminopropylamine, dibutylaminopropylamine, hexamethylenediamine, N-aminoethylpiperazine, bis-aminopropylpiperazine, trimethylhexamethylenediamine and dihydrazide isophthalate; and aromatic polyamines such as 4,4'-diamino diphenyl ether, diamino diphenyl sulfone, m-phenylenediamine, 2,4-toluylenediamine, m-toluylenediamine, o-toluylenediamine and xylylenediamine.
  • the amount of the polyamine varies depending on the type of the polyamine, but is normally within the range from 0.1 to 10% by weight based
  • Examples of the acid anhydrides includes maleic anhydride, dodecenylsuccinic anhydride, chlorendic anhydride, phthalic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetramethylenemaleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride and trimellitic anhydride.
  • the amount of the acid anhydrides varies depending on the type of the acid anhydride, but is normally within the range from 0.1 to 10% by weight based on the whole composition. In the crosslinking, an accelerator can be used.
  • the accelerator include phenol, cresol, resorcin, pyrogallol, nonyl phenol and 2,4,6-tris(dimethylaminomethyl)phenol.
  • the accelerator include benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 2-(dimethylaminoethyl)phenol, dimethylaniline and 2-ethyl-4-methylimidazol.
  • the amount of the accelerator varies depending on the type of the accelerator, but is normally within the range from 0.1 to 10% by weight based on the crosslinking agent.
  • a radical initiator selected from an organic peroxide, an azo compound and the like, or active energy ray such as ultraviolet ray and electron ray is used. It is also possible to use a crosslinking agent having silicon hydride.
  • organic peroxide there can be used those which are normally used in the crosslinking, such as ketone peroxide, peroxy ketal, hydroperoxide, dialkyl peroxide, diacyl peroxide and peroxy ester.
  • ketone peroxide peroxy ketal
  • hydroperoxide dialkyl peroxide
  • diacyl peroxide and peroxy ester.
  • Specific examples thereof include methyl ethyl ketone peroxide, cyclohexanone peroxide, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 2,2-bis(t-butylperoxy)octane, n-butyl-4,4-bis(t-butylperoxy)valerate, t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, t-buty
  • azo compound there can be used those which are normally used in the crosslinking, such as an azonitrile compound, an azoamide compound and an azoamidine compound, and specific examples thereof include 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 2-(carbamoylazo)isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethyl-valeronitrile, 2,2-azobis(2-methyl-N-phenylpropionamidine)dihydrochloride, 2,2'-azobis[N-(4-chlorophenyl)-2-methylpropionamidine]dihydrochloride, 2,2'-azobis[N-hydroxyphenyl
  • glycidyl acrylate ether In the crosslinking due to radiation of activated energy ray such as ultraviolet ray, glycidyl acrylate ether, glycidyl methacrylate ether and glycidyl cinnamate ether are particularly preferable among the monomer component represented by the formula (III-c).
  • acetophenones such as diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxy-ethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxycyclohexyl-phenylketone and 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one; benzoin ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzophenones such as benzophenone, methyl o-benzoyl benzoate, 4-phenylbenzophenone, hydroxybenz
  • auxiliary crosslinking agent for crosslinking reaction by ultraviolet ray there can be optionally used ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, oligopropylene glycol diacrylate, oligopropylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate, 1,3-glycerol dimethacrylate, 1,1,1-trimethylolpropane dimethacrylate, 1,1,1-trimethylolethane diacrylate, pentaerythritoltrimethacrylate, 1,2,6-hexanetriacrylate, sorbitol pentamethacrylate, methylenebisacrylamide, methylenebismethacrylamide divinyl benzene, vinyl methacrylate, vinyl crotonate, vinyl
  • the compound having silicon hydride which is used for crosslinking the ethylenically unsaturated group
  • a compound having at least two silicon hydrides are used.
  • a polysiloxane compound or a polysilane compound is preferable.
  • Examples of the polysiloxane compound include a linear polysiloxane compound represented by the formula (a-1) or (a-2), or a cyclic polysiloxane compound represented by the formula (a-3).
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 and R 19 respectively represent a hydrogen atom or an alkyl or alkoxy group having 1 to 12 carbon atoms; and n ⁇ 2, m ⁇ 0, 2 ⁇ n + m ⁇ 300 .
  • the alkyl group a lower alkyl group such as a methyl group and an ethyl group is preferable.
  • As the alkoxy group a lower alkoxy group such as a methoxy group and ethoxy group is preferable.
  • silane compound a linear silane compound represented by the formula (b-1) can be used.
  • R 20 , R 21 , R 22 , R 23 and R 24 respectively represent a hydrogen atom or an alkyl or alkoxy group having 1 to 12 carbon atoms; and n ⁇ 2, m ⁇ 0, 2 ⁇ m + n ⁇ 100 .
  • Examples of the catalyst of the hydrosilylation reaction include transition metals such as palladium and platinum or a compound or complex thereof. Furthermore, peroxide, amine and phosphine can also be used. The most popular catalyst includes dichlorobis(acetonitrile)palladium(II), chlorotris(triphenylphosphine)rhodium(I) and chloroplatic acid.
  • a crosslinking agent such as polyamienes, mercaptoimidazolines, mercaptopyrimidines, thioureas and polymercaptanes can be used.
  • polyamines examples include hexamethylenediamine carbamate, triethylenetetramine, tetraethylenspentamine, ethylenediamine carbamate, diethylenetriamine, dipropylenetriamine, dimethylaminopropylamine, diethylaminopropylamine, dibutylaminopropylamine, hexamethylenediamine, trimethylhexamethylenediamine, diaminophenyl sulfone, m-phenylenediamine, 2,4-toluylenediamine, m-toluylenediamine, o-toluylenediamine, and xylylenediamine.
  • Examples of the mercaptoimidazolines include 2-mercaptoimidazoline, 4-methyl-2-mercaptoimidazoline, and 5-ethyl-4-butyl-2-mercaptoimidazoline.
  • Examples of the mercaptopyrimidines include 2-mercaptopyrimidine, 4,6-dimethyl-2-mercaptopyrimidine, and 5-butyl-2-mercaptopyrimidine.
  • Examples of the thioureas include thiourea, ethylene thiourea, dibutyl thiourea, trimethyl thiourea, triethyl thiourea, and tributyl thiourea.
  • polymercaptanes examples include 2-dibutylamino-4,6-dimethylcapto-s-triazine, 2-phenylamino-4,6-dimercaptotriazine, 2,5-dimercapto-1,3,4-thiazole, 1,10-decanedithiol, 2,3-dimercaptopyrazine, 2,3-dimercaptoquinoxaline, and 6-methylquinoxaline-2,3-dithiocarbonate.
  • the amount of the crosslinking agent varies depending on the type of the crosslinking agent, but is normally within the range from 0.1 to 30% by weight based on the whole composition.
  • a metal compound as an acid acceptor is effective to add to the composition of the present invention in view of the thermal stability of the halogen-containing polymer.
  • the metal oxide as the acid acceptor include oxide, hydroxide, carbonate, carboxylate, silicate, borate, and phosphite of Group II metals of the Periodic Table; and oxide, basic carbonate, basic carboxylate, basic phosphite, basic sulfite, or tribasic sulfate of Group VIa metals of the Periodic Table.
  • magnesia magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, quick lime, slaked lime, calcium carbonate, calcium silicate, calcium stearate, zinc stearate, calcium phthalate, magnesium phosphite, calcium phosphite, zinc white, tin oxide, litharge, read lead, white lead, dibasic lead phthalate, dibasic lead carbonate, tin stearate, basic lead phosphite, basic tin phosphite, basic lead sulfite, and tribasic lead sulfate.
  • the amount of the metal compound as the above acid acceptor varies depending on the type thereof, but is normally within the range from 0.1 to 30% by weight based on the whole composition.
  • the electrolyte salt compound used in the present invention is preferably soluble in a polyether copolymer of the present invention or a crosslinked material of said copolymer.
  • the following salt compounds are preferably used.
  • examples thereof include a compound composed of a cation selected from a metal cation, ammonium ion, amidinium ion and guanidium ion, and an anion selected from chlorine ion, bromine ion, iodine ion, perchlorate ion, thiocyanate ion, tetrafluoroborate ion, nitrate ion, AsF 6 - , PF 6 - , stearylsulfonate ion, octylsulfonate ion, dodecylbenzenesulfonate ion, naphthalenesufonate ion, dodecylnaphthalenesulfonate ion, 7,7,8,8-tetracyano-p-quinodimethane ion, X 1 SO 3 - , (X 1 SO 2 )(X 2 SO 2 )N - , (X 1
  • X 1 , X 2 and X 3 independently represent a perfluoroalkyl or perfluoroaryl group having 1 to 6 carbon atoms and Y represents a nitro group, a nitroso group, a carbonyl group, a carboxyl group or a cyano group.
  • X 1 , X 2 and X 3 may be the same or different.
  • the metal cation a cation of a transition metal can be used.
  • a cation of a metal selected from Mn, Fe, Co, Ni, Cu, Zn and Ag metals is used.
  • a cation of a metal selected from Li, Na, K, Rb, Cs, Mg, Ca and Ba metals good results are also obtained.
  • Two or more compounds described above may be used as the electrolyte salt compound.
  • the amount of the electrolyte salt compound is so that a value of a molar ratio of the number of moles of the electrolyte salt compound to the total number of moles of oxyethylene units (the total number of moles of oxyethylene units included in a main chain and side chain of the polyether copolymer) is preferably within the range from 0.0001 to 5, more preferably from 0.001 to 0.5.
  • this value exceeds 5, the processability and moldability, the mechanical strength and flexibility of the resulting solid electrolyte are deteriorated, and, furthermore, ionic conductivity is also deteriorated.
  • a flame retardant When using the polyether copolymer of the present invention, its crosslinked material, and crosslinked polymer solid electrolyte obtained from them, a flame retardant can be used when the flame retardance is required. That is, an effective amount of those selected from halide such as a brominated epoxy compound, tetrabromobisphenol A and a chlorinated paraffin, antimony trioxide, antimony pentaoxide, aluminum hydroxide, magnesium hydroxide, phosphate, polyphosphate and zinc borate as a flame retardant are added.
  • halide such as a brominated epoxy compound, tetrabromobisphenol A and a chlorinated paraffin, antimony trioxide, antimony pentaoxide, aluminum hydroxide, magnesium hydroxide, phosphate, polyphosphate and zinc borate
  • the method for production of the polymer solid electrolyte of the present invention is not specifically limited, but the polymer solid electrolyte can be normally produced by (1) a method of crosslinking a copolymer after mechanically mixing a copolymer and an electrolyte salt compound, or after mixing by dissolving a copolymer and an electrolyte salt compound in a solvent, followed by removal of the solvent; or (2) a method of crosslinking a copolymer, followed by mechanical mixing of the crosslinked copolymer and an electrolyte salt compound, or dissolving and mixing the crosslinked copolymer and an electrolyte salt compound in a solvent, and then removing the solvent.
  • various kneaders As means for mechanically mixing, various kneaders, open roll, extruder, etc. can be optionally used.
  • various polar solvents such as tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, dioxane, methyl ethyl ketone and methyl isobutyl ketone may be used alone or in combination thereof.
  • the concentration of the solution is not specifically limited, but it is preferably from 1 to 50% by weight.
  • the amount of water used in the crosslinking reaction is not specifically limited because the crosslinking reaction easily occurs even in the presence of moisture in an atmosphere.
  • the crosslinking can also be conducted by passing through a cold water or hot water bath for a short time, or exposing to a steam atmosphere.
  • the crosslinking reaction is completed at the temperature of 10 to 200°C within 10 minutes to 20 hours.
  • the crosslinking reaction when using a radical initiator, the crosslinking reaction is completed at the temperature of 10 to 200°C within 1 minutes to 20 hours. Furthermore, when using energy ray such as ultraviolet ray, a sensitizer is normally used. The crosslinking reaction is normally completed at the temperature of 10 to 150°C within 0.1 second to 1 hour. In case of the crosslinking agent having a silicon hydride, the crosslinking reaction is completed at the temperature of 10 to 180°C within 10 minutes to 10 hours.
  • the copolymer of the present invention and the crosslinked material of the copolymer are a useful precursor for a polymer solid electrolyte.
  • the polymer solid electrolyte is superior in mechanical strength and flexibility, and a large area thin-film shaped solid electrolyte can be easily obtained by utilizing the properties.
  • a battery it is possible to make a battery by using the polymer solid electrolyte of the present invention.
  • examples of a positive electrode material include lithium-manganese double oxide, lithium cobaltate, vanadium pentaoxide, polyacene, polypyrene, polyaniline, polyphenylene, polyphenylene sulfide, polyphenylene oxide, polypyrrole, polyfuran, and polyazulene.
  • Examples of a negative electrode material include interlaminar compound prepared by occlusion of lithium between graphite or carbon layers, a lithium metal and a lithium-lead alloy.
  • the crosslinked polymer solid electrolyte of the present invention can be used in a battery. By utilizing high ion conductivity, the crosslinked polymer solid electrolyte can also be used as a diaphragm of an ion electrode of the cation such as alkaline metal ion, Cu ion, Ca ion, and Mg ion.
  • the polymer solid electrolyte of the present invention is particularly suitable as a material for electrochemical device such as a battery, a capacitor and a sensor.
  • the composition (in terms of monomer) of the copolymer was analyzed by element analysis and 1 H NMR spectrum.
  • the gel permeation chromatography measurement was conducted and the molecular weight was calculated in terms of standard polystyrene.
  • the gel permeation chromatography measurement was conducted at 60°C by a measuring device RID-6A manufactured by Shimadzu Corp., using a column manufactured by Showa Denko such as Showdex KD-807, KD-806, KD-806M and KD-803, and a solvent DMF.
  • the glass transition temperature and fusion heat were measured in a nitrogen atmosphere within the temperature range from -100 to 80°C at a heating rate of 10°C/min., using a differential scanning calorimeter DSC8230B manufactured by Rigaku Denki Co., Ltd.
  • the measurement of the electrical conductivity ⁇ was conducted as follows. That is, a film vacuum-dried at 20°C under 1 mm Hg for 72 hours was sandwiched between platinum electrodes and the conductivity was calculated according to the complex impedance method, using an A.C. method (voltage: 0.5 V, frequency: 5 Hz to 1 MHz).
  • the flexibility of the solid electrolyte film was evaluated by the presence or absence of breakage in case of folding the film at an angle of 180 degrees at 25°C.
  • Tributyltin chloride (10 g) and tributyl phosphate (35 g) were charged in a three-necked flask equipped with a stirrer, a thermometer and a distillation device, and the mixture was heated at 250°C for 20 minutes while stirring under a nitrogen stream and the distillate was distilled off to obtain a solid condensate as a residue product.
  • this condensate was used as a polymerization catalyst.
  • the polymerization reaction was terminated by using methanol.
  • the polymer was isolated by decantation, dried at 40°C under a normal pressure for 24 hours, and then dried at 45°C under reduced pressure for 10 hours to obtain 220 g of a polymer.
  • the glass transition temperature of this copolymer was - 70°C, the number-average molecular weight was 400,000 and the fusion heat was 3 J/g. The results are shown in Table 1.
  • the polyether copolymer (1 g) obtained in Example 1 and a catalyst dibutyltin dilaurate (5 mg) were dissolved in tetrahydrofuran (20 ml) and water (10 ⁇ l) was added, followed by stirring for 15 minutes. After the solvent was removed under a normal pressure, the mixture was dried at 60°C for 10 hours to obtain a crosslinked material.
  • This crosslinked material was insoluble in an organic solvent, but it swelled in a solvent such as benzene and tetrahydrofuran.
  • Example 7 The crosslinked material obtained in Example 7 (1 g) was impregnated with a tetrahydrofuran solution (5 ml) containing lithium perchlorate (100 mg) for 20 hours, heated and pressured at 160°C and 20 KgW/cm 2 for 10 minutes to obtain a film.
  • This film had flexibility and its conductivity was 1.5 x 10 -4 S/cm at 20°C and 5.1 x 10 -4 S/cm at 60°C.
  • the polyether copolymer (1 g) obtained in Examples 1 to 3 was dissolved in tetrahydrofuran (20 ml), and the resulting solution was mixed with a tetrahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05. Water was added to this mixed liquid under the condition that the amount in mol of water was three times that of the reactive silicon group-containing component. This mixed liquid was casted on a mold made of polytetarfluoroethylene, dried, heated and pressured at 160°C and 20 KgW/cm 2 for 10 minutes to obtain a film. The results are shown in Table 2.
  • the polyether copolymer (1 g) obtained in Examples 4 to 6 and a dibutyltin dilaurate catalyst (5 mg) were dissolved in terahydrofuran (20 ml), and the resulting solution was mixed with a terahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05 and water was added to this mixed solution in the same amount as that of the reactive silicon group-containing component.
  • This mixed liquid was casted on a mold made of polytetarfluoroethylene, dried and then allowed to stand at 100°C under an argon atmosphere for 3 hours to obtain a film.
  • Table 2 The results are shown in Table 2.
  • a copolymer having the structural units shown in Table 3 was synthesized in the same manner as in Example 1.
  • Comparative Examples 1 and 3 a film was obtained in the same manner as in Example 9.
  • Comparative Example 2 a film was obtained in the same manner as in Example 9, except for adding no water. The results were shown in Table 3.
  • a lithium metal foil as the negative electrode and lithium cobaltate (LiCoO 2 ) as the positive electrode a secondary battery was prepared.
  • the size of the crosslinked polymer solid electrolyte was 10 mm x 10 mm x 1 mm.
  • the size of the lithium foil was 10 mm x 10 mm x 0.1 mm.
  • Lithium cobaltate was prepared by mixing predetermined amounts of lithium carbonate and cobalt carbonate powder and then calcining the mixture at 900°C for 5 hours.
  • the calcined mixture was ground, and then 12 parts by weight of acetylene black and 3 parts by weight of the crosslinked polymer solid electrolyte obtained in Example 9 were added to 85 parts by weight of the resulting lithium cobaltate, followed by mixing by a mortar and further press-molding under the pressure of 300 KgW/cm 2 to form a positive electrode having the size of 10 mm x 10 mm x 2 mm.
  • the crosslinked polymer solid electrolyte obtained in Example 9 was sandwiched between the lithium metal foil and the lithium cobaltate plate, and the charge/discharge characteristics of the resulting battery were examined with applying the pressure of 10 KgW/cm 2 so that the interfaces were brought into contact with each other.
  • the discharge current at the initial terminal voltage of 3.2 V was 0.4 mA/cm 2 and the charging could be conducted at 0.3 mA/cm 2 . It is possible to easily reduce the thickness of the battery in this Example and, therefore, a light-weight and large-capacity battery can be obtained.
  • the polymerization reaction was conducted at 20°C for 8 hours.
  • the polymerization reaction was terminated by using methanol.
  • the polymer was isolated by decantation, dried at 40°C under a normal pressure for 24 hours, and then dried at 45°C under reduced pressure for 10 hours to obtain 195 g of a polymer.
  • the glass transition temperature of this polymer was -70°C, the number-average molecular weight was 320,000 and the fusion heat was 3 J/g.
  • the results of the composition analysis (in terms of monomer) of this polymer by 1 H NMR spectrum are as shown in Example 16 of Table 4.
  • the polyether copolymer (1 g) obtained in Example 16 and diethylenetriamine (50 mg) were dissolved in tetrahydrofuran (20 ml), and then the reaction was conducted at 40°C for 2 hours. After the solvent was removed under reduced pressure, dried at 60°C for 6 hours to obtain a crosslinked material. This crosslinked material was insoluble in an organic solvent, but it swelled in a solvent such as benzene and tetrahydrofuran.
  • the crosslinked material (1 g) obtained in Example 22 was impregnated with a tetrahydrofuran solution (5 ml) containing lithium perchlorate (100 mg) for 20 hours, heated and pressured at 160°C and 20 KgW/cm 2 for 10 minutes to obtain a film.
  • This film had flexibility and its conductivity was 1.3 x 10 -4 S/cm at 20°C and 4.6 x 10 -4 S/cm at 60°C.
  • the polyether copolymer (1 g) in Example 16 to 18 polymerized by using the organotin-phosphate ester condensate catalyst and maleic anhydride (150 mg) were dissolved in terahydrofuran (20 ml), and the resulting solution was mixed with a terahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05.
  • This mixed liquid was casted on a mold made of polytetarfluoroethylene, dried and then heated and pressured at 160°C and 20 KgW/cm 2 for one hour to obtain a film.
  • Table 5 The results are shown in Table 5.
  • the polyether copolymer (1 g) in Example 19 to 21 and diethylenetriamine (50 mg) were dissolved in terahydrofuran (20 ml), and the resulting solution was mixed with a terahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05.
  • This mixed liquid was casted on a mold made of polytetarfluoroethylene, dried and then allowed to stand at 100°C under an argon atmosphere for 10 hours to obtain a film.
  • Table 2 The results are shown in Table 2.
  • Example 16 Using the polyether copolymer shown in Table 6 obtained in the same manner as in Example 16, a film molding was conducted. In Comparative 4 and 6, a film was obtained in the same manner as in Example 24. In Comparative Example 5, a film molding was conducted as obtained in the same manner as in Example 9, except for adding no crosslinking agent.
  • a lithium metal foil as the negative electrode and lithium cobaltate (LiCoO 2 ) as the positive electrode a secondary battery was prepared.
  • the size of the crosslinked polymer solid electrolyte was 10 mm x 10 mm x 1 mm.
  • the size of the lithium foil was 10 mm x 10 mm x 0.1 mm.
  • Lithium cobaltate was prepared by mixing predetermined amounts of lithium carbonate and cobalt carbonate powder and then calcining the mixture at 900°C for 5 hours.
  • the calcined mixture was ground, and then 12 parts by weight of acetylene black and 3 parts by weight of the crosslinked polymer solid electrolyte obtained in Example 24 were added to 85 parts by weight of the resulting lithium cobaltate, followed by mixing by a mortar and further press-molding under the pressure of 300 KgW/cm 2 to form a positive electrode having the size of 10 mm x 10 mm x 2 mm.
  • Example 24 The crosslinked polymer solid electrolyte obtained in Example 24 was sandwiched between the lithium metal foil and the lithium cobaltate plate, and the charge/discharge characteristics of the resulting battery were examined with applying the pressure of 10 KgW/cm 2 so that the interfaces were brought into contact with each other.
  • the discharge current at the initial terminal voltage of 3.2 V was 0.4 mA/cm 2 and the charging could be conducted at 0.3 mA/cm 2 . It is possible to easily reduce the thickness of the battery in this Example and, therefore, a light-weight and large-capacity battery can be obtained.
  • the polyether copolymer (1 g) in Table 7 and 8 polymerized by using the organotin-phosphate ester condensate catalyst and dicumyl peroxide (a crosslinking agent) (0.015 g) were dissolved in terahydrofuran (20 ml), and the resulting solution was mixed with a terahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05.
  • This mixed liquid was casted on a mold made of polytetarfluoroethylene, dried and then heated and pressured at 160°C and 20 KgW/cm 2 for 10 minutes to obtain a film.
  • the polyether copolymer (1 g) shown in Table 7 and 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane (a crosslinking agent) (0.02 g) were dissolved in terahydrofuran (20 ml), and the resulting solution was mixed with a terahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05.
  • This mixed liquid was casted on a mold made of polytetarfluoroethylene, dried and then heated and pressured at 145°C and 20 KgW/cm 2 for 10 minutes to obtain a film.
  • the polyether copolymer (1 g) shown in Table 7 and benzoyl peroxide (a crosslinking agent) (0.02 g) were dissolved in terahydrofuran (20 ml), and the resulting solution was mixed with a terahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05.
  • This mixed liquid was casted on a mold made of polytetarfluoroethylene, dried and then heated and pressured at 80°C and 20 KgW/cm 2 for 5 hours to obtain a film.
  • the polyether copolymer (1 g) shown in Table 7 and dicumyl peroxide (a crosslinking agent) (0.015 g) were dissolved in acetonitrile (20 ml), and the resulting solution was mixed with an acetonitrile solution of lithium bistrifluoromethanesulfonylimide so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05, and then a film was obtained in the same manner as in Examples 31 to 37.
  • the polyether copolymer (1 g) shown in Table 7 and azobisisobutyronitrile (a crosslinking agent) (0.02 g) were dissolved in terahydrofuran (20 ml), and the resulting solution was mixed with a terahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05.
  • This mixed liquid was casted on a mold made of polytetartluoroethylene, dried and then allowed to stand at 100°C under an argon atmosphere for 2 hours to obtain a film.
  • the polyether copolymer (1 g) shown in Table 7 and 2,2-dimethoxy-1,2-diphenylethan-1-one (a sensitizer) (0.02 g) were dissolved in terahydrofuran (20 ml), and the resulting solution was mixed with a terahydrofuran solution of lithium perchlorate so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05.
  • This mixed liquid was casted on a mold made of polytetartluoroethylene and dried, followed by ultraviolet ray irradiation (30 mW/cm 2 , 360 nm) under an argon atmosphere for 10 minutes to obtain a film.
  • the polyether copolymer (1 g) shown in Table 7 and a polysiloxane (0.2 g) represented by the formula (11) were dissolved in toluene (10 ml) and an isopropyl alcohol solution containing 1% by weight of chloroplatinic acid was added, and the resulting solution was mixed with a toluene solution of lithium bistrifluoromethanesulfonylimide so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05, and then a film was obtained in the same manner as in Examples 31 to 37.
  • Mn represents a number-average molecular weight (The same also in the following formulas (12) and (13)).
  • the polyether copolymer (1 g) shown in Table 7 and a polysiloxane (0.2 g) represented by the formula (12) were dissolved in toluene (10 ml) and an isopropyl alcohol solution containing 1% by weight of chloroplatinic acid was added, and the resulting solution was mixed with a toluene solution of lithium bistrifluoromethanesulfonylimide so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05, and then a film was obtained in the same manner as in Examples 31 to 37.
  • the polyether copolymer (1 g) shown in Table 7 and a polysiloxane (0.2 g) represented by the formula (13) were dissolved in toluene (10 ml) and an isopropyl alcohol solution containing 1% by weight of chloroplatinic acid was added, and the resulting solution was mixed with a toluene solution of lithium bistrifluoromethanesulfonylimide so that a molar ratio of the number of moles of the soluble electrolyte salt compound to the total number of moles of ethylene oxide units was 0.05, and then a film was obtained in the same manner as in Examples 31 to 37.
  • Example 31 to 46 and Comparative Example 7 to 12 are described in Table 7 and 8.
  • Table 7 and 8 the glass transition point and fusion heat were measured in a nitrogen atmosphere within the temperature range from -100 to 80°C at a heating rate of 10°C/min., using a differential scanning calorimeter DSC8230B manufactured by Rigaku Denki Co., Ltd.
  • the measurement of the conductivity ⁇ was conducted as follows. That is, a film vacuum-dried at 20°C under 1 mm Hg for 72 hours was sandwiched between platinum electrodes and the conductivity was calculated according to the complex impedance method, using an A.C. method (voltage: 0.5 V, frequency: 5 Hz to 1 MHz).
  • the flexibility of the solid electrolyte film was evaluated by the presence or absence of breakage in case of folding the film at an angle of 180 degrees.
  • a lithium metal foil as the negative electrode and lithium cobaltate (LiCoO 2 ) as the positive electrode a secondary battery was prepared.
  • the size of the crosslinked polymer solid electrolyte was 10 mm x 10 mm x 1 mm.
  • the size of the lithium foil was 10 mm x 10 mm x 0.1 mm.
  • Lithium cobaltate was prepared by mixing predetermined amounts of lithium carbonate and cobalt carbonate powder and then calcining the mixture at 900°C for 5 hours.
  • the calcined mixture was ground, and then 12 parts by weight of acetylene black and 3 parts by weight of the crosslinked polymer solid electrolyte obtained in Example 33 were added to 85 parts by weight of the resulting lithium cobaltate, followed by mixing by a mortar and further press-molding under the pressure of 300 KgW/cm 2 to form a positive electrode having the size of 10 mm x 10 mm x 2 mm.
  • the crosslinked polymer solid electrolyte obtained in Example 33 was sandwiched between the lithium metal foil and the lithium cobaltate plate, and the charge/discharge characteristics of the resulting battery were examined with applying the pressure of 10 KgW/cm 2 so that the interfaces were brought into contact with each other.
  • the discharge current at the initial terminal voltage of 3.2 V was 0.4 mA/cm 2 and the charging could be conducted at 0.3 mA/cm 2 . It is possible to easily reduce the thickness of the battery in this Example and, therefore, a light-weight and large-capacity battery can be obtained.
  • the polymer was isolated by decantation, dried at 40°C under a normal pressure for 24 hours, and then dried at 45°C under reduced pressure for 10 hours to obtain 298 g of a polymer.
  • the composition (in terms of monomer) of the polymer by 1 H NMR spectrum and measurement of the bromine content was determined.
  • the copolymer (1 g) obtained in Example 48, ethylene thiourea (a crosslinking agent) (0.015 g) and dibasic lead phthalate (0.05 g) were dissolved in acetonitrile (20 ml), and the resulting solution was mixed with an acetonitrile solution of lithium perchlorate so that a molar ratio of (the number of moles of the soluble electrolyte salt compound) to (the total number of moles of ethylene oxide units) was 0.07.
  • This mixed liquid was casted on a mold made of polytetarfluoroethylene, dried and then heated and pressured at 170°C and 60 KgW/cm 2 for 15 minutes to obtain a film.
  • the polymer solid electrolyte of the present invention is superior in processability, moldability, mechanical strength, flexibility, heat resistance and the like and the ionic conductivity is remarkably improved. Accordingly, it can be applied to electronic apparatuses such as a large-capacity condenser and a display device (e.g. an electrochromic display), including solid batteries.
  • a display device e.g. an electrochromic display

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
EP97918369A 1996-05-08 1997-05-06 Vernetzter fester polyelektrolyt und seine verwendung Expired - Lifetime EP0897941B1 (de)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP113496/96 1996-05-08
JP11349696 1996-05-08
JP173435/96 1996-07-03
JP17343596 1996-07-03
JP183186/96 1996-07-12
JP18318696 1996-07-12
JP24619996 1996-09-18
JP246199/96 1996-09-18
PCT/JP1997/001522 WO1997042251A1 (en) 1996-05-08 1997-05-06 Cross-linked solid polyelectrolyte and use thereof

Publications (3)

Publication Number Publication Date
EP0897941A1 true EP0897941A1 (de) 1999-02-24
EP0897941A4 EP0897941A4 (de) 1999-07-21
EP0897941B1 EP0897941B1 (de) 2006-12-06

Family

ID=27470087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97918369A Expired - Lifetime EP0897941B1 (de) 1996-05-08 1997-05-06 Vernetzter fester polyelektrolyt und seine verwendung

Country Status (10)

Country Link
US (1) US6239204B1 (de)
EP (1) EP0897941B1 (de)
JP (1) JP3215436B2 (de)
KR (1) KR100570949B1 (de)
CN (1) CN1136250C (de)
AU (1) AU2651097A (de)
CA (1) CA2253863C (de)
DE (1) DE69737057D1 (de)
TW (1) TW430686B (de)
WO (1) WO1997042251A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856538A1 (de) * 1996-08-20 1998-08-05 Daiso Co., Ltd. Fester polyelektrolyt
WO2003011929A1 (de) * 2001-07-26 2003-02-13 Bayer Aktiengesellschaft Pfropfpolymerisate auf basis von polyalkylenoxiden
EP1339127A1 (de) * 2000-10-20 2003-08-27 Dainippon Ink And Chemicals, Inc. Festpolymerelektrolyt und zelle mit dem elektrolyt
US6677084B1 (en) 1999-04-19 2004-01-13 Daiso Co., Ltd. Solid crosslinked-polymer electrolyte and use thereof
EP1507268A4 (de) * 2002-04-26 2005-11-23 Zeon Corp Formmaterial für hochmolekulare festelektrolyte, formen hochmolekularer festelektrolyte und prozess zu ihrer herstellung und polyetherpolymer und prozess zu seiner herstellung
NL1027911C2 (nl) * 2004-05-22 2009-09-21 Hynix Semiconductor Inc Vloeibare samenstelling voor onderdompelingslithografie en lithografiewerkwijze onder toepassing daarvan.

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69930030T2 (de) * 1998-06-25 2006-11-09 Hydro-Québec, Montréal Material mit ionischer Leitfähigkeit
WO2000075941A1 (fr) * 1999-06-04 2000-12-14 Mitsui Chemicals, Inc. Solution electrolytique non aqueuse, electrode et condensateur ainsi equipe
CN1167733C (zh) * 1999-06-16 2004-09-22 花王株式会社 表面改性剂
KR100337889B1 (ko) * 2000-06-22 2002-05-24 김순택 리튬 2차전지
JP2002279826A (ja) * 2001-03-19 2002-09-27 Toyobo Co Ltd 高分子電解質ゲルおよびその製造方法
US7101643B2 (en) * 2001-05-31 2006-09-05 The Regents Of The University Of California Polymeric electrolytes based on hydrosilyation reactions
US6956083B2 (en) * 2001-05-31 2005-10-18 The Regents Of The University Of California Single ion conductor cross-linked polymeric networks
WO2003028144A1 (en) * 2001-09-21 2003-04-03 Daiso Co., Ltd. Element using polymer gel electrolyte
US6858351B2 (en) * 2001-11-07 2005-02-22 Daiso Co., Ltd. Polyethylene oxide-based electrolyte containing silicon compound
KR100496852B1 (ko) * 2002-08-23 2005-06-23 대주전자재료 주식회사 이온교환막 및 이를 이용한 직접 메탄올 연료전지
KR101065374B1 (ko) * 2004-06-30 2011-09-16 삼성에스디아이 주식회사 연료전지용 고분자 막 및 그 제조방법
JP4811575B2 (ja) * 2005-02-28 2011-11-09 信越化学工業株式会社 電解質膜用硬化性樹脂組成物、電解質膜の製造方法及び電解質膜・電極接合体の製造方法
WO2008102699A1 (ja) * 2007-02-21 2008-08-28 Nippon Shokubai Co., Ltd. エチレンオキシド系共重合体、重合体組成物、及びリチウム二次電池
US20090186177A1 (en) * 2008-01-22 2009-07-23 Eastman Chemical Company Polyester melt phase products and process for making the same
JP2011006613A (ja) * 2009-06-26 2011-01-13 Dainichiseika Color & Chem Mfg Co Ltd 硬化性樹脂組成物およびハードコートフィルムまたはシート
JP5763899B2 (ja) * 2009-12-03 2015-08-12 株式会社日本触媒 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体用中間体、カチオン性基含有単量体及びその製造方法
US8921584B2 (en) 2009-12-03 2014-12-30 Nippon Shokubai Co, Ltd Composition containing intermediate for water-soluble monomer and process for production thereof, composition containing water-soluble monomer, intermediate for water-soluble monomer, and water-soluble monomer and process for production thereof
JP5382536B2 (ja) * 2010-02-25 2014-01-08 ダイソー株式会社 高分子固体電解質およびその用途
CA2821990C (en) * 2010-12-17 2015-11-24 The Procter & Gamble Company Cleaning compositions with amphoteric polycarboxylate polymers
JP5626531B2 (ja) * 2011-04-19 2014-11-19 ダイソー株式会社 非水電解質二次電池
TWI465503B (zh) * 2011-07-08 2014-12-21 Eternal Materials Co Ltd 電解質材料調配物、由此形成之電解質材料組合物及其用途
CN104662067A (zh) * 2012-09-28 2015-05-27 日本瑞翁株式会社 聚醚共聚物、交联性聚醚共聚物组合物及电解质
KR101892798B1 (ko) * 2013-02-27 2018-08-28 가부시키가이샤 오사카소다 정극 및 비수 전해질 이차 전지
CN103400989A (zh) * 2013-07-31 2013-11-20 东莞新能源科技有限公司 锂离子电池负极材料用粘接剂及包含该粘接剂的电极的制备方法
CN103500835A (zh) * 2013-10-10 2014-01-08 东莞新能源科技有限公司 锂离子二次电池及其负极片
DE102015104439B4 (de) * 2015-03-24 2019-02-21 Bayerische Motoren Werke Aktiengesellschaft Elektrochromes Element mit verbesserter Elektrolytschicht, Verfahren zu dessen Herstellung, Fahrzeugverglasung sowie Fahrzeug
US9920170B1 (en) * 2017-01-19 2018-03-20 International Business Machines Corporation Bio-derived cross-linkers
US9920171B1 (en) * 2017-01-27 2018-03-20 International Business Machines Corporation Crosslinkers from biorenewable resveratrol
US10160838B2 (en) 2017-03-27 2018-12-25 International Business Machines Corporation Crosslinking materials from biorenewable aconitic acid
CN107863527B (zh) * 2017-10-09 2020-06-12 吉林聚能新型炭材料股份有限公司 一种复合负极材料及其制备方法和应用
WO2019131476A1 (ja) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP7478508B2 (ja) * 2018-11-26 2024-05-07 株式会社大阪ソーダ 無機固体電解質二次電池
CN110760292B (zh) * 2019-09-24 2021-02-09 江苏立一新材料科技有限公司 耐热摩擦材料及其应用
CN111653822B (zh) * 2020-06-09 2022-02-11 北京化工大学 一种用于锂离子电池的凝胶型离子液体电解质及其制备方法和用途
US11824156B2 (en) 2020-11-06 2023-11-21 Nano And Advanced Materials Institute Limited Secondary lithium-ion batteries comprising in situ thermal curable solid composite electrolyte
US20220231333A1 (en) * 2021-01-18 2022-07-21 Global Graphene Group, Inc. Quasi-solid and solid-state electrolyte for lithium-ion and lithium metal batteries and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331342A2 (de) * 1988-03-01 1989-09-06 Imperial Chemical Industries Plc Festelektrolytvorrichtungen
EP0460876A1 (de) * 1990-05-31 1991-12-11 Dai-Ichi Kogyo Seiyaku Co., Ltd. Ionenleitender Polymerelektrolyt
EP0559317A1 (de) * 1992-01-27 1993-09-08 Dai-Ichi Kogyo Seiyaku Co., Ltd. Ionenleitender Polymerelektrolyt für galvanische Zelle
EP0585072A1 (de) * 1992-08-27 1994-03-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Ionenleitender Polymerelektrolyt
DE19527741A1 (de) * 1994-09-06 1996-03-07 Hydro Quebec LPB-Elektrolytzusammensetzungen auf der Basis von Gemischen aus Copolymeren und mit sich gegenseitig durchdringenden Netzwerken

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297783A (en) 1962-11-16 1967-01-10 Union Carbide Corp Vinyl halide resin plasticized with a linear copolymer of a diepoxide with a 1, 2-alkylene oxide
FR2442512A1 (fr) 1978-11-22 1980-06-20 Anvar Nouveaux materiaux elastomeres a conduction ionique
US4758483A (en) 1983-03-11 1988-07-19 Societe Nationale Elf Aquitaine Novel macromolecular material for use in realizing electrolytes and/or electrodes
US4578326A (en) 1983-03-11 1986-03-25 Societe Nationale Elf Aquitaine Novel macromolecular material for use in realizing electrolytes and/or electrodes
FR2570224B1 (fr) 1984-09-11 1987-03-20 Elf Aquitaine Electrolyte solide polymere constitue par un copolymere reticule
JPH0826144B2 (ja) * 1986-01-20 1996-03-13 ダイソー株式会社 側鎖にエポキシ基を有するポリエーテル共重合体の製造法
US4711950A (en) 1985-11-05 1987-12-08 Osaka Soda Co., Ltd. Polyether polymer or copolymer, monomer therefor, and process for production thereof
JPS62249361A (ja) 1986-04-21 1987-10-30 Yuasa Battery Co Ltd 有機固体電解質
EP0260847A1 (de) 1986-09-19 1988-03-23 Imperial Chemical Industries Plc Feste Elektrolyte
FR2606218A1 (fr) 1986-10-30 1988-05-06 Elf Aquitaine Nouveau materiau a conduction ionique
JPH0768336B2 (ja) 1986-12-18 1995-07-26 ダイソー株式会社 オリゴオキシエチレン側鎖を有するポリエーテル共重合体の製法
JP2757004B2 (ja) 1989-03-08 1998-05-25 ダイソー株式会社 イオン伝導性固体電解質
US5116541A (en) 1989-04-13 1992-05-26 Dai-Ichi Kogyo Seiyaku Co., Ltd. Ion-conductive polymer electrolyte
JP2762145B2 (ja) * 1989-04-13 1998-06-04 第一工業製薬株式会社 イオン導伝性ポリマー電解質
JPH02295004A (ja) * 1989-05-09 1990-12-05 Hitachi Maxell Ltd リチウムイオン伝導性ポリマー電解質
IT1236512B (it) 1989-10-06 1993-03-11 Eniricerche Spa Elettrolita polimerico solido a base poliepossidica.
JP2813831B2 (ja) 1989-10-26 1998-10-22 第一工業製薬株式会社 イオン導伝性ポリマー電解質
JP2813832B2 (ja) 1989-10-26 1998-10-22 第一工業製薬株式会社 イオン導伝性ポリマー電解質
JP2923542B2 (ja) 1990-07-06 1999-07-26 第一工業製薬株式会社 イオン導伝性ポリマー電解質
JP3258366B2 (ja) * 1992-04-28 2002-02-18 株式会社ユアサコーポレーション 電気二重層コンデンサ
CA2175950C (en) * 1995-05-08 2008-12-02 Shinzo Kohjiya Polymer solid electrolyte
JP3022317B2 (ja) 1995-05-08 2000-03-21 ダイソー株式会社 高分子固体電解質
EP0838487B1 (de) * 1996-10-28 2003-06-18 Daiso Co., Ltd. Polyethercopolymer und fester Polymerelektrolyt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331342A2 (de) * 1988-03-01 1989-09-06 Imperial Chemical Industries Plc Festelektrolytvorrichtungen
EP0460876A1 (de) * 1990-05-31 1991-12-11 Dai-Ichi Kogyo Seiyaku Co., Ltd. Ionenleitender Polymerelektrolyt
EP0559317A1 (de) * 1992-01-27 1993-09-08 Dai-Ichi Kogyo Seiyaku Co., Ltd. Ionenleitender Polymerelektrolyt für galvanische Zelle
EP0585072A1 (de) * 1992-08-27 1994-03-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Ionenleitender Polymerelektrolyt
DE19527741A1 (de) * 1994-09-06 1996-03-07 Hydro Quebec LPB-Elektrolytzusammensetzungen auf der Basis von Gemischen aus Copolymeren und mit sich gegenseitig durchdringenden Netzwerken

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9742251A1 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856538A1 (de) * 1996-08-20 1998-08-05 Daiso Co., Ltd. Fester polyelektrolyt
EP0856538A4 (de) * 1996-08-20 2001-01-17 Daiso Co Ltd Fester polyelektrolyt
US6677084B1 (en) 1999-04-19 2004-01-13 Daiso Co., Ltd. Solid crosslinked-polymer electrolyte and use thereof
EP1339127A1 (de) * 2000-10-20 2003-08-27 Dainippon Ink And Chemicals, Inc. Festpolymerelektrolyt und zelle mit dem elektrolyt
EP1339127A4 (de) * 2000-10-20 2006-07-26 Dainippon Ink & Chemicals Festpolymerelektrolyt und zelle mit dem elektrolyt
WO2003011929A1 (de) * 2001-07-26 2003-02-13 Bayer Aktiengesellschaft Pfropfpolymerisate auf basis von polyalkylenoxiden
EP1507268A4 (de) * 2002-04-26 2005-11-23 Zeon Corp Formmaterial für hochmolekulare festelektrolyte, formen hochmolekularer festelektrolyte und prozess zu ihrer herstellung und polyetherpolymer und prozess zu seiner herstellung
EP1878759A1 (de) * 2002-04-26 2008-01-16 Zeon Corporation Polyetherpolymer und Verfahren zur Herstellung desselben
US7915378B2 (en) 2002-04-26 2011-03-29 Hideyuki Nishio Material for solid polymer electrolyte, and polyether polymer and process for producing same
NL1027911C2 (nl) * 2004-05-22 2009-09-21 Hynix Semiconductor Inc Vloeibare samenstelling voor onderdompelingslithografie en lithografiewerkwijze onder toepassing daarvan.

Also Published As

Publication number Publication date
US6239204B1 (en) 2001-05-29
DE69737057D1 (de) 2007-01-18
CA2253863A1 (en) 1997-11-13
WO1997042251A1 (en) 1997-11-13
EP0897941A4 (de) 1999-07-21
KR100570949B1 (ko) 2006-08-30
EP0897941B1 (de) 2006-12-06
JP3215436B2 (ja) 2001-10-09
TW430686B (en) 2001-04-21
CA2253863C (en) 2005-08-09
AU2651097A (en) 1997-11-26
KR19990087822A (ko) 1999-12-27
CN1215416A (zh) 1999-04-28
CN1136250C (zh) 2004-01-28

Similar Documents

Publication Publication Date Title
US6239204B1 (en) Cross-linked solid polyelectrolyte and use thereof
EP0885913B1 (de) Fester polymerelektrolyt aus copolyethern
EP0856538B1 (de) Fester polyelektrolyt
EP0945476B1 (de) Vernetzter fester Polyethercopolymerelektrolyt
EP0838487B1 (de) Polyethercopolymer und fester Polymerelektrolyt
EP0994143B1 (de) Fester Polymerelektrolyt und dessen Verwendung
US6858351B2 (en) Polyethylene oxide-based electrolyte containing silicon compound
JP4089221B2 (ja) 高分子固体電解質および電池
US6201071B1 (en) Polyether copolymer, solid polymer electrolyte and battery
JP3282565B2 (ja) 架橋高分子固体電解質及びその用途
JPH10176105A (ja) 高分子固体電解質
JP3427730B2 (ja) リチウムポリマー電池
JP4269648B2 (ja) 電解質組成物および電池
JP4640172B2 (ja) 電解質組成物および電池
JP4089246B2 (ja) 架橋高分子固体電解質および電池

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

A4 Supplementary search report drawn up and despatched

Effective date: 19990609

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT NL

RIC1 Information provided on ipc code assigned before grant

Free format text: 6C 08G 65/22 A, 6C 08G 65/08 B, 6C 08G 77/18 B, 6C 08G 59/20 B, 6C 08F 299/02 B, 6C 08L 71/02 B, 6C 08K 3/24 B, 6C 08K 5/42 B, 6H 01M 6/18 B, 6H 01M 10/40 B, 6C 08G 65/14 B, 6C 08G 65/24 B

17Q First examination report despatched

Effective date: 20041125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20061206

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69737057

Country of ref document: DE

Date of ref document: 20070118

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070907

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080523

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602